Skip to main content

Phoma on Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology
  • 470 Accesses

Abstract

Quality features of medicinal and aromatic plants (MAPs) are mainly determined by their content in essential oils. Many harmful pests and diseases, including Phoma sensu lato group of fungi, negatively affect the assimilation process and modify the composition of volatile compounds of plants due to changes in physiological parameters. Besides pathogenic nature of Phoma, they are known to be associated with MAPs as endophytes, participating in metabolic paths; they can synthetize biologically active compounds closely related to those directly produced by the host plants. Exciting possibilities for exploiting Phoma sensu lato endophytes for the production of a plethora of known and novel biologically active secondary metabolites provide the impetus for a number of investigations and encourage scientists all over the world to figure out how this unique microbial community is exploited for large-scale in vitro production of high-value phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab MA, Bahkali AH, El-Gorban AM, Hodhod MS (2017) Natural products of Nothophoma multilocularis sp. nov. an endophyte of the medicinal plant Rhazya stricta. Mycosphere 8(8): 1185-1200.

    Google Scholar 

  • Abdel-Hafez SII, El Naggar SM (2006) Morphological, reproductive and mycobiota characters of three wild medicinal plants inhabiting Western Mediterranean coastal land, Egypt. Feddes Repertorium: Zeitschrift für botanische Taxomonie und Geobotanik 117: 240-249.

    Google Scholar 

  • Acharya K, Chakraborty N, Chatterjee S, Basu SK (2014) Fungal diseases of fenugreek. American Journal of Social Issues and Humanities ISSN 2276-6928.

    Google Scholar 

  • Akamatsu HO, Chilvers MI, Peever TL (2008) First report of spring black stem and leaf spot of alfalfa in Washington State caused by Phoma medicaginis. Plant Dis 92: 833-833.

    CAS  PubMed  Google Scholar 

  • Akhtar J, Singh B, Aravindaram PK, Kumar A (2017) Status of seed-borne fungi in some indigenous medicinal and aromatic plants conserved in National Gene Bank, India. Indian Phytopathology 70: 206-215.

    Google Scholar 

  • Ansari M, Eslaminejad T., Sarhadynejad Z, Eslaminejad T (2013) An overview of the roselle plant with particular reference to its cultivation, diseases and usages. Eur J Med Plants 135–145.

    Google Scholar 

  • Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123: 373-383.

    PubMed  Google Scholar 

  • Armstrong-Cho C, Banniza S (2020) Pathogens of caraway and coriander blossoms in western Canada. Can J Plant Pathol 42: 367-376.

    Google Scholar 

  • Atanasova D, Maneva V, Dacheva S, Atanassov A (2013) Phytosanitary monitoring of coriander crops in south-east Bulgaria. Povrćarstvo, ukrasno, aromatično i ljekovito bilje 48.

    Google Scholar 

  • Ateah D (2019) A survey of fungal endophytes from healthy branches of Ginkgo biloba (Doctoral dissertation).

    Google Scholar 

  • Avasthi S, Gautam AK, Bhadauria R (2013) First report of Phoma betae on Aloe vera in India. Arch Phytopathol Plant Prot 46: 1508-1511.

    Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31: 1-18.

    Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65: 1–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basavand E, Babaeizad V, Mirhosseini HA, Niri MD (2019) Occurrence of leaf spot disease caused by Phoma herbarum on oregano in Iran. J Plant Pathol 1-2.

    Google Scholar 

  • Bertetti D, Gilardi G, Gullino ML, Garibaldi A (2018) Nuovi parassiti fungini su colture ornamentali comparsi in Italia settentrionale negli ultimi mesi. Protezione delle colture 118: 2-6 (in Italian).

    Google Scholar 

  • Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. CABI Publishing, United Kingdom.

    Google Scholar 

  • Bokor P, Tancik J, Habán M, Marinković BJ, Poláček M (2008) The occurrence of pests on lemon balm (Melissa officinalis) and garden sage (Salvia officinalis). Proc Nat Sci Matica Srpska Novi Sad 115: 59–64.

    Google Scholar 

  • Borges WDS, Pupo MT (2006) Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant Tithonia diversifolia (Asteraceae). J Braz Chem Soc 17: 929-934.

    CAS  Google Scholar 

  • Bretag TW, Cunnington JH (2005) First report of spring black stem and leaf spot in fenugreek (Trigonella foenum-graecum) caused by Phoma pinodella in Australia. Australasian Plant Pathology 34: 619-620.

    Google Scholar 

  • Carrubba, A., Verde, G. L., & Salamone, A. (2015). Sustainable weed, disease and pest management in medicinal and aromatic plants. In Medicinal and Aromatic Plants of the World (pp. 205–235). Springer, Dordrecht.

    Google Scholar 

  • Chen Q, Jiang J, Zhang G, Cai L, Crous PW (2015) Resolving the Phoma enigma. Stud Mycol 82: 137–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang N, Ma J, Zhu Y, Wang M, Wang X, Zhang P (2016) A Platelet/CMC coupled with offline UPLC-QTOF-MS/MS for screening antiplatelet activity components from aqueous extract of Danshen. Journal of Pharmaceutical and Biomedical Analysis 117: 178-183.

    CAS  PubMed  Google Scholar 

  • Chen HM, Wu HX, He XY, Zhang HH, Miao F, Liang ZS (2020) Promoting tanshinone synthesis of Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603. China J. Chinese Mater. Medica 45: 65–71 doi:https://doi.org/10.19540/j.cnki.cjcmm.20191113.101.

    Article  CAS  Google Scholar 

  • Djebali N (2013) Aggressiveness and host range of Phoma medicaginis isolated from Medicago species growing in Tunisia. Phytopathol Mediterr 3-15.

    Google Scholar 

  • Du W, Yao Li J, Sun C, Xia J, Wang B, Ren L (2020) Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PloS one 15 e0229589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadevi V, Muthumary J (2008) A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography. Chin J Chromat 26: 50-55.

    CAS  Google Scholar 

  • Gautam AK (2014) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Archives of Phytopathology and Plant Protection 47: 537-544.

    CAS  Google Scholar 

  • George KJ, GangaG, Varma RS, Sasikumar B, Saji KV (2005) Endophytic mycoflora of inner bark of Azadirachta indica A. Juss. Curr Sci 88: 218.

    Google Scholar 

  • Giusiano G, Rodolfi M, Mangiaterra M, Piontelli E, Picco AM (2010) Endophytic fungi in medicinal plants of northeast of Argentina. I: Morphotaxonomic approach of their foliar community. Bol Micol 25: 15-27.

    Google Scholar 

  • Gray F, Hollingsworth C, Groose R, Reedy C, Larsen R (2004) Brown root rot resistance Phoma sclerotioides. Available at: http://www.naaic.org/stdtests/brrootrot.pdf [Accessed 18 May 2020].

  • de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113: 508–519.

    PubMed  Google Scholar 

  • Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases: a review. Process Biochem 38: 987-996.

    CAS  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Sharma S, Sharma YP (2013) Mycoflora and natural aflatoxin contamination in some traditional medicinal plants from Jammu, India. J Mycol Plant Pathol 43: 360.

    CAS  Google Scholar 

  • Gupta S, Kaul S, Singh B, Vishwakarma RA, Dhar MK (2016) Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. App Biochem Biotech 180: 1093-1109.

    CAS  Google Scholar 

  • Herrmann LW, Poitevin CG, Schuindt LC, De Almeida AB, Pimentel IC (2019) Diversity of fungal endophytes in leaves of Mentha piperita and Mentha canadensis. Int J Botany Stud 4: 44-49.

    Google Scholar 

  • Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69: 1049-1056.

    CAS  PubMed  Google Scholar 

  • Horner CE (1971) Rhizome and stem rot of peppermint caused by Phoma strasseri. Plant Dis Rep 55: 814–816.

    Google Scholar 

  • Jingfeng L, Linyun F, Ruiya L, Xiaohan W, Haiyu L, Ligang Z (2013) Endophytic fungi from medicinal herb Salvia miltiorrhiza Bunge and their antimicrobial activity. African J Microbiol Res 7: 5343–5349. doi: https://doi.org/10.5897/ajmr2013.6358.

    Article  Google Scholar 

  • Kalra A, Singh HB, Pandey R, Samad A, Patra NK, Kumar S (2005) Diseases in mint: causal organisms, distribution, and control measures. J Herbs Spices Med Plants 11: 71-91.

    Google Scholar 

  • Kannan KP, Muthumary J (2012) Comparative analysis of endophytic mycobiota in different tissues of medicinal plants. Afr J Microbiol Res 6: 4219-4225.

    Google Scholar 

  • Kannan KP, Abdul Basheed MI, Kannadhasan S, Pondurai S, Dhakshinamoorthy M (2017) Mycoendophytes Isolated from Mimusops elengi. L-A First report. Int Biol Biomed J 3: 25-29.

    Google Scholar 

  • Kamel NM, Abdel-Motaal FF, El-Zayat SA (2020) Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch Microbiol 202: 247-255.

    CAS  PubMed  Google Scholar 

  • Kandasamy P, Manogaran S, Dhakshinamoorthy M, Kannan KP (2015) Evaluation of antioxidant and antibacterial activities of endophytic fungi isolated from Bauhinia racemosa Lam and Phyllanthus amarus Schum and Thonn. J Chem Pharm Res 7: 366-379.

    CAS  Google Scholar 

  • Karimi K, Khodaei S, Rota-Stabelli O, Arzanlou M, Pertot I (2016) Identification and characterization of two new fungal pathogens of Polygonatum odoratum (Angular Solomon’s seal) in Italy. J Phytopathol 164: 1075-1084.

    CAS  Google Scholar 

  • Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15: 126-132.

    CAS  PubMed  Google Scholar 

  • Khan R, Shahzad S, Choudhary MI, Khan SA, Ahmad A (2007) Biodiversity of the endophytic fungi isolated from Calotropis procera (Ait.) R. Br. Pak J Botany 39: e2239.

    Google Scholar 

  • Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (2014) Microbial diversity and biotechnology in food security. Springer India.

    Google Scholar 

  • Khare MN, Tiwari SP, Sharma YK (2017) Disease problems in the cultivation of coriander (Coriandrum sativum L.) and their management leading to production of high quality pathogen free seed. International J Seed Spices 7: 1-7.

    Google Scholar 

  • Khiralla A, Mohamed I, Thomas J, Mignard B, Spina R, Yagi S, Laurain-Mattar D (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8: 701-704. doi:https://doi.org/10.1016/j.apjtm.2015.07.032.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Choi HG, Song JH, Kang KS, Shim SH (2019) Bioactive secondary metabolites from an endophytic fungus Phoma sp. PF2 derived from Artemisia princeps Pamp. J Antibiot 72: 174-177.

    CAS  Google Scholar 

  • Krishnamurthy YL, Naik SB, Jayaram S (2008) Fungal communities in herbaceous medicinal plants from the Malnad region, Southern India. Microbes Environ 23: 24-28.

    PubMed  Google Scholar 

  • Krohn K, Farooq U, Flörke U, Schulz B, Draeger S, Pescitelli G, Kurtán T (2007) Secondary metabolites isolated from an endophytic Phoma sp.–absolute configuration of tetrahydropyrenophorol Using the Solid-State TDDFT CD Methodology. Eur J Org Chem 19: 3206-3211.

    Google Scholar 

  • Kruppa PC, Russomanno OM (2008) Ocorrência de fungos em sementes de plantas medicinais, aromáticas e condimentares da família Lamiaceae. Tropical Plant Pathology 33: 72-75.

    Google Scholar 

  • Kumar S, Upadhyay R, Aharwal RP, Sandhu SS (2016) Antibacterial activity of some isolated endophytic fungi from Mentha viridis. Int J Appl Biol Pharmac Technol 7: 239-249.

    Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69-90.

    CAS  Google Scholar 

  • Lahoz E, Caiazzo R, Fanigliulo A, Comes S, Crescenzi A (2007) Phoma glomerata as causal agent of crown rot disease of fennel in southern Italy. Commun Agri Appl Biol Sci 72: 875-878.

    Google Scholar 

  • Larran S, Simón MR, Moreno MV, Siurana MPS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92: 17–23.

    Google Scholar 

  • Le TTM, Hoang ATH, Le TTB, Vo TTB, Van Quyen D, Chu HH (2019) Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam. Sci Rep 9: 1-13.

    Google Scholar 

  • Li X, Zhai X, Shu Z, Dong R, Ming Q, Qin L, Zheng C (2016) Phoma glomerata D14: An endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Current Microbiology 73: 31-37.

    PubMed  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KX, Wu SH (2019) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29: 75-78.

    CAS  Google Scholar 

  • Machowicz-Stefaniak Z, Zimowska B (2000). Grzyby przenoszone przez materiał siewny roślin zielarskich [Fungi transmitted by saw material of herbs]. Acta Agrobot 2: 25-38.

    Google Scholar 

  • Machowicz-Stefaniak Z, Zimowska B, Zalewska E (2002) Grzyby zasiedlające różne organy tymianku właściwego Thymus vulgaris L. uprawianego na Lubelszczyźnie [Fungi colonizing various organs of thyme Thymus vulgaris L. cultivated in the region of Lublin]. Acta Agrobot 55: 185-197.

    Google Scholar 

  • Machowicz-Stefaniak Z, Zalewska E (2008) Biodiversity of fungi colonizing different part of caraway (Carum carvi L.). Electronic J Polish Agricult Univer 11: 21. http://www.ejpau.media.pl/volume11/issue1/art-21.html.

  • Machowicz-Stefaniak Z, Zimowska B, Zalewska E (2008) The occurrence and pathogenicity of Phoma exigua Desm. var. exigua for selected species of herbs. Acta Agrobot 61:157-166.

    Google Scholar 

  • Machowicz-Stefaniak Z, Zalewska ED, Zimowska B, Król ED (2014) Pathogenicity of Phoma complanata (Tode) Desm. towards angelica (Archangelica officinalis Hoffm.). Acta Sci Pol Hortorum Cultus 13: 45-58.

    Google Scholar 

  • Mačkinaitė R (2012) Potential pathogens of common caraway (Carum carvi L.) seeds and search for measures suppressing their spread. Žemdirbystė–Agriculture 99: 179-88.

    Google Scholar 

  • McPartland JM (1994) Cannabis pathogens X: Phoma, Ascochyta and Didymella species. Mycologia 86: 870-878.

    Google Scholar 

  • Mel’nik VA (2000) Key to the fungi of the genus Ascochyta Lib.(Coelomycetes). Parey. VA Mel’nik, U Braun, G Hagedorn (Eds.), Mitteilungen aus der Biologischen Bundesanstalt fuür Land- und Forstwirtschaft. Heft 379, Perley Buchverlag, Berlin Germany.

    Google Scholar 

  • Melouk HA, Horner CE (1973) β-glucosidase from Phoma strasseri and its possible role in a disease of peppermint. Phytopathology 63: 973-975.

    CAS  Google Scholar 

  • Mishra VK, Singh G, Passari AK, Yadav MK, Gupta VK, Singh BP (2016) Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J Environ Biol 37: 229.

    CAS  PubMed  Google Scholar 

  • Mirzaee MR (2014) An overview of jujube (Ziziphus jujuba) diseases. Arch Phytopathol Plant Protect 47: 82-89.

    Google Scholar 

  • Nagaraja O, Mahishi P, Krishnappa M (2010) Mycoflora associated with periwinkle (Catharanthus Roseus L.), pathogens city and their effect on primary metabolites. J Plant Dis Sci 5: 173-178.

    Google Scholar 

  • Nalini MS, Sunayana N, Prakash HS (2014) Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodivers 1-9 doi: https://doi.org/10.1155/2014/494213.

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5: 918-970.

    CAS  Google Scholar 

  • Okafar UA, Okachi VI, Chinedu SN, Ebuehi OAT, Onygeme-Okerenta BM (2010) Pectinolytic activity of wild-type filamentous fungi fermented on agro-wastes. Afr J Microbiol Res 24: 2729-2734.

    Google Scholar 

  • Paizs L, Naggy F (1975) Phoma strasseri: A new pathogen of mint in Hungary. Herba Hungarica 14: 65-75.

    Google Scholar 

  • Palanichamy P, Krishnamoorthy G, Kannan S, Marudhamuthu M (2018) Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt J Basic Appl Sci 5: 303-312.

    Google Scholar 

  • Park YH, Kim YC, Park SU, Lim HS, Kim JB, Cho BK, Bae H (2012) Age-dependent distribution of fungal endophytes in Panax ginseng roots cultivated in Korea. J Ginseng Res 36: 327-333.

    PubMed  PubMed Central  Google Scholar 

  • Park JM, Park JH, Kim JG, You YH (2016) Securing and analysis of fungal endophytic diversity from roots of Salicornia europaea L. J Life Sci 50: 89-98.

    CAS  Google Scholar 

  • Park YH, Kim Y, Mishra RC, Bae H (2017) Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer): Diversity and biocontrol activity against ginseng pathogens. Sci Rep 7: 1-10.

    PubMed  PubMed Central  Google Scholar 

  • Pandotra VR, Sastry KSM (1969) Fungi on medicinal and aromatic plants in the North-West Himalayas-V. In Proceedings of the Indian Academy of Sciences-Section B Springer India 70:88–97.

    Google Scholar 

  • Parismita S, Manoj K, Highland K, Ruth L, Richa R (2016) Endophytic fungi associated with the medicinally important aromatic plant Artemisia nilagirica (Clarke) Pamp. and antimicrobial activity of selected endophytic fungi against Rhizoctonia solani. Asian J Biol Life Sci 5 (2).

    Google Scholar 

  • Pavlović SĐ, Stojšin VB, Stojanović SD (2007) Mycopopulation of marshmallow (Althaea officinalis L). Zbornik Matice srpske za prirodne nauke 113: 193-202.

    Google Scholar 

  • Pavlović S, Stojšin V, Stojanović S, Starović M (2009) Mycopopulation in five important cultivated medicinal plants in Serbia. Planta Med 75: 1005-1005.

    Google Scholar 

  • Pavlović DS, Stević RT, Pljevljakušić SD, Stojanović DS, Starović SM, Jošić LD (2012) Mycopopulation of Leuzea carthamoides DC. cultivated in Serbia. In Proceedings of the Seventh Conference on Medicinal and Aromatic Plants of Southeast European Countries (Proceedings of the 7th CMAPSEEC) Subotica Serbia 27-31 May, pp. 315-320). Institute for Medicinal Plant Research and Association for Medicinal and Aromatic Plants of Southeast European Countries (AMAPSEEC).

    Google Scholar 

  • Pavlović SĐ, Stojanović SD, Starovic MS, Jošić DL, Menković NR (2011) Parasitic mycobiota of yellow gentian (Gentiana lutea L.). Zbornik Matice srpske za prirodne nauke 120: 177-182.

    Google Scholar 

  • Pavlović DS, Stević RT, Ristić D, Starović M, Aleksić G, Kuzmanović S, Stojanović S (2015) The first report of Bipolaris/Drechlera sorociniana (Sacc in sorok.) on anise seeds in Serbia. In Sixth International Scientific Agricultural Symposium "Agrosym 2015", Jahorina, Bosnia and Herzegovina, October 15-18, 2015. Book of Proceedings (pp. 1101-1105). University of East Sarajevo.

    Google Scholar 

  • Pethybridge Sarah J, Jason B. Scott, Frank S. Hay (2012) Lack of evidence for recombination or spatial structure in Phoma ligulicola var. inoxydabilis populations from Australian pyrethrum fields. Plant Dis 96: 746-751.

    CAS  PubMed  Google Scholar 

  • Praptiwi P, Fathoni A, Ilyas M (2020) Diversity of endophytic fungi from Vernonia amygdalina, their phenolic and flavonoid contents and bioactivities. Biodiversitas 21: 436-441.

    Google Scholar 

  • Radev Z (2020) Study on the use of honey bees (Apis mellifera L.) for biological control against pests in lavender (Lavandula officinalis L). New knowledge Journal of science, 9: 165-168.

    Google Scholar 

  • Rai MK (1989) Phoma sorghina infection in human being. Mycopathologia 105:167-170.

    CAS  PubMed  Google Scholar 

  • Rajagopal K, Kalavathy S, Kokila S, Karthikeyan S, Kathiravan G, Prasad R, Balasubraminan P (2010) Diversity of fungal endophytes in few medicinal herbs of South India. Asian J Exp Biol Sci 1: 415-418.

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341-361.

    CAS  Google Scholar 

  • Rakotoniriana EF (2012) Biodiversity and antifungal properties of endophytes from the madagascar medicinal plants Centella asiatica (L.) Urb. and Catharanthus roseus (L.) G. Don. Disertasi. Universite Catholique de Louvain. Louvain.

    Google Scholar 

  • Rodeva R, Carrieri R, Stoyanova Z, Dacheva S, Lahoz E, Fanigliulo A, Crescenzi A (2013) New report of Phoma glomerata on Coriandrum sativum L. Commun Agricult App Biol Sci 78: 617-620.

    CAS  Google Scholar 

  • Rodeva R, Gabler J, Machowicz-Stefaniak Z, Kačergius A, Zimowska B, Zalewska E, Stoyanova Z (2016) New, emerging and re-emerging fungal diseases on medicinal and aromatic plants in European domain. Proc. 6th International Sympozium Breeding Research on Medicinal and Aromatic Plants, BREEDMAP 6, Quedlinburg, Germany: 33-39.

    Google Scholar 

  • Roustaee A, Dechamp-Guillaume G, Gelie B, Savy C, Dargent R Barrault G (2000) Ultrastructural studies of the mode of penetration by Phoma macdonaldii in sunflower seedlings. Phytopathology 90: 915-920.

    CAS  PubMed  Google Scholar 

  • Rusanova M, Rusanov K, Butterweck V, Atanassov I (2019) Exploring the capacity of endophytic fungi isolated from medicinal plants for fermentation and phenolics biotransformation of rose oil distillation wastewater. Biotechnology & Biotechnological Equipment 33: 651-663.

    CAS  Google Scholar 

  • Sairafianpour M, Christensen J, Stærk D, Budnik BA, Kharazmi A, Bagherzadeh K, Jaroszewski JW (2001) Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod 64: 1398-1403.

    CAS  PubMed  Google Scholar 

  • Samaga PV, Rai VR (2016) Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol 66: 229-244.

    CAS  Google Scholar 

  • Santiago C, Fitchett C, Munro MH, Jalil J, Santhanam J (2012) Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evid Based Complement Alternat Med. doi:https://doi.org/10.1155/2012/689310.

  • Saranraj P, Sivasakthivelan P, Sivasakthi S (2016) Prevalence of fungal diseases in medicinal plants of Vellore district of Tamil Nadu in India. Int J Adv Multidiscip Res 3: 49-63.

    Google Scholar 

  • Strobel GA (2002) Microbial gifts from the rainforest. Can J Phytopathol 24: 14-20.

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–68.

    CAS  PubMed  Google Scholar 

  • Ślusarczyk S. Topolski J, Domaradzki K, Adams M, Hamburger M., Matkowski A (2015) Isolation and fast selective determination of nor-abietanoid diterpenoids from Perovskia atriplicifolia roots using LC-ESI-MS/MS with multiple reaction monitoring. Nat Prod Commun 10 (7). 1934578X1501000703.

    Google Scholar 

  • Tan XM, Zhou YQ, Zhou XL, Xia XH, Wei Y, He LL, Yu LY (2018) Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep 8: 1-9.

    Google Scholar 

  • Tariq M, Dawar S, Tufail S (2016). Identification and isolation of fungi from Trigonella foenum-graecum L. Int. J Biol Res 4: 47-50.

    Google Scholar 

  • Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G (2020) Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol 10: 3013.

    PubMed  PubMed Central  Google Scholar 

  • Tenguria RK, Firodiya A (2015) Occurrence of endophytic fungi in leaves of medicinal plants from central region of Madhya Pradesh, India. World J Pharmacy Pharma Sci 4: 1921-1934.

    Google Scholar 

  • Wan SN, Ma, YP, Wang JW, Wei XY (2014) Identification and antimicrobial activity of endophytic fungi from Pueraria lobata. Nat Prod Res Develop 11: 34.

    Google Scholar 

  • Wang HSF, Hwang KF, Chang BD, Gossen GD, Turnbull RJ, Howard (2004) Assessing resistance to spring black stem and leaf spot of alfalfa caused by Phoma spp. Can J Plant Sci 84: 311-317.

    Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. App Microbiol Biotechnol 93: 1231-1239.

    CAS  Google Scholar 

  • Weber RW, Stenger E, Meffert A, Matthias HAHN (2004) Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol Res 108: 662-671.

    CAS  PubMed  Google Scholar 

  • WHO (2003) WHO guidelines on good agricultural and collection practices (GACP) for medicinal plant. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • Wielgusz K, Seidler-Łożykowska K (2017) Fungi colonizing and damaging different parts of some medicinal plants. Herba Pol 63: 18-26.

    Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3:1205–1216.

    CAS  Google Scholar 

  • Wu H, Yan Z, Deng Y, Wu Z, Xu X, Li X, Luo H (2020) Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. Acta Ecologica Sinica 5: 383-387.

    Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel G (2007) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol 54: 119-125.

    CAS  PubMed  Google Scholar 

  • Vieira ML, Hughes AF, Gil VB, Vaz AB, Alves TM, Zani CL, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58: 54-66.

    CAS  PubMed  Google Scholar 

  • Yang H, Cheng JJ, Liang G (2010) Induction of mitotic arrest and apoptosis by salvianolic acid C in human hepatoma HepG2 cells. Chin Pharmacol Bull 26: 1208-1212.

    CAS  Google Scholar 

  • Zechini A, D’auerio, Zambonelli A, Bianch A, Alabasini A (1995) Micro morphological and chemical investigation into the effects of fungal diseases on Melissa officinalis L.. Mentha x piperita L., Salvia officinalis L. Phytopathology 143: 179-183.

    Google Scholar 

  • Zhang H, Xiong Y, Zhao H, Yi Y, Zhang C, Yu C, Xu C (2013) An antimicrobial compound from the endophytic fungus Phoma sp. isolated from the medicinal plant Taraxacum mongolicum. J Taiwan Inst Chem Eng 44: 177–181. doi: https://doi.org/10.1016/j.jtice.2012.11.013.

    Article  CAS  Google Scholar 

  • Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41: 353-360.

    PubMed  Google Scholar 

  • Zimowska B (2004) Fungi threatening with cultivation of St. John’s wort (Hypericum perforatum L.) in particular with regard to Seimatosporium hypericinum (Ces.) Sutton (Melanconiales, Deuteromycotina). Phytopathol Pol 31: 79-80.

    Google Scholar 

  • Zimowska B (2007a) New Phoma species on Leonurus cardiaca. Acta Mycol 42: 119-123.

    Google Scholar 

  • Zimowska B (2007b) Fungi colonizing and damaging different parts of peppermint (Mentha piperita L.) cultivated in south-eastern Poland. Herba Pol 53: 97-105.

    Google Scholar 

  • Zimowska B (2008) Biodiversity of fungi colonizing and damaging selected parts of motherwort (Leonurus cardiaca L.). Herba Pol 54: 30-40.

    Google Scholar 

  • Zimowska B (2010a) Diversity of fungi occurring on savory (Satureja hortensis L.). Herba Pol 56: 29-37.

    Google Scholar 

  • Zimowska B (2011a) Conidiogenesis of Phoma strasseri the fungus responsible for black stem and rhizomes rot in peppermint (Mentha piperita). Acta Sci Pol Hortorum Cultus 10: 171-178.

    Google Scholar 

  • Zimowska B (2011b) Biotic activity of Phoma strasseri and the effect of thermal conditions on the growth and formation of the pathogen’s infectious material. Acta Sci Pol Hortorum Cultus 10: 213-224.

    Google Scholar 

  • Zimowska B (2011c) Biotic activity of Phoma strasseri and the effect of thermal conditions on the growth and formation of the pathogen’s infectious material. Acta Sci Pol Hortorum Cultus 10: 259-271.

    Google Scholar 

  • Zimowska B (2012) Pathogenicity and ultrastructural studies of the mode of penetration by Phoma strasseri in peppermint stems and rhizomes. Pol J Microbiol 61: 273-279.

    CAS  PubMed  Google Scholar 

  • Zimowska B (2013) Diversity of fungi colonizing and damaging selected parts of ribwort (Plantago lanceolata L.). Acta Sci Pol Hortorum Cultus 12: 91-103.

    Google Scholar 

  • Zimowska B (2015) Fungi threatening the cultivation of oregano (Origanum vulgare L.) in south-eastern Poland. Acta Sci Pol Hortorum Cultus 14: 65-78.

    Google Scholar 

  • Zimowska B, Targoński Z (2015) Pectinolytic activity of Boeremia strasseri the causal agent of black stem and rhizomes rot of peppermint. Acta Sci Pol Hortorum Cultus 14: 19-28.

    Google Scholar 

  • Zimowska B, Zalewska ED, Krol ED, Furmańczyk A (2017) Morphological and molecular characterization of Phoma complanata, a new causal agent of Archangelica officinalis Hoffm. in Poland. Pol J Microbiol 66: 281-285.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Zimowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimowska, B. (2022). Phoma on Medicinal and Aromatic Plants. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_3

Download citation

Publish with us

Policies and ethics