Skip to main content

Diseases of Vegetables Caused by Phoma spp.

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

The genus Phoma is one of the dominant groups of fungi that are widely distributed in numerous ecological niches. Up to now, more than 200 species are recognized in Phoma, making it one of the biggest fungal genera. Many of them are phytopathogens of major significance on a wide range of crops worldwide. They cause extremely harmful diseases on vegetables of different families. Phoma terrestris (pink root of onion) (Alliaceae), Phoma apiicola (Phoma crown and root rot of celery), Calophoma complanata (Syn. Phoma complanata) (Phoma canker of parsnip) (Apiaceae), Phoma betae (blackleg of beet) (Amaranthaceae), Plenodomus lingam (Syn. Phoma lingam) (blackleg/Phoma leaf spot/stem canker of beans) (Brassicaceae), P. cucurbitacearum (gummy stem blight, and black rot of cucurbits) (Cucurbitaceae), Peyronellaea pinodella (Syn. Phoma pinodella) (root and foot rot complex and ascochyta blight of peas) (Fabaceae), Boeremia exigua (Syn. Phoma exigua) (Phoma basal rot of lettuce) (Asteraceae), and Remotididymella destructiva (Syn. Phoma destructiva) (Phoma blight/Phoma rot of tomato) (Solanaceae) are known to be the most prevalent species of pathogens on vegetables. While diseases caused by these pathogens are primarily field diseases, a few are known to cause spoilage of vegetables in storage, such as Boeremia exigua var. exigua or foveata (Syn. Phoma exigua var. exigua or var. foveata) (gangrene of potato), Phoma cucurbitacearum (black rot of cucurbits), Phoma apiicola (crown and root rot of celery), Calophoma complanata (Syn. Phoma complanata) (canker of parsnips), and Phoma betae (blackleg of beet). Diseases develop through soil-borne, seed-borne, and aboveground infections. Although a few general reviews on the fungal diseases of different crops are available, no comprehensive review has been compiled on the diseases of vegetables caused by Phoma spp. The information illustrated in the chapter may help improve the basic understanding of the pathological and management aspects of various fields and postharvest diseases of vegetables caused by Phoma spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Anilino-pyrimidines

DMI:

Demethylation inhibitors

MBC:

Methyl benzimidazole carbamates

MBI-D:

Melanin biosynthesis inhibitors-dehydratase

PP:

Phenylpyrroles

QoI:

Quinone outside inhibitors

SDHI:

Succinate-dehydrogenase inhibitors

References

  • Agarwal PC, Singh B, Dev U, Rani I, Chand D, Khetarpal RK (2006) Seed-borne fungi detected in sugar beet seeds imported into India during last three decades. Online. Plant Health Progress doi:https://doi.org/10.1094/PHP-2006-1211-01-RS.

  • Agrios GN (2005) Plant Pathology. Fifth Edition. Academic Press

    Google Scholar 

  • Ash G (2000) Blackleg of oilseed rape. 2000. The Plant Health Instructor. DOI: https://doi.org/10.1094/PHI-I-2000-1111-01

    Book  Google Scholar 

  • Aveskamp MM, de Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31:1-18.

    Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1-60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babadoost M (1990) Pink root disease. University of Illinois Extension RPD No. 932

    Google Scholar 

  • Bayan L, Koulivand PH, Gorji A (2014) Garlic: a review of potential therapeutic effects. Avicenna J Phytomed 4:1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boerema GH (1997) Contributions towards a monograph of Phoma (Coelomycetes)-V subdivision of the genus in sections. Mycotaxon 64:321–333

    Google Scholar 

  • Boerema GH, Bollen GJ (1975) Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 8(2): 111–444.

    Google Scholar 

  • Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC (2004a) Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. CABI Publishing, United Kingdom.

    Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004b) The methods used for differentiation and identification. In: Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (Eds.), Phoma identification manual. Differentiation of Specific and infra-specific taxa in culture (pp. 14–18). Wallingford: CABI Publishing.

    Google Scholar 

  • Bretag TW, Ramsey MD (2001) Foliar diseases caused by fungi: Ascochyta spp. In: Kraft JM, Pfleger FL (Eds.), Compendium of Pea Diseases and Pests, APS Press: The American Phytopathological Society, St. Paul, MN, pp. 24-28

    Google Scholar 

  • Bretag TW, Keane PJ, Price TV (2006) The epidemiology and control of ascochyta blight in field peas: a review. Aust J Agr Res 57:883–902. doi: https://doi.org/10.1071/AR05222

    Article  Google Scholar 

  • Butt MS, Naz A, Sultan MT, Qayyum MMN (2013) Anti-oncogenic perspectives of spices/herbs: a comprehensive review. EXCLI J 12:1043–1065.

    PubMed  PubMed Central  Google Scholar 

  • Carnegie SF, Cameron AM, Lindsay DA, Sharp E, Nevison IM (1998) The effect of treating seed potatoes with benzimidazole, imidazole and phenylpyrrole fungicides on control of rot and blemish diseases. Annals of Applied Biology 133: 343– 63.

    CAS  Google Scholar 

  • Cerkauskas RF (1984) Parsnip petiole canker caused by Phoma complanata. Phytopathology 74: 829-830. (Abstr.)

    Google Scholar 

  • Cerkauskas RF, McGarvey BD (1987) Chemical control of phoma canker of parsnip. Can J Plant Pathol 9: 274. (Abstr.)

    Google Scholar 

  • Chen Q, Zhang K, Zhang GZ, Cai L (2015) A polyphasic approach to characterize two novel species of Phoma (Didymellaceae) from China. Phytotaxa 197:267–281

    Google Scholar 

  • Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. Journal of Agricultural and Food Chemistry 56:6304-9.

    CAS  PubMed  Google Scholar 

  • Colmán AA, Alves JL, da Silva M, Barreto RW (2018) Phoma destructiva causing blight of tomato plants: a new fungal threat for tomato plantations in Brazil? Trop Plant Pathol 43:257-262

    Google Scholar 

  • Davidson JA, Ramsey MD (2000) Pea yield decline syndrome in South Australia: the role of diseases and the impact of agronomic practices. Australian Journal of Agricultural Research 51:347– 54.

    Google Scholar 

  • Davidson JA, Hartley D, Priest MK, Krysinska-Kaczmarek M, McKay A., Scott E.S. (2009). A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101:120-128

    Google Scholar 

  • De Gruyter, J. (2012) Revised taxonomy of Phoma and allied genera. (PhD Thesis) Wageningen University, Wageningen, the Netherlands, 180 pp.

    Google Scholar 

  • De Gruyter J, Boerema GH, van der Aa HA (2002) Contributions towards a monograph of Phoma (Coelomycetes)-VI-2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–53

    Google Scholar 

  • Deb D, Khan A, Dey N (2020) Phoma diseases: Epidemiology and control. Plant Pathol 69: 1203- 1217. https://doi.org/10.1111/ppa.13221

    Article  CAS  Google Scholar 

  • Derevnina L, Dagdas YF, De la Concepcion JC, Bialas A, Kellner R, Petre B, et al. (2016). Nine things to know about elicitins. New Phytol 212:888–895. doi: https://doi.org/10.1111/nph.14137

    Article  CAS  PubMed  Google Scholar 

  • Dingley JM (1970) Records of fungi parasitic on plants in New Zealand 1966–68. New Zealand Journal of Agricultural Research 13:2:325-337

    Google Scholar 

  • Dixon G.R. (1981) Pathogens of Umbelliferous Crops. In: Vegetable Crop Diseases. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03704-9_8

    Chapter  Google Scholar 

  • Entwistle AR (1990) Root diseases. In: Rabinowitch HD, Brewster JL (eds.). Onion and allied crops. Vol II. CRC Press, Boca Raton, FL. p. 103-154

    Google Scholar 

  • Fatehi J, Bridge PD, E. Punithalingam (2003) Molecular relatedness within the “Ascochyta pinodes-complex”. Mycopathologia 156: 317–327.

    Google Scholar 

  • Feng L, Nie K, Jiang H, Fan W (2019) Effects of lutein supplementation in age-related macular degeneration. PLoS ONE 14(12): e0227048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira JJ, Campa A, Perez-Vega E (2016) Variation in the response to ascochyta blight in common bean germplasm. Eur J Plant Pathol 146:977–985

    CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) Worldwide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). European Journal of Plant Pathology 114:3–15

    Google Scholar 

  • Freeman JH, EJ McAvoy, Boyd NS, Ozores-Hampton M, Paret M, Wang Q, Miller CF, Noling JW, Martini X (2017) Cucurbit Production. In: Vallad GE, Smith HA, Dittmar PJ, Freeman JH (eds) Vegetable Production Handbook for Florida. IFAS Extension. University of Florida. http://edis.ifas.ufl.edu/pdffiles/cv/cv29200.pdf.

    Google Scholar 

  • Gabrielson RL (1983) Blackleg disease of crucifers caused by Leptosphaeria maculans (Phoma lingam) and its control. Seed Science and Technology 11: 749–780.

    Google Scholar 

  • Gates LF (1959) Further experiments on black-leg disease of sugar-beet seedlings. Annals of Applied Biology - AAB. 47 (3), pp. 502–510. https://doi.org/10.1111/j.1744-7348.1959.tb07282.x.

  • Giebel J, DopieraLa U (2004) Pathogenesis of potato gangrene caused by Phoma exigua var. foveata: II. Activities of some hydrolases and dehydrogenases. J Phytopathol 152:399–403

    CAS  Google Scholar 

  • Gougeon L, Payette H, Morais J et al. (2016) Intakes of folate, vitamin B6 and B12 and risk of depression in community-dwelling older adults: the Quebec Longitudinal Study on Nutrition and Aging. Eur J Clin Nutr 70:380–385.

    CAS  PubMed  Google Scholar 

  • Hartz TK, Bogle CR, Bender DA, Avila FA (1989) Control of pink root disease in onion using solarization and fumigation. J Am Soc Hortic Sci 114:587-59.

    Google Scholar 

  • Harveson RM (2006) Identifying and distinguishing seedling and root rot diseases of sugar beets. Online. Plant Health Progress doi:https://doi.org/10.1094/PHP-2006-0915-01-DG.

  • Hossain MM, Sultana F (2020) Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation. In: Das SK (Ed) Organic Agriculture, ISBN 978-1-78984-669-0. IntechOpen, London, UK, https://doi.org/10.5772/intechopen.92338

    Chapter  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2008) Systemic resistance to bacterial leaf speck pathogen in Arabidopsis thaliana induced by the culture filtrate of a plant growth-promoting fungus (PGPF) Phoma sp. GS8-1. Journal of General Plant Pathology 74 (3):213-221.

    CAS  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives, Volume 2: Microbial Interactions and Agro-Ecological Impacts. Singapore: Springer. pp. 135-191. DOI: https://doi.org/10.1007/978-981-10-6593-4

    Chapter  Google Scholar 

  • Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, Cai L (2020) The phoma-like dilemma. Studies in Mycology 96:309-396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Weinstein SJ, Yu K, Mannisto S, Albanes D (2018) Serum Beta Carotene and Overall and Cause-Specific Mortality. Circ Res 123:1339–1349.doi: https://doi.org/10.1161/CIRCRESAHA.118.313409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JB, Zitter TA, Momol TM, Miller SA (2014) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Keinath AP (2011) From native plants in Central Europe to cultivated crops worldwide: The emergence of Didymella bryoniae as a cucurbit pathogen. Hort Science 46:532-535.

    Google Scholar 

  • Keinath AP (2013) Diagnostic guide for gummy stem blight and black rot on cucurbits. Online. Plant Health Progress doi: https://doi.org/10.1094/PHP-2013-1024-01-DG.

  • Keinath AP, Farnham MW, Zitter TA (1995) Morphological, pathological and genetic differentiation of Didymella bryoniae and Phoma spp. isolated from cucurbits. Phytopathology 85:364-9.

    Google Scholar 

  • Keinath AP, Fillippeli EL, Baccari GV, DuBose VB (2010) Susceptibility of 15 cultivars of watermelon, melon, squash, pumpkin, and bottle gourd to gummy stem blight, 2009. Plant Dis. Managem. Rep. 4: V120. doi:https://doi.org/10.1094/PDMR04.

    Article  Google Scholar 

  • Koenick LB, Vaghefi N, Knight NL, Du Toit LJ, Pethybridge SJ (2019) Genetic diversity and differentiation in Phoma betae populations on table beet in New York and Washington States. Plant Disease 103(10): 9–18.

    Google Scholar 

  • Koike ST, Subbarao KV, Verkley GJM, Fogle D, O’Neill TM (2006) Phoma basal rot of romaine lettuce in California caused by Phoma exigua: Occurrence, characterization, and control. Plant Dis 90:1268-1275.

    CAS  PubMed  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007) Vegetable Diseases. A Color Handbook. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Kramer JH (2004) Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision-a systematic review of placebo-controlled trials. Surv Ophthalmol 49:618.

    PubMed  Google Scholar 

  • Leach LD (1986) Seedling diseases. In: Whitney ED, Duffus JE (eds) Compendium of Beet Diseases and Insects. The American Phytopathological Society, St. Paul, MN. Pages 4-8

    Google Scholar 

  • Lee CJ, Lee JT, Moon JS, Ha LI, Kim HD, Kim W, Cheon MG (2007) Effects of solar heating for control of pink root and other soil-borne diseases of onions. Plant Pathol 23:295–299.

    Google Scholar 

  • Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province, China. Front. Microbiol 7:481.

    PubMed  PubMed Central  Google Scholar 

  • Malathrakis NE, Vakalounakis DJ (1983) Resistance to benzimidazole fungicides in the gummy stem blight pathogen Didymella bryoniae on cucurbits. Plant Pathol. 32:395–399.

    Google Scholar 

  • Mason-D’Croz D, Bogard J R, Sulser T B, Cenacchi N, Dunston S, Herrero M et al. (2019) Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planet Health 3 e318–29

    PubMed  PubMed Central  Google Scholar 

  • Mathews L, Paret NSD, Freeman JH, Olson SM (2018) Integrated Management of White Mold on Vegetables in Florida. Gainesville, FL: IFAS Extension, University of Florida.

    Google Scholar 

  • Maude RB (1966) Pea seed infection by Mycosphaerella pinodes and Ascochyta pisi and its control by seed soaks in thiram and captan suspensions. Annals of Applied Biology 57:193-200.

    CAS  Google Scholar 

  • Maude RB, Bambridge JM (1985) Effects of seed treatment and storage on the incidence of Phoma betae and the viability of infected red beet seeds. Plant Pathology 34:435-437.

    Google Scholar 

  • Maude RB, Humpherson-Jones FM, Shuring CG (1984) Treatments to control Phoma and Alternaria infections of brassica seeds. Plant Pathology 33: 525-535. doi:https://doi.org/10.1111/j.1365-3059.1984.tb02877.x

    Article  CAS  Google Scholar 

  • Maude RB, Bambridge JM, Spencer A (1986) Tests of fungicide seed treatments to eliminate seed-borne Ascochyta pisi (leaf and pod spot of peas). Annals of Applied Biology 108 (supplement Tests of Agrochemicals and Cultivars No. 7):70–71.

    Google Scholar 

  • Mehrotra RS, Agarwal A (2003) Plant pathology, 2nd edn. Tata McGraw-Hill Publishing Company, New Delhi, India

    Google Scholar 

  • Möbius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Current Opinion in Plant Biology 12:390-8.

    PubMed  Google Scholar 

  • Monte E, Bridge PD, Sutton BC (1991) An integrated approach to Phoma systematics. Mycopathologia 115:89–103.

    Google Scholar 

  • Nischwitz C, Dhiman C (2012) UTAH Pest Fact Sheet. PLP017. Utah State University Extension and Utah Plant Pest Diagnostic Laboratory.

    Google Scholar 

  • O’Neill TM, Bennison J, Gaze RH (2000) Pests and diseases of protected vegetables and mushrooms. In: DV Alford (ed) Pest and Disease Management Handbook. Blackwell Science, Oxford. pp. 317-373.

    Google Scholar 

  • Oyarzun P, Gerlagh M, Hoogland AE (1993) Pathogenic fungi involved in root rot of peas in the Netherlands and their physiological specialization. Netherlands Journal of Plant Pathology 99:23–33.

    Google Scholar 

  • Paret ML, Dufault NS, Newark M, Freeman JH (2018) Management of Gummy Stem Blight (Black Rot) on Cucurbits in Florida. UF/IFAS Extension. https://edis.ifas.ufl.edu/pp280

  • Piszczek J (1997) Protection of sugar beet seed plants against Phoma betae (Frank). Part I. Effect on seed health and quality. Plant Breeding and Seed Science 41:61-73

    Google Scholar 

  • Plowright CB (1881) On the fungoid diseases of the tomato Gardeners’ Chronicle, 16, pp. 620-622

    Google Scholar 

  • Porter IJ, Merriman PR, Keane PJ (1989) Integrated control of pink root (Pyrenochaeta terrestris) of onions by dazomet and soil solarization. Aust. J. Agric. Res. 40:861-869

    Google Scholar 

  • Rai M, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma saccardo: Distribution, secondary metabolite production and biotechnological applications. Critical Reviews in Microbiology 35:182-196.

    CAS  PubMed  Google Scholar 

  • Rashid TS, Sijam K, Nasehi A, Kadir J (2016) Occurrence of Phoma blight caused by Phoma destructiva on tomato (Solanum lycopersicum) in Malaysia. Plant Disease 100:1241–1242.

    Google Scholar 

  • Reddy PV, Patel R, White JF Jr (1998) Phylogenetic and developmental evidence supporting reclassification of cruciferous pathogens Phoma lingam and Phoma wasabiae in Plenodomus. Can J Bot 76:1916–1922

    Google Scholar 

  • Rouxel T, Balesdent MH (2005) The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Mol Plant Pathol 6:225–241.

    CAS  PubMed  Google Scholar 

  • Rouxel T, Mendes-Pereira E, Brun H, Balesdent MH (2004) Species complex of fungal phytopathogens: the Leptosphaeria maculans–L. biglobosa case study. In: Sharma AK, Sharma A (eds) Plant Genome: Biodiversity and Evolution, Vol. 2: Lower Groups. Enfield: Science Publishers Inc., pp. 33–75.

    Google Scholar 

  • Saccardo PA (1880) Fungi Gallici ser. II. Michelia 2: 39–135.

    Google Scholar 

  • Shankar R, Harsha S, Bhandary R (2014) A practical guide to identification and control of tomato diseases. P 24 Tropica Seeds Pvt Ltd|No 54, South End Road, 1st Floor, Nama Aurore Building, Basavangudi, Bangalore 560004, India

    Google Scholar 

  • Somai BM, Dean RA, Farnham MW, Zitter TA, Keinath AP (2002) Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from cucurbits. Phytopathology 92:997-1004.

    CAS  PubMed  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2008) Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth-promoting fungi. Canadian Journal of Plant Pathology 30 (2):196-205.

    Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2009) Induction of systemic resistance in Arabidopsis thaliana in response to culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biology 11 (1):97-104.

    CAS  PubMed  Google Scholar 

  • Sutton BC (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. 1st edn. Commonwealth Mycological Institute, Kew, UK.

    Google Scholar 

  • Tabenhaus JJ (1917) Pink root, a new disease of onions in Texas. Phytopathology 7:217 (abstr.).

    Google Scholar 

  • Tang FY, Cho HJ, Pai MH, Chen YH (2009) Concomitant supplementation of lycopene and eicosapentaenoic acid inhibits the proliferation of human colon cancer cells. J Nutr Biochem. 20:426–434.

    CAS  PubMed  Google Scholar 

  • Taylor PWJ, Ford R (2007) Diagnostics, genetic diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. European Journal of Plant Pathology 119: 127–133.

    Google Scholar 

  • Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, Stchigel AM (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology 90:1-69.

    CAS  PubMed  Google Scholar 

  • Voigt K, Cozijnsen AJ, Kroymann J, Pöggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by their mating type (MAT1-2), actin, and β-tubulin sequences. Molecular Phylogenetics and Evolution 37: 541-557.

    CAS  PubMed  Google Scholar 

  • Warkentin TD, Xue AG, McAndrew DW (2000) Effect of mancozeb on the control of Mycosphaerella blight of field pea. Can. J. Plant Sci. 80:403–406.

    CAS  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada, and Europe. Plant Pathology 50:10-27.

    Google Scholar 

  • Williams RH, Fitt BDL (1999) Differentiating A and B groups of Leptosphaeria maculans causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol 48:161–175.

    Google Scholar 

Download references

Acknowledgments

The authors express their deepest appreciation to Prof. Dr. Lindsey J. du Toit and Dr. Carrie Wohleb of Washington State University for sharing the images of the pink root disease of onion. We are also highly indebted to Prof. Dr. Thomas S. Isakeit of Texas A & M University for providing the images of gummy stem blight disease of watermelon transplant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Motaher Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sultana, F., Hossain, M.M. (2022). Diseases of Vegetables Caused by Phoma spp.. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_6

Download citation

Publish with us

Policies and ethics