Skip to main content

Natural Antifungal Agents Isolated from Argentine Plants. A Summary of Studies Developed in the Period 2000–2020

  • Chapter
  • First Online:
Promising Antimicrobials from Natural Products

Abstract

Fungal species are able to carry out beneficial actions on industrial processes that directly affect human being wellness. They can also be the cause of severe pathologies both in humans or food products. Fungicidal agents currently used to treat human or plant pathogens have many drawbacks after prolonged or inappropriate use, proving to be inefficient in a short term. Therefore, academics and the pharmaceutical or agrochemical industries are constantly encouraged to search for new chemical entities with antifungal action. In this sense, taking advantage of secondary plant metabolites to find out antifungal molecules could be of high interest. During the last 20 years, we have constituted a group of scientists that broach the subject related to antifungal products obtained from vegetable sources, and we have assayed hundreds of plant species and a considerable number of natural metabolites isolated from them, against the main fungal pathogens that affect humans and crops. The aim of this chapter is to update the plants that have demonstrated the best antifungal action during this period of time and the natural compounds responsible for this. In addition, new strategies like the evaluation of photoactive species and synergism, as well as comparisons with results obtained by other authors reported in the literature, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-M-3-(3′,4’-DHP)-PC:

1-Methyl-3-(3′,4′-dihydroxyphenyl)-propyl caffeate

1-M-3-(4’-HP)-PC:

1-Methyl-3-(4′-hydroxyphenyl)-propyl caffeate

3,7-DHF:

3,7-Dihydroxy flavone

3-H-7,8-DMF:

3-Hydroxy-7,8-dimethoxy flavone

7-H-8-MF:

7-Hydroxy-8-methoxyflavanone

7-HF:

7-Hydroxy flavanone

AIDS:

Acquired immune deficiency syndrome

AMB:

Amphotericin B

APDT:

Antimicrobial photo dynamic therapy

BBT:

2,2′:5′,2″-Terthienyl (α-T); 5-(3-buten-1-ynyl)-2,2′-bithiophene

BBTOAc:

5-(4-Acetoxy-1-butynyl)-2,2′-bithiophene

BBTOH:

5-(4-Hydroxy-1-butynyl)-2,2′-bithiophene

CFU:

Colony forming units

DCM:

DiChloroMethane

DHC:

2′,4´-Dihydroxychalcone

DHMC:

2′,4´-Dihydroxy-3′-methoxychalcone

EtOH:

Ethanolic

FCZ:

Fluconazole

HTSS:

High-throughput synergy screening

ITZ:

Itraconazole

MeOH:

Methanolic

MFC:

Minimal fungicidal concentration

MIC:

Minimal inhibitory concentration

PBT:

5-(3-Penten-1-ynyl)-2,2′-bithiophene

PCM:

Paracoccidioidomycosis

PDT:

Photo dynamic therapy

PhytB:

Phytolaccoside B (3-O-β-D-xylopiranosylphytolaccagenin)

PhytE:

Phytolaccoside E (3-O-β-D-glucopyranosyl-(1,4)-β-D-xylopiranosyl-phytolaccagenin)

PhytF:

Phytolaccoside F [3-O-α-L-rhamnopyranosyl-(1,2)-β-D-glucopyranosyl-(1,2)-β-D-xylopyranosyl-phytolaccagenic acid]

PhytG:

Phytolaccagenin

PSs:

Photosensitizer

PtAqEb:

Phytolacca tetramera aqueous extract from berries

PtAqEl:

Phytolacca tetramera aqueous extract from leaves

PtAqEr:

Phytolacca tetramera aqueous extract from roots

PtBEb:

Phytolacca tetramera butanoic extract from berries

PtBEl:

Phytolacca tetramera butanoic extract from leaves

PtBEr:

Phytolacca tetramera butanoic extract from roots

PtDEb:

Phytolacca tetramera dichloromethane extract from berries

PtDEl:

Phytolacca tetramera dichloromethane extract from leaves

PtDEr:

Phytolacca tetramera dichloromethane extract from roots

PtMEb :

Phytolacca tetramera methanolic extract from berries

PtMEl:

Phytolacca tetramera methanolic extract from leaves

PtMEr:

Phytolacca tetramera methanolic extract from roots

ROS:

Reactive oxygen species

TLC:

Thin layer chromatography

UHPLC-ESI-MS:

Ultra-high performance liquid chromatography-electrospray ionization mass spectrometry

UVA:

Ultraviolet A radiation

References

  • de la Luz LA (2003) Principios agroclimáticos básicos para la producción de plantas medicinales. Rev Cubana Plant Med 1:1–10

    Google Scholar 

  • Ahmad I, Zafar S, Ahmad F (2005) Heavy metal biosorption potential of aspergillus and Rhizopus sp. isolated from wastewater treated soil. J Appl Sci Environ Mgt 9(1):123–126

    Google Scholar 

  • Ahmed DB, Chaieb I, Salah KB, Boukamcha H, Jannet HB, Mighri Z, Daami-Remadi M (2012) Antibacterial and antifungal activities of Cestrum parqui saponins: possible interaction with membrane sterols. Int Res J Plant Sci 3(1):001–007

    Google Scholar 

  • Ahmed H, Juraimi AS, Swamy MK, Ahmad-Hamdani MS, Omar D, Rafii MY, Sinniah UR, Akhtar MS (2018) Botany, chemistry, and pharmaceutical significance of Sida cordifolia: A traditional medicinal plant. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application. Springer, Singapore, pp 517–537

    Chapter  Google Scholar 

  • Al-Rubaey NKF, Abbas FM, Hameed IH (2019) Antibacterial and anti-fungal activity of Methanolic extract of Passiflora caerulea. Indian J Public Health Res Dev 10(1):930–935

    Article  Google Scholar 

  • Alanís Garza BA (2005) Rastreo de la actividad antifúngica de plantas del noreste de México, contra los principales agentes causales de micosis pulmonar en la región. In: pH thesis. Universidad Autónoma de Nuevo, León

    Google Scholar 

  • Alonso J, Desmarchelier C (2015) Plantas medicinales autóctonas de la Argentina: bases científicas para su aplicación en atención primaria de la salud, 1st edn. Corpus Libros Médicos y Científicos, Buenos Aires, Argentina

    Google Scholar 

  • Álvarez NH, Fernandez LN, Seimandi GM, Stegmayer MI, Ruiz VE, Derita MG (2021) Antifungal activity validation of wild plants used in argentine Ethnomedicine. In: Rai M, Bhattarai S, Feitosa C (eds) Ethnopharmacology of wild plants. CRC Press/Taylor & Francis Group, U.S.A., pp 111–128. in press

    Google Scholar 

  • Álvarez SL, Cortadi A, Juárez MA, Petenatti E, Tomi F, Casanova J, van Baren CM, Zacchino S, Vila R (2012) (−)-5,6-Dehydrocamphor from the antifungal essential oil of Zuccagnia punctata. Phytochem Lett 5:194–199

    Article  CAS  Google Scholar 

  • Alves TMDA, Ribeiro FL, Kloos H, Zani CL (2001) Polygodial, the fungitoxic component from the Brazilian medicinal plant Polygonum punctatum. Mem Inst Oswaldo Cruz 96(6):831–833

    Article  Google Scholar 

  • Anbu P, Hilda A, Sur HW, Hur BK, Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegradation 62(3):287–292

    Article  CAS  Google Scholar 

  • Anisa SK, Girish K (2014) Pectinolytic activity of Rhizopus sp. and Trichoderma viride. J Pure Appl Microbiol 4(2):28–31

    Google Scholar 

  • Apud GR, Aredes-Fernández PA, Kritsanida M, Grougnet R, Sampietro DA (2020) Antifungal activity of Bignoniaceae plants on aspergillus carbonarius and aspergillus Niger. Nat Prod Res 34(18):2656–2659

    Article  CAS  PubMed  Google Scholar 

  • Arancibia L, Naspi C, Pucci G, María ARCE (2010) Aromatic plants from Patagonia: chemical composition and antimicrobial activity of the essential oil of Senecio mustersii and S. subpanduratus. Bol Latinoam Caribe Plantas Med Aromat 9(2):123–126

    CAS  Google Scholar 

  • Aristimuño Ficoseco ME, Sequin CJ, Aceñolaza PG, Vattuone MA, Catalán CAN, Sampietro DA (2017) Antifungal metabolites from Schinopsis balansae Engl (Anacardiaceae): isolation, identification and evidences of their mode of action on fusarium graminearum Schwabe. Nat Prod Res 31(12):1450–1453

    Article  PubMed  CAS  Google Scholar 

  • Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, Devkota HP (2019) Synergistic interactions of phytochemicals with antimicrobial agents: potential strategy to counteract drug resistance. Chem Biol Interact 308:294–303

    Article  CAS  PubMed  Google Scholar 

  • Basak G, Das N (2014) Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn (II) removal from electroplating wastewater. J Environ Biol 35(6):1087–1094

    PubMed  Google Scholar 

  • Biradar SS, Wadkar GH, Rasal VP, Kane SR (2010) Anti-fungal screening of tubers of Cyperus rotundus Linn. Res J Pharmacogn Phytochem 2(4):317–318

    Google Scholar 

  • Bonifácio B, Vila T, Fantacini Masiero I, Bento da Silva P, Da Silva IC, Lopes de Oliveira É, dos Santos Ramos MA, Perez de Souza L, Vilegas W, Rogério Pavan F, Chorilli M, Lopez-Ribot JL, Bauab TM (2019) Antifungal activity of a Hydroethanolic extract from Astronium urundeuva leaves against Candida albicans and Candida glabrata. Front Microbiol 10:1–12

    Article  Google Scholar 

  • Braga FG, Bouzada MLM, Fabri RL, Matos MDO, Moreira FO, Scio E, Coimbra ES (2007) Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol 111(2):396–402

    Article  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  PubMed  Google Scholar 

  • Butassi E, Svetaz LA, Ivancovich JJ, Feresin GE, Tapia A, Zacchino SA (2015) Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. And Larrea nitida Cav. Extracts in clinical isolates of Candida albicans and Candida glabrata. Phytomedicine 22(6):666–678

    Article  PubMed  Google Scholar 

  • Butassi E, Svetaz LA, Zhou S, Wolfender JL, Cortes JCG, Ribas JC, Diaz C, Perez del Palacio J, Vicente F, Zacchino SA (2019) The antifungal activity and mechanisms of action of quantified extracts from berries, leaves and roots of Phytolacca tetramera. Phytomedicine 60:152884

    Article  CAS  PubMed  Google Scholar 

  • Caneschi CA, Martins FJ, Larrudé DG, Romani EC, Brandão MAF, Raposo NRB (2015) In vitro antifungal activity of Baccharis trimera less (DC) essential oil against dermatophytes. Trop J Pharm Res 14(11):2083–2089

    Article  CAS  Google Scholar 

  • Carpinella MC, Ruiz G, Palacios SM (2010) Screening of native plants of Central Argentina for antifungal activity. Allelopathy J 25(2):423–431

    Google Scholar 

  • Carrasco H, Robles-Kelly C, Rubio J, Olea AF, Martínez R, Silva-Moreno E (2017) Antifungal effect of polygodial on Botrytis cinerea, a fungal pathogen affecting table grapes. Int J Mol Sci 18(11):2251

    Article  PubMed Central  CAS  Google Scholar 

  • Carrizo SL, Zampini IC, Sayago JE, Simirgiotis MJ, Bórquez J, Cuello AS, Isla MI (2020) Antifungal activity of phytotherapeutic preparation of Baccharis species from argentine Puna against clinically relevant fungi. J Ethnopharmacol 251:112553

    Article  CAS  PubMed  Google Scholar 

  • Céspedes CL, Avila JG, Garcıa AM, Becerra J, Flores C, Aqueveque P, Bittner M, Hoeneisenm M, Martínez M, Silva M (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Naturforsch. C. 61(1–2):35–43

    Google Scholar 

  • Chen C, Cai D, Qin P, Chen B, Wang Z, Tan T (2018) Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99–125. Bioresour Technol 257:217–222

    Article  CAS  PubMed  Google Scholar 

  • CLSI (Clinical and Laboratory Standards Institute) (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard-document M-27, 4th edn. Wayne, Pennsylvania, USA

    Google Scholar 

  • Contesini FJ, Lopes DB, Macedo GA, da Graça Nascimento M, de Oliveira Carvalho P (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67(3–4):163–171

    Article  CAS  Google Scholar 

  • Cordisco E, Sortino M, Svetaz L (2019) Antifungal activity of traditional medicinal plants from Argentina: effect of their combination with antifungal drugs. Curr Tradit Med 5(1):75–95

    Article  CAS  Google Scholar 

  • Córdoba S, Vivot W, Szusz W, Albo G (2019) Antifungal activity of essential oils against Candida species isolated from clinical samples. Mycopathologia 184:615–623

    Article  PubMed  CAS  Google Scholar 

  • Costa DP, Alves Filho EG, Silva LM, Santos SC, Passos XS, Silva MRR, Seraphin JC, Ferri PH (2010) Influence of fruit biotypes on the chemical composition and antifungal activity of the essential oils of Eugenia uniflora leaves. J Braz Chem Soc 21(5):851–858

    Article  CAS  Google Scholar 

  • da Silva SL, Figueredo PM, Yano T (2006) Antibacterial and antifungal activities of volatile oils from Zanthoxylum rhoifolium. Leaves Pharm Biol 44(9):657–659

    Article  Google Scholar 

  • Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR, Tegos G (2012) Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 3:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davicino R, Mattar MA, Casali YA, Correa SG, Pettenati EM, Micalizzi B (2007) Actividad antifúngica de extractos de plantas usadas en medicina popular en Argentina. Rev Peru Biol 14(2):247–252

    Google Scholar 

  • De Los Páez AV, Albornoz PL, Lizarraga E, Sobrero MT, Chaila S (2019) Anatomía foliar y caulinar, y caracterización fitoquímica foliar de Flaveria bidentis y F. haumanii (Asteraceae) de Santiago del Estero, Argentina. Act. Bot. Mex:126

    Google Scholar 

  • Delucchi G (2006) Las especies vegetales amenazadas de la Provincia de Buenos Aires: Una actualización. Aprona Bol Cient 39:19–31

    Google Scholar 

  • Demo M, Oliva MDL, López ML, Zunino MP, Zygadlo JA (2005) Antimicrobial activity of essential oils obtained from aromatic plants of Argentina. Pharm Biol 43(2):129–134

    Article  CAS  Google Scholar 

  • Derita MG, Leiva ML, Zacchino SA (2009) Influence of plant part, season of collection and content of the main active constituent, on the antifungal properties of Polygonum acuminatum Kunth. J Ethnopharmacol 124(3):377–383

    Article  CAS  PubMed  Google Scholar 

  • Derita M, Montenegro I, Garibotto F, Enriz R, Cuellar Fritis M, Zacchino S (2013) Structural requirements for the antifungal activities of natural drimane sesquiterpenes and analogues, supported by conformational and electronic studies. Molecules 18(2):2029–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derita M, Zacchino S (2011a) Validation of the ethnopharmacological use of Polygonum persicaria for its antifungal properties. Nat Prod Comm 6(7):931–933

    CAS  Google Scholar 

  • Derita M, Zacchino S (2011b) Chemotaxonomic importance of sesquiterpenes and flavonoids in Argentinian species of Polygonum genus. J Ess Oil Res 23:11–14

    Article  CAS  Google Scholar 

  • Di Ciaccio LS, Catalano AV, López PG, Rojas D, Cristos D, Fortunato RH, Salvat AE (2020) In vitro antifungal activity of Peltophorum dubium (Spreng.) Taub. Extracts against aspergillus flavus. Plants 9(4):438

    Article  CAS  PubMed Central  Google Scholar 

  • di Ciaccio LS, Fortunato RH, Salvat AE (2018) Antifungal activity of species of the genus Senna (Caesalpinoideae, Leguminosae) from northern Argentina against fusarium verticillioides. Rev Investig Agropecu 44(1):111–120

    Google Scholar 

  • Di Ciaccio LS, Spotorno VG, Córdoba Estévez MM, Rios DJL, Fortunato RH, Salvat AE (2018) Antifungal activity of Parastrephia quadrangularis (Meyen) Cabrera extracts against fusarium verticillioides. Lett Appl Microbiol 66(3):244–251

    Article  PubMed  CAS  Google Scholar 

  • Di Liberto MGD, Stegmayer MI, Svetaz LA, Derita MG (2019) Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Rev Bras Farmacogn 29(5):686–688

    Article  CAS  Google Scholar 

  • Di Liberto M, Svetaz L, Castelli MV, Rai M, Derita M (2017) Role of essential oils for the cure of human pathogenic fungal infections. In: Rai M, Zacchino S, Derita M (eds) Essential oils and nanotechnology for treatment of microbial diseases. CRC Press/Taylor & Francis Group, U.S.A, pp 127–142

    Chapter  Google Scholar 

  • do Amaral CC, Fernandes GF, Rodrigues AM, Burger E, de Camargo ZP (2019) Proteomic analysis of Paracoccidioides brasiliensis complex isolates: correlation of the levels of differentially expressed proteins with in vivo virulence. PLoS One 14(7):e0218013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • do Prado AC, Garces HG, Bagagli E, Rall VLM, Furlanetto A, Fernandes Junior A, Furtado FB (2018) Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties. J Appl Microbiol 126(2):516–522

    Article  PubMed  CAS  Google Scholar 

  • Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Silva F, Landell MF, Paulino GVB, Coutinho HDM, Albuquerque UP (2020) Antifungal activity of selected plant extracts based on an ethnodirected study. Acta Bot Bras 34(2):442–448

    Article  Google Scholar 

  • Downum KR, Towers GHN (1983) Analysis of thiophenes in the Tageteae (Asteraceae) by HPLC. J Nat Prod 46(1):98–103

    Article  CAS  Google Scholar 

  • Duyvesteijn RG, Van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA (2005) Frp1 is a fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 57(4):1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Dwivedy AK, Kumar M, Upadhyay N, Prakash B, Dubey NK (2016) Plant essential oils against food borne fungi and mycotoxins. Curr Opin Food Sci 11:16–21

    Article  Google Scholar 

  • ElSohly HN, Joshi AS, Nimrod AC, Walker LA, Clark AM (2001) Antifungal chalcones from Maclura tinctoria. Planta Med 67(1):87–89

    Article  CAS  PubMed  Google Scholar 

  • EMA (European Medicines Agency) (2010) Guidelines on Declaration of Herbal Substances and Herbal Preparations in Herbal Medicinal Products/Traditional Herbal Medicinal Products. EMA/HMPC/CHMP/CVMP/287539/2005 Rev 1. Available at http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003272.pdf. (Accessed 27.09.2020)

  • Enshaeieh M, Abdoli A, Nahvi I (2013) Medium optimization for biotechnological production of single cell oil using Yarrowia lipolytica M7 and Candida sp. J Cell Molecular Research 5(1):17–23

    Google Scholar 

  • Escalante A, Gattuso M, Pérez P, Zacchino S (2008) Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman. J Nat Prod 71:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Escalante A, Santecchia C, López S, Gattuso M, Gutiérrez Ravelo A, Delle Monache F, Zacchino S (2002) Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol 82(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Espino M, Solari M, de los Ángeles Fernández M, Boiteux J, Gómez MR, Silva MF (2019) NADES-mediated folk plant extracts as novel antifungal agents against Candida albicans. J Pharm Biomed Anal 167:15–20

    Article  CAS  PubMed  Google Scholar 

  • Feresín G, Alejandro T, Silvia NL, Susana AZ (2001) Antimicrobial activity of plants used in traditional medicine of San Juan province, argentine J. Ethnopharmacol 78(1):103–107

    Article  Google Scholar 

  • Filip R, Davicino R, Anesini C (2010) Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res 24:715–719

    Article  PubMed  Google Scholar 

  • Fiuza TDS, de Sabóia-Morais SMT, de Paula JR, Tresvenzol LM, Pimenta FC (2009) Antimicrobial activity of the crude ethanol extract from Hyptidendron canum leaves. Pharm Biol 47(7):640–644

    Article  CAS  Google Scholar 

  • Forsyth LM, Smith LJ, Aitken EA (2006) Identification and characterization of non-pathogenic fusarium oxysporum capable of increasing and decreasing fusarium wilt severity. Mycol Res 110(8):929–935

    Article  PubMed  Google Scholar 

  • Freiesleben S, Jäger A (2014) Correlation between plant secondary metabolites and their antifungal mechanisms–a review. Medicinal Aromat Plan Theory 3(2):1–6

    Google Scholar 

  • Freile M, Giannini F, Sortino M, Zamora M, Juárez A, Zacchino S, Enriz D (2006) Antifungal activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Acta Farm Bonaer 25(1):83–88

    CAS  Google Scholar 

  • Fu J, Cheng K, Zhang ZM, Fang RQ, Zhu HL (2010) Synthesis, structure and structure–activity relationship analysis of caffeic acid amides as potential antimicrobials. Eur J Med Chem 45(6):2638–2643

    Article  CAS  PubMed  Google Scholar 

  • Gaitán I, Paz AM, Zacchino SA, Tamayo G, Giménez A, Pinzón R, Cáceres A, Gupta MP (2011) Subcutaneous antifungal screening of Latin American plant extracts against Sporothrix schenckii and Fonsecaea pedrosoi. Pharm Biol 49(9):907–919

    Article  PubMed  CAS  Google Scholar 

  • Galvez CE, Jimenez CM, Gomez ADLA, Lizarraga EF, Sampietro DA (2020) Chemical composition and antifungal activity of essential oils from Senecio nutans, Senecio viridis, Tagetes terniflora and Aloysia gratissima against toxigenic Aspergillus and Fusarium species. Nat Prod Res 34(10):1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Ghaffar I, Imtiaz A, Hussain A, Javid A, Jabeen F, Akmal M, Qazi JI (2018) Microbial production and industrial applications of keratinases: an overview. Int Microbiol 21(4):163–174

    Article  CAS  PubMed  Google Scholar 

  • Giacone L, Cordisco E, Garrido MC, Petenatti E, Sortino M (2020) Photodynamic activity of Tagetes minuta extracts against superficial fungal infections. Med Mycol 58(6):797–809

    Article  CAS  PubMed  Google Scholar 

  • Gil A, Ghersa CM, Perelman S (2002) Root thiophenes in Tagetes minuta L. accessions from Argentina: genetic and environmental contribution to changes in concentration and composition. Biochem. Syst. Ecol 30(1):1–13

    CAS  Google Scholar 

  • Gomes D, Zanchet B, Locateli G, Benvenutti R, Dalla Vechia C, Schönell A, Diel K, Zilli G, Miorando D, Ernetti J, Oliveira B, Zanotelli P, Santos M, Barisson A, Banzato T, Ruiz A, Carvalho J, Cechinel Filho V, García P, San Feliciano A, Roman Junior W (2018) Antiproliferative potential of solidagenone isolatedof Solidago chilensis. Rev Bras Farmacogn 28:703–709

    Article  CAS  Google Scholar 

  • Gomez AA, Terán Baptista ZP, Mandova T, Barouti A, Kritsanida M, Grougnet R et al (2019) Antifungal and antimycotoxigenic metabolites from native plants of Northwest Argentina: isolation, identification and potential for control of aspergillus species. Nat Prod Res 1-4

    Google Scholar 

  • Guerra F, Ansari AA, Kurup R, Subramanian G (2020) Antifungal activity of Senna alata, Senna bicapsularis and Pityrogramma calomelanos. J Complement Altern Medical Res 10(3):11–21

    Article  Google Scholar 

  • Gurgel LA, Sidrim JJC, Martins DT, Cechinel F, Rao V, V.S. (2005) In vitro antifungal activity of dragon's blood from croton urucurana against dermatophytes. J Ethnopharmacol 97(2):409–412

    Article  PubMed  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15(8):639–652

    Article  CAS  PubMed  Google Scholar 

  • Hernández M, Rodríguez A, Gallo D, Fernández D (2008) Phytolacca tetramera Hauman, una especie amenazada de la Provincia de Buenos Aires. In: Resumen Jornada “Seminario Técnico en la Reserva de Biosfera Parque Costero del Sur como herramienta del conocimiento científico”. Buenos Aires, Municipalidad de Magdalena

    Google Scholar 

  • Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15(11):7558–7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SRM, Abdallah HM, El-Halawany AM, Esmat A, Mohamed GA (2018) Thiotagetin B and tagetannins A and B, new acetylenic thiophene and digalloyl glucose derivatives from Tagetes minuta and evaluation of their in vitro antioxidative and anti-inflammatory activity. Fitoterapia 125:78–88

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Abdallah HM, El-Halawany AM, Mohamed GA (2016) Naturally occurring thiophenes: isolation, purification, structural elucidation, and evaluation of bioactivities. Phytochem Rev 15:197–220

    Article  CAS  Google Scholar 

  • Isla MI, Moreno MA, Nuño G, Rodriguez F, Carabajal A, Alberto MR, Zampini IC (2016) Zuccagnia punctata: a review of its traditional uses, phytochemistry, pharmacology and toxicology. Nat Prod Commun 11(11):1749–1755

    PubMed  Google Scholar 

  • Jiménez-Reyes MF, Carrasco H, Olea AF, Silva-Moreno E (2019) Natural compounds: a sustainable alternative to the phytopathogens control. J Chil Chem Soc 64(2):4459–4465

    Article  Google Scholar 

  • Johnson RR (1964) Monograph of the plant genus Porophyllum (Compositae, Helenieae). University of Kansas

    Google Scholar 

  • Juárez-Becerra GP, Sosa-Morales ME, López-Malo A (2010) Hongos fitopatógenos de alta importancia económica: descripción y métodos de control. Temas Selectos de Ingeniería de Alimentos 4(2):14–23

    Google Scholar 

  • Karpiński TM (2020) Essential oils of Lamiaceae Family plants as antifungals. Biomol Ther 10(1):103

    Google Scholar 

  • Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS (2013) Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 57(1):445–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Dhuna V, Kamboj SS, Agrewala JN, Singh J (2006) A novel antiproliferative and antifungal lectin from Amaranthus viridis Linn seeds. Protein Pept Lett 13(9):897–905

    Article  CAS  PubMed  Google Scholar 

  • Kurdelas RR, Lima B, Tapia A, Egly Feresin G, Gonzalez Sierra M, Rodríguez MV, Zacchino S, Enriz RD, Freile ML (2010) Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook & Arn. (Asteraceae). Molecules 15(7):4898–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacaz CDS, Porto E, Martins JEC, Heins-Vaccari EM, Takahashi de Melo N (2002) Tratado de micologia médica. Rev Inst Med Trop S Paulo 44(5):297–298

    Article  Google Scholar 

  • Liang YI, Lu L, Chen Y, Lin Y (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberto MD, Svetaz L, Furlán RL, Zacchino SA, Delporte C, Novoa MA, Asencio M, Cassels BK (2010) Antifungal activity of saponin-rich extracts of Phytolacca dioica and of the sapogenins obtained through hydrolysis. Nat Prod Commun 5(7):1013–1018

    PubMed  Google Scholar 

  • Lima B, López S, Luna L, Agüero MB, Aragón L, Tapia A, Zacchino S, López ML, Zygadio J, Feresin GE (2011) Essential oils of medicinal plants from the Central Andes of Argentina: chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chem Biodivers 8(5):924–936

    Article  CAS  PubMed  Google Scholar 

  • Lima CS, Polaquini CR, dos Santos MB, Gullo FP, Leite FS, Scorzoni L, da Silva Bolzani V, Mendez-Giannini MJ, Fusco-Almeida AM, Alvez Rezende A, Regasini LO (2016) Anti-Candida and anti-Cryptococcus evaluation of 15 non-alkaloidal compounds from Pterogyne nitens. Asian Pac J Trop Biomed 6(10):841–845

    Article  CAS  Google Scholar 

  • Lima B, Sánchez M, Luna L, Agüero MB, Zacchino S, Filippa E, Palermo JA, Tapia A, Feresin GE (2012) Antimicrobial and antioxidant activities of Gentianella multicaulis collected on the Andean slopes of San Juan Province. Argentina Z Naturforsch C 67(1–2):29–38

    Article  CAS  PubMed  Google Scholar 

  • Lizcano González MC (2007) Evaluación de la actividad antifúngica del extracto de tomillo (Thymus vulgaris) contra Botrys cinerea. Pontificia Universidad Javeriana, Bogotá, Fusarium oxysporum y Sclerotinia sclerotiorum. pH Tesis

    Google Scholar 

  • Loockerman DJ, Turner BL, Jansen RK (2003) Phylogenetic relationships within the Tageteae (Asteraceae) based on nuclear ribosomal ITS and chloroplast ndhF gene sequences. Syst Bot 28(1):191–207

    Google Scholar 

  • López SN, Furlan RLE, Zacchino SA (2011) Detection of antifungal compounds in Polygonum ferrugineum Wedd. Extracts by bioassay-guided fractionation. Some evidences of their mode of action. J Ethnopharmacol 138(2):633–636

    Article  PubMed  CAS  Google Scholar 

  • Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies RM, Baumler W (2007) The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci 104(17):7223–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malarkodi E, Manoharan A (2013) Antifungal activity of Parthenium hysterophorus L. J Chem Pharm Res 5(1):137–139

    Google Scholar 

  • Mamone L, Di Venosa G, Gándara L, Sáenz D, Vallecorsa P, Schickinger S, Rossetti MV, Batlle A, Buzzola F, Casas A (2014) Photodynamic inactivation of gram-positive bacteria employing natural resources. J Photochem Photobiol B Biol 133:80–89

    Article  CAS  Google Scholar 

  • Marotti I, Marotti M, Piccaglia R, Nastri A, Grandi S, Dinelli G (2010) Thiophene occurrence in different Tagetes species: agricultural biomasses as sources of biocidal substances. J Sci Food Agric 90:1210–1217

    Article  CAS  PubMed  Google Scholar 

  • Martinez JA (2012) Natural fungicides obtained from plants. INTECH Open Access Publisher

    Google Scholar 

  • Mensah AY, Houghton PJ, Dickson RA, Fleischer TC, Heinrich M, Bremner P (2006) In vitro evaluation of effects of two Ghanaian plants relevant to wound healing. Phytother Res 20(11):941–944

    Article  PubMed  Google Scholar 

  • Mishra PK, Singh P, Prakash B, Kedia A, Dubey NK, Chanotiya CS (2013) Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int Biodeterior Biodegradation 80:16–21

    Article  CAS  Google Scholar 

  • Mohanta YK, Laxmipriya P, Panda SK (2014) Antifungal activity of Eleutherine bulbosa bulb against mycelial fungus. Int J Agric Technol 10(5):1165–1171

    Google Scholar 

  • Mongkol R, Piapukiew J, Chavasiri W (2016) Chemical constituents from Melodorum fruticosum Lour. Flowers against plant pathogenic fungi. Agric Nat Resour 50(4):270–275

    CAS  Google Scholar 

  • Montez-Belmont RM, Cruz VC, Martínez GM, García GS, Licona RG, Domínguez SZ, Bravo-Luna L, Bermúdez-Torres K, Flores-Moctezuma HE, Caravajal-Moreno MC (2000) Propiedades antifúngicas en plantas superiores. Análisis retrospectivo de investigaciones. Rev Mex Fitopatol 18(2):125–131

    Google Scholar 

  • Morais M, Amaral Pinto M, Araújo S, Fonseca Castro A, Duarte Almeida J, Rosa L, Rosa C, Johann S, Rodríguez dos Santos Lima, L. (2014) Antioxidant and antifungal activities of Smilax campestris Griseb. (Smilacaceae). Nat Prod Res 28(16):1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Morin-Sardin S, Nodet P, Coton E, Jany JL (2017) Mucor: a Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev 31(1):12–32

    Article  Google Scholar 

  • Muñoz-Concha D, Vogel H, Yunes R, Razmilic I, Bresciani L, Malheiros A (2007) Presence of polygodial and drimenol in Drimys populations from Chile. Biochem Sys Ecol 35(7):434–438

    Article  CAS  Google Scholar 

  • Murakami C, Lago JH, Perazzo FF, Ferreira KS, Lima ME, Moreno PR, Young MC (2013) Chemical composition and antimicrobial activity of essential oils from Chromolaena laevigata during flowering and fruiting stages. Chem Biodivers 10(4):621–627

    Article  CAS  PubMed  Google Scholar 

  • Muschietti L, Derita M, Sülsen V, de Dios Muñoz J, Ferraro G, Zacchino S, Martino V (2005) In vitro antifungal assay of traditional argentine medicinal plants. J Ethnopharmacol 102(2):233–238

    Article  PubMed  Google Scholar 

  • Nally MC, Pesce VM, Maturano YP, Muñoz CJ, Combina M, Toro ME, Castellanos de Figueroa LI, Vazquez F (2012) Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol 64(1):40–48

    Article  Google Scholar 

  • Nenoff P, Krüger C, Ginter-Hanselmayer G, Tietz HJ (2013) Mycology–an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges 12(3):188–210

    Google Scholar 

  • Nguyen TPA, Nguyen TTM, Nguyen NH, Nguyen TN, Dang TTP (2020) Application of yeast surface display system in expression of recombinant pediocin PA-1 in Saccharomyces cerevisiae. Folia Microbiol 2020

    Google Scholar 

  • Nuño G (2015) Aislamiento y caracterización de biomoléculas producidas por especies vegetales que crecen en ecosistemas semiáridos. pH Tesis. Universidad Nacional de, Tucumán

    Google Scholar 

  • Nwaguma IV, Chikere CB, Okpokwasili GC (2019) Effect of cultural conditions on biosurfactant production by Candida sp. isolated from the sap of Elaeis guineensis. Biotechnol J Int 23(3):1–14

    Article  CAS  Google Scholar 

  • Oliva MM, Demo MS, López AG, López ML, Zygadlo JA (2006) Antimicrobial activity and composition of Hyptis mutabilis essential oil. Int J Geogr Inf Syst 11(4):57–63

    Google Scholar 

  • Ortega CA, María AOM, Gianello JC (2000) Chemical components and biological activity of Bidens subalternans, B. aurea (Astereaceae) and Zuccagnia puntacta (Fabaceae). Molecules 5(3):465–470

    Article  CAS  Google Scholar 

  • Pacciaroni ADV, de los Angeles Gette M, Derita M, Ariza-Espinar L, Gil RR, Zacchino SA, Silva GL (2008) Antifungal activity of Heterothalamus alienus metabolites. Phytother Res 22(4):524–528

    Article  CAS  Google Scholar 

  • Pergomet J, Di Liberto M, Derita M, Bracca A, Kaufman T (2018) Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates Fitoterapia 125:98–105

    CAS  PubMed  Google Scholar 

  • Petenatti E, Gette M, Derita M, Petenatti M, Solís C, Zuljan F, Del Vitto L.A. Zacchino, S. (2008) Importance of the ethnomedical information for the detection of antifungal properties in plant extracts from the argentine flora. South American medicinal plants as potential source of bioactive compounds. Transworld Research Network, Kerala, pp 15–38

    Google Scholar 

  • Petri I, Gallo D, Ollier F (2010) First protected area in the partido de Magdalena for the preservation of ombusillo (Phytolacca tetramera Hauman), in situ. Agreement between the Department of Transportation of the province of Buenos Aires and the Faculty of Agricultural Sciences and Forestry of the National University of La Plata. Argentina Rev Colomb Biotecnol 12(2):259–261

    Google Scholar 

  • Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, Alberto-Silva C, Costa MS (2018) Photodynamic antimicrobial chemotherapy (PACT), using toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagn Photodyn Ther 21:182–189

    Article  CAS  Google Scholar 

  • Pioli RN, Benavídez R, Morandi EN, Bodrero M (2000) Epidemiological study of diseases associated to soybean carpels and seeds, in Santa Fe, Argentina. Fitopatología 35(2):111–118

    Google Scholar 

  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Postigo A, Funes M, Petenatti E, Bottai H, Pacciaroni A, Sortino M (2017) Antifungal photosensitive activity of Porophyllum obscurum (Spreng.) DC.: correlation of the chemical composition of the hexane extract with the bioactivity. Photodiagnosis Photodyn Ther 20:263–272

    Article  CAS  PubMed  Google Scholar 

  • Postigo A, Svetaz LA, Derita MG, Gette MA, Petenatti M, Del Vitto L, Petenatti E, Zacchino S (2012) Discovery of antifungal plants in Argentinean San Luis Province: ethnomedical information or random selection? Revista Eletrônica de Farmácia 9(1):22–22

    Google Scholar 

  • Prazeres JND, Cruz JAB, Pastore GM (2006) Characterization of alkaline lipase from fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37(4):505–509

    Article  Google Scholar 

  • Quiroga EN, Sampietro DA, Sgariglia MA, Soberón JR, Vattuone MA (2009) Antimycotic activity of 5′-prenylisoflavanones of the plant Geoffroea decorticans, against aspergillus species. Int J Food Microbiol 132(1):42–46

    Article  CAS  PubMed  Google Scholar 

  • Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Ramirez J, Cartuche L, Morocho V, Aguilar S, Malagon O (2013) Antifungal activity of raw extract and flavanons isolated from Piper ecuadorense from Ecuador. Rev Bras Farmacogn 23(2):370–373

    Article  Google Scholar 

  • Reichling J (2018) Plant-microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. Annu Plant Rev 39:214–347

    Article  Google Scholar 

  • Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1–2):80–84

    Article  PubMed  CAS  Google Scholar 

  • Ríos JL, Schinella GR, Andújar I (2018) Antipsoriatic medicinal plants, from traditional use to clinic. In: Martinez JL, Muñoz-Acevedo A, Rai M (eds) Ethnobotany: local knowledge and traditions. CRC Press, Taylor and Francis Group, pp 158–186

    Google Scholar 

  • Rodrigues FF, Oliveira LG, Rodrigues FF, Saraiva ME, Almeida SC, Cabral ME, Campos AR, Costa JGM (2012) Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharm Res 4(3):161–165

    Google Scholar 

  • Sa RA, Argolo AC, Napoleao TH, Gomes FS, Santos ND, Melo CM, Albuquerque AC, Xavier HS, Coelho LCB, Bieber LW, Paiva PM (2009) Antioxidant, fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. Int Biodeterior Biodegradation 63(4):470–477

    Article  CAS  Google Scholar 

  • Sabinil LI, Gabrielli PC, Torres CV, Escobar FM, Cacciabue M, Rovera M, Kolb N (2006) Study of the cytotoxic and antifungal activity of the essential oil of Elyonurus muticus against Candida spp. Strain Mol Med Chem 11(2):31–33

    Google Scholar 

  • Sacchetti G, Medici A, Maietti S, Radice M, Muzzoli M, Manfredini S, Braccioli E, Bruni R (2004) Composition and functional properties of the essential oil of Amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J Agric Food Chem 52(11):3486–3491

    Article  CAS  PubMed  Google Scholar 

  • Salah H, Al-Hatmi AM, Theelen B, Abukamar M, Hashim S, van Diepeningen AD, Lass-Florl C, Boekhout T, Almaslamani M, Taj-Aldeen SJ (2015) Phylogenetic diversity of human pathogenic fusarium and emergence of uncommon virulent species. J Infect 71(6):658–666

    Article  PubMed  Google Scholar 

  • Sampietro DA, Belizan MME, Baptista ZPT, Vattuone MA, Catalán CA (2014) Essential oils from Schinus species of Northwest Argentina: composition and antifungal activity. Nat Prod Commun 9(7):1019–1022

    CAS  PubMed  Google Scholar 

  • Santhoshkumar J, Sowmya B, Kumar SV, Rajeshkumar S (2019) Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. S Afr J Chem Eng 29:17–23

    Google Scholar 

  • Shukla AC (2018) Essential oils as green pesticides for postharvest disease management. Acta Hortic 1210:199–206

    Article  Google Scholar 

  • Siewert B, Stuppner H (2019) The photoactivity of natural products–An overlooked potential of phytomedicines? Phytomedicine 60:152985

    Article  CAS  PubMed  Google Scholar 

  • Singh CJ (2011) Extracellular protease expression in Microsporum gypseum complex, its regulation and keratinolytic potential. Mycoses 54(4):e183–e188

    Article  CAS  PubMed  Google Scholar 

  • Soberón JR, Sgariglia MA, Torrez JAC, Aguilar FA, Pero EJ, Sampietro DA, de Luco JF, Labadie GR (2020) Antifungal activity and toxicity studies of flavanones isolated from Tessaria dodoneifolia aerial parts. Heliyon 6(10):e05174

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobrinho ACN, de Souza EB, Rocha MFG, Albuquerque MRJ, Bandeira PN, dos Santos HS, de Paula Cavalacante CS, Souza Oliveira S, Rodrigues Aragão P, de Morais, S.M. dos Santos Fontenelle, R.O. (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (lam.) Pers. (Asteraceae). Ind. Crops Prod 84:108–115

    Article  CAS  Google Scholar 

  • Spitzer M, Robbins N, Wright GD (2017) Combinatorial strategies for combating invasive fungal infections. Virulence 8(2):169–185

    Article  CAS  PubMed  Google Scholar 

  • Stegmayer MI, Fernandez LN, Olivella L, Gutierrez HF, Favaro MA, Derita MG (2020) Aceites esenciales provenientes de plantas nativas para el control de hongos fitopatógenos que afectan a frutales. Revista FAVE 20. in press

    Google Scholar 

  • Stein AC, Sortino M, Avancini C, Zacchino S, von Poser G (2005) Ethnoveterinary medicine in the search for antimicrobial agents: antifungal activity of some species of Pterocaulon (Asteraceae). J Ethnopharmacol 99(2):211–214

    Article  PubMed  Google Scholar 

  • Stopiglia CDO, da Rocha Vianna D, de Carvalho Meirelles G, Teixeira H, Von Poser GL, Scroferneker ML (2011) Antifungal activity of Pterocaulon species (Asteraceae) against Sporothrix schenckii. J Mycolm Méd 21(3):169–172

    Article  CAS  Google Scholar 

  • Svetaz L, Agüero MB, Alvarez S, Luna L, Feresin G, Derita M, Tapia A, Zacchino S (2007) Antifungal activity of chalcones from Zuccagnia punctata Cav. Acting against clinically important fungi and studies of mechanism of action. Planta Med 73:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Svetaz L, Tapia A, López S, Furlán R, Petenatti E, Pioli R, Schmeda-Hirschmann G, Zacchino S (2004) Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J Agric Food Chem 52(11):3297–3300

    Article  CAS  PubMed  Google Scholar 

  • Svetaz L, Zuljan F, Derita M, Petenatti E, Tamayo G, Cáceres A, Filho VC, Giménez A, Pinzón R, Zacchino S, Gupta M (2010) Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol 127(1):137–158

    Article  PubMed  Google Scholar 

  • Teal LJ, Schultz KM, Weber DJ, Gergen MF, Miller MB, DiBiase LM, Sickbert-Bennett E, Rutala WA (2016) Invasive cutaneous Rhizopus infections in an immunocompromised patient population associated with hospital laundry carts. Infect Control Hosp Epidemiol 37(10):1251–1253

    Article  PubMed  Google Scholar 

  • Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IA, Lorenzi H, Melhem MS (2008) Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 103(5):443–449

    Article  PubMed  Google Scholar 

  • Thembo KM, Vismer HF, Nyazema NZ, Gelderblom WCA, Katerere DR (2010) Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. J Appl Microbiol 109(4):1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T, Kamini NR (2016) Degradation of poly (butylene succinate) and poly (butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int. Biodeterior. Biodegradation 110:99–107

    Article  CAS  Google Scholar 

  • Torres AM, Ramirez ML, Chulze SN (2009) Fusarium and fumonisins in maize in South America. In: Rai M, Varma A (eds) Mycotoxins in food, Feed and Bioweapons. Springer, Berlin, Heidelberg, pp 179–200

    Chapter  Google Scholar 

  • Vaghela J, Rana M, Savalia V, Sheth NR (2009) Evaluation of antifungal activity of methanolic extract of leaves and stems of Solanum sisymbriifolium LAM. Pharmacologyonline 3:1–5

    Google Scholar 

  • Valarezo E, Arias A, Cartuche L, Meneses M, Ojeda-Riascos S, Morocho V (2016) Biological activity and chemical composition of the essential oil from Chromolaena laevigata (lam.) RM King & H. rob. (Asteraceae) from Loja, Ecuador. J Essent Oil-Bear Plan Theory 19(2):384–390

    Article  CAS  Google Scholar 

  • Vasudevan P, Kashyap S, Sharma S (1997) Tagetes: a multipurpose plant. Bioresour Technol 62(1–2):29–35

    Article  CAS  Google Scholar 

  • Vattuone MA, Soberón JR, Sgariglia MA, Quiroga EN, Sampietro DA (2013) Zuccagnia punctata Cav.: Phytochemistry, traditional uses and pharmacology. In: Céspedes CL, Sampietro DA, Seigler DS, Rai M (eds) Natural antioxidants and biocides from wild medicinal plants. CABI, pp 178–186

    Chapter  Google Scholar 

  • Venturi CR, Danielli LJ, Klein F, Apel MA, Montanha JA, Bordignon SA, Roehe PM, Fuentefria AM, Henriques AT (2015) Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm Biol 53(5):682–688

    Article  CAS  PubMed  Google Scholar 

  • Vio-Michaelis S, Apablaza-Hidalgo G, Gómez M, Peña-Vera R, Montenegro G (2012) Antifungal activity of three Chilean plant extracts on Botrytis cinerea. Bot Sci 90(2):179–183

    Article  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16(2–3):97–110

    Article  CAS  PubMed  Google Scholar 

  • Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials-are we afraid of the light? Lancet Infect Dis 17(2):49–55

    Article  Google Scholar 

  • Yang CJ, Gao Y, Du KY, Luo XY (2019) Screening of 17 Chinese medicine plants against phytopathogenic fungi and active component in Syzygium aromaticum. J Plant Dis Prot 127:237–244

    Article  Google Scholar 

  • Yang SK, Yusoff K, Mai CW, Lim WM, Yap WS, Lim SH, Lai KS (2017) Additivity vs synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 22(11):1733

    Article  PubMed Central  CAS  Google Scholar 

  • Zacchino SA, López SN, Pezzenati G, Furlán RL, Santecchia CB, Muñoz L, Giannini FA, Rodríguez AM, Enriz RD (1999) In vitro evaluation of antifungal properties of phenylpropanoids and related compounds acting against dermatophytes. J Nat Prod 62(10):1353–1357

    Article  CAS  PubMed  Google Scholar 

  • Zavrel M, White TC (2015) Medically important fungi respond to azole drugs: an update. Future Microbiol 10(8):1355–1373

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2002) Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. J Nat Prod 65(7):979–985

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yan K, Zhang Y, Huang R, Bian JM, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci 104(11):4606–4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziedan EHE, Farrag ESH (2008) Fumigation of peach fruits with essential oils to control postharvest decay. Res J Agric Biol Sci 4(5):512–519

    CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad Nacional de Rosario (UNR) for financial support (PIP N° 2015-0524, PICT N° 2015-2259, PICT N° 2016-1833 and BIO571-UNR). GS, EB, MDL, EC, and AB are also thankful to CONICET for their doctoral fellowships.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seimandi, G. et al. (2022). Natural Antifungal Agents Isolated from Argentine Plants. A Summary of Studies Developed in the Period 2000–2020. In: Rai, M., Kosalec, I. (eds) Promising Antimicrobials from Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-030-83504-0_12

Download citation

Publish with us

Policies and ethics