Skip to main content

Primary Keys and Miscellaneous Fungi

  • Chapter
  • First Online:
Fungi and Food Spoilage
  • 821 Accesses

Abstract

Principles underlying fungal classification have been outlined in Chap. 3, including a brief overview of the relevant divisions of the Kingdom Fungi and their principal methods of reproduction. Some further detailed information is necessary to assist in use of the keys which follow in this chapter. This chapter provides keys and descriptions of a wide range of fungal genera and species found in foods, but not covered by subsequent chapters. The chapter includes the major genus Fusarium, dematiaceus hyphomycetes including Alternaria, Bipolaris, and Curvularia, the heat resistant genus Byssochlamys, Chaetomium and related genera and a variety of others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, H.K. and Bosch, U. 1990. Evaluation of trichothecene and nontrichothecene mycotoxins produced by Fusarium in soybeans. Mycotoxin Res. 6: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Abbas, H.K. and Mirocha, C.J. 1988. Isolation and purification of a hemorrhagic factor (wortmannin) from Fusarium oxysporum (N17B). Appl. Environ. Microbiol. 54: 1268–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, H.K. et al. 1988. Mycotoxins and Fusarium spp. associated with infected ears of corn in Minnesota. Appl. Environ. Microbiol. 54: 1930–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, H.K. et al. 1989a. Mycotoxins produced by toxic Fusarium isolates obtained from agricultural and nonagricultural areas (Arctic) of Norway. Mycopathologia 105: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Abbas, H.K. et al. 1989b. Production of trichothecene and non-trichothecene mycotoxins by Fusarium species isolated from maize in Minnesota. Mycopathologia 108: 55–58.

    Article  CAS  PubMed  Google Scholar 

  • Abbas, H.K. et al. 1991. Production of zearalenone, nivalenol, moniliformin, and wortmannin from toxigenic cultures of Fusarium obtained from pasture soil samples collected in New Zealand. Mycotoxin Res. 7: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Abbas, H.K. et al. 1992. Bioassay, extraction, and purification procedures for wortmannin, the hemorrhagic factor produced by Fusarium oxysporum N17B grown on rice. J. AOAC Int. 75: 474–480.

    Article  CAS  Google Scholar 

  • Abbas, H.K. et al. 1995. First report of fumonisin B1, B2 and B3 production by Fusarium oxysporum var. redolens. Plant Dis. 79: 968.

    Article  Google Scholar 

  • Abbott, S.P. et al. 1998. Microascus brevicaulis sp. nov., the teleomorph of Scopulariopsis brevicaulis, supports placement of Scopulariopsis with the Microascaceae. Mycologia 90: 297–302.

    Google Scholar 

  • Abdel-Hafez, S.I.I. and Saber, S.M. 1993. Mycoflora and mycotoxin of hazelnut (Corylus avellana L.) and walnut (Juglans regia L.) seeds in Egypt. Zentralbl. Mikrobiol. 148: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Kader, M.I.A. et al. 1979. Survey of the mycoflora of barley grains in Egypt. Mycopathologia 69: 143–147.

    Article  Google Scholar 

  • Abe, A. et al. 2004. Microflora and selected metabolites of potato pulp fermented with an Indonesian starter Ragi tape. Food Technol. Biotechnol. 42: 169–173.

    CAS  Google Scholar 

  • Abramson, D. et al. 1987. Fusarium species and trichothecene mycotoxins in suspect samples of 1985 Manitoba wheat. Can. J. Plant Sci. 67: 611–619.

    Google Scholar 

  • Abramson, D. et al. 1993. Trichothecene production by Fusarium spp. isolated from Manitoba grain. Can. J. Plant Pathol. 15: 147–152.

    Article  CAS  Google Scholar 

  • Abramson, D. et al. 2001. Trichothecene and moniliformin production by Fusarium species from Western Canadian wheat. J. Food Prot. 64: 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  • Abramson, D. et al. 2004. HT-2 and T-2 toxins in barley inoculated with Fusarium sporotrichioides. Can. J. Plant Sci. 84: 1189–1192.

    Article  CAS  Google Scholar 

  • Adejumo, T.O. et al. 2007. Occurrence of Fusarium species and trichothecenes in Nigerian maize. Int. J. Food Microbiol. 116: 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Adeniji, M.O. 1970a. Fungi associated with storage decay of yam in Nigeria. Phytopathology 60: 590–592.

    Article  Google Scholar 

  • Adeniji, M.O. 1970b. Influence of moisture and temperature on yam decay organisms. Phytopathology 60: 1698–1699.

    Article  Google Scholar 

  • Adisa, V.A. 1983. Fruit rots of Capsicum annuum L. and C. frutescens L. in Nigeria. III. Effect of post-harvest infection by two fusaria species on a few nutrients. Nahrung 27: 669–674.

    Article  Google Scholar 

  • Agut, M. and Calvo, M.A. 2004. In vitro germination of Arthrinium areum and Arthrinium phaeospermum. Mycopathologia, 157: 363–367.

    Google Scholar 

  • Ahammed, S.K. et al. 2005. Optimising nutritional conditions for mass multiplication of Chaetomium globosum Kunze, an efficient biocontrol agent of Bipolaris sorokiniana (Sacc.) Shoemaker. Indian J. Plant Protection 33: 90–93.

    Google Scholar 

  • Ahammed, S.K. et al. 2006. Studies on seed mycoflora of soybean and its effect on seed and seedling quality. Legume Res. 29: 186–190.

    Google Scholar 

  • Alasoadura, S.O. 1970. Culture studies on Botryodiplodia theobromae Pat. Mycopathol. Mycol. Appl. 42: 153–160.

    Article  Google Scholar 

  • Alcorn, J.L. 1983. Generic concepts in Drechslera, Bipolaris and Exserohilum. Mycotaxon 17: 1–86.

    Google Scholar 

  • Alcorn, J.L. 1990. Additions to Cochliobolus, Bipolaris and Curvularia. Mycotaxon 39: 361–392.

    Google Scholar 

  • Alderman, S.C. and Lacy, M.L. 1984. Influence of temperature and water potential on growth of Botrytis allii. Can. J. Bot. 62: 1567–1570.

    Article  Google Scholar 

  • Ali, S. et al. 2005. First report of Fusarium graminearum causing dry rot of potato in North Dakota. Plant Dis. 89: 105.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Rodriguez, M.L. et al. 2002. Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O methylation of 2,4,6-trichlorophenol, Appl. Environ. Microbiol. 68: 5860–5869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves, A. et al. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1–13.

    Google Scholar 

  • Ancasi, E.G. et al. 2006. Moulds and yeasts in bottled water and soft drinks. Rev. Argentina Microbiol. 38: 93–96.

    CAS  Google Scholar 

  • Andersen, B. and Frisvad, J.C. 2004. Natural occurrences of fungi and fungal metabolites in moldy tomatoes. J. Agric. Food Chem. 52: 7507–7513.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, B. and Thrane, U. 1996. Secondary metabolites produced by Alternaria infectoria and their use as chemotaxonomic markers. Mycotoxin Res. 12: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, B. et al. 1995. Metabolite profiles of common Stemphylium species. Mycol. Res. 99: 672–676.

    Article  CAS  Google Scholar 

  • Andersen, B. et al. 1996. Associated field mycobiota on malt barley. Can. J. Bot. 74: 854–858.

    Article  Google Scholar 

  • Andersen, B. et al. 2002. Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol. Res. 106: 170–182.

    Article  CAS  Google Scholar 

  • Andersen, B. et al. 2015. Characterization of Alternaria strains from Argentinian blueberry, tomato, walnut and wheat. Int. J. Food Microbiol. 196: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Anon. 1967. Unusual heat resistance mould in apple juice. Food Ind. S. Afr. 19: 55–56.

    Google Scholar 

  • Aoki, T. and O’Donnell, K. 1999a. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91: 597–609.

    Article  Google Scholar 

  • Aoki, T. and O’Donnell, K. 1999b. Morphological characterization of Gibberella coronicola sp. nov., obtained through mating experiments of Fusarium pseudograminearum. Mycoscience 40: 443–453.

    Article  Google Scholar 

  • Ara, I. et al. 2020. First report of fungus Scopulariopsis brevicaulis from fresh water dry shrimp in Bangladesh. Bangladesh J. Zool. 48: 203–209.

    Article  Google Scholar 

  • Armolik, N. and Dickson, J.G. 1956. Minimum humidity requirements for germination of conidia associated with storage of grain. Phytopathology 46: 462–465.

    Google Scholar 

  • Arsvoll, K. 1975. Fungi causing winter damage on cultivated grasses in Norway. Meld. Nor. Landbrukschoegsk. 54: 49pp.

    Google Scholar 

  • Arya, A. 2004. Mycoflora associated with walnut fruit in Baroda. J. Mycol. Plant Pathol. 34: 128–129.

    Google Scholar 

  • Asgari, B. et al. 2004. Hyphomycetous fungal community of barley phylloplane in East Azarbaijan Province with emphasis on new taxa for Iranian fungal flora. Rostaniha 5: 171–197.

    Google Scholar 

  • Assawah, M.W. and Al-Zarari, A.J. 1984. Identification and study of fungi causing diseases and post-harvest rots of squash in Ninevah province, Iraq. Iraqi J. Agric. Sci. 2: 67–75.

    Google Scholar 

  • Atanda, O.O. et al. 1990. Mycoflora of dry ‘tatase’ pepper (Capsicum annuum L.) stored for sale in Ibadan markets. Lett. Appl. Microbiol. 10: 35–37.

    Article  Google Scholar 

  • Austwick, P.K.C. and Ayerst, G. 1963. Toxic products in groundnuts: groundnut microflora and toxicity. Chem. Ind. 1963: 55–61.

    Google Scholar 

  • Aveskamp, M.M. et al. 2010. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 65: 1–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila, C.F.et al. 2019. Fusarium incarnatum-equiseti species complex associated with Brazilian rice: phylogeny, morphology and toxigenic potential. Int. J. Food Microbiol. 306: 2019, 108267. doi:10.1016/j.ijfoodmicro.2019.108267.

    Google Scholar 

  • Ayesha, F. and Viswanath, P. 2006. Byssochlamys spp in sugar cane juice and its significance. J. Food Sci. Tech. – Mysore 43: 407–409.

    Google Scholar 

  • Azevedo, D.M.Q. et al. 2020. Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biology 124: 940–957.

    Article  CAS  PubMed  Google Scholar 

  • Bacon, C.W. and Nelson, P.E. 1994. Fumonisin production in corn by toxigenic strains of Fusarium moniliforme and Fusarium proliferatum. J. Food Prot. 57: 514–521.

    Article  CAS  PubMed  Google Scholar 

  • Bacon, C.W.et al. 1996. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 62: 4039–4043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainier, G. 1907a. Mycothece de l’École de Pharmacie. XI. Bull. Trimest. Soc. Mycol. Fr. 23: 26–27.

    Google Scholar 

  • Bainier, G. 1907b. Mycothece de l’École de Pharmacie. XIV. Bull. Trimest. Soc. Mycol. Fr. 23: 98–105.

    Google Scholar 

  • Bakan, B.et al. 2001. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit. Contam. 18: 998–1003.

    Article  CAS  PubMed  Google Scholar 

  • Ballestra, P. and Cuq, J. 1998. Influence of pressurized carbon dioxide on the thermal inactivation of bacterial and fungal spores. Lebensm.-Wiss. Technol. 31: 84–88.

    Article  CAS  Google Scholar 

  • Barbosa, R.N. et al. 2017. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Stud. Mycol. 86: 29–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes, G.L. 1971. Mycoflora of developing peanut pods in Oklahoma. Mycopathol. Mycol. Appl. 45: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Barnett, J.A. et al. 1990. The Yeasts: Characteristics and Identification, 2nd edn. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Barnett, J.A. et al. 2000. Yeasts: Characteristics and Identification, 3rd edn. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Barreto, D. et al. 2004. Occurrence and pathogenicity of Fusarium poae in barley in Argentina. Cereal Res. Comm. 32: 53–60.

    Article  Google Scholar 

  • Bayne, H.G. and Michener, H.D. 1979. Heat resistance of Byssochlamys ascospores. Appl. Environ. Microbiol. 37: 449–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beh, A.L. 2007. Investigation of yeasts and yeast-like fungi associated with Australian wine grapes using cultural and molecular methods. PhD thesis, University of New South Wales, NSW, Australia.

    Google Scholar 

  • Belisario, A. et al. 1999. [Fusariosis of fruit, a disease of walnut]. Inf. Agrario 55: 51–52.

    Google Scholar 

  • Beneke, E.S. et al. 1954. The incidence and proteolytic activity of fungi isolated from Michigan strawberry fruits. Appl. Microbiol. 2: 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengyella, L. et al. 2017. Upsurge in Curvularia infections and global emerging antifungal drug resistance. Asian J. Sci. Res. 10: 299–307.

    Article  CAS  Google Scholar 

  • Bensch, K. et al. 2010. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud. Mycol. 67: 1–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensch, K. et al. 2012. The genus Cladosporium. Stud. Mycol. 72: 1–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensch, K. et al. 2015. Common but different: the expanding realm of Cladosporium. Stud. Mycol. 82: 23–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuchat, L.R. 1981. Influence of potassium sorbate and sodium benzoate on heat inactivation of Aspergillus flavus, Penicillium puberulum and Geotrichum candidum. J. Food Prot. 44: 450–454.

    Article  CAS  PubMed  Google Scholar 

  • Beuchat, L.R. and Rice, S.L. 1979. Byssochlamys spp. and their importance in processed fruits. Adv. Food Res. 25: 237–288.

    Google Scholar 

  • Bezuidenhout, S.C. et al. 1988. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc., Chem. Commun. 1988: 743–745.

    Article  Google Scholar 

  • Bigirwa, G. et al. 2007. Incidence and severity of maize ear rots and factors responsible for their occurrence in Uganda. J. Appl. Sci. 7: 3780–3785.

    Article  Google Scholar 

  • Birzele, B. et al. 2002. Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in the Rhineland, Germany. Eur. J. Plant Pathol. 108: 667–673.

    Article  CAS  Google Scholar 

  • Bisset, J. 1991a. A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot. 69: 2357–2372.

    Article  Google Scholar 

  • Bisset, J. 1991b. A revision of the genus Trichoderma. III. Section Pachybasium. Can. J. Bot. 69: 2373–2417.

    Article  Google Scholar 

  • Bissett, J. 1984. A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can. J. Bot. 62: 924–931.

    Article  Google Scholar 

  • Biswal, P.K. et al. 2007. Management of fungi causing post harvest rotting of pineapples in Orissa. J. Plant Prot. Environ. 4: 103–105.

    CAS  Google Scholar 

  • Blais, L.A. et al. 1992. Isolation and characterization of enniatins from Fusarium avenaceum DAOM 196490. Can. J. Chem. 70: 1281–1287.

    Article  CAS  Google Scholar 

  • Blanc, P.J. et al. 1995a. Production of various species of Monascus. Biotechnol. Lett. 17: 291–294.

    Article  CAS  Google Scholar 

  • Blanc, P.J. et al. 1995b. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol. 27: 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Blancard, D. et al. 2006. Grape berry rot and aromatic defects: initial observations in vineyards. Phytoma 592: 32–36.

    Google Scholar 

  • Blaney, B.J. and Dodman, R.L. 1988. Production of the mycotoxins zearalenone, 4-deoxynivalenol and nivalenol by isolates of Fusarium graminearum Groups 1 and 2 from cereals in Queensland. Aust. J. Agric. Res. 39: 21–29.

    Article  CAS  Google Scholar 

  • Blaney, B.J. and Dodman, R.L. 2002. Production of zearalenone, deoxynivalenol, nivalenol, and acetylated derivatives by Australian isolates of Fusarium graminearum and F. pseudograminearum in relation to source and culturing conditions. Aust. J. Agric. Res. 53: 1317–1326.

    Article  CAS  Google Scholar 

  • Blaney, B.J. et al. 1986. Mycotoxins and toxigenic fungi in insect-damaged maize harvested during 1983 in Far North Queensland. Aust. J. Agric. Res. 37: 235–244.

    Article  CAS  Google Scholar 

  • Bokhary, H.A. et al. 1990. Some spoilage microflora of desert truffles ‘Al-Kamah’ of the kingdom of Saudi Arabia. J. Food Prot. 53: 779–781.

    Article  CAS  PubMed  Google Scholar 

  • Bolkan, H.A. et al. 1979. Pineapple flowers as principal infection sites for Fusarium moniliforme var. subglutinans. Plant Dis. Rep. 63: 655–657.

    Google Scholar 

  • Booth, C. 1971. The Genus Fusarium. Kew, Surrey: Commonwealth Mycological Institute.

    Google Scholar 

  • Boruah, P. et al. 2004. Fungal spoilage of banana in Eastern Sub-Himalayan region. Sci. Hort. 9: 27–36.

    Google Scholar 

  • Bosch, U. and Mirocha, C.J. 1992. Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers. Appl. Environ. Microbiol. 58: 3233–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boshoff, W.H.P. et al. 1998. Fusarium species in wheat grown from head blight infected seed. S. Afr. J. Plant Soil 15: 46–47.

    Google Scholar 

  • Bothast, R.J. et al. 1975. Scopulariopsis brevicaulis: effect of pH and substrate on growth. Europ. J. Appl. Microbiol. Biotechnol. 1: 55–66.

    Google Scholar 

  • Bottalico, A. and Logrieco, A. 1998. Toxigenic Alternaria species of economic importance. In Mycotoxins in Agriculture, eds K.K. Sinha and D. Bhatnagar. New York: Marcel Dekker. pp. 65–108.

    Google Scholar 

  • Bottalico, A. and Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108: 611–624.

    Article  CAS  Google Scholar 

  • Bottalico, A. et al. 1982. Effect of temperature on zearalenone production by isolates of Fusarium from cereals, in Italy. Phytopathol. Mediterr. 21: 79–82.

    CAS  Google Scholar 

  • Bottalico, A. et al. 1995. Beauvericin and fumonisin B1 in preharvest Fusarium moniliforme maize ear rot in Sardinia. Food Addit. Contam. 12: 599–607.

    Article  CAS  PubMed  Google Scholar 

  • Bourdages, J.V. et al. 2006. Diversity and prevalence of Fusarium species from Quebec barley fields. Can. J. Plant Pathol. 28: 419–425.

    Article  Google Scholar 

  • Bours, J. and Mossel, D.A.A. 1973. A comparison of methods for the determination of lipolytic properties of yeasts mainly isolated from margarine, moulds, and bacteria. Arch. Lebensmittelhyg. 24: 197–203

    CAS  Google Scholar 

  • Boutrou, R. and Gueguen, M. 2005. Interests in Geotrichum candidum for cheese technology. Int. J. Food Microbiol. 102: 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Boutrou, R. et al. 2006. Contribution of Geotrichum candidum to the proteolysis of soft cheese. Int. Dairy J. 16: 775–783.

    Article  CAS  Google Scholar 

  • Boyd, M.R. and Wilson, B.J. 1972. Isolation and characterization of 4-ipomeanol, a lung toxic furanoterpenoid produced by sweet potatoes (Ipomoea batatas). J. Agric. Food Chem. 20: 428–430.

    Article  CAS  PubMed  Google Scholar 

  • Brinkmeyer, U. et al. 2005. Progression of deoxynivalenol and zearalenone concentrations in straw of wheat infected artificially with Fusarium culmorum. Mycotoxin Res. 21: 97–99.

    Article  CAS  PubMed  Google Scholar 

  • Broad Institute. 2003. Fusarium graminearum database. The Institute, Cambridge, MA. http://www.broad.mit.edu/annotation/genome/fusarium_graminearum/Home.html (accessed April 2008).

  • Bruce, V.R. et al. 1984. Incidence of toxic Alternaria species in small grains from the USA. J. Food Sci. 49: 1626–1627.

    Article  Google Scholar 

  • Bruton, B.D. et al. 1993. Postharvest decay of cantaloupe caused by Epicoccum nigrum. Plant Dis. 77: 1060–1062.

    Article  Google Scholar 

  • Burgess, L.W. and Summerell, B.A. 2000. Taxonomy of Fusarium: Fusarium armeniacum stat. & comb. nov. Mycotaxon 75: 347–348.

    Google Scholar 

  • Burgess, L.W. et al. 1981. Fusarium diseases of wheat, maize and grain sorghum in Eastern Australia. In Fusarium: Diseases, Biology and Taxonomy, eds P.E. Nelson, T.A. Toussoun and R.J. Cook. University Park, Pennsylvania: Pennsylvania State University Press. pp. 64–76.

    Google Scholar 

  • Burgess, L.W. et al. 1994. Laboratory Manual for Fusarium Research, 3rd edn. Sydney, N.S.W.: University of Sydney.

    Google Scholar 

  • Butinar, L. et al. 2005. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanic Marina, 48: 73–79.

    Article  Google Scholar 

  • Butler, E.E. 1960. Pathogenicity and taxonomy of Geotrichum candidum. Phytopathology 50: 665–672.

    Google Scholar 

  • Butler, E.E. et al. 1965. Taxonomy, pathogenicity, and physiological properties of the fungus causing sour rot of citrus. Phytopathology 55: 1262–1268.

    Google Scholar 

  • Butz, P. et al. 1996. High pressure inactivation of Byssochlamys nivea ascospores and other heat resistant moulds. Lebensm.-Wiss. Technol. 29: 404–410.

    Article  CAS  Google Scholar 

  • Cabañes, F.J. et al. 1997. Cutaneous hyalohyphomycosis caused by Fusarium solani in a loggerhead sea turtle (Caretta caretta L.). J. Clin. Microbiol. 35: 3343–3345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral, D. and Fernandez Pinto, V. E. 2002. Fungal spoilage of bottled mineral water. Int. J. Food Microbiol. 72: 73–76.

    Article  PubMed  Google Scholar 

  • Camili, E. C. and Benato, E. A. 2005. Diseases of grapes. Informe Agropecuario 26(228): 50–55.

    Google Scholar 

  • Cannon, P.F. et al. 2008. The typification of Colletotrichum gloeosporioides. Mycotaxon 104: 189–204.

    Google Scholar 

  • Carels, M. and Shepherd, D. 1977. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can. J. Microbiol. 23: 1360–1372.

    Article  CAS  PubMed  Google Scholar 

  • Cartwright, P. and Hocking, A.D. 1984. Byssochlamys in fruit juices. Food Technol. Aust. 36: 210–211.

    Google Scholar 

  • Casella, M.L.A. et al. 1990. Influence of age, growth medium, and temperature on heat resistance of Byssochlamys nivea ascospores. Lebensm.-Wiss. Technol. 23: 404–411.

    Google Scholar 

  • Castellá, G. et al. 1999a. DNA fingerprinting of Fusarium solani isolates related to a cutaneous infection in a sea turtle. Med. Mycol. 37: 223–226.

    Article  PubMed  Google Scholar 

  • Castellá, G. et al. 1999b. Effects of temperature, incubation period and substrate on production of fusaproliferin by Fusarium subglutinans ITEM 2404. Nat. Toxins 7: 129–132.

    Article  PubMed  Google Scholar 

  • Castillo, M.D. et al. 2004. Mycoflora and potential for mycotoxin production of freshly harvested black bean from the Argentinean main production area. Mycopathologia 158: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Centraalbureau voor Schimmelcultures (2016) Fungal Collection database. https://wi.knaw.nl/page/Collection

  • Chabalier, C. et al. 1997. Contribution to the study of surface microflora on Cantral cheese. Acta Microbiol. Immunol. Hung. 44: 147–153.

    CAS  PubMed  Google Scholar 

  • Champaco, E.R. et al. 1993. Comparison of Fusarium solani and F. oxysporum as causal agents of fruit rot and root rot of muskmelon. HortScience 28: 1174–1177.

    Article  Google Scholar 

  • Chan, G.F. et al. 2011. Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol. (Praha) 56: 459–467.

    Article  CAS  Google Scholar 

  • Chandler, E.A. et al. 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. Mol. Plant Pathol. 62: 355–367.

    Article  CAS  Google Scholar 

  • Chapman, B. et al. 2007. Ascospores inactivation and germination by high pressure processing is affected by ascospore age. Innov. Food Sci. Emerging Technol. 8: 531–534.

    Article  Google Scholar 

  • Chapman, E.S. and Fergus, C.L. 1975. Germination of ascospores of Chaetomium globosum. Mycologia 67: 1048–1052.

    Article  Google Scholar 

  • Chaturbhuj, M. and Rai, P.K. 2005. Epidemiology of post harvest fruit rot of tomato by Fusarium pallidoroseum. Annals Agric. Res. 26: 8–12.

    Google Scholar 

  • Chaturvedi, V.C. et al. 2003. Effect of temperature on growth and sporulation of some Fusarium species. Bioved 14: 33–35.

    Google Scholar 

  • Chaverri, P. and Samuels, G.J. 2013. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67: 2823–2837.

    Google Scholar 

  • Chaverri, P. et al. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelkowski, J. et al. 1990. Moniliformin production by Fusarium species. Mycotoxin Res. 6: 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Chelkowski, J. et al. 2007. Occurrence of toxic hexadepsipeptides in preharvest maize ear rot infected by Fusarium poae in Poland. J. Phytopathol. 155: 8–12.

    Article  CAS  Google Scholar 

  • Chen, A.W. 1966. Soil physical factors and the ecology of fungi. 5. Further studies in relatively dry soils. Trans. Br. Mycol. Soc. 49: 419–426.

    Article  Google Scholar 

  • Chen, W. et al. 2015. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Comp. Rev. Food Sci. Food Safety 14: 555–567.

    Article  CAS  Google Scholar 

  • Cherian, T.T. 2007. Effect of temperature, relative humidity and injury on development and spread of post harvest rot of banana (Musa paradisiaca L.). J. Plant Dis. Sci. 2: 187–189.

    Google Scholar 

  • Choo, J.H. et al. 2016. Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid. Biotechnol. Biofuels 9: 246. doi.org/10.1186/s13068-016-0653-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chorin, M. and Rotem, J. 1961. Experiments on the control of tip rot in banana fruits. Israel J. Agric. Res. 11: 185–188.

    CAS  Google Scholar 

  • Cia, P. et al. 2007. Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biol. Tech. 43: 366–373.

    Article  CAS  Google Scholar 

  • Cichowicz, S.M. and Eisenberg, W.V. 1974. Collaborative study of the determination of Geotrichum mold in selected canned fruits and vegetables. J. Assoc. Off. Anal. Chem. 57: 957–960.

    CAS  PubMed  Google Scholar 

  • Clear, R.M. et al. 1989. Soybean seed discoloration by Alternaria spp. and Fusarium spp., effects on quality and production of fusariotoxins. Can. J. Plant Pathol. 11: 308–312.

    Article  CAS  Google Scholar 

  • Clear, R.M. et al. 2005. Prevalence of fungi and fusariotoxins on hard red spring and amber durum wheat seed from western Canada, 2000 to 2002. Can. J. Plant Pathol. 27: 528–540.

    Article  CAS  Google Scholar 

  • Cole, R.J. et al. 2003. Handbook of Toxic Fungal Metabolites. San Diego, CA: Academic Press.

    Google Scholar 

  • Coleman, J.J. 2016. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Molec. Plant Pathol. 17: 146–158.

    Article  Google Scholar 

  • Combrink, J.C. et al. 1985. Fungi associated with core rot of Starking apples in South Africa. Phytophylactica 17: 81–83.

    Google Scholar 

  • Conner, R.L. et al. 1996. Fusarium proliferatum: a new causal agent of black point in wheat. Can. J. Plant Pathol. 18: 419–423.

    Google Scholar 

  • Corpas-Hervias, C. et al. 2006. Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Dis. 90: 1441–1451.

    Article  CAS  PubMed  Google Scholar 

  • Cosic, J. et al. 2007. Pathogenicity of Fusarium species to wheat and barley ears. Cereal Res. Comm. 35: 529–532.

    Article  Google Scholar 

  • Crippin, T. et al. 2019. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS ONE 14(5): e0216735. https://doi.org/10.1371/journal.pone.0216735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crippin, T. et al. 2020. Fusarium graminearum populations from maize and wheat in Ontario, Canada. World Mycotoxin J. 13: 355–366.

    Google Scholar 

  • Crous, P.W. and Groenewald, J.Z. 2013. A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4: 133–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous, P.W. et al. 2007. The genus Cladosporium and similar dematiaceous hyphomycetes. Stud. Mycol. 58: 1–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuero, R.G. et al. 1987. Interaction of water activity, temperature and substrate on mycotoxin production by Aspergillus flavus, Penicillium viridicatum and Fusarium graminearum on irradiated grains. Trans. Br. Mycol. Soc. 89: 221–226.

    Article  CAS  Google Scholar 

  • Dakin, J.C. and Stolk, A.C. 1968. Moniliella acetoabutans: some further characteristics and industrial significance. J. Food Technol. 3: 49–53.

    Google Scholar 

  • Dal Bello, G., 2008. First report of Trichothecium roseum causing postharvest fruit rot of tomato in Argentina. Aust. Plant Dis. Notes 3: pp.103–104.

    Google Scholar 

  • Daly, N.M. et al. 1984. Growth of fungi on wine corks and its contribution to corky taints in wine. Food Technol. Aust. 36: 22–24.

    Google Scholar 

  • De Hoog, G.S. 1979. Taxonomic review of Moniliella, Trichosporonoides and Hyalodendron. Stud. Mycol. (Baarn) 19: 1–36.

    Google Scholar 

  • De Hoog, G.S. and Smith, M. Th. 2004. Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud. Mycol. 50: 489–515.

    Google Scholar 

  • De Hoog, G.S. and Smith, M. Th. 2011. Galactomyces Redhead & Malloch (1977). In: The Yeasts: a Taxonomic Study, eds. C. Kurtzman, J.W. Fell and T. Boekhout. Amsterdam: Elsevier. pp. 413–420.

    Google Scholar 

  • De Hoog, G.S. and Yurlova, N.A. 1994. Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Antonie van Leeuwenhoek 65: 41–54.

    Google Scholar 

  • De Hoog, G.S. et al. 2000. Atlas of Clinical Fungi, 2nd edn. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • De Nijs, M. et al. 1996. Fusarium molds and their mycotoxins. J. Food Saf. 16: 15–58.

    Google Scholar 

  • De Silva, N.I. et al. 2019. Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Sci. Rep. 9: 14355. doi.org/10.1038/s41598-019-50804-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirci, A.S. and Arici, M. 2006. Isolation of heat resistant moulds in margarine and determination of their heat resistance. J. Tekirdag Agric. Fac. 3: 269–273.

    Google Scholar 

  • Dennis, C. et al. 1979. The relative importance of fungi in the breakdown of commercial samples of sulphited strawberries. J. Sci. Food Agric. 30: 959–973.

    Article  Google Scholar 

  • Desjardains, A.E. 2006. Fusarium Mycotoxins. Chemistry, Genetics and Biology. St Paul, MN, The American Phytopathological Society. 260 pp.

    Google Scholar 

  • Desjardins, A.E. and Busman, M. 2006. Mycotoxins in developing countries: a case study of maize in Nepal. Mycotox. Res. 22: 92–95.

    Article  CAS  Google Scholar 

  • Desjardins, A.E. et al. 1993. Trichothecene biosynthesis in Fusarium species: Chemistry, genetics and significance. Microbiol. Rev. 57: 595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjardins, A.E. et al. 2000a. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66: 1020–1025.

    Google Scholar 

  • Desjardins, A.E. et al. 2000b. Gibberella fujikuroi mating population A and Fusarium subglutinans from teosinte species and maize from Mexico and Central America. Mycol. Res. 104: 865–872.

    Google Scholar 

  • Desjardins, A.E. et al. 2006. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. J. Agric. Food Chem. 54: 7383–7390.

    Article  CAS  PubMed  Google Scholar 

  • Desjardins, A.E. et al. 2007. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit. Contam. 24: 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Dharmaputra, O.S. and Retnowati, I. 1996. Fungi isolated from groundnuts in some locations of West Java. Biotropia (No. 9): 15–25.

    Google Scholar 

  • Dijksterhuis, J. and Samson, R.A. 2006. Activation of ascospores by novel food preservation techniques. In: Advances in Food Mycology. A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane eds. New York: Springer, pp: 247–260.

    Google Scholar 

  • Dinolfo, M.I. et al. 2014. Characterization of a Fusarium poe world-wide collection by using molecular markers. Europ. J. Plant Pathol.140: 119–132.

    Article  CAS  Google Scholar 

  • Domsch, K.H. et al. 1980. Compendium of Soil Fungi, 2 vols. London: Academic Press.

    Google Scholar 

  • Dodds, G.T., Brown, J.W. and Ludford, P.M., 1991. Surface color changes of tomato and other solanaceous fruit during chilling. J. Am. Soc. Hort. Sci. 116: 482–490.

    Article  Google Scholar 

  • Doupnik, B. et al. 1971. Toxic Fusaria isolated from moldy sweet potatoes involved in an epizootic of atypical interstitial pneumonia in cattle. Phytopathology 61: 890.

    Google Scholar 

  • Doveri, F. 2013. An additional update on the genus Chaetomium with descriptions of two coprophilous species, new to Italy. Mycosphere 4: 820–846.

    Article  Google Scholar 

  • Dragoni, I. and Cantoni, C. 1988. [Mould spoilage of modified atmosphere packaged ravioli.] Tec. Molitoria 39: 8–12.

    Google Scholar 

  • Dragoni, I. et al. 1990. [The fungicidal action of microwaves]. Tec. Molitoria 41: 1035–1041.

    Google Scholar 

  • Dufosse, L.et al. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389–406.

    Article  CAS  Google Scholar 

  • Dugan, F.M. et al. 2003. First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathol. 52: 426.

    Article  Google Scholar 

  • Dugan, F.M. et al. 2007. Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. J. Phytopathol. 155: 437–445.

    Article  CAS  Google Scholar 

  • Duncan, B. 1973. Nutrition and fat production in submerged cultures of a strain of Penicillium lilacinum. Mycologia 65: 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Ebenezer, P. et al. 2002. Effect of chemical environment on growth and sporulation in Pestalotiopsis spp. Indian J. Microbiol. 42: 303–307.

    Google Scholar 

  • Echemendia, M. 2005. Searching of fungus diseases in Sorghum halepense (L.) Pers. in different locations in Cuba. Rev. Prot. Vegetal 20: 32–38.

    Google Scholar 

  • Echerenwa, M.C. and Umechuruba, C.I. 2004. Post-harvest fungal diseases of pawpaw (carca papaya L.) fruits and seeds in Nigeria. Global J. Pure Appl. Sci. 10: 69–73.

    Google Scholar 

  • Edwards, D.G. 1993. The nutritional evaluation of myco-protein. Int. J. Food Sci. Nutr. 44 (Suppl. 1): S37–S43.

    CAS  Google Scholar 

  • EFSA (European Food Safety Authority). 2011. Scientific opinion on the risks for animals and public health related to the presence of Alternaria toxins in foods. EFSA J. 9: 2407. www.cabi.org/cabidirect/FullTextPDF/2011/20113366007.pdf

  • Eisenberg, W.V. and Cichowicz, S.M. 1977. Machinery mold - indicator organism in food. Food Technol., Champaign 31: 52–56.

    Google Scholar 

  • Ekundayo, J.A. and Daniel, T.M. 1973. Cassava rot and its control. Trans. Br. Mycol. Soc. 61: 27–32.

    Article  CAS  Google Scholar 

  • Elad, Y. et al. 2004. Botrytis: Biology, Pathology and Control. Dortrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • El-Geddawy, M.A.H. 2005. Heat resistance and control measures of Byssochlamys fulva in some juices. Assiut J. Agric. Sci. 36: 1–8.

    Google Scholar 

  • El-Hassan, K.I. et al. 2004. Interaction between non-pathogenic Fusarium isolates and Fusarium species causing dry rot of potato tubers. Ann. Agric. Sci. (Cairo) 49: 759–771.

    Google Scholar 

  • Ellis, M.B. 1971. Dematiaceous Hyphomycetes. Kew, Surrey: Commonwealth Mycological Institute.

    Book  Google Scholar 

  • El-Magraby, O.M.O. and El-Maraghy, S.S.M. 1988. Mycoflora and mycotoxins of peanut (Arachis hypogaea L.) seeds in Egypt. III. Cellulose-decomposing and mycotoxin-producing fungi. Mycopathologia 104: 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Elmer, W.H. 1996. Fusarium root rot of pumpkin in Connecticut. Plant Dis. 80: 131–135.

    Article  Google Scholar 

  • Elmer, W.H. 2000. Incidence of infection of asparagus spears marketed in Connecticut by Fusarium spp. Plant Dis. 84: 831–834.

    Article  PubMed  Google Scholar 

  • Engel, G. and Teuber, M. 1991. Heat resistance of ascospores of Byssochlamys nivea in milk and cream. Int. J. Food Microbiol. 12: 225–234.

    Article  CAS  PubMed  Google Scholar 

  • Esfahani, M.N. 2006. Present status of Fusarium dry rot of potato tubers in Isfahan (Iran). Indian Phytopathol. 59: 142–147.

    Google Scholar 

  • Etcheverry, M. et al. 1994. Effect of water activity and temperature on tenuazonic acid production by Alternaria alternata on sunflower seeds. Mycopathologia 126: 179–182.

    Article  CAS  Google Scholar 

  • Etcheverry, M. et al. 2002. In vitro control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum using antioxidants under different water availability and temperature regimes. J. Appl. Microbiol. 92: 624–632.

    Article  CAS  PubMed  Google Scholar 

  • Evelyn and Silva, F.V.M. 2015. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Int. J. Food Microbiol. 214: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Fakhrunnisa, M.H. et al. 2006. Seedborne mycoflora of wheat, sorghum and barley. Pakistan J. Bot. 38: 185–192.

    Google Scholar 

  • Farber, J.M. and Sanders, G.W. 1986. Production of fusarin C by Fusarium spp. J. Agric. Food Chem. 34: 963–966.

    Article  CAS  Google Scholar 

  • Fávaro, L.C.L. et al. 2011. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One 6(8): e14828. doi: 10.1371/journal.pone.0014828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher, W.S. et al. 1978. Microbial diseases of cultured lobsters: a review. Aquaculture 14: 115–140.

    Article  Google Scholar 

  • Flannigan, B. 1969. Microflora of dried barley grain. Trans. Br. Mycol. Soc. 53: 371–379.

    Article  Google Scholar 

  • Fleet, G.H. 2003. Yeasts in fruit and fruit products. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing. pp. 267–287.

    Google Scholar 

  • Flesch, P. et al. 1986. Isolierung und Identifizierung von Trichothecenen und diterpenlactonen aus Kulturen des Pilzes Trichothecium roseum. Wein-Wiss. 41: 182–189.

    CAS  Google Scholar 

  • Fogle, M.R. et al. 2007. Growth and mycotoxin production by Chaetomium globosum. Mycopathologia 164: 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Follstad, M.N. 1966. Mycelial growth rate and sporulation of Alternaria tenuis, Botrytis cinerea, Cladosporium herbarum, and Rhizopus stolonifer in low-oxygen atmospheres. Phytopathology 56: 1098–1099.

    Google Scholar 

  • Francis, R.G. and Burgess, L.W. 1977. Characteristics of two populations of Fusarium roseum ‘Graminearum’ in Eastern Australia. Trans. Br. Mycol. Soc. 68: 421–427.

    Article  Google Scholar 

  • Freire, S.V.P. et al. 1998. Morphological, cytological, and cultural aspects of Curvularia pallescens. Rev. Microbiol. 29(3). doi.org/10.1590/S0001-37141998000300010.

    Google Scholar 

  • Galloway, L.D. 1935. The moisture requirements of mold fungi with special reference to mildew of textiles. J. Text. Inst. 26: 123–129.

    Article  Google Scholar 

  • Gams, W. 1971. Cephalosporium-artige Schimmelpilze (Hyphomycetes). Stuttgart: G. Fischer.

    Google Scholar 

  • Gargi and Roy, A.N. 1988. Prevention and control of some post harvest fungal diseases of garlic bulbs. Pesticides 22: 11–15.

    CAS  Google Scholar 

  • Geiser, D.M. et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103: 400–408.

    Article  PubMed  Google Scholar 

  • Gelderblom, W.C.A. et al. 1988. Fumonisins - novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54: 1806–1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherbawy, Y.A.M.H. et al. 2006. Seasonal variations of Fusarium species in wheat fields in Upper Egypt. Arch. Phytopathol. Plant Prot. 39: 365–377.

    Article  Google Scholar 

  • Ghiasian, S.A. et al. 2004. Mycoflora of Iranian maize harvested in the main production areas in 2000. Mycopathologia 158: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Ghiasian, S.A. et al. 2006. Incidence of Fusarium verticillioides and levels of fumonisins in corn from main production areas in Iran. J. Agric. Food Chem. 54: 6118–6122.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, B.C. et al. 2006. Enzymatic studies on predominant micro-organisms of surface-ripened cheeses. Aust. J. Dairy Technol. 61: 238–243.

    CAS  Google Scholar 

  • Gill, C.O. and Lowry, P.D. 1982. Growth at sub-zero temperatures of black spot fungi on meat. J. Appl. Bacteriol. 52: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Gill, C.O. et al. 1981. A note on the identities of organisms causing black spot spoilage of meat. J. Appl. Bacteriol. 51: 183–187.

    Article  Google Scholar 

  • Gilman, G.A. 1969. An examination of fungi associated with groundnut pods. Trop. Sci. 11: 38–48.

    Google Scholar 

  • Gogoi, B. K. et al. 1987. Production, purification and characterization of an alpha-amylase produced by Saccharomycopsis fibuligera. J. Appl. Bacteriol. 63: 373–379.

    CAS  Google Scholar 

  • González, H.H. et al. 1997. Fungi associated with sorghum grain from Argentina. Mycopathologia 139: 35–41.

    Article  PubMed  Google Scholar 

  • Gonzalez, M. del C. 1995. [Fusarium solani is the causative agent of brown spot disease in captive wild broodstock of the white shrimp Penaeus vannamei]. Rev. Mex. Micol. 11: 175–178.

    Google Scholar 

  • Gordon, T.R., and Martyn, R.D. 1997. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 35: 111–128.

    Article  CAS  PubMed  Google Scholar 

  • Gossmann, M. et al. 2005. [Investigation on contamination of asparagus (Asparagus officinalis L.) spears with Fusarium proliferatum (Matsushima) Nirenberg during main harvest]. Gesunde Pflanz. 57: 53–58.

    Google Scholar 

  • Goyal, S.K. and Jain, M.P. 1998. Storage mycoflora of blackgram (Vigna mungo L. Hepper) and their pathogenicity. Int. J. Trop. Plant Dis. 16: 195–202.

    Google Scholar 

  • Gradel, A. and Müller, G. 1985. Ergebnisse von Untersuchungen des Schimmelpilzbefalls an Gärgutträgern in der Brötchen- und Spezial-Toast- Produktion. Bäker Konditor 33: 133–135.

    Google Scholar 

  • Gräfenhan, T. et al. 2011. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 68: 79–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin, D.M. 1963. Soil moisture and the ecology of soil fungi. Biol. Rev., Cambridge 38: 141–166.

    Article  CAS  Google Scholar 

  • Groenewald, M. and Smith, M. Th. 2010. Re-examination of strains formerly assigned to Hyphopichia burtonii, the phylogeny of the genus Hyphopichia, and the description of Hyphopichia pseudoburtonii sp. nov. Int. J. Syst. Evol. Microbiol. 60: 2675–2680.

    Article  CAS  PubMed  Google Scholar 

  • Gros, J.B. et al. 2003. Selection of mould strains from the surface flora of French saucissons and study of their biocatalytic behaviour. Sci. Aliments 23: 150–153.

    Article  Google Scholar 

  • Gueguen, M. 1988. Moisissures responsables de defauts d’affinage en fromagerie (à l’exclusion des Mucoraceae). Microbiol., Aliments, Nutr. 6: 31–35.

    Google Scholar 

  • Gunnell, P.S. and Gubler, W.D. 1992. Taxonomy and morphology of Colletotrichum species pathogenic to strawberry. Mycologia 84: 157–165.

    Article  Google Scholar 

  • Gunther, R. et al. 1989. Acute pathological effects on rats of orally administered wortmannin-containing preparations and purified wortmannin from Fusarium oxysporum. Food Chem. Toxicol. 27: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, S.A. et al. 2002. Fungi isolated from rice seed in Argentina. Fitopatologia 37: 156–163.

    Google Scholar 

  • Haapalainen, M. et al. 2016. Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathol. 65: 1310–1320.

    Google Scholar 

  • Hajjaj, H. et al. 2000. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl. Environ. Microbiol. 65: 1120–1125.

    Article  Google Scholar 

  • Hall, E.G. and Scott, K.J. 1977. Storage and Market Diseases of Fruit. Melbourne, Australia: Commonwealth Scientific and Industrial Research Organisation.

    Google Scholar 

  • Hamid, M.I., Hussain, M., Ghazanfar, M.U., Raza, M. and Liu, X.Z., 2014. Trichothecium roseum causes fruit rot of tomato, orange, and apple in Pakistan. Plant Disease, 98: 1271–1271.

    Google Scholar 

  • Hartill, W.F.T. and Broadhurst, P.G. 1989. Fusarium avenaceum as a pathogen of stonefruit in New Zealand. N.Z. J. Crop Hort. Sci. 17: 293–295.

    Google Scholar 

  • Hartman, G.L. et al. 2019. Trichothecene-producing Fusarium species isolated from soybean roots in Ethiopia and Ghana and their pathogenicity on soybean. Plant Dis. 103: 2070–2075. doi.org/10.1094/PDIS-12-18-2286-RE.

    Article  CAS  PubMed  Google Scholar 

  • Harwig, J. et al. 1979. Toxins of molds from decaying tomato fruit. Appl. Environ. Microbiol. 38: 267–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashmi, M.H. and Ghaffar, A. 1991. Seed-born mycoflora of Coriandrum sativum L. Pak. J. Bot. 23: 165–172.

    Google Scholar 

  • Hashmi, M.H. and Thrane, U. 1990. Mycotoxins and other secondary metabolites in species of Fusarium isolated from seeds of capsicum, coriander and fenugreek. Pak. J. Bot. 22: 106–116.

    CAS  Google Scholar 

  • Hasija, S.K. 1970. Physiological studies of Alternaria citri and A. tenuis. Mycologia 62: 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Hatcher, W.S. et al. 1979. Growth requirements and thermal resistance of fungi belonging to the genus Byssochlamys. J. Food Sci. 44: 118–122.

    Article  Google Scholar 

  • Hawksworth, D.L. and Pitt, J.I. 1983. A new taxonomy for Monascus based on cultural and microscopical characters. Aust. J. Bot. 31: 51–61.

    Article  Google Scholar 

  • He, D. et al. 2011. Pathogenic spectrum of fungal keratitis and specific identification of Fusarium solani. Invest. Ophthalmol. Visual Science 52: 2804–2808.

    Article  Google Scholar 

  • Heintzeler, I. 1939. Das Wachstum der Schimmelpilze in Abhangigkeit von der Hydraturverhaltnissen unter verschiedenen Aussenbedingungen. Arch. Mikrobiol. 10: 92–132.

    Article  Google Scholar 

  • Hermanides-Nijhof, E.J. 1977. Aureobasidium and allied genera. Stud. Mycol. (Baarn) 15: 141–177.

    Google Scholar 

  • Hesseltine, C.W. 1965. A millennium of fungi and fermentation. Mycologia 57:49–197.

    Article  Google Scholar 

  • Hestbjerg, H. et al. 2002. Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: an ecological interpretation. J. Agric. Food Chem. 50: 7593–7599.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A.D. 1990. Responses of fungi to modified atmospheres. In Fumigation and Controlled Atmosphere Storage of Grain, eds B.R. Champ, E. Highley and H.J. Banks. ACIAR Proceedings No 25. Canberra, Australia: Australian Centre for International Agricultural Research. pp 70–82.

    Google Scholar 

  • Hocking, A.D. and Faedo, M. 1992. Fungi causing thread mould spoilage of vacuum packaged Cheddar cheese during maturation. Int. J. Food Microbiol. 16: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1984. Food spoilage fungi. II. Heat resistant fungi. CSIRO Food Res. Q. 44: 73–82.

    Google Scholar 

  • Hocking, A.D. et al. 1994. Water relations of Alternaria alternata, Cladosporium cladosporioides, Cladosporium sphaerospermum, Curvularia lunata and Curvularia pallescens. Mycol. Res. 98: 91–94.

    Article  Google Scholar 

  • Hofgaard, I.S. et al. 2016. Associations between Fusarium species and mycotoxins in oats and spring wheat from farmers’ fields in Norway over a six-year period. World Mycotoxin J. 9: 365–378.

    Article  CAS  Google Scholar 

  • Hong, S.K. et al. 2015. Diversity of mycotoxigenic Fusarium armeniacum isolated from rice grains at harvest time in Korea. Kor. J. Mycol. 43: 158–164.

    Google Scholar 

  • Hope, R. and Magan, N. 2003. Two-dimensional environmental profiles of growth, deoxynivalenol and nivalenol production by Fusarium culmorum on a wheat-based substrate. Lett. Appl. Microbiol. 37: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Hope, R. et al. 2005. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett. Appl. Microbiol. 40: 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Houbraken, J. et al. 2006. Byssochlamys: Significance of heat resistance and mycotoxin production. In: Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer, pp: 211–224.

    Google Scholar 

  • Houbraken J. et al. 2008. Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii). Appl. Environ. Microbiol. 74: 1613–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J.A.M.P. and Samson, R. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in mycology, 70: 1–51.

    Google Scholar 

  • Huang, L.H. and Hanlin, R.T. 1975. Fungi occurring in freshly harvested and in-market pecans. Mycologia 67: 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.-T. et al. 2019. Geosmithia species in southeastern USA and their affinity to beetle vectors and tree hosts. Fungal Ecol. 39: 168–183.

    Google Scholar 

  • Hudec, K. 2007. Influence of harvest date and geographical location on kernel symptoms, fungal infestation and embryo viability of malting barley. Int. J. Food Microbiol. 113: 125–132.

    Article  PubMed  Google Scholar 

  • Hull, R. 1939. Study of Byssochlamys fulva and control measures in processed fruits. Ann. Appl. Biol. 26: 800–822.

    Article  CAS  Google Scholar 

  • Hussaini, A.M. et al. 2009. Fungi and some mycotoxins found in mouldy sorghum in Niger state, Nigeria. World J. Agric. Sci. 5: 5–17.

    CAS  Google Scholar 

  • Hussein, H.M. et al. 1991. Mycotoxin production by Fusarium species isolated from New Zealand maize fields. Mycopathologia 113: 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Hussein, H.M. et al. 2002. Occurrence and distribution of Fusarium species in maize fields in New Zealand. Mycopathologia 156: 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Ichinoe, M. et al. 1983. Chemotaxonomy of Gibberella zea with special reference to production of trichothecenes and zearalenone. Appl. Environ. Microbiol. 46: 1364–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, N. 1962. On some fungi isolated from foods. I. Trans. Mycol. Soc. Jpn 4: 1–5.

    Google Scholar 

  • Ioos, R. et al. 2004. Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158: 351–362.

    Article  PubMed  Google Scholar 

  • Ishrat, N. et al. 2005. Determination of suitable medium and optimum temperature required for the growth of seed borne fungi of sorghum. Int. J. Biol. Biotech. 2: 1013–1014.

    Google Scholar 

  • Ismail, M.A. 2001. Deterioration and spoilage of peanuts and desiccated coconuts from two sub-Saharan tropical East African countries due to the associated mycobiota and their degradative enzymes. Mycopathologia 150: 67–84.

    Article  CAS  PubMed  Google Scholar 

  • Ismail, M.E. and Abdalla, H.M. 2005. The fungus Chaetomium globosum a new pathogen to pear fruits in Egypt. Assiut J. Agric. Sci. 36: 177–188.

    Google Scholar 

  • Jacobsen, B.J. et al. 1995. Occurrence of fungi and mycotoxins associated with field mold damaged soybeans in the midwest. Plant Dis. 79: 86–89.

    Article  CAS  Google Scholar 

  • Jain, B.L. 1975. Trichoconiella gen. nov. Kavaka 3: 37–39.

    Google Scholar 

  • Jaklitsch, W.M. et al. 2006. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud. Mycol. 56: 135–177.

    Google Scholar 

  • Jarvis, W.R. 1977. Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Can. Dept Agric. Res. State, Harrow, Monogr. 15. 195.

    Google Scholar 

  • Jayasiri, S.C. et al. 2017. Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccumwith new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8: 1080–1101.

    Article  Google Scholar 

  • Jeewon, R. et al. 2004. Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Diversity 17: 39–55.

    Google Scholar 

  • Jennings, P. et al. 2004. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol. 53: 182–190.

    Article  CAS  Google Scholar 

  • Jiménez, M. et al. 1993. Occurrence and pathogenicity of Fusarium species in banana fruits. J. Phytopathol. 137: 214–220.

    Article  Google Scholar 

  • Jiménez, M. et al. 1997. Mycotoxin production by Fusarium species isolated from bananas. Appl. Environ. Microbiol. 63: 364–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joffe, A.Z. 1962. Biological properties of some toxic fungi isolated from over-wintered cereals. Mycopathol. Mycol. Appl. 16: 201–221.

    Article  CAS  PubMed  Google Scholar 

  • Joffe, A.Z. 1969. The mycoflora of fresh and stored groundnut kernels in Israel. Mycopathol. Mycol. Appl. 39: 255–264.

    Article  Google Scholar 

  • Joffe, A.Z. 1978. Fusarium poae and F. sporotrichioides as principal causal agents of alimentary toxic aleukia. In Mycotoxigenic Fungi, Mycotoxins, Mycotoxicoses: an Encyclopedic Handbook, Vol. 3, eds T.D. Wyllie and L.G. Morehouse. New York: Marcel Dekker. pp. 21–86.

    Google Scholar 

  • Johnson, G.I. et al. 1990. Control of stem end rot (Dothiorella dominicana) and other postharvest diseases of mangoes (cv. Kensington Pride) during short- and long-term storage. Trop. Agric. 67: 183–187.

    CAS  Google Scholar 

  • Julian, A.M. et al. 1995. Fungal contamination and selected mycotoxins in pre- and post-harvest maize in Honduras. Mycopathologia 129: 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Jurjevic, Z. et al. 2007. Changes in fungi and mycotoxins in pearl millet under controlled storage conditions. Mycopathologia 164: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Kakker, R.K. and Mehrotra, B.R. 1971. Studies on imperfect fungi. 3. Influence of temperature. Sydowia 26: 119–127.

    Google Scholar 

  • Kalafatoglu, H. and Karapinar, M. 1991. [Spoilage microflora in two apple cultivars during storage]. Ege Univ. Ziraat Fak. Derg. 26: 347–356.

    Google Scholar 

  • Kamle, M. et al. 2013. Identification and phylogenetic correlation among Colletotrichum gloeosporioides pathogen of anthracnose for mango. Biocatalysis Agric. Biotechnol. 2: 285–287.

    Article  Google Scholar 

  • Kang, X.H. et al. 2002. Studies on disease of Agaricus bisporus infected by Fusarium pallidoroseum. Plant Prot. 28: 15.

    Google Scholar 

  • Katta, S.K. et al. 1995. Mold content of commercial popcorn. J. Food Prot. 58: 1014–1017.

    Article  PubMed  Google Scholar 

  • Kayali, H.A. and Tarhan, L. 2005. Role of pyruvate and ascorbate production in regulation of antioxidant enzymes and membrane LPO levels in Fusarium acuminatum. Appl. Biochem. Biotechnol. 120: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, K.K. and Chandra, S. 1975. A new disease of apple fruit. Plant Dis. Rep. 59: 329–330.

    Google Scholar 

  • Kilpatrick, J.A. and Chilvers, G.A. 1981. Variation in the natural population of Epicoccum purpurascens. Trans. Br. Mycol. Soc. 77: 497–508.

    Article  Google Scholar 

  • Kim, J.-C. and Lee, Y.-W. 1994. Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers. Appl. Environ. Microbiol. 60: 4380–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-C.et al. 1993. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Appl. Environ. Microbiol. 59: 3798–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, A.D. et al. 1969. Control of Byssochlamys and related heat-resistant fungi in grape products. Appl. Microbiol. 18: 166–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klich, M.A. and Pitt, J.I. 1988. Differentiation of Aspergillus flavus from A. parasiticus and other closely related species. Trans. Br. Mycol. Soc. 91: 99–108.

    Article  Google Scholar 

  • Kolarík, M. et al. 2004. Morphological and molecular characterisation of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol. Res. 108: 1053–1069.

    Article  PubMed  Google Scholar 

  • Kolarík, M. et al. 2017. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia 109: 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, K. et al. 2003. Cancer preventive potential of trichothecenes from Trichothecium roseum. Bioorg. Med. Chem. 11: 2511–2518.

    Article  CAS  PubMed  Google Scholar 

  • Kononeko, G.P. et al. 1993. Screening of Fusarium isolates as effective enniatin producers. Appl. Biochem. Microbiol. 29: 23–27.

    Google Scholar 

  • Kosiak, B. et al. 2003. The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agric. Scand. Sect. B 53: 168–176.

    Google Scholar 

  • Kosiak, B. et al. 2004. Alternaria and Fusarium in Norwegian grains of reduced quality – a matched pair sample study. Int. J. Food Microbiol. 93: 51–62.

    Google Scholar 

  • Kosiak, E.B. et al. 2005. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. Int. J. Food Microbiol. 99: 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Kostecki, M. et al. 1999. The effects of cereal substrate and temperature on production of beauvericin, moniliformin and fusaproliferin by Fusarium subglutinans ITEM-1434. Food Addit. Contam. 16: 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Kotzekidou P. 1997. Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. J. Food Sci. 62: 410–412.

    Article  CAS  Google Scholar 

  • Kouyeas, V. 1964. An approach to the study of moisture relations of soil fungi. Plant Soil 20: 351–363.

    Article  Google Scholar 

  • Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A. and Baroncelli, R. 2019. Evolution and comparative genomics of the most common Trichoderma species. BMC genomics, 20: 1–24.

    Google Scholar 

  • Kuehn, H.H. and Gunderson, M.F. 1963. Psychrophilic and mesophilic fungi in frozen food products. Appl. Microbiol. 11: 352–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kure, C.F. et al. 2004. Mould contamination in production of semi-hard cheese. Int. J. Food Microbiol. 93: 41–49.

    Article  PubMed  Google Scholar 

  • Kurtzman, C.P. and Fell, J.W. 1998. The Yeasts, A Taxonomic Study, 4th edn. Amsterdam: Elsevier.

    Google Scholar 

  • Kurtzman, C.P., Fell, J.W. and Boekhout, T. eds., 2011. The yeasts: a taxonomic study. Elsevier.

    Google Scholar 

  • Kusum, B. and Geeta, S. 1990. Note: new reports on diseases of sapodilla (Achras sapota L.) fruits. Philipp. Agric. 73: 359–363.

    Google Scholar 

  • Kvashnina, E.S. 1976. (Physiological and ecological characteristics of Fusarium species Sect. Sporotrichiella). Mikol. Fitopatol. 10: 275–281.

    Google Scholar 

  • Lahlali, R. et al. 2007. Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. Int. J. Food Microbiol. 114: 1–9.

    Article  PubMed  Google Scholar 

  • Langseth, W. et al. 1998. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 144: 103–113.

    Article  PubMed  Google Scholar 

  • Lauren, D.R. et al. 1992. Trichothecene production by Fusarium species isolated from grain and pasture throughout New Zealand. Mycopathologia 120: 167–176.

    Article  CAS  Google Scholar 

  • Laurence, M.H. et al. 2014. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol. 118: 374–384.

    Article  PubMed  Google Scholar 

  • Laurence, M.H. et al. 2015. Fusarium oxysporum f. sp. canariensis: evidence for horizontal gene transfer of putative pathogenicity genes. Plant Pathol. 64: 1068–1075.

    Google Scholar 

  • Laurent, B. et al. 2017. Landscape of genomic diversity and host adaptation in Fusarium graminearum. BMC Genomics 18: 203. doi.org/10.1186/s12864-017-3524-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurent, D. et al. 1989. Macrofusine et micromoniline: deux nouvelles mycotoxines isolees de mais infeste par Fusarium moniliforme Sheld. Microbiol., Alim., Nutr. 7: 9–16.

    CAS  Google Scholar 

  • Lawrence, D.P. et al. 2013. The sections of Alternaria: formalizing species-group concepts. Mycologia 105: 530–546.

    Article  PubMed  Google Scholar 

  • Le, V.K. et al. 2005. [Morphology and molecular phylogeny of Fusarium solani isolated from kuruma prawn Penaeus japonicus with black gills]. Gyobyo Kenkyu (Fish Pathology) 40: 103–109.

    Google Scholar 

  • Lee, U.-S. et al. 1986. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates. Appl. Environ. Microbiol. 52: 1258–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard, K.J. and Suggs, E.G. 1974. Setosphaeria prolata, the ascigerous state of Exserohilum prolatum. Mycologia 66: 281–297.

    Google Scholar 

  • Leonov, A.N. et al. 1990. Production of DON-related trichothecenes by Fusarium graminearum Schw. from Krasnodarski krai of the USSR. Mycotoxin Res. 6: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Leonov, A.N. et al. 1993. Production of fusarin C by fungi causing fusariosis of grain cultures. Appl. Biochem. Microbiol. 29: 28–31.

    Google Scholar 

  • Leslie, J.F. and Summerell, B.A. 2006. The Fusarium Laboratory Manual. Ames, IA: Blackwell Publishing.

    Book  Google Scholar 

  • Leslie, J.F. et al. 2004. Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl. Environ. Microbiol. 70: 2254–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie, J.F. et al. 2005. Toxicity, pathogenicity, and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 95: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Lew, H. et al. 1991. Moniliformin and the European corn borer (Ostrinia nubilalis). Mycotoxin Res. 7: 71–76.

    Article  PubMed  Google Scholar 

  • Lim, W.H. 1983. Penicillium funiculosum isolates associated with fruit blemishes of pineapple (cv. Masmerah) in Peninsular Malaysia. MARDI Res. Bull. 11: 179–186.

    Google Scholar 

  • Lin, C.-F. 1975. Studies on the Monascus isolated from the starter of kaoliang brandy. Chin. J. Microbiol. 8: 152–160.

    CAS  Google Scholar 

  • Liu, C.L.., Xu, W.N., Liu, F.M. and Jiang, S.R. 2007. Fumonisins production by Fusarium proliferatum strains isolated from asparagus crown. Mycopathologia 164: 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.-Z. et al. 2015. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud. Mycol. 81: 85–147.

    Article  PubMed  Google Scholar 

  • Llorens, A. et al. 2004a. Influence of the interactions among ecological variables in the characterization of zearalenone producing isolates of Fusarium spp. Syst. Appl. Microbiol. 27: 253–260.

    Article  PubMed  Google Scholar 

  • Llorens, A. et al. 2004b. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. Int. J. Food Microbiol. 94: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Logrieco, A. et al. 1988. Chemotaxonomic observations on zearalenone and trichothecene production by Gibberella zeae from cereals in southern Italy. Mycologia 80: 892–895.

    Article  CAS  Google Scholar 

  • Logrieco, A. et al. 1992. Cultural and toxigenic variability in Fusarium acuminatum. Mycol. Res. 96: 518–523.

    Article  Google Scholar 

  • Logrieco, A. et al. 1993a. Occurrence and toxicity of Fusarium subglutinans from Peruvian maize. Mycopathologia 122: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Logrieco, A. et al. 1993b. Natural occurrence of beauvericin in preharvest Fusarium subglutinans infected corn ears in Poland. J. Agric. Food Chem. 41: 2149–2152.

    Article  CAS  Google Scholar 

  • Logrieco, A. et al. 1995. Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis. 79: 727–731.

    Article  Google Scholar 

  • Logrieco, A. et al. 1998a. Beauvericin production by Fusarium species. Appl. Environ. Microbiol. 64: 3084–3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logrieco, A. et al. 1998b. Occurrence of fumonisin B1 and B2 in Fusarium proliferatum infected asparagus plants. J. Agric. Food Chem. 46: 5201–5204.

    Article  CAS  Google Scholar 

  • Logrieco, A. et al. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108: 597–609.

    Article  CAS  Google Scholar 

  • Logrieco, A. et al. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 109: 645–667.

    Article  CAS  Google Scholar 

  • Loiveke, H. et al. 2004. Microfungi in grain and grain feeds and their potential toxicity. Agronomy Res. 2: 195–205.

    Google Scholar 

  • Lombard, L. et al. 2015. Generic concepts in Nectriaceae. Stud. Mycol. 80: 189–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard, L. et al. 2019. Neotypification of Fusarium chlamydosporum – a reappraisal of a clinically important species complex. Fungal Syst. Evol. 4: 183–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopandic, K. et al. 2006. Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiol. 23: 341–350.

    Article  CAS  PubMed  Google Scholar 

  • Luangsa-ard, J. et al. 2004. The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny. Mycologia 96: 773–780.

    Article  CAS  PubMed  Google Scholar 

  • Luangsa-ard, J. et al. 2011. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol. Lett. 321: 141–149.

    Google Scholar 

  • Lugauskas, A. et al. 2005. Micromycetes, producers of toxins, detected on stored vegetables. Annals Agric. Environ. Med. 12: 253–260.

    Google Scholar 

  • Lugauskas, A. et al. 2006. Toxic micromycetes in grain raw material during its processing. Annals Agric. Environ. Med. 13: 147–161.

    Google Scholar 

  • Lund, F. et al. 1995. Associated mycoflora of cheese. Food Microbiol. 12: 173–180.

    Article  Google Scholar 

  • Lutchmeah, R.S. 1993. Common field and post-harvest diseases of passion fruit (Passiflora edulis f. flavicarpa) and the associated fungi in Mauritius. Rev. Agric. Sucr. Ile Maurice 72: 55–59.

    Google Scholar 

  • Ma, L.J. et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magan, N. and Lacey, J. 1984a. Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans. Br. Mycol. Soc. 82: 83–93.

    Article  Google Scholar 

  • Magan, N. and Lacey, J. 1984b. Effects of gas composition and water activity on growth of field and storage fungi and their interactions. Trans. Br. Mycol. Soc. 82: 305–314.

    Article  CAS  Google Scholar 

  • Magan, N. and Lacey, J. 1984c. Water relations of some Fusarium species from infected wheat ears and grain. Trans. Br. Mycol. Soc. 83: 281–285.

    Article  Google Scholar 

  • Magan, N. et al. 1984. Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl. Environ. Microbiol. 47: 1113–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharachchikumbura, S.S.N. et al. 2011. Pestalotiopsis – morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50: 167–187.

    Google Scholar 

  • Maharachchikumbura, S.S.N. et al. 2014. Pestalotiopsis revisited. Stud. Mycol. 79: 121–186.

    Google Scholar 

  • Makun, H.A. et al. 2009. Fungi and some mycotoxins found in mouldy sorghum in Niger State, Nigeria. World J. Agric. Sci. 5: 5–17.

    Google Scholar 

  • Manamgoda, D.S. et al. 2014. The genus Bipolaris. Stud Mycol. 79: 221–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manamgoda, D.S. et al. 2015. A taxonomic and phylogenetic re-appraisal of the genus Curvularia (Pleosporaceae): human and plant pathogens. Phytotaxa 212(3). doi.org/10.11646/phytotaxa.212.3.1

    Google Scholar 

  • Manandhar, K.L. and Apinis, A.E. 1971. Temperature relations in Monascus. Trans. Br. Mycol. Soc. 57: 465–472.

    Article  Google Scholar 

  • Mandeel, Q.A. 2005. Fungal contamination of some imported spices. Mycopathologia 159: 291–298.

    Article  PubMed  Google Scholar 

  • Manilal, V.B. et al. 1991. Cassava starch effluent treatment with concomitant SCP production. World J. Microbiol. Biotechnol. 7: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Marasas, W.F.O. et al. 1978. Mycotoxicological investigations on Zambian maize. Food Cosmet. Toxicol. 16: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Marasas, W.F.O. et al. 1979. Incidence of Fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in esophageal cancer areas in Transkei. J. Agric. Food Chem. 27: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  • Marasas, W.F.O. et al. 1984. Toxigenic Fusarium Species. University Park, Pennsylvania: Pennsylvania State University.

    Google Scholar 

  • Marasas, W.F.O. et al. 1986. Moniliformin production in Fusarium Section Liseola. Mycologia 78: 242–247.

    Article  CAS  Google Scholar 

  • Marin, D.H. et al. 1996. Pathogenicity of fungi associated with crown rot of bananas in Latin America on Grande Naine and disease-resistant hybrid bananas. Plant Dis. 80: 525–528.

    Article  Google Scholar 

  • Marín, P. et al. 2012. Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Food Microbiol. 31: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Marín, S., Sanchis, V., Vinas, I., Canela, R. and Magan, N. 1995. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain. Lett. Appl. Microbiol. 21: 298–301.

    Article  PubMed  Google Scholar 

  • Marín, S. et al. 1996. Water and temperature relations and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize. Can. J. Microbiol. 42: 1045–1050.

    Article  PubMed  Google Scholar 

  • Marín, S. et al. 1999. Two-dimensional profiles of fumonisin B1 production by Fusarium moniliforme and Fusarium proliferatum in relation to environmental factors and potential for modelling toxin formation in maize grain. Int. J. Food Microbiol. 51: 159–167.

    Article  PubMed  Google Scholar 

  • Marín, S. et al. 2007. Contamination of pine nuts by fumonisin produced by strains of Fusarium proliferatum isolated from Pinus pinea. Lett. Appl. Microbiol. 44: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Felix, Y. et al. 2017. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol. 86: 99–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Felix, Y. et al. 2019. Genera of phytopathogenic fungi: GOPHY 3. Stud Mycol. 94: 1–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martelleto, L.A.P. et al. 1998. [Influence of incubation temperature on mycelial growth, sporulation and pathogenicity of Fusarium subglutinans, the causing agent of Fusarium wilt in the pineapple plant]. Summa Phytopathol. 24: 242–246.

    Google Scholar 

  • Marziano, F. et al. 1992. [Fusarium solani and F. avenaceum as causal agents of a post harvest rot of carrots]. Inf. Fitopatol. 42: 57–63.

    Google Scholar 

  • Matos, A.P. de et al. 2000. Effect of temperature and rainfall on the incidence of Fusarium subglutinans on pineapple fruits. Acta Hort. (No. 529): 265–272.

    Google Scholar 

  • Matossian, M.K. 1989. Poisons of the Past: Molds, Epidemics, and History. New Haven, Connecticut: Yale University Press.

    Google Scholar 

  • Mawhinney, I. et al. 2008. Suspected sweet potato poisoning in cattle in the UK. Vet. Record 162: 62–63.

    Article  PubMed  Google Scholar 

  • Maximay, S. et al. 1992. Internally seedborne fungi of pigeon pea [Cajanus cajan (L.) Millsp.] in Trinidad: isolation and occurrence. Trop. Agric. 69: 260–262.

    Google Scholar 

  • Medina, A. et al. 2006. Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int. J. Food Microbiol. 108: 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Melcion, D. et al. 1998. [Influence of temperature on fumonisin B1 production on maize grain by Fusarium proliferatum]. Sci. Aliments 18: 301–311.

    Google Scholar 

  • Mercier, J. et al. 1991. Fusarium avenaceum, a pathogen of stored broccoli. Can. Plant Dis. Survey 71: 161–162.

    Google Scholar 

  • Meyer, D. et al. 1986. Bëinflussung der Qualitaet von Weizen durch den Befall mit Fusarium culmorum. Getreide, Mehl Brot 40: 35–39.

    Google Scholar 

  • Michener, H.D. and Elliott, R.P. 1964. Minimum growth temperatures for food-poisoning, fecal-indicator, and psychrophilic micro-organisms. Adv. Food Res. 13: 349–396.

    Article  CAS  PubMed  Google Scholar 

  • Mielniczuk, E. 2001. The occurrence of Fusarium spp. on panicles of oat (Avena sativa L.). J. Plant Prot. Res. 41: 173–180.

    Google Scholar 

  • Miller, D.D. and Golding, N.S. 1949. The gas requirements of molds. V. The minimum oxygen requirements for normal growth and for germination of six mold cultures. J. Dairy Sci. 32: 101–110.

    Article  CAS  Google Scholar 

  • Miller, J.D. and Trenholm, L.H., eds. 1994. Mycotoxins in Grain: Compounds other than Aflatoxins. St. Paul, Minnesota: Eagan Press.

    Google Scholar 

  • Miller, J.D. et al. 1991. Trichothecene chemotypes of three Fusarium species. Mycologia 83: 121–130.

    Article  CAS  Google Scholar 

  • Mills, J.T. and Wallace, H.A.H. 1979. Microflora and condition of cereal seeds after a wet harvest. Can. J. Plant Sci. 59: 645–651.

    Article  Google Scholar 

  • Mirete, S. et al. 2004. Differentiation of Fusarium verticillioides from banana fruits by IGS and EF-1 alpha sequence analyses. Eur. J. Plant Pathol. 110: 515–523.

    Article  CAS  Google Scholar 

  • Mirocha, C.J. et al. 1989a. Mycotoxin production by Fusarium oxysporum and Fusarium sporotrichioides isolated from Baccaris sp. from Brazil. Appl. Environ. Microbiol. 55: 254–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirocha, C.J. et al. 1989b. Variation in deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone production by Fusarium graminearum isolates. Appl. Environ. Microbiol. 55: 1315–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake, T. et al. 2008. Analysis of pigment compositions in various Monascus cultures. Food Sci. Technol. Res. 14: 194–197.

    Article  CAS  Google Scholar 

  • Mohamed, A.A. and Hussein, N.A. 2004. Proteolitic and lipolytic cativity of fungi isolated from luncheon meat and poultry in Assiut City. Assiut Vet. Med. J. 50: 100–113.

    Article  Google Scholar 

  • Molto, G.A. et al. 1997. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. Food Addit. Contam. 14: 263–268.

    Article  CAS  PubMed  Google Scholar 

  • Moolhuijzen, P. et al. 2018. Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics 19: 279 (2018). doi.org/10.1186/s12864-018-4680-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore, R.T. 1980. Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Botanica Marina, 23: 361–373.

    Google Scholar 

  • Moosawi-Jorf, S.A. et al. 2007. Study of Fusarium Head Blight of wheat in Khuzestan province in Iran and reporting of Fusarium xylaroides as a new causal agents for disease. J. Agron. 6: 212–215.

    Google Scholar 

  • Morales-Rodriguez, I. et al. 2007. Biodiversity of Fusarium species in Mexico associated with ear rot in maize, and their identification using a phylogenetic approach. Mycopathologia 163: 31–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moretti, A. et al. 1995. Beauvericin production by Fusarium subglutinans from different geographical areas. Mycol. Res. 99: 282–286.

    Article  CAS  Google Scholar 

  • Moretti, A. et al. 2002. Production of beauvericin by different races of Fusarium oxysporum f. sp. melonis, the Fusarium wilt agent of muskmelon. Eur. J. Plant Pathol. 108: 661–666.

    Article  CAS  Google Scholar 

  • Moretti, A. et al. 2004. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur. J. Plant Pathol. 110: 601–609.

    Article  CAS  Google Scholar 

  • Morton, F.J. and Smith, G. 1963. The genera Scopulariopsis Bainier, Microascus Zukal and Doratomyces Corda. Mycol. Papers 86: 1–96.

    Google Scholar 

  • Mtisi, E. and McLaren, N.W. 2003. Diseases of sorghum and pearl millet in some Southern African countries. In Sorghum and Millets Diseases, ed. J.F. Leslie. Ames, IA: Iowa State University Press. pp. 427–430.

    Google Scholar 

  • Mubatanhema, W. et al. 1999. Prevalence of Fusarium species of the Liseola section on Zimbabwean corn and their ability to produce the mycotoxins zearalenone, moniliformin and fumonisin B1. Mycopathologia 148: 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Muhammad, S. et al. 2004. Survey of the market diseases and aflatoxin contamination of tomato (Lycopersicon esculentum Mill) fruits in Sokoto, northwestern Nigeria. Nutr. Food Sci. 34: 72–76.

    Article  Google Scholar 

  • Muniz, M. de F.S. et al. 2003. [Identification of fungi causal agents of postharvest diseases on commercialized fruits in Alagoas, Brazil]. Summa Phytopathol. 29: 38–42.

    Google Scholar 

  • Muys, G.T. et al. 1966a. The determination and enumeration of the associative microflora of edible emulsions. Part I. Mayonnaise, salad dressings and tomato ketchup. Lab. Pract. 15: 648–652, 674.

    CAS  PubMed  Google Scholar 

  • Muys, G.T. et al. 1966b. The determination and enumeration of the associative microflora of edible emulsions. Part II. The microbiological investigation of margarine. Lab. Pract. 15: 975–984.

    Google Scholar 

  • Nakayama, M. et al. 2016. Development of rapid identification and risk analysis of Moniliella spp. in acidic processed foods. Biocontrol Sci. 21: 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Nalim, F.A. 2004. Studies on molecular phylogenetics of Fusarium species. PhD thesis. Pennsylvania State University, University Park, PA.

    Google Scholar 

  • Neish, G.A. et al. 1983. Observations on the occurrence of Fusarium species and their toxins in corn in eastern Ontario. Can. J. Plant Pathol. 5: 11–16.

    Article  CAS  Google Scholar 

  • Nelson, P.E. et al., eds. 1981. Fusarium: Diseases, Biology and Taxonomy. University Park, Pennsylvania: Pennsylvania State University Press.

    Google Scholar 

  • Nelson, P.E. et al. 1983. Fusarium Species. An illustrated Manual for Identification. University Park, Pennsylvania: Pennsylvania State University Press.

    Google Scholar 

  • Nelson, P.E. et al. 1994. Fumonisin production by Fusarium species on solid substrates. J. AOAC Int. 77: 522–525.

    Article  CAS  Google Scholar 

  • Niessen, L. et al. 1991. Möglichkeiten einer verbesserten visuellen Beurteilung des mikrobiologischen Status von Malzen. Brauwelt 131: 1556–1560, 1562.

    Google Scholar 

  • Niessen, L. et al. 1992. Mykologische Untersuchungen an Cerealien und Malzen im Zusammenhang mit dem Wildwerden (Gushing) des Bieres. Brauwelt 132: 702, 704–706, 709–712, 714.

    Google Scholar 

  • Niessen, L. et al. 2004. The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. Int. J. Food Microbiol. 95: 305–319.

    Article  CAS  PubMed  Google Scholar 

  • Nirenberg, H. 1976. Untersuchungen über die morphologische und biologische Differenzierung in Die Fusarium - Sektion Liseola. Mitt. Biol. Bundesanst. Land-Forstwirtsch., Berlin-Dahlem 169: 1–117.

    Google Scholar 

  • Nirenberg, H.I. 1990. Recent advances in the taxonomy of Fusarium. Stud. Mycol. 32: 91–101.

    Google Scholar 

  • Nirenberg, H.I. et al. 1995. Occurrence of Fusaria and some blackening moulds on durum wheat in Germany. 2. Incidence of some blackening moulds. Z. Pflanzenkrankh. Pflanzenschutz 102: 164–170.

    Google Scholar 

  • Nogueira, M.S. et al. 2018. Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins 10: 78. doi: 10.3390/toxins10020078

    Article  PubMed Central  CAS  Google Scholar 

  • Northolt, M.D. et al. 1980. Fungal growth and the presence of sterigmatocystin in hard cheese. J. Assoc. Off. Anal. Chem. 63: 115–119.

    CAS  PubMed  Google Scholar 

  • Nyvall, R.F. et al. 1999. Fusarium head blight of cultivated and natural wild rice (Zizania palustris) in Minnesota caused by Fusarium graminearum and associated Fusarium spp. Plant Dis. 83: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, K. et al. 1998a. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genetics Biol. 23: 57–67.

    Article  Google Scholar 

  • O’Donnell, K. et al. 1998b. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465–493.

    Article  Google Scholar 

  • O’Donnell, K. et al. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics Biol. 41: 600–623.

    Article  CAS  Google Scholar 

  • O’Donnell, K. et al. 2009. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet. Biol. 46: 936–948.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, K. et al. 2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Gen. Biol. 52: 20–31.

    Google Scholar 

  • O’Donnell, K. et al. 2018. Marasas et al. 1984 “Toxigenic Fusarium Species: Identity and Mycotoxicology” revisited. Mycologia 110: 1058–1080.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec. Phylogen. Evolution 7: 103–116

    Google Scholar 

  • O’Neill, K. et al. 1991. Sensitivity of some common grain fungi to irradiation on grain and in phosphate-buffered saline. Lett. Appl. Microbiol. 12: 180–183.

    Article  Google Scholar 

  • Odunfa, S.A. 1987. Microbial contaminants of carbonated soft drinks produced in Nigeria. Monatsschr. Brauwiss. 40: 220–222.

    Google Scholar 

  • Ogawa, H. et al. 1997. Polyphyletic origins of species of the anamorphic genus Geosmithia and the relationships of the cleistothecial genera: evidence from 18S, 5S and 28S rDNA sequence analysis. Mycologia 89: 756–771.

    Article  CAS  Google Scholar 

  • Ogundana, S.K. 1972. The post-harvest decay of yam tubers and its preliminary control in Nigeria. In Biodeterioration of Materials. Vol. 2, eds A.H. Walters and E.H. Hueck-van der Plas. London: Applied Science Publishers. pp. 481–492.

    Google Scholar 

  • Okoli, C.A.N. and Erinle, I.D. 1989. Factors responsible for market losses of tomato fruits in the Zaria area of Nigeria. J. Hortic. Sci. 64: 69–71.

    Article  Google Scholar 

  • Oliveira, A.C. et al. 2003. Cork stoppers industry: defining appropriate mould colonization. Microbiol. Res. 158: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, R.C. et al. 2017. Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chem. 230: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, R.C. et al. 2018. Epicoccum sorghinum in food: occurrence, genetic aspects and tenuazonic acid production. Curr. Opin. Food Sci. 23: 44–48.

    Google Scholar 

  • Oliveira, R.C. et al. 2019. Polyphasic characterization of Epicoccum sorghinum: a tenuazonic acid producer isolated from sorghum grain. Int. J. Food Microbiol. 292: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Olliver, M. and Rendle, T. 1934. A new problem in fruit preservation. Studies on Byssochlamys fulva and its effect on the tissues of processed fruit. J. Soc. Chem. Ind., London 53: 166–172.

    CAS  Google Scholar 

  • Olszak, M. 1994. Aetiology of sour cherry fungal diseases in Poland III. Pathogenicity of the isolated fungi. J. Fruit Ornamen. Plant Res. 2(4): 165–184.

    Google Scholar 

  • Onyike, N.B.N. and Nelson, P.E. 1992. Fusarium species associated with sorghum grain from Nigeria, Lesotho and Zimbabwe. Mycologia 84: 452–458.

    Google Scholar 

  • Orth, R. 1976. Wachstum und Toxinbildung von Patulin und Sterigmatocystin-bildung Schimmelpilzen unter kontrolieri Atmosphäre. Z. Lebensm.-Unters. Forsch. 160: 359–366.

    Article  CAS  PubMed  Google Scholar 

  • Oyeniran, J.O. 1980. The role of fungi in the deterioration of tropical stored products. Occasional Paper Ser., Niger. Stored Prod. Res. Inst. 2: 1–25.

    Google Scholar 

  • Pacin, A.M. et al. 2002. Fungi associated with food and feed commodities from Ecuador. Mycopathologia 156: 87–92.

    Article  Google Scholar 

  • Panagou, E.Z. et al. 2002. Heat resistance of Monascus ruber ascospores isolated from thermally processed green olives of the Conservolea variety. Int. J. Food Microbiol. 76: 11–18.

    Article  PubMed  Google Scholar 

  • Panagou, E.Z. et al. 2003. Modelling the combined effect of temperature, pH and aw on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. J. Appl. Microbiol. 94: 146–156.

    Article  CAS  PubMed  Google Scholar 

  • Panagou, E.Z. et al. 2005. Use of gradient plates to study combined effects of temperature, pH and NaCl concentration on growth of Monascus ruber van Tieghem, as an ascomycete fungus isolated from green table olives. Appl. Environ. Microbiol. 71: 392–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panagou, E.Z. et al. 2007. Modelling fungal growth using radial basis function neural networks: the case of the ascomycetous fungus Monascus ruber. Int. J. Food Microbiol. 117: 276–286.

    Article  CAS  PubMed  Google Scholar 

  • Panasenko, V.T. 1967. Ecology of microfungi. Bot. Rev. 33: 189–215.

    Article  Google Scholar 

  • Park, H.G. et al. 2004. Phylogenetic relationships of Monascus species inferred from the ITS and the partial beta-tubulin gene. Botan. Bull. Acad. Sinica 45: 325–330.

    Google Scholar 

  • Park, J. and Chu, F.S. 1993. Immunochemical analysis of trichothecenes produced by various Fusaria. Mycopathologia 121: 179–192.

    Article  CAS  Google Scholar 

  • Patiño, B. et al. 2006. Characterization of Fusarium verticillioides strains by PCR-RFLP analysis of the intergenic spacer region of the rDNA. J. Sci. Food Agric. 86: 429–435.

    Article  CAS  Google Scholar 

  • Peckham, J.C. et al. 1972. Atypical interstitial pneumonia in cattle fed moldy sweet potatoes. J. Am. Vet. Med. Assoc. 160: 169–172.

    CAS  PubMed  Google Scholar 

  • Pegg, K.G. et al. 2019. The epidemiology of Fusarium wilt of banana. Front. Plant Sci., 20 December 2019. https://doi.org/10.3389/fpls.2019.01395.

  • Pelhate, J. 1968. Inventaire de la mycoflore des blés de conservation. Bull. Trimest. Soc. Mycol. Fr. 84: 127–143.

    Google Scholar 

  • Penrose, L.J., Nicholls, M.R. and Koffmann, W. 1984. Apple fruit rot caused by Trichoderma harzianum. Australas. Plant Pathol. 13: 46–47.

    Google Scholar 

  • Pereira, C.S. et al. 2006. Effect of fungal colonization on mechanical performance of cork. Int. Biodet. Biodeg. 57: 244–250.

    Article  CAS  Google Scholar 

  • Perelló, A. et al. 2008. Alternaria infectoria species-group associated with black point of wheat in Argentina. Plant Pathol. 57: 379.

    Google Scholar 

  • Perkowski, J. et al. 1988. Deoxynivalenol and 3-acetyldeoxynivalenol and Fusarium species in winter triticale. Mycotoxin Res. 4: 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Peters, J.C. et al. 2008. Characterization of Fusarium spp. responsible for causing dry rot of potato in Great Britain. Plant Pathol. 57: 262–271.

    Article  Google Scholar 

  • Peters, R.D. et al. 2007. Dry rot of rutabaga caused by Fusarium avenaceum. HortScience 42: 737–739.

    Article  Google Scholar 

  • Petters, H.I. et al. 1988. Quantitative and qualitative studies of the microflora of barley malt production. J. Appl. Bacteriol. 65: 279–297.

    Article  Google Scholar 

  • Pieckova, E. et al. 2002. Moulds in yoghurts. Bull. Potravinarskeho Vyskumu, 41: 291–301.

    Google Scholar 

  • Pitt, J.I. 1979. Geosmithia gen. nov. for Penicillium lavendulum and related species. Can. J. Bot. 57: 2021–2030.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 2009. Fungi and Food Spoilage. 3rd edn. New York: Springer.

    Book  Google Scholar 

  • Pitt, J.I. et al. 1983. An improved medium for the detection of Aspergillus flavus and A. parasiticus. J. Appl. Bacteriol. 54: 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1993. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1994. The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int. J. Food Microbiol. 23: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1998a. The mycoflora of food commodities from Indonesia. J. Food Mycol. 1, 41–60.

    Google Scholar 

  • Pitt, J.I. et al. 1998b. The occurrence of Alternaria species and related mycotoxins in international wheat. J. Food Mycol. 1: 103–113.

    Google Scholar 

  • Plaza, P. et al. 2003. Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum. J. Appl. Microbiol. 94: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Plesken, C. et al. 2015. Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide resistant B. cinerea strains. Appl. Environ. Microbiol. 81: 7048–7056.

    Google Scholar 

  • Pose, G.et al. 2004. Mycotoxin production by Alternaria strains isolated from tomatoes affected by blackmold in Argentina. Mycotox. Res. 20: 80–86.

    Article  CAS  Google Scholar 

  • Pozzi, C.R. et al. 2005. Mycoflora and occurrence of alternariol and alternariol monomethyl ether in Brazilian sunflower from sowing to harvest. J. Agric. Food Chem. 53: 5824–5828.

    Article  CAS  PubMed  Google Scholar 

  • Prakichaiwattana, C.J. et al. 2004. Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 4: 865–877.

    Article  CAS  Google Scholar 

  • Pratt, R.G., 2006. Enhancement of sporulation in species of Bipolaris, Curvularia, Drechslera, and Exserohilum by growth on cellulose-containing substrates. Mycopathologia, 162: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, R.H. et al. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108: 815–822.

    Article  CAS  PubMed  Google Scholar 

  • Pryor, B.M. and Bigelow, D.M. 2003. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95: 1141–1154.

    Article  CAS  PubMed  Google Scholar 

  • Pryor, B.M. and Gilbertson, R.L. 2000. Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycol. Res. 104: 1312–1321.

    Article  CAS  Google Scholar 

  • Puel, O. et al. 2007. The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalisalic acid synthase and isoepoxydon dehydrogenase genes. Int. J. Food Microbiol. 115: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Punithalingam, E. 1976. Botryodiplodia theobromae. CMI Descriptions of Pathogenic Fungi and Bacteria: 519.

    Google Scholar 

  • Put, H.M.C. and Kruiswijk, J.T. 1964. Disintegration and organoleptic deterioration of processed strawberries caused by the mould Byssochlamys nivea. J. Appl. Bacteriol. 27: 53–58.

    Article  Google Scholar 

  • Quarta, A. et al. 2005. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Addit. Contam. 22: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Quarta, A. et al. 2006. Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiol. Lett. 259: 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Quintavalla, S. and Spotti, E. 1993. Heat resistance of Talaromyces flavus, Neosartorya fischeri and Byssochlamys nivea isolated from fresh fruits. Microbiol., Aliments, Nutr. 11: 335–341.

    Google Scholar 

  • Rabie, C.J. et al. 1975. Onyalai - the possible involvement of a mycotoxin produced by Phoma sorghina in the aetiology. S. Afr. Med. J. 49: 1647–1650.

    CAS  PubMed  Google Scholar 

  • Ramakrishna, N. et al. 1993. Effect of water activity and temperature on the growth of fungi interacting on grain. Mycol. Res. 97: 1393–1402.

    Article  Google Scholar 

  • Ramakrishna, N. et al. 1996. The effects of fungal competition on colonization of barley grain by Fusarium sporotrichioides on T-2 toxin formation. Food Addit. Contam. 13: 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, M.L. et al. 2006a. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int. J. Food Microbiol. 106: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, M.L. et al. 2006b. Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur. J. Plant Pathol. 115: 139–148.

    Article  CAS  Google Scholar 

  • Ranganna, B. et al. 1998. Hot water dipping to enhance storability of potatoes. Postharvest Biol. Technol. 13: 215–223.

    Article  Google Scholar 

  • Rath, G.C. and Mohanty, G.N. 1986. Fusarium rot of stored garlic. Indian Phytopathol. 39: 614–615.

    Google Scholar 

  • Ravichandran, V. and Sullia, S.B. 1983. Pathogenic fungi from sweet potato. Current Sci. 52: 1031.

    Google Scholar 

  • Redhead, S.A. and Malloch, D.W., 1977. The Endomycetaceae: new concepts, new taxa. Can. J. Botan. 55: 1701–1711.

    Article  Google Scholar 

  • Reyes, A.A. 1990. Pathogenicity, growth, and sporulation of Mucor mucedo and Botrytis cinerea in cold or CA storage. HortScience 25: 549–552.

    Article  Google Scholar 

  • Reynoso, M.M. et al. 2004. Fusaproliferin, beauvericin and fumonisin production by different mating populations among the Gibberella fujikuroi complex isolated from maize. Mycol. Res. 108: 154–160.

    Article  CAS  PubMed  Google Scholar 

  • Reynoso, M.M. et al. 2006. Biological species in the Gibberella fujikuroi species complex isolated from maize kernels in Argentina. Plant Pathol. J. (Faisalabad) 5: 350–355.

    Article  Google Scholar 

  • Rheeder, J.P. et al. 1995. Fungal infestation and mycotoxin contamination of South African commercial maize harvested in 1989 and 1990. S. Afr. J. Sci. 91: 127–131.

    CAS  Google Scholar 

  • Ribeiro, P.M., Jr and Dias, M.S.C. 2005. Diseases of passion fruit. Informe Agropecuario 26(228): 36–39.

    Google Scholar 

  • Ribeiro, N.C.A. et al. 1986. [Mycobiota of cacao fermentation in Bahia State, Brazil.] Rev. Theobroma 16: 47–55.

    Google Scholar 

  • Rice, S.L. 1980. Patulin production by Byssochlamys spp. in canned grape juice. J. Food Sci. 45: 485–488, 495.

    Article  CAS  Google Scholar 

  • Rice, S.L. et al. 1977. Patulin production by Byssochlamys spp. in fruit juices. Appl. Environ. Microbiol. 34: 791–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, K.C. 1965. Incidence of Byssochlamys fulva in Queensland grown canned strawberries. Queensl. J. Agric. Anim. Sci. 22: 347–350.

    Google Scholar 

  • Rifai, M.A. 1969. A revision of the genus Trichoderma. Mycol. Papers 116: 1–56.

    Google Scholar 

  • Rippon, L.E. 1980. Wastage of postharvest fruit and its control. CSIRO Food Res. Q. 40: 1–12.

    Google Scholar 

  • Rohrbach, K.G. and Taniguchi, G. 1984. Effects of temperature, moisture, and stage of inflorescence development on infection of pineapple by Penicillium funiculosum and Fusarium moniliforme var. subglutinans. Phytopathology 74: 995–1000.

    Article  Google Scholar 

  • Roland, J.O. and Beuchat, L.R. 1984. Influence of temperature and water activity on growth and patulin production by Byssochlamys nivea in apple juice. Appl. Environ. Microbiol. 47: 205–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roland, J.O. et al. 1984. Effects of sorbate, benzoate, sulfur dioxide and temperature on growth and patulin production by Byssochlamys nivea in grape juice. J. Food Prot. 47: 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P.F. et al. 1990. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl. Environ. Microbiol. 56: 3225–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossman, A.Y. et al. 2013. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4: 41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossman, A.Y. et al. 2015. Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6: 507–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samapundo, S. et al. 2005a. Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F. proliferatum on corn. Int. J. Food Microbiol. 105: 35–52.

    Article  CAS  PubMed  Google Scholar 

  • Samapundo, S. et al. 2005b. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 68: 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  • Samapundo, S. et al. 2007a. The influence of modified atmospheres and their interaction with water activity on the radial growth and fumonisin B1 production of Fusarium verticillioides and F. proliferatum on corn. Part I: The effect of initial headspace carbon dioxide concentration. Int. J. Food Microbiol. 114: 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Samapundo, S. et al. 2007b. The influence of modified atmospheres and their interaction with water activity on the radial growth and fumonisin B1 production of Fusarium verticillioides and F. proliferatum on corn. Part II: The effect of initial headspace oxygen concentration. Int. J. Food Microbiol. 113: 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Samapundo, S. et al. 2007c. Interaction of water activity and bicarbonate salts in the inhibition of growth and mycotoxin production by Fusarium and Aspergillus species of importance to corn. Int. J. Food Microbiol. 116: 266–274.

    Article  CAS  PubMed  Google Scholar 

  • Sampietro, D.A. et al. 2013. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina. Brazil J. Microbiol. 44: 417–422.

    Article  CAS  Google Scholar 

  • Samson, R.A. 1974. Paecilomyces and some allied Hyphomycetes. Stud. Mycol. 6: 1–119.

    Google Scholar 

  • Samson, R.A. et al. 2009. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia 22: 14–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels, G.J. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: 195–206.

    Google Scholar 

  • Sandoval-Denis, M. and Crous, P.W. 2018. Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia. 41: 109–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangalang, A.E. et al. 1995. Mycogeography of Fusarium species in soils from tropical, arid and Mediterranean regions of Australia. Mycol. Res. 99: 523–528.

    Article  Google Scholar 

  • Scauflaire, J. et al. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103: 586–597.

    Google Scholar 

  • Schémaeza, B. et al. 2013. Effects of temperature and pH on mycelium growth of Phoma sorghina (Sacc.) Boerema Dorenbosch and Van Kesteren in vitro. Pak. J. Biol. Sci. 16: 2054–2057.

    Article  PubMed  Google Scholar 

  • Scherm, B. et al. 2013. Fusarium culmorum: causal agent of foot and root rot and headblight on wheat. Molec. Plant Pathol. 14: 323–341.

    Google Scholar 

  • Schmidt, H. et al. 2004. An integrated taxonomic study of Fusarium langsethiae, Fusarium poae and Fusarium sporotrichioides based on the use of composite datasets. Int. J. Food Microbiol. 95: 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, R. 1954. Untersuchungen über Feuchtigkeitsanspruche parasitischer Pilze. Phytopathol. Z. 21: 63–78.

    Google Scholar 

  • Schol-Schwarz, M.B. 1959. The genus Epicoccum. Trans. Br. Mycol. Soc. 42: 149–173.

    Article  Google Scholar 

  • Schroers, H.-J. et al. 2016. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 108: 806–819.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, K. et al. 2007. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud. Mycol. 58: 105–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, P.M. et al. 1987. Formation of moniliformin by Fusarium sporotrichioides and Fusarium culmorum. Appl. Environ. Microbiol. 53: 196–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seefelder, W.et al. 2002. Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem. 50: 2778–2781.

    Article  CAS  PubMed  Google Scholar 

  • Seemüller, E. 1968. Untersuchungen über die morphologische und biologische differenzierung in der Fusarium-Sektion Sporotrichiella. Mitt. Biol. Bundesanst. Land-Forstwirtsch., Berlin-Dahlem 127: 1–93.

    Google Scholar 

  • Segers, F.J.J. et al. 2015. Xerotolerant Cladosporium sphaerospermum are predominant on indoor surfaces compared to other Cladosporium species. PLoS One 10(12): e0145415. doi: 10.1371/journal.pone.0145415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seifert, K. et al. 2011. The Genera of Hyphomycetes. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre.

    Google Scholar 

  • Seifert, K.A. et al. 2003. The name Fusarium moniliforme should no longer be used. Mycol. Res. 107: 643–644.

    Article  Google Scholar 

  • Sempere, F. and Santamarina, M. P. 2006. Microscopic and macroscopic study of the interaction between Alternaria alternata (Fr.) Keissler and Nigrospora oryzae (Berk. & Broome) Petch. Annal. Microbiol. 56: 101–107.

    Article  Google Scholar 

  • Sensidoni, A. et al. 1994. Presence of an off-flavour associated with the use of sorbates in cheese and margarine. Ital. J. Food Sci. 6: 237–242.

    CAS  Google Scholar 

  • Seo, J.A. et al. 1996. Isolation and characterization of two new type C fumonisins produced by Fusarium oxysporum. J. Nat. Prod. 59: 1003–1005.

    Article  CAS  PubMed  Google Scholar 

  • Sepitkova, J. and Jesenska, Z. 1986. [Analysis of the mycoflora of malting barley and malt.] Bulletin Potravinarskeho Vyskumu 25: 241–253.

    Google Scholar 

  • Serra, R. et al. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Res. Microbiol. 156: 515–521.

    Article  CAS  PubMed  Google Scholar 

  • Sewram, V. et al. 1999. Determination of the mycotoxin moniliformin in cultures of Fusarium subglutinans and in naturally contaminated maize by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatog. A 848: 185–191.

    Article  CAS  Google Scholar 

  • Shabbir, S.M. and Rajasab, A.H. 2004. Diversity of Fusarium species on sorghum grain. Indian Phytopathol. 57: 450–453.

    Google Scholar 

  • Shahnaz, D. and Ghaffar, A. 1991. Detection of the seedborne mycoflora of sunflower. Pak. J. Bot. 23: 173–178.

    Google Scholar 

  • Sharma, R.B. et al. 2002. Fungal spores over fields of fruits and vegetables. Adv. Plant Sci. 15: 619–620.

    Google Scholar 

  • Sharma, R.L. and Shukla, A. 2003. Effect of different packagings on soft rot (Fusarium spp.) of bell pepper in storage. J. Mycol. Plant Pathol. 33: 134–135.

    Google Scholar 

  • Sharma, R.R. et al. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50: 205–221.

    Article  Google Scholar 

  • Shephard, G.S. et al. 1991. Reversed-phase high-performance liquid chromatography of tenuazonic acid and related tetramic acids. J. Chromatogr. 566: 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Shephard, G.S. et al. 1993. Isolation and determination of AAL phytotoxins from corn cultures of the fungus Alternatia alternata f. sp. lycopercici. J. Chromatog. 641: 95–100.

    Article  CAS  Google Scholar 

  • Shephard, G.S. et al. 1999. Production of the mycotoxins fusaproliferin and beauvericin by South African isolates in the Fusarium section Liseola. J. Agric. Food Chem. 47: 5111–5115.

    Article  CAS  PubMed  Google Scholar 

  • Shephard, G.S. et al. 2007. Exposure assessment for fumonisins in the former Transkei region of South Africa. Food Addit. Contam. 24: 621–629.

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker, R.A. 1959. Nomenclature of Drechslera and Bipolaris, grass parasites segregated from ‘Helminthosporium’. Can. J. Bot. 37: 879–887.

    Article  Google Scholar 

  • Shukla, A. and Sharma, R.L. 2000. Incidence of soft rot of bell pepper in Himachal Pradesh. Mycol. Plant Pathol. 30: 107–109.

    Google Scholar 

  • Siler, D.J. and Gilchrist, D.G. 1983. Properties of host specific toxins produced by Alternaria alternata f. sp. lycopersici in culture and in tomato plants. Physiol. Plant Pathol. 23: 265–274.

    Article  CAS  Google Scholar 

  • Simmons, E.G. 1967. Typification of Alternaria, Stemphylium and Ulocladium. Mycologia 59: 67–92.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, E.G., 1969. Perfect states of Stemphylium. Mycologia, 61: 1–26.

    Google Scholar 

  • Simmons, E.G., 1985. Perfect states of Stemphylium. II. Sydowia 38: 284–293

    Google Scholar 

  • Simmons, E.G. 1986. Alternaria themes and variations (22-26). Mycotaxon 25: 287–308.

    Google Scholar 

  • Simmons, E.G. 2007. Alternaria: an Identification Manual. Utrecht, Netherlands: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Simoncini, N. et al. 2007. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiol. 24: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, K.K. et al. 1988. Incidence of aflatoxins in mustard crop in Bihar. Indian Phytopathol. 41: 434–437.

    CAS  Google Scholar 

  • Sinha, R.N. et al. 1988. Fungal volatiles associated with moldy grain in ventilated and nonventilated bin-stored wheat. Mycopathologia 101: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan, A. 1987. Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycol. Papers 158: 1–261.

    Google Scholar 

  • Skirdal, I.M. and Eklund, T. 1993. Microculture model studies on the effect of sorbic acid on Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at different pH levels. J. Appl. Bacteriol. 74: 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Skou, J.P. 1969. The effect of temperature on the growth and survival of Aureobasidium pullulans and of the radulasporic stage of Guignardia fulvida and Sydowia polyspora. Friesia 9: 226–236.

    Google Scholar 

  • Slavin, M. et al. 2015. Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin. Microbiol. Infect. 21: 490, e1–10. doi: 10.1016/j.cmi.2014.12.021.

    Google Scholar 

  • Smoot, J.J. and Segall, R.H. 1963. Hot water as a postharvest treatment of mango anthracnose. Plant Dis. Rep. 47: 739–742.

    Google Scholar 

  • Snow, D. 1949. Germination of mould spores at controlled humidities. Ann. Appl. Biol. 36: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon, A.L. 1990. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 1. General Introduction and Fruits. London: Wolfe Scientific.

    Google Scholar 

  • Snowdon, A.L. 1991. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 2. Vegetables. London: Wolfe Scientific.

    Google Scholar 

  • Somani, A.K. 2004. Potato tuber rots and associated incitants. Potato J. 31: 201–204.

    Google Scholar 

  • Somma, S. et al. 2014. Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes. Crop Pasture Sci. 65: 52–60

    Article  Google Scholar 

  • Sørensen, J.L. et al. 2007. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography. J. Agric. Food Chem. 55: 9764–9768.

    Article  PubMed  CAS  Google Scholar 

  • Souheil, H. et al. 1999. Pathogenic and toxic effects of Fusarium oxysporum (Schlecht.) on survival and osmoregulatory capacity of Penaeus japonicus (Bate). Aquaculture 178: 209–224.

    Article  Google Scholar 

  • Spicher, G. 1984. Die Erreger der Schimmelbildung bei Backwaren. I. Die auf verpackten Schnittbroten aufretenden Schimmelpilze. Getreide, Mehl Brot 38: 77–80.

    Google Scholar 

  • Spicher, G. 1985. Die Erreger der Schimmelbildung bei Backwaren. I. Weitere Untersuchungen über die auf verpackten Schnittbroten aufretenden Schimmelpilze. Dtsch. Lebensm.-Rundsch. 81: 16–20.

    Google Scholar 

  • Spicher, G. 1986. Neue Erkenntnisse über die Erreger der ‘Kreidekrankheit’ des Brotes und Möglichkeiten zur Wachstumsverhinderung. Brot Backwaren 34: 208–213.

    Google Scholar 

  • Spicher, G. and Isfort, G. 1987. Die Erreger der Schimmelbildung bei Backwaren. IX. Die auf vorgebackenen Brötchen, Toast- und Weichbrötchen auftretenden Schimmelpilze. Dtsch. Lebensm.-Rundsch. 83: 246–249.

    Google Scholar 

  • Spicher, G. and Isfort, G. 1988. Die Erreger der Schimmelbildung bei Backwaren. X. Monascus ruber, ein nicht alltäglicher Schimmelerreger des Brotes. Getreide, Mehl Brot 42: 176–181.

    CAS  Google Scholar 

  • Splittstoesser, D.F. et al. 1971. Incidence of heat-resistant molds in Eastern orchards and vineyards. Appl. Microbiol. 21: 335–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stankovic, S. et al. 2007. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur. J. Plant Pathol. 118: 165–172.

    Article  CAS  Google Scholar 

  • Steenkamp, E.T. et al. 2002. Cryptic speciation in Fusarium subglutinans. Mycologia 94: 1032–1043.

    Article  CAS  PubMed  Google Scholar 

  • Stenglein, S.A. et al. 2014. Fusarium poae pathogenicity and mycotoxin accumulation on selected wheat and barley genotypes at a single location in Argentina. Plant Dis. 98: 1733–1738.

    Google Scholar 

  • Stenwig, H. and Liven, E. 1988. Mycological examination of improperly stored grains. Acta Agric. Scand. 38: 199–205.

    Article  Google Scholar 

  • Stępień, L. et al. 2011. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 52: 487–496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyaert, R.H. 1949. Contribution à l’étude monographique de Pestalotia et Monochaetia (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bull. Jard. Bot. Etat. Brux. 19: 285–354.

    Article  Google Scholar 

  • Stolk, A.C. and Dakin, J.C. 1966. Moniliella, a new genus of Moniliales. Antonie van Leeuwenhoek 32: 399–409.

    Google Scholar 

  • Subden, R.E. et al. 2003. Autochthonous microbial population in a Niagara Peninsula icewine must. Food Res. Int. 36: 747–751.

    Article  Google Scholar 

  • Sugiura, Y. et al. 1990. Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl. Environ. Microbiol. 56: 3047–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura, Y. et al. 1999. Physiological characteristics and mycotoxins of human clinical isolates of Fusarium species. Mycol. Res. 103: 1462–1468.

    Article  CAS  Google Scholar 

  • Suhr, K.I. and Nielsen, P.V. 2005. Inhibition of fungal growth on wheat and rye bread by modified atmosphere packaging and active packaging using volatile mustard essential oil. J. Food Sci. 70: M37–M44.

    Article  CAS  Google Scholar 

  • Summerbell, R.C. et al. (2011). Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud. Mycol. 68: 139–162.

    Google Scholar 

  • Summerell, B.A. 2019. Resolving Fusarium: current status of the genus. Ann. Rev. Phytopathol. 57: 323–339.

    Article  CAS  Google Scholar 

  • Susuri, L. and Doda-Gashi, N. 2003. Alfafa seed microflora and some characteristics of obtained isolates. Fragmenta Phytomed. Herbol. 28: 81–88.

    Google Scholar 

  • Sutton, B.C. 1980. The Coelomycetes: Fungi Imperfecti with Pycnidia, Acervuli and Stromata. Kew, Surrey: Commonwealth Mycological Institute.

    Book  Google Scholar 

  • Sutton, B.C. 1992. The genus Glomerella and its anamorph Colletotrichum. In Colletotrichum: biology, pathology and control, eds. J.A. Bailey and M.I. Jeger. Wallingford, UK: CABI International. pp. 1–26.

    Google Scholar 

  • Suzuki, T. et al. 1980. [Production of trichothecene mycotoxins of Fusarium species in wheat and barley harvested in Saitama prefecture]. Shokuhin Eiseigaku Zasshi (J. Food Hyg. Soc. Japan) 21: 43–49.

    Google Scholar 

  • Suzuki, T. et al. 1981. [Trichothecenes-producing fungi of Fusarium species]. Maikotokishin (Proc. Jpn. Assoc. Mycotoxicol.) 13: 34–36.

    Google Scholar 

  • Sydenham, E.W. et al. 1990. Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. J. Agric. Food Chem. 38: 1900–1903.

    Article  CAS  Google Scholar 

  • Sydenham, E.W. et al. 1991. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Food Addit. Contam. 8: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Tagele, S.B. et al. 2019. Aggresiveness and fumonisins production of Fusarium subglutinans and Fusarium temperatum on Korean maize cultivars. Agronomy 9(2): 88. doi:org/10.3390/agronomy9020088.

    Article  CAS  Google Scholar 

  • Tan, M.K. and Niessen, L.M. 2003. Analysis of rDNA ITS sequences to determine genetic relationships among, and provide a basis for simplified diagnosis of, Fusarium species causing crown rot and head blight of cereals. Mycol. Res. 107: 811–821.

    Article  CAS  PubMed  Google Scholar 

  • Tan, M.K. et al. 2004. Occurrence of Fusarium head blight (FHB) in southern NSW in 2000: identification of causal fungi and determination of putative chemotype of Fusarium graminearum isolates by PCR. Australas. Plant Pathol. 33: 385–392.

    Article  Google Scholar 

  • Taniwaki, M.H. 1995. Growth and mycotoxin production by fungi under modified atmospheres. Ph.D. thesis. Kensington, N.S.W.: University of New South Wales.

    Google Scholar 

  • Taniwaki, M.H. et al. 2001a. Growth of fungi and mycotoxin production on cheese under modified atmospheres. Int. J. Food Microbiol. 68: 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, H. et al. 2005. Water restriction technique: effect on Acremonium strictum, seeds protrusion and obtaining of maize seeds infected. Fitopatologia Brasileira 30: 109–114.

    Article  Google Scholar 

  • Tekauz, A. et al. 2004. Fusarium head blight of oat - current status in western Canada. Can. J. Plant Pathol. 26: 473–479.

    Article  Google Scholar 

  • Thanh, V.N. et al. 2012. Moniliella carnis sp. nov. and Moniliella dehoogii sp. nov., two novel species of black yeasts isolated from meat processing environments. Int. J. Syst. Evol. Microbiol. 62: 3088–3094.

    Google Scholar 

  • Thanh, V.N. et al. 2018. Moniliella sojae sp. nov., a species of black yeasts isolated from Vietnamese soy paste (tuong), and reassignment of Moniliella suaveolens strains to Moniliella pyrgileucina sp. nov., Moniliella casei sp. nov. and Moniliella macrospora emend. comb. nov. Int. J. Syst. Evol. Microbiol. 68: 1806–1181.

    Google Scholar 

  • Theron, D.J. and Holz, G. 1990. Effect of temperature on dry rot development of potato tubers inoculated with different Fusarium spp. Potato Res. 33: 109–117.

    Article  Google Scholar 

  • Thrane, U. 1988. Screening for fusarin C production by European isolates of Fusarium species. Mycotoxin Res. 4: 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Thrane, U. 2001. Developments in the taxonomy of Fusarium species based on secondary metabolites. In Fusarium: Paul E. Nelson Memorial Symposium, eds B.A. Summerell, J.F. Leslie, D. Backhouse, W.L. Bryden and L.W. Burgess. St Paul, MN: APS Press. pp. 29–49.

    Google Scholar 

  • Thrane, U. et al. 2004. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int. J. Food Microbiol. 95: 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Tindale, C.R. et al. 1989. Fungi isolated from packaging materials: their role in the production of 2,4,6-trichloroanisole. J. Sci. Food Agric. 49: 437–447.

    Article  CAS  Google Scholar 

  • Toit, L.J. du et al. 2003. Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Dis. 87: 750.

    Google Scholar 

  • Torkar, K.G. and Vengust, A. 2008. The presence of yeasts, moulds and aflatoxin M-1 in raw milk and cheese in Slovenia. Food Control 19: 570–577.

    Article  CAS  Google Scholar 

  • Torp, M. and Nirenberg, H.I. 2004. Fusarium langsethiae sp. nov. on cereals in Europe. Int. J. Food Microbiol. 95: 247–256.

    Google Scholar 

  • Torres, A.M. et al. 2001. Fusarium species (section Liseola) and its mycotoxins in maize harvested in northern Argentina. Food Addit. Contam. 18: 836–843.

    Google Scholar 

  • Tournas, V.H. 2005. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit. Rev. Microbiol. 31: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Tournas, V.H. and Katsoudas, E. 2005. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food. Microbiol. 105: 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Tresner, H.D. and Hayes, J.A. 1971. Sodium chloride tolerance of terrestrial fungi. Appl. Microbiol. 22: 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triest, D. and Hendrickx, M. 2016. Postharvest disease of banana caused by Fusarium musae: a public health concern? PLoS Pathol. 12(11): e1005940. doi.org/10.1371/journal.ppat.1005940.

    Article  CAS  Google Scholar 

  • Trinci, A.P.J. 1994. Evolution of the Quorn myco-protein fungus, Fusarium graminearum A3/5. Microbiology 140: 2181–2188.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, M.N. et al. 1999. Effect of hydrogen-ion concentration on the growth and development of Fusarium spp. Bioved 10: 31–37.

    Google Scholar 

  • Tseng, T.C. and Tu, J.C. 1997. Mycoflora and mycotoxins in adzuki and mung beans produced in Ontario, Canada. Microbios 90 (363): 87–95.

    CAS  PubMed  Google Scholar 

  • Tseng, T.C. et al. 1996. Natural occurrence of mycotoxins in Fusarium-infected beans. Microbios 84: 21–28.

    Google Scholar 

  • Tsuyoshi, N. et al. 2005. Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. Int. J. Food Microbiol. 99: 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Udagawa, S. and Suzuki, S. 1994. Talaromyces spectabilis, a new species of food-borne ascomycetes. Mycotaxon 50: 81–88.

    Google Scholar 

  • Uduebo, A.E., 1974. Effect of high temperature on the growth, sporulation, and pigment production of Botryodiplodia theobromae. Can. J. Botan. 52: 2631–2634.

    Google Scholar 

  • Uhlig, S. et al. 2007. Fusarium avenaceum – the North European situation. Int. J. Food Microbiol. 119: 17–24.

    Google Scholar 

  • Usha, C.M. et al. 1994. Mycoflora of developing sorghum grains with special reference to Aspergillus flavus. Trop. Sci. 34: 353–360.

    Google Scholar 

  • Utkhede, R.S. and Mathur, S. 2004. Internal fruit rot caused by Fusarium subglutinans in greenhouse sweet peppers. Can. J. Plant Pathol. 26: 386–390.

    Article  Google Scholar 

  • Vaamonde, G. et al. 1987. Zearalenone production by Fusarium species isolated from soybeans. Int. J. Food Microbiol. 4: 129–133.

    Article  Google Scholar 

  • Valletrisco, M. and Niola, I. 1983. [Possible effect of fungal diseases on apple juice quality]. Ind. Bevande 12: 457–462.

    Google Scholar 

  • Van der Riet, W.B. 1976. Studies on the mycoflora of biltong. S. Afr. Food Rev. 3: 105, 107, 109, 111.

    Google Scholar 

  • Van der Riet, W.B. and Pinches, S.E. 1991. Control of Byssochlamys fulva in fruit juices by means of intermittent treatment with dimethyldicarbonate. Lebensm. Wiss. Technol. 24: 501–503.

    CAS  Google Scholar 

  • Van der Riet, W.B. and van der Walt, W.H. 1985. Effect of ionizing radiation on ascospores of three strains of Byssochlamys fulva in apple juice. J. Food Prot. 48: 1016–1018.

    Article  CAS  PubMed  Google Scholar 

  • Van der Riet, W.B. et al. 1989. The effect of dimethyldicarbonate on vegetative growth and ascospores of Byssochlamys fulva suspended in apple juice and strawberry nectar. Int. J. Food Microbiol. 8: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Van der Walt, A.M. et al. 2006. Fumonisin-producing Fusarium strains and fumonisins in traditional African vegetables (morogo). S. Afr. J. Sci. 102: 151–155.

    CAS  Google Scholar 

  • Van Dyk, K. 2004. Fungi associated with root and crown rot of wheat and barley in Tanzania. Afr. Plant Prot. 10: 117–124.

    Google Scholar 

  • Van Hove, F. et al. 2011. Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia 103: 570–585.

    Google Scholar 

  • Vanheule, A. et al. 2017. Genetic divergence and chemotype diversity in the Fusarium head blight pathogen Fusarium poae. Toxins 9: 255. doi.org/10.3390/toxins9090255.

    Article  PubMed Central  CAS  Google Scholar 

  • Venter, S.L. and Steyn, P.J. 1998. Correlation between fusaric acid production and virulence of isolates of Fusarium oxysporum that causes potato dry rot in South Africa. Potato Res. 41: 289–294.

    Article  CAS  Google Scholar 

  • Vesonder, R.F. et al. 1995. Fusarium species associated with banana fruit and their potential toxicity. Mycotoxin Res. 11: 93–98.

    Google Scholar 

  • Villani, A. et al. 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 20:314. doi.org/10.1186/s12864-019-5567-7/.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villa-Rojas, R. et al. 2012. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. Int. J. Food Microbiol. 155: 269–272.

    Article  CAS  PubMed  Google Scholar 

  • Visconti, A. and Doko, M.B. 1994. Survey of fumonisin production by Fusarium isolated from cereals in Europe. J. AOAC Int. 77: 546–550.

    Article  CAS  PubMed  Google Scholar 

  • Visconti, A. et al. 1990. Mycotoxins in corn ears naturally infected with Fusarium graminearum and F. crookwellense. Can. J. Plant Pathol. 12: 187–189.

    Article  CAS  Google Scholar 

  • Vismer, H.F. et al. 2019. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro. Int. J. Food Microbiol. 296: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Von Arx, J.A. 1957. Die Arten der Gattung Colletotrichum. Phytopathol. Z. 29: 413–468.

    Google Scholar 

  • Von Arx, J.A. 1977. Notes on Dipodascus, Endomyces and Geotrichum with the description of two new species. Antonie van Leeuwenhoek 43: 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Von Arx, J.A. 1981a. On Monilia sitophila and some families of Ascomycetes. Sydowia 34: 13–29.

    Google Scholar 

  • Von Arx, J.A. 1981b. The Genera of Fungi Sporulating in Pure Culture, 3rd edn. Vaduz, Germany: J. Cramer.

    Google Scholar 

  • Von Arx, J.A. et al. 1986. The Ascomycete Genus Chaetomium. Berlin: J. Cramer.

    Google Scholar 

  • Vrany, J. et al. 1989. Fusarium on surface of tubers of selected potato varieties. Zentralbl. Mikrobiol. 144: 399–404.

    Google Scholar 

  • Wade, N.L. et al. 1993. Effects of modified atmosphere storage on banana postharvest diseases and the control of bunch main-stalk rot. Postharvest Biol. Technol. 3: 143–154.

    Article  CAS  Google Scholar 

  • Waghray, S. et al. 1988. Seed mycoflora and aflatoxin contamination in rice. Indian Phytopathol. 41: 492–494.

    Google Scholar 

  • Wallbridge, A. 1981. Fungi associated with crown-rot disease of boxed bananas from the Windward Islands during a two-year survey. Trans. Br. Mycol. Soc. 77: 567–577.

    Article  Google Scholar 

  • Wang, C.W.et al. 2015. Fusarium acuminatum: a new pathogen causing postharvest rot on stored kiwifruit in China. Plant Dis. 99: 1644.

    Google Scholar 

  • Wang, M. et al. 2017. Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia 39: 118–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.-W. et al. 2014. Phylogenetic assessment of Chaetomium indicum and allied species, with the introduction of three new species and epitypification of C. funicola and C. indicum. Mycol. Progr. 13: 719–732.

    Article  Google Scholar 

  • Wang, X.-W. et al. 2016. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84: 145–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. and Guo, L.-D. 2004. Morphological and molecular identification of an endophytic fungus Epicoccum nigrum. Mycosystema 23: 474–479.

    Google Scholar 

  • Wang, Y.-Z. et al. 2005. The variability of citrinin production in Monascus type cultures. Food Microbiology 22: 145–148.

    Article  CAS  Google Scholar 

  • Webb, T.A. and Mundt, J.O. 1978. Molds on vegetables at the time of harvest. Appl. Environ. Microbiol. 35: 655–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, Z. et al. 2006. Fusarium species colonizing spears and forming mycotoxins in field samples of asparagus from Germany and Poland. J. Phytopathol. 154: 209–216.

    Google Scholar 

  • Webley, D.J. et al. 1997. Alternaria toxins in weather damaged wheat and sorghum in the 1995-1996 Australian harvest. Aust. J. Agric. Res. 48: 1249–1255.

    Google Scholar 

  • Weir, B.S. et al. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycolog. 73: 115–180.

    Article  CAS  Google Scholar 

  • Wells, J.M. and Uota, M. 1970. Germination and growth of five fungi in low-oxygen and high-carbon dioxide atmospheres. Phytopathology 60: 50–53.

    Article  Google Scholar 

  • Wells, J.M. et al. 1981. Curvularia lunata, a new source of cytochalasin B. Appl. Environ. Microbiol. 41: 967–971.

    Google Scholar 

  • Wheeler, K.A. and Hocking, A.D. 1988. Water relations of Paecilomyces variotii, Eurotium amstelodami, Aspergillus candidus and Aspergillus sydowii, xerophilic fungi isolated from Indonesian dried fish. Int. J. Food Microbiol. 7: 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, K.A., Hocking, A.D., Pitt, J.I. and Anggawati, A. 1986. Fungi associated with Indonesian dried fish. Food Microbiol. 3: 351–357.

    Article  Google Scholar 

  • Wheeler, K.A. et al. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, F.B. et al. 1991. Effect of relative humidity and incubation time on the O-methylation of chlorophenols in fibreboard by Paecilomyces variotii. J. Sci. Food Agric. 55: 19–26.

    Article  CAS  Google Scholar 

  • Wiebe, M.G. 2004. QuornTM myco-protein - overview of a successful fungal product. Mycologist 18: 17–20.

    Article  Google Scholar 

  • Will, F. et al. 1992. Charakterisierung einer gelartigen Truebung aus Himbeersaft. Fluess. Obst 59: 352–353.

    Google Scholar 

  • Williams, K.C. et al. 1992. Assessment for animal feed of maize kernels naturally-infected predominantly with Fusarium moniliforme and Diplodia maydis. Aust. J. Agric. Sci. 43: 773–782.

    Article  CAS  Google Scholar 

  • Wilson, B.J. et al. 1970. Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature (London) 227: 521–522.

    Article  CAS  Google Scholar 

  • Wilson, J.P. 2002. Fungi associated with the stalk rot complex of pearl millet. Plant Dis. 86: 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J.P. et al. 1993. Fungal and mycotoxin contamination of pearl millet grain in response to environmental conditions in Georgia. Plant Dis. 77: 121–124.

    Article  CAS  Google Scholar 

  • Wing, N. et al. 1993. Toxigenicity of Fusarium species and subspecies in section Gibbosum from different regions of Australia. Mycol. Res. 97: 1441–1446.

    Article  Google Scholar 

  • Wojcik-Stopczynska, B. 2006. [Microbiological characteristic of cacao beans, products of its processing and of the processing environment]. Rozprawy - Akademia Rolnicza w Szczecinie (No.238). 113 pp. (in Polish)

    Google Scholar 

  • Wollenweber, H.W. and Reinking, O.A. 1935. Die Fusarien, ihre Beschreibung, Schadwirkung und Kekampfung. Berlin: Paul Parey.

    Google Scholar 

  • Woudenberg, J.H.C. et al. 2013. Alternaria redefined. Stud. Mycol. 75: 171–212.

    Google Scholar 

  • Woudenberg, J.H.C. et al. 2017. Stemphylium revisited. Stud. Mycol. 87: 77–103.

    Google Scholar 

  • Wu, W. et al. 1997. Case study of bovine dermatitis caused by oat straw infected with Fusarium sporotrichioides. Vet. Rec. 140: 399–400.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J-W. et al. 2019. Numbers to names – restyling the Fusarium incarnatum-equiseti species complex. Persoonia 43. doi: 10.3767/persoonia.2019.43.05.

    Google Scholar 

  • Xu, G. et al. 2003. HPLC fluorescence method for determination of citrinin in Monascus cultures. Archive fur Lebensmittelhygiene. 54: 82–84.

    CAS  Google Scholar 

  • Yamada, Y. et al. 1996. The phylogeny of species of the genus Saccharomycopsis Schiönning (Saccharomycetaceae) based on the partial sequences of 18S and 26S ribosomal RNAs. Biosci. Biotech. Biochem. 60: 1303–1307.

    Article  CAS  Google Scholar 

  • Yli-Mattila, T. et al. 2004. Molecular and morphological diversity of Fusarium species in Finland and northwestern Russia. Eur J. Plant Pathol. 110: 573–585.

    Article  CAS  Google Scholar 

  • Yoder, J.A. et al. 2003. Effects of salt and temperature on the growth rate of a tick-associated fungus, Scopulariopsis brevicaulis Bainier (Deuteromycota). Int. J. Acarol. 29: 265–269.

    Article  Google Scholar 

  • Zalar, P. et al. 2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 58: 157–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare, R. and Ershad, D. 1997. Fusarium species isolated from cereals in Gorgan area. Iran. J. Plant Pathol. 33: 1–14 (Pe), 1–4 (En).

    Google Scholar 

  • Zhang, H.Y.et al. 2007. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18: 287–291.

    Article  CAS  Google Scholar 

  • Zhang, J.B. et al. 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol. Res. 111: 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. 2017. Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species. Fungal Biol. 121: 21–43.

    Article  PubMed  Google Scholar 

  • Zitter, T.A. and Wien, H.C. 1984. Outbreak of Alternaria alternata causing fruit rot of tomatoes in upstate New York. Plant Dis. Reptr 68: 628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Primary Keys and Miscellaneous Fungi. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_5

Download citation

Publish with us

Policies and ethics