Skip to main content

Penicillium and Talaromyces

  • Chapter
  • First Online:
Fungi and Food Spoilage
  • 976 Accesses

Abstract

The genus Penicillium was described by Link in 1809, and named for the tiny brushlike fruiting structure, termed a penicillus (Latin, little brush; Fig. 7.1), that is characteristic of species in this genus. No doubt exists over the use of this name, as one species described by Link was P. expansum, the common apple rot fungus, now designated as type of the genus (Hawksworth et al. 1976). Penicillium as originally described is associated with two quite different types of ascocarps. One is a very hard (sclerotioid) cleistothecium (Fig. 3.3) and these species were originally included in the genus Eupenicillium F. Ludw. 1892. The second quite different type is composed of fine hyphae woven into a more or less closed structure of indeterminate size, known as a gymnothecium (Fig. 3.3). These species are included in the genus Talaromyces. Penicillium species are ubiquitous, opportunistic saprophytes. Nutritionally, they are supremely undemanding, being able to grow in almost any environment with a sprinkling of mineral salts and all but the most complex forms of organic carbon, over a wide range of physico-chemical environments, i.e. aw, temperature, pH and redox potential. They occur more commonly in temperate zones than in the tropics, indeed they are rare in the more arid tropical regions, where Aspergillus dominates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboagye-Nuamah, F. et al. 2005. Severity of spoilage storage rots of white yam (Dioscorea rotundata Poir.). Ann. Appl. Biol. 147: 183–190.

    Article  Google Scholar 

  • Adebajo, L.O. 2000. Fungal infection and aflatoxin production in kola nuts. Crop Res. 20: 469–475.

    Google Scholar 

  • Adegoke, G.O. et al. 1993. Effect of processing on the mycoflora and aflatoxin B1 level of a cassava-based product. Plant Foods Hum. Nutr. 43: 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, E.K. and Abdel-Sater, M.A. 2003. Mycological quality of laban rayeb sold in Assiut City. Assiut Vet. Med. J. 49: 70–80.

    Article  Google Scholar 

  • Alapont, C. et al. 2014. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Addit. Contam. Part A 31: 93–104.

    Article  CAS  Google Scholar 

  • Almeida MI, et al. 2012. Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil. Food Addit Contam: Part A. 29:694–703.

    Article  CAS  Google Scholar 

  • Amiri, A. and Bompeix, G. 2005. Diversity and population dynamics of Penicillium spp. on apples in pre-and postharvest environments: consequences for decay development. Plant Pathol. 54: 74–81.

    Article  Google Scholar 

  • Amusa, N.A. et al. 2005. Microbiological quality of ogi and soy-ogi (a Nigerian fermented cereal porridge) widely consumed and notable weaning food in southern Nigeria. J. Food Agric. Environ. 3: 81–83.

    Google Scholar 

  • Ancasi, E.G. et al. 2006. Moulds and yeasts in bottled water and soft drinks. Rev. Argentina Microbiol. 38: 93–96.

    CAS  Google Scholar 

  • Andersen, B. et al. 2004. Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J. Agric. Food Chem. 52: 2421–2428.

    Google Scholar 

  • Andersen, S.J. 1995. Compositional changes in surface mycoflora during ripening of naturally fermented sausages. J. Food Prot. 58: 426–429.

    Article  PubMed  Google Scholar 

  • Andersen, S.J. and Frisvad, J.C. 1994. Penicillin production by Penicillium nalgiovense. Lett. Appl. Microbiol. 19: 486–488.

    Article  CAS  PubMed  Google Scholar 

  • Anelli, P. et al. 2018. Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. Int. J. Microbiol. 282: 66–70.

    Google Scholar 

  • Anjum, N. et al. 2018. First report of postharvest fruit rot of tomato (Lycopersicum esculentum Mill.) caused by Penicillium olsonii in Pakistan. Plant Dis. 102: 451.

    Article  Google Scholar 

  • Anon. 1967. Unusual heat resistance mould in apple juice. Food Ind. S. Afr. 19: 55–56.

    Google Scholar 

  • Aran, N. and Eke, D. 1987. Mould mycoflora of some Turkish cereals and cereal products. J. Appl. Microbiol. Biotechnol. 3: 281–287.

    Google Scholar 

  • Ardhana, M.M. and Fleet, G.H. 2003. The microbial ecology of cocoa bean fermentations in Indonesia. Int. J. Food Microbiol. 86: 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Armolik, N. and Dickson, J.G. 1956. Minimum humidity requirements for germination of conidia associated with storage of grain. Phytopathology 46: 462–465.

    Google Scholar 

  • Askun, T. 2006. Investigation of fungal species diversity of maize kernels. J. Biol. Sci. 6: 275–281.

    Article  Google Scholar 

  • Aydin, A. et al. 2005. A survey of heat-resistant moulds in heat milk, milk products and fruit juices. Archiv. Lebensmittelhyg. 56: 58–60.

    Google Scholar 

  • Ayerst, G. 1969. The effects of moisture and temperature on growth and spore germination in some fungi. J. Stored Prod. Res. 5: 669–687.

    Article  Google Scholar 

  • Aziz, N.H., Mattar, Z.A. and Mahrous, S.R., 2006. Contamination of grains by mycotoxin‐producing molds and mycotoxins and control by gamma irradiation. J. Food Safety 26: 184–201.

    Google Scholar 

  • Baert, K. et al. 2007. Modelling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Int. J. Food Microbiol. 118: 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Bailly, J.D. et al. 2005. Production and stability of patulin, ochratoxin A, citrinin and cyclopiazonic acid on dry cured ham. J. Food Prot. 68: 1516–1520.

    Article  CAS  PubMed  Google Scholar 

  • Bardas, G.A. et al. 2009. First report of Penicillium glabrum causing fruit rot of pomegranate (Punica granatum) in Greece. Plant Dis. 93: 1347

    Article  CAS  PubMed  Google Scholar 

  • Barkai-Golan, R. 1974. Species of Penicillium causing decay of stored fruits and vegetables in Israel. Mycopathol. Mycol. Appl. 54: 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Barreto, M.C. et al. 2011. Taxonomic studies of the Penicillium glabrum complex and the description of a new species P. subericola. Fungal Diversity 49: 23–33.

    Article  Google Scholar 

  • Basu, M. and Mehrotra, B.S. 1976. Additions to the fungi in stored cereal grains in India. I. Nov. Hedwig. 27: 785–791.

    Google Scholar 

  • Battilani, P. et al. 2007. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 70: 975–980.

    Google Scholar 

  • Bau, M. et al. 2005. Ochratoxigentic species from Spanish wine grapes. Int. J. Food Microbiol. 98: 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Bau, M. et al. 2006. Ochratoxin A producing fungi from Spanish vineyards. In: Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Smason and U. Thrane. New York: Springer. pp. 173–179.

    Google Scholar 

  • Benjamin, C.R. 1955. Ascocarps of Aspergillus and Penicillium. Mycologia 47: 669–687.

    Article  Google Scholar 

  • Bentley, R. 2000. Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 100: 3801–3825.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yehoshua, S. et al. 2005. Elicitation of resistance against pathogens in citrus fruits by combined UV illumination and heat treatments. Proc. 5th Int. Postharvest Symp. Acta Horticulturae 682: 2013–2019.

    Article  Google Scholar 

  • Berbee, M.J. et al. 1995. Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87: 210–222.

    Article  CAS  Google Scholar 

  • Berni, E. et al. 2011. Polyphasic approach for differentiating Penicillium nordicum from Penicillium verrucosum. Food Addit. Contam. Part A 28: 477–484.

    Article  CAS  Google Scholar 

  • Bertolini, P. and Tian, S.P. 1996. Low-temperature biology and pathogenicity of Penicillium hirsutum on garlic in storage. Postharvest Biol. Technol. 7: 83–89.

    Article  Google Scholar 

  • Beuchat, L.R. 1986. Extraordinary heat resistance of Talaromyces flavus and Neosartorya fischeri ascospores in fruit products. J. Food Sci. 51: 1506–1510.

    Article  Google Scholar 

  • Beuchat, L.R. et al. 1988. Environmental factors influencing fumitremorgin production by Neosartorya fischeri. In Mycotoxins and Phycotoxins ‘88, Proc. 7th Int. IUPAC Symp. Mycotox. Phycotox., Tokyo, Japan, eds by S. Natori, K. Hashimoto and Y. Ueno. Amsterdam: Elsevier Science. pp. 7–12.

    Google Scholar 

  • Biffi, R. et al. 2004. Ochratoxin A in conventional and organic cereal derivatives: a survey of the Italian market, 2001-02. Food Addit. Contam. 21: 586–591.

    Article  CAS  PubMed  Google Scholar 

  • Biourge, P. 1923. Les moisissures du groupe Penicillium Link. Cellule 33: 7–331.

    Google Scholar 

  • Böhm, J.et al. 2013. Sexual reproduction and mating-type–mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc. US Natl Acad. Sci. 110: 1476–1481.

    Article  Google Scholar 

  • Bok, G. et al. 2009. Mass occurrence of Penicillium corylophilum in crawl spaces, south Sweden. Build. Environ. 44: 2413–2417.

    Article  Google Scholar 

  • Börjesson, T. et al. 1990. Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl. Environ. Microbiol. 56: 3705–3710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boysen, M. et al. 1996. Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142: 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Brackett, R.E. and Marth, E.H. 1979. Patulin in apple juice from roadside stands in Wisconsin. J. Food Prot. 42: 862–863.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, F. and Hansford, C.G. 1923. Mould growth upon cold-stored meat. Trans. Br. Mycol. Soc. 8: 113–142.

    Article  Google Scholar 

  • Brown, G.E. et al. 1991. Control of green mold in Marsh grapefruit with vapor heat quarantine treatment. Proc. Fla State Hortic. Soc. 1991: 115–117.

    Google Scholar 

  • Bullerman, L.B. 1984. Effects of potassium sorbate on growth and patulin production by Penicillium patulum and Penicillium roqueforti. J. Food Prot. 47: 312–315, 320.

    Article  CAS  PubMed  Google Scholar 

  • Burnside, J.E. et al. 1957. A disease in swine and cattle caused by eating moldy corn. II. Experimental production with pure cultures of moulds. Am. J. Vet. Res. 18: 817–824.

    CAS  PubMed  Google Scholar 

  • Cabañas, R. et al. 2008. Occurrence of Penicillium verrucosum in retail wheat flours from the Spanish market. Food Microbiol. 25: 642–647.

    Article  PubMed  Google Scholar 

  • Cabral, D. and Fernandez Pinto, V. E. 2002. Fungal spoilage of bottled mineral water. Int. J. Food Microbiol. 72: 73–76.

    Article  PubMed  Google Scholar 

  • Cahagnier, B. et al. 1993. Mould growth and conidiation in cereal grains as affected by water activity and temperature. Lett. Appl. Microbiol. 17: 7–13.

    Article  Google Scholar 

  • Cairns-Fuller, V. et al. 2005. Water, temperature and gas composition interactions affect growth and ochratoxin A production by isolates of Penicillium verrucosum on wheat grain. J. App. Microbiol. 99: 1215–1221.

    Article  CAS  Google Scholar 

  • Cantoni, C. et al. 2007. [Moulds and ochratoxin A on dry salami surfaces]. Ind. Aliment. 46: 10–12, 19.

    Google Scholar 

  • Carlton, W.W. et al. 1973. Penicillium viridicatum toxins and mold nephritis. J. Am. Med. Vet. Assoc. 163: 1295–1297.

    Google Scholar 

  • Carlton, W.W. et al. 1976. Hepatic alterations produced in mice by xanthomegnin and viomellein, metabolites of Penicillium viridicatum. Toxicol. Appl. Pharmacol. 38: 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Carrillo, L. 1995. [Penicillium ulaiense Hsieh, Su & Tzean, a post-harvest pathogen of citrus fruits in the Argentine north-west]. Rev. Argent. Microbiol. 27: 107–113.

    Google Scholar 

  • Centraalbureau voor Schimmelcultures (2016) Fungal Collection database. https://wi.knaw.nl/page/Collection

  • Chang, S.-C. et al. 1993. Secondary metabolites resulting from degradation of PR toxin by Penicillium roqueforti. Appl. Environ. Microbiol. 59: 981–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F.-C. et al. 1982. Acute toxicity of PR toxin, a mycotoxin from Penicillium roqueforti. Toxicon 20: 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P.-S. et al. 2016. Inhibition of Penicillium digitatum and Citrus green mold by volatile compounds produced by Enterobacter cloacae. J. Plant Pathol. Microbiol. 7: 3. doi: 10.4172/2157-7471.1000339.

    Article  CAS  Google Scholar 

  • Chooi, Y.-H. et al. 2010. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 17: 483–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciegler, A. and Kurtzman, C.P. 1970. Penicillic acid production by blue-eye fungi on various agricultural commodities. Appl. Microbiol. 20: 761–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciegler, A. et al. 1977. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 33: 1004–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciegler, A. et al. 1981. Production of naphthoquinone mycotoxins and taxonomy of Penicillium viridicatum. Appl. Environ. Microbiol. 42: 446–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockrum, P.A. et al. 1979. Chemically different tremorgenic mycotoxins in isolates of Penicillium paxilli from Australia and North America. J. Nat. Prod. 42: 534–536.

    Article  CAS  PubMed  Google Scholar 

  • Cole, R.J. 1981. Fungal tremorgens. J. Food Prot. 44: 715–722.

    Article  CAS  PubMed  Google Scholar 

  • Cole, R.J. and Cox, R.H. 1981. Handbook of Toxic Fungal Metabolites. New York: Academic Press.

    Google Scholar 

  • Cole, R.J. et al. 1972. Tremorgenic toxin from Penicillium verruculosum. Appl. Microbiol. 24: 248–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, R.J. et al. 1983. Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thom isolated from contaminated beer. J. Agric. Food Chem. 31: 655–657.

    Article  CAS  PubMed  Google Scholar 

  • Combrink, J.C. et al. 1985. Fungi associated with core rot of Starking apples in South Africa. Phytophylactica 17: 81–83.

    Google Scholar 

  • Conway, W.S. et al. 1988. Inhibition of Penicillium expansum polygalacturonase activity by increased apple cell wall calcium. Phytopathology 78: 1052–1055.

    Article  CAS  Google Scholar 

  • Cossentine, J.E. et al. 2004. Fumigation of empty fruit bins with carbon dioxide to control diapausing codling moth larvae and Penicillium expansum Link. ex Thom spores. Hortscience 39: 429–432.

    Article  Google Scholar 

  • Cruickshank, R.H. and Pitt, J.I. 1987. Identification of species in Penicillium subgenus Penicillium by enzyme electrophoresis. Mycologia 79: 614–620.

    Article  Google Scholar 

  • Curtis, R.F. et al. 1974. Chloroanisoles as a cause of musty taint in chickens and their microbiological formation from chlorophenols in broiler house litters. J. Sci. Food Agric. 25: 811–828.

    Article  CAS  PubMed  Google Scholar 

  • D’Hallewin, G. et al. 2005. Combination of ultraviolet-C irradiation and biocontrol treatments to control decay caused by Penicillium digitatum in “Washington navel” orange fruit. Proc. 5th Int. Postharvest Symp. Acta Horticulturae 682: 2007–2012.

    Article  Google Scholar 

  • Daley, J.D. et al. 1986. Off-flavours related to the use of sorbic acid as a food preservative. CSIRO Food Res. Q. 46: 59–63.

    CAS  Google Scholar 

  • Daly, N.M. et al. 1984. Growth of fungi on wine corks and its contribution to corky taints in wine. Food Technol. Aust. 36: 22–24.

    Google Scholar 

  • Damoglou, A.P. and Campbell, D.S. 1986. The effect of pH on the production of patulin in apple juice. Lett. Appl. Microbiol. 2: 9–11.

    Article  CAS  Google Scholar 

  • Dantigny, P. et al. 2005. Modelling the effect of ethanol vapour on the germination time of Penicillium chrysogenum. J. Food Prot. 68: 1203–1207.

    Article  PubMed  Google Scholar 

  • Davé, B.et al. 1989. Resistance of different strains of Penicillium digitatum to imazalil treatment in California citrus packinghouses. Proc. Fla State Hortic. Soc. 102: 178–179.

    Google Scholar 

  • De Hoog, G.S. et al. 2000. Atlas of Clinical Fungi, 2nd edn. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • De Jesus, A.E. et al. 1984. Structure elucidation of the janthitrems, novel tremorgenic mycotoxins from Penicillium janthinellum. J. Chem. Soc., Perkin. Trans. 1, 1984: 697–701.

    Article  Google Scholar 

  • Di Menna, M.E. and Mantle, P.G. 1978. The role of Penicillia in ryegrass staggers. Res. Vet. Sci. 24: 347–351.

    Article  CAS  PubMed  Google Scholar 

  • Di Menna, M.E. et al. 1986. Effect of culture conditions on tremorgen production by some Penicillium species. Appl. Environ. Microbiol. 51: 821–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Borras, M.A. et al. 1987. [Resistance to SOPP, benomyl, TBZ and CGA-64251 in strains of Penicillium digitatum isolated from Spanish citrus packinghouses.] Rev. Agroquim. Tecnol. Aliment. 27: 439–445.

    Google Scholar 

  • Dijksterhuis, J. and Teunissen, P.G.M. 2004. Dormant ascospores of Talaromyces macrosporus are activated to germinate after treatment with ultra high pressure. J. Appl. Microbiol. 96: 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Dijksterhuis, J. et al. 2002. Trehalose degradation and glucose efflux precede cell ejection during germination of heat–resistant ascospores of Talaromyces macrosporus. Arch. Microbiol. 178: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Dombrink-Kurtzman, M.A. and Blackburn, J.A. 2005. Evaluation of several culture media for production of patulin by Penicillium species. Int. J. Food Microbiol. 98: 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Domsch, K.H. et al. 1980. Compendium of Soil Fungi, 2 vols. London: Academic Press.

    Google Scholar 

  • Doupnik, B. and Bell, D.K. 1971. Toxicity to chicks of Aspergillus and Penicillium species isolated from moldy pecans. Appl. Microbiol. 21: 1104–1106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dragoni, I. and Marino, C. 1979. [Description and classification of Penicillium species isolated from raw ripened sausages.] Arch. Vet. Ital. 30: 142–176.

    Google Scholar 

  • Dragoni, I. et al. 1980. Sull’ammuffimento del pane industriale confezionato: Monilia (Neurospora) sitophila e altre specie responsabili. Tecnol. Aliment. 3: 17–26.

    Google Scholar 

  • Droby, S. et al. 2003. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biol. Technol. 27: 127–135.

    Article  CAS  Google Scholar 

  • Ehrlich, K.C. et al. 1982. Secalonic acid D: natural contaminant of corn dust. Appl. Environ. Microbiol. 44: 1007–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Banna, A.A., Pitt, J.I. and Leistner, L. 1987b. Production of mycotoxins by Penicillium species. System. Appl. Microbiol. 10: 42–46.

    Article  CAS  Google Scholar 

  • El-Banna, A.A. et al. 1987a. Investigation of Penicillium chrysogenum isolates for their suitability as starter cultures. Mycotoxin Res. 3: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • El-Ghaouth, A. et al. 1995. Sugar analogs as potential fungicides for postharvest pathogens of apple and peach. Plant Dis. 79: 254–258.

    Article  Google Scholar 

  • Engel, G. 1986. Hefen und Schimmelpilze in Futtermitteln, Rohmilch und Milchprodukten. Dtsch. Molk.-Ztg. 107: 1286, 1288, 1290–1292.

    Google Scholar 

  • Engel, G. and Teuber, M. 1978. Simple aid for the identification of Penicillium roqueforti Thom. Eur. J. Appl. Microbiol. Biotechnol. 6: 107–111.

    Article  Google Scholar 

  • Enigl, D.C. et al. 1993. Talaromyces trachyspermus, a heat resistant mold isolated from fruit juice. J. Food Prot. 12: 1039–1042.

    Google Scholar 

  • Erdogan, A., and Sert, S. 2004. Mycotoxin-forming ability of two Penicillium roqueforti strains in blue mouldy Tulum cheese ripened at various temperatures. J. Food Prot. 67: 533–535.

    Article  CAS  PubMed  Google Scholar 

  • Erdogan, A. et al. 2003. Isolation of moulds capable of producing mycotoxins from blue mouldy Tulum cheeses produced in Turkey. Int. J. Food Microbiol. 85: 83–85.

    Article  CAS  PubMed  Google Scholar 

  • Faid, M. and Tantaoui-Elaraki, A. 1989. Production of toxic metabolites by Penicillium italicum and P. digitatum isolated from citrus fruits. J. Food Prot. 52: 194–197.

    Article  CAS  PubMed  Google Scholar 

  • Fennell, D.I. 1973. Review of “The Genus Talaromyces: Studies on Talaromyces and related Genera”. Mycologia 65: 1221–1223.

    Google Scholar 

  • Fink-Gremmels, J. et al. 1988. Developing mould starter cultures for meat products. Fleischwirtschaft 68: 1292–1294.

    Google Scholar 

  • Finol, M.L. et al. 1982. Depletion of sorbate from different media during growth of Penicillium species. J. Food Prot. 45: 398–404, 409.

    Article  CAS  PubMed  Google Scholar 

  • Finoli, C. et al. 2001. Roquefortine C occurrence in blue cheese. J. Food Prot. 64: 246–251.

    Article  CAS  PubMed  Google Scholar 

  • Forgacs, J. et al. 1958. Additional studies on the relationship of mycotoxicosis to the poultry hemorrhagic syndrome. Am. J. Vet. Res. 19: 744–753.

    CAS  PubMed  Google Scholar 

  • Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Ann. Rev. Plant Biol. 43: 337–359.

    CAS  Google Scholar 

  • Freire, F.C.O. and Kozakiewicz, Z. 2005. Filamentous fungi, bacteria and yeasts associated with cashew kernels in Brazil. Rev. Cien. Agron. 36: 249–254.

    Google Scholar 

  • Freire, F.C.O. et al. 1999. Mycoflora and mycotoxins of Brazilian cashew kernels. Mycopathologia 145: 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Freire, F.C.O. et al. 2000. Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts. Mycopathologia 149: 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Frevel, H.J. et al. 1985. Schimmelpilze in Silage und Rohmilch. Milchwissenschaft 40: 129–132.

    Google Scholar 

  • Frisvad, J.C. 1981. Physiological criteria and mycotoxin production as aids in identification of common asymmetric Penicillia. Appl. Environ. Microbiol. 41: 568–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad, J.C. 1983. A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. J. Appl. Bacteriol. 54: 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J.C. 1985. Creatine sucrose agar, a differential medium for mycotoxin producing terverticillate Penicillium species. Lett. Appl. Microbiol. 1: 109–113.

    Article  Google Scholar 

  • Frisvad, J.C. 1989. The connection between the Penicillia and Aspergilli and mycotoxins with special reference to misidentified isolates. Arch. Environ. Contam. Toxicol. 18: 452–467.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J.C. 1993. Modifications on media based on creatine for use in Penicillium and Aspergillus taxonomy. Lett. Appl. Microbiol. 16: 154–157.

    Article  CAS  Google Scholar 

  • Frisvad, J.C. and Filtenborg, O. 1983. Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol. 46: 1301–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad, J.C. and Filtenborg, O. 1989. Terverticillate Penicillia: chemotaxonomy and mycotoxin production. Mycologia 81: 837–861.

    Article  CAS  Google Scholar 

  • Frisvad, J.C., Hawksworth, D.L., Kozakiewicz, Z., Pitt, J.I., Samson, R.A. and Stolk, A.C. 1990b. Proposals to conserve important names in Aspergillus and Penicillium. In Modern Concepts in Penicillium and Aspergillus Classification, eds R. A. Samson and J.I. Pitt. New York: Plenum Press. pp. 83–89.

    Google Scholar 

  • Frisvad, J.C. and Samson R.A. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticllate Penicillia and their mycotoxins. Studies in Mycology 49: 1–173.

    Google Scholar 

  • Frisvad, J.C. et al. 1990b. Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek 57: 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J.C. et al. 1990c. Notes on the typification of some species of Penicillium. Persoonia 14: 193–202.

    Google Scholar 

  • Frisvad, J.C. et al. 2006. Important mycotoxins and the fungi which produce them. In: Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer. pp. 3–31.

    Google Scholar 

  • Gallagher, R.T. et al. 1980. The janthitrems: fluorescent tremorgenic toxins produced by Penicillium janthinellum isolates from ryegrass pastures. Appl. Environ. Microbiol. 39: 272–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway, L.D. 1935. The moisture requirements of mold fungi with special reference to mildew of textiles. J. Text. Inst. 26: 123–129.

    Article  Google Scholar 

  • Gareis, M. and Gareis, E.-M. 2007. Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Gill, C.O. and Lowry, P.D. 1982. Growth at sub-zero temperatures of black spot fungi on meat. J. Appl. Bacteriol. 52: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Gill, C.O. et al. 1981. A note on the identities of organisms causing black spot spoilage of meat. J. Appl. Bacteriol. 51: 183–187.

    Article  Google Scholar 

  • Gillot, G. et al. 2015. Insights into Penicillium roqueforti morphological and genetic diversity. PLoS One 10(6): e0129849. doi.org/10.1371/journal.pone.0129849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gock, M.A. et al. 2003. Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int. J. Food Microbiol. 81: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Golding, N.S. 1940a. The gas requirements of molds. II. The oxygen requirements of Penicillium roquefortii (three strains originally isolated from blue veined cheese) in the presence of nitrogen as diluent and the absence of carbon dioxide. J. Dairy Sci. 23: 879–889.

    Article  CAS  Google Scholar 

  • Golding, N.S. 1940b. The gas requirements of molds. III. The effect of various concentrations of carbon dioxide on the growth of Penicillium roquefortii (three strains originally isolated from blue veined cheese) in air. J. Dairy Sci. 23: 891–898.

    Article  CAS  Google Scholar 

  • Golding, N.S. 1945. The gas requirements of molds. IV. A preliminary interpretation of the growth rates of four common mold cultures on the basis of absorbed gases. J. Dairy Sci. 28: 737–750.

    Article  CAS  Google Scholar 

  • Gonçalves, A.B. et al. 2006. Survey and significance of filamentous fungi from tap water. Int. J. Hyg. Environ. Health 209: 257–264.

    Article  PubMed  Google Scholar 

  • González, L. et al. 2006. Occurrence and daily intake of ochratoxin A of organic and non-organic rice and rice products. Int. J. Food Microbiol. 107: 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Graves, R.R. and Hesseltine, C.W. 1966. Fungi in flour and refrigerated dough products. Mycopathol. Mycol. Appl. 29: 277–290.

    Article  CAS  PubMed  Google Scholar 

  • Greuter, W. et al. 1994. International Code of Botanical Nomenclature (Tokyo Code). Königstein, Germany: Koeltz Scientific Books.

    Google Scholar 

  • Guillet, M.H. et al. 2003. Urticaria and anaphylactic shock due to food allergy to Penicillium italicum. Rev. Fr. Allergol. Immunol. Clin. 43: 520–523.

    Google Scholar 

  • Guynot, M.E. et al. 2005. An attempt to optimize potassium sorbate use to preserve low pH (4.5-5.5) intermediate moisture bakery products by modelling Eurotium spp., Aspergillus spp. and Penicillium corylophilum growth. Int. J. Food Microbiol. 101: 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Chávez, F.et al. 2018. Engineering of the filamentous fungus Penicillium chrysogenum as cell factory for natural products. Front. Microbiol., 15 November 2018. doi: org/10.3389/fmicb.2018.02768.

    Google Scholar 

  • Hald, B. et al. 1983. Natural occurrence of the mycotoxin viomellein in barley and the associated quinone-producing Penicillia. Appl. Environ. Microbiol. 46: 1311–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, N.D. et al. 1986. Musty aroma compounds produced by selected molds and actinomycetes on agar and whole wheat bread. J. Food Prot. 49: 964–970.

    Article  CAS  PubMed  Google Scholar 

  • Harwig, J. et al. 1973. Occurrence of patulin and patulin-producing strains of Penicillium expansum in natural rots of apple in Canada. Can. Inst. Food Sci. Technol. J. 6: 22–25.

    Article  CAS  Google Scholar 

  • Hawksworth, D.L. et al. 1976. Typification of the genus Penicillium. Taxon 25: 665–670.

    Article  Google Scholar 

  • Hayaloglu, A.A. and Kirbag, S., 2007. Microbial quality and presence of moulds in Kuflu cheese. Int. J. Food Microbiol. 115: 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Hee, K.J. et al. 2002. Indentification and characteristics of Penicillium spp. isolated from postharvest decay of pear. Res. Plant Dis. 8: 107–112.

    Article  Google Scholar 

  • Heperkan, D. et al. 1994. Mycoflora and aflatoxin contamination in shelled pistachio nuts. J. Sci. Food Agric. 66: 273–278.

    Article  CAS  Google Scholar 

  • Heperkan, D. et al. 2006. Mycobiota, mycotoxigenic fungi, and citrinin production in black olives. In: Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer. pp. 203–210.

    Google Scholar 

  • Hill, J.L. et al. 1995. The role of fungi in the production of chloranisoles in general purpose freight containers. Food Chem. 54: 161–166.

    Article  CAS  Google Scholar 

  • Hocking, A.D. 1994. Fungal spoilage of high-fat foods. Food Aust. 46: 30–33.

    Google Scholar 

  • Hocking, A.D. and Faedo, M. 1992. Fungi causing thread mould spoilage of vacuum packaged Cheddar cheese during maturation. Int. J. Food Microbiol. 16: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1979. Water relations of some Penicillium species at 25°C. Trans. Br. Mycol. Soc. 73: 141–145.

    Article  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1984. Food spoilage fungi. II. Heat resistant fungi. CSIRO Food Res. Q. 44: 73–82.

    Google Scholar 

  • Holmes, G.J. et al. 1994. Revised description of Penicillium ulaiense and its role as a pathogen of citrus fruits. Phytopathology 84: 719–727.

    Article  Google Scholar 

  • Hori, M. et al. 1954. Studies on a fungus species isolated from malt feed causing mass death of cows. III. Classification, mechanism of toxin production, and chemical structure of the toxin. Nippon Saikingaku Zasshi (Jpn. J. Bacteriol.) 9: 1105–1111.

    Article  CAS  Google Scholar 

  • Houbraken, J. and Samson, R.A. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 70: 1–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J. et al. 2010. Sex in Penicillium series Roqueforti. IMA Fungus 1: 171–180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J. et al. 2011a. Taxonomy of Penicillium section Citrina. Stud. Mycol. 70: 53–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J. et al. 2011b. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2: 87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J. et al. 2012. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29: 78–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken, J. et al. 2014. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud. Mycol. 78: 373–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein, F.N. et al. 1977. Survey of storage diseases of onions and their incitants in upper Egypt. Egyptian J. Phytopathol. 9: 15–21.

    Google Scholar 

  • Hwang, H.-J. et al. 1993. [Development of mould cultures for sausage fermentation - characterisation and toxicological assessment.] Fleischwirtschaft 73: 89–92.

    Google Scholar 

  • ICMSF (International Commission on Microbiological Specifications for Foods). 1996. Toxigenic fungi: Penicillium. In Microorganisms in Foods. 5. Characteristics of Food Pathogens. London: Blackie Academic and Professional. pp. 397–413.

    Google Scholar 

  • Incze, K. and Mihalyi, V. 1976. Besteht eine Mykotoxingefahr bei der ungarischen Salami? Fleischwirtschaft 56: 1616–1618.

    Google Scholar 

  • Ismail, M.A. and Zaky, Z.M. 1999. Evaluation of the mycological status of luncheon meat with special reference to aflatoxigenic moulds and aflatoxin residues. Mycopathologia 146: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz, W.J. 1994. Enhancement of biocontrol of blue mold with the nutrient analog 2-deoxy-D-glucose on apples and pears. Appl. Environ. Microbiol. 60: 2671–2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janisiewicz, W.J. and Korsten, L. 2002. Biological control of postharvest diseases of fruits. Ann. Rev. Phytopathol. 40: 411–441.

    Article  CAS  Google Scholar 

  • Jarvis, B. 1983. Mould and mycotoxins in mouldy cheeses. Microbiol., Aliments, Nutr. 1: 187–191.

    Google Scholar 

  • Jayaraman, P. and Kalyanasundaram, I. 1994. Changes in storage mycoflora of parboiled rice through different stages of processing. J. Food Sci. Technol. 31: 219–224.

    Google Scholar 

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives) 2001. Safety Evaluation of certain Mycotoxins in Food. WHO Food Additive Series No. 47. Geneva: World Health Organisation. Fumonisins, pp. 103–279; Ochratoxin, pp. 281–415; Deoxynivalenol, pp. 419–555; T-2 and HT-2 Toxins, pp. 557–652.

    Google Scholar 

  • Jesenská, Z. et al. 1992. Heat-resistant fungi in the soil. Int. J. Food Microbiol. 16: 209–214.

    Article  PubMed  Google Scholar 

  • Ji, Y. et al. 2007. Effect of water activity and temperature on growth of Penicillium citrioviride and Penicillium citrinium on MiGao (rice cake). Can. J. Microbiol. 53: 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Joffe, A.Z. 1969. The mycoflora of fresh and stored groundnut kernels in Israel. Mycopathol. Mycol. Appl. 39: 255–264.

    Article  Google Scholar 

  • Jung, Y.J. et al. 2012. Isolation and identification of fungi from Meju contaminated with aflatoxins. J. Microbiol. Biotechnol. 22: 1740–1748.

    Article  CAS  PubMed  Google Scholar 

  • Karlshøj, K. and Larsen, T.O. 2005. Differentiation of species from the Penicillium roqueforti group by volatile metabolite profiling. J. Agric. Food Chem. 53: 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Khokhar, I. et al. 2013. New report of Penicillium implicatum causing a postharvest rot of pomegranate fruit in Pakistan. Aust. Plant Disease Notes 8: 39–41.

    Article  Google Scholar 

  • Kinderlerer, J.L. and Hatton, P.V. 1990. Fungal metabolites of sorbic acid. Food Addit. Contam. 7: 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Kinderlerer, J.L. and Hatton, P.V., 1991. The effect of temperature, water activity and sorbic acid on ketone rancidity produced by Penicillium crustosum Thom in coconut and palm kernel oils. J. Appl. Bacteriol. 70: 502–506.

    Article  CAS  Google Scholar 

  • King, A.D. and Halbrook, W.U. 1987. Ascospore heat resistance and control measures for Talaromyces flavus isolated from fruit juice concentrate. J. Food Sci. 52: 1252–1254, 1266.

    Article  Google Scholar 

  • King, A.D. and Whitehand, L.C. 1990. Alteration of Talaromyces flavus heat resistance by growth conditions and heating medium composition. J. Food Sci. 55: 830–832, 836.

    Article  Google Scholar 

  • Kivanç, M. and Akguel, A. 1990. Mould growth on black table olives and prevention by sorbic acid, methyleugenol and spice essential oil. Nahrung 34: 369–373.

    Article  PubMed  Google Scholar 

  • Koehler, B. 1938. Fungus growth in shelled corn as affected by moisture. J. Agric. Res. 56: 291–307.

    Google Scholar 

  • Kornerup, A. and Wanscher, J.H. 1978. Methuen Handbook of Colour, 3rd edn. London: Eyre Methuen.

    Google Scholar 

  • Kozakiewicz, Z. et al. 1992. Proposals for nomina specifica conservanda and rejicienda in Aspergillus and Penicillium (Fungi). Taxon 41: 109–113.

    Article  Google Scholar 

  • Kriek, N.P.J. and Wehner, F.C. 1981. Toxicity of Penicillium italicum to laboratory animals. Food Cosmet. Toxicol. 19: 311–315.

    Article  CAS  PubMed  Google Scholar 

  • Krogh, P. et al. 1973. Occurrence of ochratoxin and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Pathol. Microbiol. Scand., Sect. B, 81: 689–695.

    CAS  Google Scholar 

  • Krogh, P. et al. 1976. Time-dependent disappearance of ochratoxin A residues in tissues of bacon pigs. Toxicology 6: 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Krotje, D. 1992. Starter cultures. New developments in meat products. Int. Food. Ingred. 1992 (6): 14–18.

    Google Scholar 

  • Kuehn, H.H. and Gunderson, M.F. 1963. Psychrophilic and mesophilic fungi in frozen food products. Appl. Microbiol. 11: 352–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaresan, G. et al. 2003. Aflatoxigenic moulds in cheese and curd. Cheiron 32 (1/2): 6–9.

    Google Scholar 

  • Kurata, H. and Ichinoe, M. 1967. Studies on the population of toxigenic fungi in foodstuffs. I. Fungal flora of flour-type foodstuffs. Shokuhin Eiseigaku Zasshi (J. Food Hyg. Soc. Jpn) 8: 237–246.

    Article  Google Scholar 

  • Kure, C.F. and Skaar, I., 2000. Mould growth on the Norwegian semi-hard cheeses Norvegia and Jarlsberg. Int. J. Food Microbiol. 62: 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Kure, C.F. et al. 2001. Mould contaminants on Jarlsberg and Norvegia cheese blocks from four factories. Int. J. Food Microbiol. 70: 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Kure, C.F. et al. 2004. Mould contamination in production of semi-hard cheese. Int. J. Food Microbiol. 93: 41–49.

    Article  PubMed  Google Scholar 

  • La Guerche, S. et al. 2006. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 54: 9193–9200.

    Article  CAS  PubMed  Google Scholar 

  • Labuda, R. and Tancinová, D. 2003. Eupenicillium ochrosalmoneum, a rare species isolated from a feed mixture in Slovakia. Biologia, Bratislava 58: 1123–1126.

    Google Scholar 

  • Labuda, R. et al. 2004. Penicillium implicatum causes a destructive rot of pomegranate fruits. Mycopathologia 157: 217–223.

    Google Scholar 

  • Lahlali, R. et al. 2005. Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. Int. J. Food Microbiol. 103: 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, T.O. and Frisvad, J.C. 1995. Characterization of volatile metabolites from 47 Penicillium taxa. Mycol. Res. 99: 1153–1166.

    Article  CAS  Google Scholar 

  • Larsen, T.O. et al. 2002. Cell cytotoxicity and mycotoxin and secondary metabolite production by common Penicillia on cheese agar. J. Agric. Food Chem. 50: 6148–6152.

    Article  CAS  PubMed  Google Scholar 

  • Leistner, L. 1990. Mould-fermented foods: recent developments. Food Biotechnol. 4: 433–441.

    Article  Google Scholar 

  • Leistner, L. and Ayres, J.C. 1968. Molds and meats. Fleischwirtschaft 48: 62–65.

    Google Scholar 

  • Leistner, L. and Pitt, J.I. 1977. Miscellaneous Penicillium toxins. In Mycotoxins in Human and Animal Health, eds J.V. Rodricks, C.W. Hesseltine and M.A. Mehlman. Park Forest South, Illinois: Pathotox Publishers. pp. 639–653.

    Google Scholar 

  • Lewis, P.R. et al. 2005. Tremor syndrome associated with a fungal toxin: sequelae of food contamination. Medical Journal of Australia 182: 582–584.

    Article  PubMed  Google Scholar 

  • Liardon, R. et al. 1992. Biogenesis of Rio flavour impact compound: 2,4,6-trichloroanisole. In Proc. 14th Int. Conf. Coffee Sci., San Francisco, 14–19 July 1991. Paris: Assoc. Sci. Int. Cafe. pp. 608–614.

    Google Scholar 

  • Liewen, M.B. and Marth, E.H. 1984. Inhibition of Penicillia and Aspergilli by potassium sorbate. J. Food Prot. 47: 554–556.

    Article  CAS  PubMed  Google Scholar 

  • Liewen, M.B. and Marth, E.H. 1985. Use of gas chromatography and mass spectroscopy to identify and determine 1,3-pentadiene in cheese or mold cultures. Z. Lebensm.-Unters. Forsch. 180: 45–47.

    Article  CAS  Google Scholar 

  • Lim, T.-K. and Rohrbach, K.G. 1980. Role of Penicillium funiculosum strains in the development of pineapple fruit disease. Phytopathology 70: 663–665.

    Article  Google Scholar 

  • Lima, V.M.G. et al. 2003. Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Tech. Biotech. 41: 105–110.

    CAS  Google Scholar 

  • Limay-Rios, V. et al. 2017. Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in on-farm stored winter wheat from the Canadian Great Lakes Region. PLoS ONE 12(7): e0181239. doi.org/10.1371/journal.pone.0181239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LoBuglio, K.F. et al. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 58: 592–604.

    Article  Google Scholar 

  • Lofti, A. et al. 1983. Studies on the mycological status of sausage in upper Egypt. Fleischwirtschaft 63: 595–596, 633–634.

    Google Scholar 

  • López-Díaz, T.M. et al. 2002. Effect of temperature, water activity, pH and some antimicrobials on the growth of Penicillium olsonii isolated from the surface of Spanish fermented meat sausage. Food Microbiol. 19: 1–7.

    Article  CAS  Google Scholar 

  • López-Díaz, T-M. et al. 2001. Surface mycoflora of a Spanish fermented meat sausage and toxigenicity of Penicillium isolates. Int. J. Food Microbiol. 68: 69–74.

    Article  PubMed  Google Scholar 

  • Lötzsch, R. and Trapper, D. 1978. Bildung von Aflatoxinen und Patulin in Abhängigkeit von der Wasseraktivität (aw-Wert). Fleischwirtschaft 58: 2001–2007.

    Google Scholar 

  • Lowry, P.D. and Gill, C.O. 1982. Microbiological considerations in cold storage of beef. Sci. Technol. Froid 1982: 93–97.

    Google Scholar 

  • Lugauskas, A. et al. 2005. Micromycetes, producers of toxins, detected on stored vegetables. Annals Agric. Environ. Med. 12: 253–260.

    Google Scholar 

  • Lugauskas, A. et al. 2006. Toxic micromycetes in grain raw material during its processing. Annals Agric. Environ. Med. 13: 147–161.

    Google Scholar 

  • Lund, F. 1995a. Differentiating Penicillium species by detection of indole metabolites using a filter paper method. Lett. Appl. Microbiol. 20: 228–231.

    Article  CAS  Google Scholar 

  • Lund, F. 1995b. Diagnostic characterization of Penicillium palitans, P. commune and P. solitum. Lett. Appl. Microbiol. 21: 60–64.

    Article  Google Scholar 

  • Lund, F. and Frisvad, J.C. 1994. Chemotaxonomy of Penicillium aurantiogriseum and related species. Mycol. Res. 98: 481–492.

    Article  Google Scholar 

  • Lund, F. and Frisvad, J.C. 2003. Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. J. Appl. Microbiol. 95: 1117–1123.

    Google Scholar 

  • Lund, F. et al. 1995. Associated mycoflora of cheese. Food Microbiol. 12: 173–180.

    Article  Google Scholar 

  • Lund, F. et al. 1996. Associated mycoflora of rye bread. Lett. Appl. Microbiol. 23: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Madhyastha, S.M. et al. 1990. Effects of different cereal and oilseed substrates on the growth and production of toxins by Aspergillus alutaceus and Penicillium verrucosum. J. Agric. Food Chem. 38: 1506–1510.

    Article  CAS  Google Scholar 

  • Magan, N. and Lacey, J. 1984. Effects of gas composition and water activity on growth of field and storage fungi and their interactions. Trans. Br. Mycol. Soc. 82: 305–314.

    Article  CAS  Google Scholar 

  • Magan, N. et al. 1993. Lipolytic activity and degradation of rapeseed oil and rapeseed by spoilage fungi. Int. J. Food Microbiol. 19: 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Magnoli C. et al. 1998. Enumeration and identification of Aspergillus group and Penicillium species in poultry feeds from Argentina. Mycopathologia 142: 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Magnoli C. et al. 2005. Surveillance of toxigenic fungi and ochratoxin A in feedstuffs from Córdoba Province, Argentina. Vet. Res. Commun. 29: 431–445.

    Article  CAS  PubMed  Google Scholar 

  • Marin, S., Guynot, M.E., Sanchis, V., Arbonés, J. and Ramos, A.J., 2002. Aspergillus flavus, Aspergillus niger, and Penicillium corylophilum spoilage prevention of bakery products by means of weak‐acid preservatives. J. Food Sci. 67: 2271–2277.

    Google Scholar 

  • Martín, A., Aranda, E., Benito, M.J., Pérez-Nevado, F. and Córdora, M.G. 2005. Identification of fungal contamination and determination of mycotoxigenic moulds by micellar electrokinetic capillary chromatography in smoked paprika. J. Food Prot. 68: 815–822.

    Article  PubMed  Google Scholar 

  • Martín, A. et al. 2004. Contribution of a selected fungal population to proteolysis on dry-cured ham. Int. J. Food Microbiol. 94: 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Martín, A. et al. 2006. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 110: 8–18.

    Article  PubMed  CAS  Google Scholar 

  • Matos, A.P. de et al. 2005. Disease of pineapple. Informe Agropecuario 26: 7–11.

    Google Scholar 

  • Mazzani, C. et al. 2004. [Mycobiota associated to maize kernels in Venezuela and in vitro aflatoxigenity of the Aspergillus flavus isolates]. Fitopatol. Venezolana 17: 19–23.

    Google Scholar 

  • McCallum, J.L. et al. 2002. Factors affecting patulin production by Penicillium expansum. J. Food Prot. 65: 1937–1942.

    Article  CAS  PubMed  Google Scholar 

  • McMullin, D.R., Nsiama, T.K. and Miller, J.D., 2014. Secondary metabolites from Penicillium corylophilum isolated from damp buildings. Mycologia, 106: 621–628.

    Article  CAS  PubMed  Google Scholar 

  • McNeill, J. et al. (eds). 2012. International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154: i–xxx; 1–208. Königstein: Koeltz Scientific Books.

    Google Scholar 

  • Menzies, J.G. et al. 2005. Fungi associated with roots of cucumber grown in different greenhouse root substrates. Can. J. Bot. 83:80–92.

    Article  Google Scholar 

  • Mills, J.T. et al. 1995. Nephrotoxigenic Penicillium species occurring on farm-stored cereal grains in western Canada. Mycopathologia 130: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Minervini, F., Monaci, L., Montagna, M.T. and Dragoni, I. 2002. Assessment of mycotoxin production by Aspergillus and Penicillium fungi isolated from dairy products. Ind. Alimen. 41: 1336–1340.

    CAS  Google Scholar 

  • Minoura, K. et al. 1975. Some Ascomycetes isolated from soil of Nepal. Rep. Tottori Mycol. Inst. (Jpn) No 12: 171–185.

    Google Scholar 

  • Mislivec, P.B. and Tuite, J. 1970. Temperature and relative humidity requirements of species of Penicillium isolated from yellow dent corn kernels. Mycologia 62: 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, A.A. and Hussein, N.A. 2004. Proteolitic and lipolytic cativity of fungi isolated from luncheon meat and poultry in Assiut City. Assiut Vet. Med. J. 50: 100–113.

    Article  Google Scholar 

  • Monte, E. et al. 1986. Fungal profiles of Spanish country-cured hams. Int. J. Food Microbiol. 3: 355–359.

    Article  Google Scholar 

  • Morales, H., Marín, S., Rovira, A., and Sanchis, V. 2006. Patulin accumulation in apples by Penicillium expansum during postharvest stages. Lett. Appl. Microbiol. 44: 30–35.

    Article  CAS  Google Scholar 

  • Morales, H. et al. 2007. Cold and ambient deck storage prior to processing as a critical control point for patulin accumulation. Int. J. Food Microbiol. 116: 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, C. 1980. Le Penicillium roqueforti, morphologie, physiologie, intéret en industrie fromagère, mycotoxines. Lait 60: 254–271.

    Article  CAS  Google Scholar 

  • Mukhtar, I. et al. 2019. First report of Talaromyces funiculosus causing fruit core rot of peach (Prunus persica) in China. Plant Dis. 103(8). doi.org/10.1094/PDIS-11-18-2050-PDN.

    Google Scholar 

  • Naraghi, L. et al. 2012. Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. J. Plant Growth Reg. 31: 471–477.

    Article  CAS  Google Scholar 

  • Nassar, A.M. and Ismail, M.A. 1994. Psychrotrophic and mesophilic fungi isolated from imported frozen lean meat in Egypt. J. Food Saf. 14: 289–295.

    Article  Google Scholar 

  • Nesci, A. et al. 2006. Soil fungal population in preharvest maize ecosystem in different tillage practices in Argentina. Soil Tillage Res. 91: 143–149.

    Article  Google Scholar 

  • Nicoletti, R. et al. 2007. Production and fungitoxic activity of Svh 642305, a secondary metabolite of Penicillium canescens. Mycopathologia 163: 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, K.F. et al. 2006. Production of metabolites from the Penicillium roqueforti complex. J. Agric. Food Chem. 54: 3756–3763.

    Article  CAS  PubMed  Google Scholar 

  • Northolt, M.D. et al. 1978. Patulin production by some fungal species in relation to water activity and temperature. J. Food Prot. 41: 885–890.

    Article  CAS  PubMed  Google Scholar 

  • Northolt, M.D. et al. 1979. Ochratoxin A production by some fungal species in relation to water activity and temperature. J. Food Prot. 42: 485–490.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, C. et al. 2007. Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Sci. Technol. Int. 13: 63–68.

    Article  Google Scholar 

  • Ockerman, H.W. et al. 2001. Influence of temperature on proteolytic activity of indigenous Spanish molds in meat products. J. Muscle Foods 12: 263–273.

    Article  Google Scholar 

  • Ogundare, A.O. and Adetuyi, F.C. 2003. Studies on the microbial population of bread baked with wheat flour from south western Nigeria. J. Food Agric. Environ. 1: 83–87.

    Google Scholar 

  • Oh, J.Y. et al. 2011. First detection of Penicillium fellutanum from stored rice in Korea. Res. Plant Dis. 17: 216–221. doi:10.5423/RPD.2011.17.2.216.

    Article  Google Scholar 

  • Okigbo, R.N. 2003. Fungi associated with peels of postharvest yams (Dioscorea sp.) in storage. Global J. Pure Appl. Sci. 9: 19–23.

    Google Scholar 

  • Okull, D.O. et al. 2006. Susceptibility of Penicillium expansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with non-ionic surfactants. J. Food Prot. 69: 1944–1948.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, M. et al. 2006. Prevention of ochratoxin A in cereals in Europe. In Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer, pp. 317–342.

    Google Scholar 

  • Oshikata, C. et al. 2013. Fatal pneumonia caused by Penicillium digitatum: a case report. BMC Pulmon. Med. 13: art. no. 16.

    Google Scholar 

  • Overy, D.P. and Frisvad, J.C. 2005. Mycotoxin production and postharvest storage rot of ginger (Zingiber officinale) by Penicillium brevicompactum. J. Food Prot. 68:607–609.

    Article  CAS  PubMed  Google Scholar 

  • Overy, D.P. et al. 2003. Spoilage fungi and their mycotoxins in commercially marketed chestnuts. Int. J. Food Microbiol. 88: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Overy, D.P. et al. 2005a. Low temperature growth and enzyme production in Penicillium ser. Corymbifera species, casual agents of blue mold storage rot in bulbs. J. Plant. Pathol. 87: 57–63.

    CAS  Google Scholar 

  • Overy, D.P. et al. 2005b. Clarification of the agents causing blue mold storage rot upon various flower and vegetable bulbs: implications for mycotoxin contamination. Posthavest Biol. Technol. 35: 217–221.

    Article  Google Scholar 

  • Oxenham, B.L 1962. Etiology of fruitlet core rot of pineapple in Queensland. Queensl. J. Agric. Sci. 19 27–31.

    Google Scholar 

  • Palmgren, M.S. and Fleischhacker, D.S., 1987. Penicillium oxalicum and secalonic acid D in fresh corn. In Biodeterioration Research 1 (pp. 193–196). Springer, Boston, MA.

    Google Scholar 

  • Panasenko, V.T. 1967. Ecology of microfungi. Bot. Rev. 33: 189–215.

    Article  Google Scholar 

  • Panek, J. and Frąc, M. 2019. Loop-mediated isothermal amplification (LAMP) approach for detection of heat-resistant Talaromyces flavus species. Sci. Repts 9:5846. doi.org/10.1038/s41598-019-42275-x

    Article  CAS  Google Scholar 

  • Papagianni, M. et al. 2007. Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Sci. 76: 653–657.

    Article  CAS  PubMed  Google Scholar 

  • Pardo, E. et al. 2006. Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meal extract agar. Int. J. Food Microbiol. 106: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.W. et al. 2005. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int. J. Food Microbiol. 103: 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Paster, N. et al. 1995. Production of patulin by different strains of Penicillium expansum in pear and apple cultivars stored at different temperatures and modified atmospheres. Food Addit. Contam. 12: 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Patiño, B. et al. 2007. Polymerase chain reaction (PCR) identification of Penicillium brevicompactum, a grape contaminant and mycophenolic acid producer. Food Addit. Contam. 24:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, D.S.P. et al. 1979. Tremorgenic toxins produced by soil fungi. Appl. Environ. Microbiol. 37: 172–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson, M. and Damoglou, A.P. 1986. The effect of water activity and pH on the production of mycotoxins by fungi growing on a bread analogue. Lett. Appl. Microbiol. 3: 123–125.

    Article  CAS  Google Scholar 

  • Pelhate, J. 1968. Inventaire de la mycoflore des blés de conservation. Bull. Trimest. Soc. Mycol. Fr. 84: 127–143.

    Google Scholar 

  • Perrone, G. et al. 2015. Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int. J. Food Microbiol. 193: 91–98.

    Google Scholar 

  • Peter, K.A. et al. 2012. First report of Penicillium carneum causing blue mold on stored apples in Pennsylvania. Plant Dis. 96: 1823.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, S.W. and Jurjević, Z. 2019. The Talaromyces pinophilus species complex. Fungal Biol. 123: 745–762.

    Article  PubMed  Google Scholar 

  • Peterson, S.W. et al. 2015. Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. PLoS ONE 10: e0121987. doi.org/10.1371/journal.pone.0121987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philipp, S. and Pedersen, P.D. 1988. Mould cultures for the food industry. A short review with special reference to the cheese and sausage production. Danish Dairy Food Ind. Worldwide 1988 (6): 8, 10–12.

    Google Scholar 

  • Pietri, A. et al. 2006. Occurrence of ochratoxin A in raw ham muscles and in pork products from Northern Italy. Ital. J. Food Sci. 18: 99–106.

    CAS  Google Scholar 

  • Pimenta, R.S. et al. 2010. Integrated control of Penicillium digitatum by the predacious yeast Saccharomycopsis crataegensis and sodium bicarbonate on oranges. Braz. J. Microbiol. 41: 2. doi: org/10.1590/S1517-83822010000200022.

    Article  Google Scholar 

  • Piskorska-Pliszczynska, J. and Borkowska-Opacka, B. 1984. Natural occurrence of ochratoxin A and two ochratoxin-producing fungal strains in cheesecake. Bull. Vet. Inst. Pulawy 27: 95–98.

    CAS  Google Scholar 

  • Pitt, J.I. 1973. An appraisal of identification methods for Penicillium species: novel taxonomic criteria based on temperature and water relations. Mycologia 65: 1135–1157.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. 1974. A synoptic key to the genus Eupenicillium and to sclerotigenic Penicillium species. Can. J. Bot. 52: 2231–2236.

    Article  Google Scholar 

  • Pitt, J.I. 1979a. Geosmithia gen. nov. for Penicillium lavendulum and related species. Can. J. Bot. 57: 2021–2030.

    Google Scholar 

  • Pitt, J.I. 1979b. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. London: Academic Press.

    Google Scholar 

  • Pitt, J.I. 1979c. Penicillium crustosum and P. simplicissimum, the correct names for two common species producing tremorgenic mycotoxins. Mycologia 71: 1166–1177.

    Google Scholar 

  • Pitt, J.I. 1981. Food spoilage and biodeterioration. In Biology of Conidial Fungal, Vol. 2, eds G.T. Cole and B. Kendrick. New York: Academic Press. pp. 111–142.

    Google Scholar 

  • Pitt, J.I. 1987. Penicillium viridicatum, Penicillium verrucosum and production of ochratoxin A. Appl. Environ. Microbiol. 53: 266–269.

    Google Scholar 

  • Pitt, J.I. 1993. A modified creatine sucrose medium for differentiation of species in Penicillium subgenus Penicillium. J. Appl. Bacteriol. 75: 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. 2000. A Laboratory Guide to Common Penicillium Species, 3rd edn. Sydney, N.S.W.: Food Science Australia, CSIRO.

    Google Scholar 

  • Pitt, J.I. and Christian, J.H.B. 1968. Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16: 1853–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1985. New species of fungi from Indonesian dried fish. Mycotaxon 22: 197–208.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 2009. Fungi and Food Spoilage. 3rd edn. New York: Springer.

    Book  Google Scholar 

  • Pitt, J.I. and Leistner, L. 1991. Toxigenic Penicillium species. In Mycotoxins and Animal Foods, J.E. Smith and R.S. Henderson, eds. Boca Raton, Florida: CRC Press. pp. 91–99.

    Google Scholar 

  • Pitt, J.I. and Samson, R.A. 1993. Species names in current use in the Trichocomaceae (Fungi, Eurotiales). In Names in Current Use in the Families Trichocomaceae, Cladoniaceae, Pinaceae, and Lemnaceae, ed. W. Greuter. Königstein, Germany: Koeltz Scientific Books. Regnum Vegetabile 128: 13–57.

    Google Scholar 

  • Pitt, J.I. et al. 1986. Penicillium commune, P. camembertii, the origin of white cheese moulds, and the production of cyclopiazonic acid. Food Microbiol. 3: 363–371.

    Google Scholar 

  • Pitt, J.I. et al. 1990. Differentiation of Penicillium glabrum from Penicillium spinulosum and other closely related species: an integrated taxonomic approach. System. Appl. Microbiol. 13: 304–309.

    Article  Google Scholar 

  • Pitt, J.I. et al. 1991. Penicillium solitum revived, and its role as a pathogen of pomaceous fruit. Phytopathology 81: 1108–1112.

    Google Scholar 

  • Pitt, J.I. et al. 1993. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1994. The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int. J. Food Microbiol. 23: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1998. The mycoflora of food commodities from Indonesia. J. Food Mycol. 1, 41–60.

    Google Scholar 

  • Pitt, J.I. et al. 2000. List of accepted species and their synonyms in the family Trichocomaceae. In Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification, R.A. Samson and J.I. Pitt, eds. Amsterdam: Hardwood Academic Publishers. pp. 9–51.

    Google Scholar 

  • Plaza, P. et al. 2003. Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum. J. Appl. Microbiol. 94: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Plaza, P. et al. 2004. Integration of curing treatments with degreening to control the main postharvest diseases of clementine mandarins. Postharvest Biol. Technol. 34: 29–37.

    Article  CAS  Google Scholar 

  • Pohland, A.E. et al. 1992. Ochratoxin A: a review. Pure Appl. Chem. 64: 1029–1046.

    Article  CAS  Google Scholar 

  • Polonelli, L. et al. 1987. Antigenic characterization of Penicillium camemberti and related common cheese contaminants. Appl. Environ. Microbiol. 53: 872–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proksa, B. 2010. Talaromyces flavus and its metabolites. Chem. Papers 64: 696–714.

    Google Scholar 

  • Prusky, D., McEvoy, J.L., Saftner, R., Conway, W.S. and Jones, R. 2004. Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology 94: 44–51.

    Article  PubMed  Google Scholar 

  • Purchase, I.F.H. 1971. The acute toxicity of the mycotoxin cyclopiazonic acid to rats. Toxicol. Appl. Pharmacol. 18: 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Quintavalla, S. and Spotti, E. 1993. Heat resistance of Talaromyces flavus, Neosartorya fischeri and Byssochlamys nivea isolated from fresh fruits. Microbiol., Aliments, Nutr. 11: 335–341.

    Google Scholar 

  • Rajak, RC. et al. 1991. Keratin degradation by fungi isolated from the gournds of a gelatin factory in Jabalpur, India. Mycopathologia 114: 83–87.

    Article  CAS  Google Scholar 

  • Rand, T.G. et al. 2005. Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated Penicillium brevicompactum Dierckx and P. chrysogenum Thom. Toxicol. Sci. 87: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Raper, K.B. and Thom, C. 1949. A Manual of the Penicillia. Baltimore, Maryland: Williams and Wilkins.

    Google Scholar 

  • Raper, K.B. 1957. Nomenclature in Aspergillus and Penicillium. Mycologia 49: 644–662.

    Article  Google Scholar 

  • Ray-Schroeder, L.L. 1983. Effect of sorbate on growth, spore viability and mycotoxin production of selected Penicillium species. Diss. Abstr. Int., B, 43: 3524.

    Google Scholar 

  • Reyns, K.M.F.A. et al. 2003. Activation and inactivation of Talaromyces macrosporus ascospores by high hydrostatic pressure. J. Food Prot. 66: 1035–1042.

    Article  PubMed  Google Scholar 

  • Ribeiro, S.A.L. et al. 2003. [Filamentous fungi isolated from corn-derived products]. Rev. Brasil. Botan. 26: 223–229.

    Google Scholar 

  • Rivera, K.G. and Seifert, K.A. 2011. A taxonomic and phylogenetic revision of the Penicillium sclerotiorum complex. Stud. Mycol. 70: 139–158.

    Google Scholar 

  • Roberts, R.G. and Reymond, S.T. 1994. Chlorine dioxide for reduction of postharvest pathogen inoculum during handling of tree fruits. Appl. Environ. Microbiol. 60: 2864–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez, M. et al. 1998. Evaluation of proteolytic activity of micro-organisms isolated from dry cured ham. J. Appl. Microbiol. 85: 905–912.

    Article  PubMed  Google Scholar 

  • Romero, S.M. et al. 2005. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 104: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Ropars, J. et al. 2014. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol. Appl. 7: 433–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa, C.A.R. et al. 2010. Production of citreoviridin by Penicillium citreonigrum strains associated with rice consumption and beriberi cases in the Maranhão State, Brazil. Food Addit. Contam. Part A 27: 241–248.

    Article  CAS  Google Scholar 

  • Rosenberger, D.A. et al. 2006. Penicillium expansum invades apples through stems during controlled atmosphere storage. Plant Health Progress (December): 1–8.

    Google Scholar 

  • Roy, A.N. et al. 1977. Occurrence of three new rot diseases of stored garlic (Allium sativum L.). Curr. Sci. 46: 716–717.

    Google Scholar 

  • Rundberget, T. et al. 2004. Penitrem and thomitrems formation by Penicillium crustosum. Mycopathologia 157: 349–357.

    Article  PubMed  Google Scholar 

  • Sahin, I. and Kalyoncuoglu, M.E. 1994. Erkenntnisse über die Schimmelpilze in der Mikroflora von Hasel-, Walnüssen und Sonnen- Blumenkernen. Chem., Mikrobiol., Technol. Lebensm. 16: 85–92.

    Google Scholar 

  • Saito, M. et al. 1971a. Yellowed rice toxins. In Microbial Toxins: a Comprehensive Treatise. Vol. 6. Fungal Toxins, eds A. Ciegler, S. Kadis and S.J. Ajl. London: Academic Press. pp. 299–380.

    Google Scholar 

  • Saito, M. et al. 1971b. Screening tests using HeLa cells and mice for detection of mycotoxin-producing fungi isolated from foodstuffs. Jpn J. Exp. Med. 41: 1–20.

    CAS  PubMed  Google Scholar 

  • Saito, M. et al. 2003. Isolation of Penicillium hirsutum from spoiled, packaged asparagus spears in Japan. J. Gen. Plant Pathol. 69: 304–306.

    Article  Google Scholar 

  • Sakai, A., Tanaka, H., Konishi, Y., Hanazawa, R., Ota, T., Nakahara, Y., Sekiguchi, S., Oshida, E., Takino, M., Ichinoe, M. and Yoshikawa, K., 2005. Mycological examination of domestic unpolished rice and mycotoxin production by isolated Penicillium islandicum. J. Food Hyg. Soc. Japan, 46: 205-212.

    Article  CAS  Google Scholar 

  • Sams, C.E. et al. 1993. Firmness and decay of apples following postharvest pressure infiltration of calcium and heat treatment. J. Am. Soc. Hortic. Sci. 118: 623–627.

    Article  CAS  Google Scholar 

  • Samson, R.A. and Frisvad, J.C. (eds). 2004. Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud. Mycol. 49: 1–260.

    Google Scholar 

  • Samson, R.A. and Pitt, J.I. 1985. Check list of common Penicillium species. In Advances in Penicillium and Aspergillus Systematics, eds R.A. Samson and J.I. Pitt. New York: Plenum Press. pp. 461–463.

    Google Scholar 

  • Samson, R.A. et al. 1976. Revision of the Subsection Fasciculata of Penicillium and some allied species. Stud. Mycol., Baarn 11: 1–47.

    Google Scholar 

  • Samson, R.A. et al. 1977. The taxonomy of Penicillium species from fermented cheeses. Antonie van Leeuwenhoek 43: 341–350.

    Article  CAS  PubMed  Google Scholar 

  • Samson, R.A. et al. 1981. Introduction to Food-borne Fungi. Baarn, Netherlends: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Samson, R.A. et al., eds. 1995. Introduction to Foodborne Fungi, 4th edn. Baarn, Netherlands: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Samson, R.A. et al. 2004. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud. Mycol. 49: 175–200.

    Google Scholar 

  • Samson, R.A. et al. 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 70: 159–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson, P.G. and Spotts, R.A. 1995. Postharvest decay of winter pear and apple fruit caused by species of Penicillium. Phytopathology 85: 103–110.

    Article  Google Scholar 

  • Sauceda-Gálvez, J.N. et al. 2019. Inactivation of ascospores of Talaromyces macrosporus and Neosartorya spinosa by UV-C, UHPH and their combination in clarified apple juice. Food Control 98: 120–125.

    Article  CAS  Google Scholar 

  • Schmidt-Heydt, M. et al. 2019. Whole-genome sequencing of the fungus Penicillium citrinum reveals the biosynthesis gene cluster for the mycotoxin citrinin. Microbiol. Resour. Announc. 8: e01419–18. doi: 10.1128/MRA.01419-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch, U. et al. 1984. Mykotoxine von Penicillium roqueforti und P. camemberti in Käse. II. Suche nach chemisch nicht identifizierten, biologisch aktiven Stoffen. Milchwissenschaft 39: 583–584.

    Google Scholar 

  • Scott, D.B. and Stolk, A.C. 1967. Studies on the genus Eupenicillium Ludwig. II. Perfect states of some Penicillia. Antonie van Leeuwenhoek 33: 297–314.

    Article  CAS  PubMed  Google Scholar 

  • Scott, P.M. 1977. Penicillium mycotoxins. In Mycotoxic Fungi, Mycotoxins, Mycotoxicoses, an Encyclopedic Handbook. Vol. 1. Mycotoxigenic Fungi, eds T.D. Wyllie and L.G. Morehouse. New York: Marcel Dekker. pp. 283–356.

    Google Scholar 

  • Scott, P.M. 1981. Toxins of Penicillium species used in cheese manufacture. J. Food Prot. 44: 702–710.

    Article  CAS  PubMed  Google Scholar 

  • Scott, V.N. and Bernard, D.T. 1987. Heat resistance of Talaromyces flavus and Neosartorya fischeri isolated from commercial fruit juices. J. Food Prot. 50: 18–30.

    Article  PubMed  Google Scholar 

  • Scudamore, K.A. et al. 1986. Natural occurrence of the naphthoquinone mycotoxins, xanthomegnin, viomellein and vioxanthin in cereals and animal feedstuffs. J. Stored Prod. Res. 22: 81–84.

    Article  CAS  Google Scholar 

  • Seifert, K. et al. 2011. The Genera of Hyphomycetes. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre.

    Google Scholar 

  • Serra, R. and Peterson, S.W. 2007. Penicillium astrolabium and Penicillium neocrassum, two new species isolated from grapes and their phylogenetic placement in the P. olsonii and P. brevicompactum clade. Mycologia 99: 78–87.

    Google Scholar 

  • Serra, R. et al. 2006. Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Mycol. Res. 110: 971–978.

    Article  PubMed  Google Scholar 

  • Shiratori, N. et al. 2017. Occurrence of Penicillium brocae and Penicillium citreonigrum, which produce a mutagenic metabolite and a mycotoxin citreoviridin, respectively, in selected commercially available rice grains in Thailand. Toxins 9: 194. doi:10.3390/toxins9060194.

    Article  PubMed Central  CAS  Google Scholar 

  • Siemens, K. and Zawistowski, J. 1993. Occurrence of PR imine, a metabolite of Penicillium roqueforti, in blue cheese. J. Food Prot. 56: 317–319, 325.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, K.K. et al. 1988a. Incidence of aflatoxins in mustard crop in Bihar. Indian Phytopathol. 41: 434–437.

    CAS  Google Scholar 

  • Sinha, R.N. et al. 1988b. Fungal volatiles associated with moldy grain in ventilated and nonventilated bin-stored wheat. Mycopathologia 101: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Skirdal, I.M. and Eklund, T. 1993. Microculture model studies on the effect of sorbic acid on Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at different pH levels. J. Appl. Bacteriol. 74: 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Smilanick, J.L. et al. 2006. The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus green mold after harvest. Postharvest Biol. Technol. 42: 75–85.

    Article  CAS  Google Scholar 

  • Smith, G. 1939. Some new species of mould fungi. Trans. Br. Mycol. Soc. 22: 252–256.

    Article  Google Scholar 

  • Snow, D. 1949. Germination of mould spores at controlled humidities. Ann. Appl. Biol. 36: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon, A.L. 1990. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 1. General Introduction and Fruits. London: Wolfe Scientific.

    Google Scholar 

  • Snowdon, A.L. 1991. A Colour Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables. 2. Vegetables. London: Wolfe Scientific.

    Google Scholar 

  • Sonjak, S. et al. 2005. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol. 53: 51–60.

    Article  CAS  Google Scholar 

  • Spadaro, D. et al. 2010. First report of Penicillium glabrum causing a postharvest fruit rot of pomegranate (Punica granatum) in the Piedmont region of Italy. Plant Dis. 94: 1066.

    Article  CAS  PubMed  Google Scholar 

  • Spadaro, D. et al. 2013. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol. Technol. 75: 1–8.

    Article  CAS  Google Scholar 

  • Spotti, E. et al. 1988. [Microbiological study of the ‘phenol defect’ of ham during ripening.] Ind. Conserve 63: 343–346.

    Google Scholar 

  • Spotti, E. et al. 1989. [Occurrence of moulds on hams during preripening and ripening, contamination of the environment and growth on the muscle portion of hams.] Ind. Conserve 64: 110–113.

    Google Scholar 

  • Spotti, E. et al. 1994. P. nalgiovense, P. gladioli, P. candidum and A. candidus: possibility of their use as starter cultures. Ind. Conserve 69: 237–241.

    Google Scholar 

  • Spotti, E. et al. 2001. Growth of Penicllium verrocosum in model systems based on raw ripened meat products. Part II. Ochratoxin A determination and comparison between a rapid immunofluorometric method and traditional RP-HPLC technique. Ind. Conserve 76: 167–183.

    Google Scholar 

  • Spotts, R.A. and Cervantes, L.A. 1993. Use of filtration for removal of conidia of Penicillium expansum from water in pome fruit packinghouses. Plant Dis. 828–830.

    Google Scholar 

  • Stolk, A.C. 1969. Four new species of Penicillium. Antonie van Leeuwenhoek 35: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Stolk, A.C. and Scott, D.B. 1967. Studies on the genus Eupenicillium Ludwig. I. Taxonomy and nomenclature of Penicillia in relation to their sclerotioid ascocarpic states. Persoonia 4: 391–405.

    Google Scholar 

  • Stolk, A.C. and Samson, R.A. 1972. The genus Talaromyces. Studies on Talaromyces and related genera. II. Stud. Mycol., Baarn 2: 1–65.

    Google Scholar 

  • Stolk, A. and Samson, R.A. 1983. The ascomycete genus Eupenicillium and related Penicillium anamorphs. Stud. Mycol. 23: 1–149

    Google Scholar 

  • Stolk, A.C. and Samson, R.A. 1985. A new taxonomic scheme for Penicillium anamorphs. In Advances in Penicillium and Aspergillus Systematics, eds R.A. Samson and J.I. Pitt. New York: Plenum Press. pp. 163–192.

    Google Scholar 

  • Stolk, A.C. and Scott, D.B. 1967. Studies on the genus Eupenicillium Ludwig. I. Taxonomy and nomenclature of Penicillia in relation to their sclerotioid ascocarpic states. Persoonia 4: 391–405.

    Google Scholar 

  • Scott, D.B. and Stolk, A.C. 1967. Studies on the genus Eupenicillium Ludwig. II. Perfect states of some Penicillia. Antonie van Leeuwenhoek 33: 297–314.

    Article  CAS  PubMed  Google Scholar 

  • Suhr, K.I. and Nielsen, P.V. 2004. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol. 95: 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Suhr, K.I. and Nielsen, P.V. 2005. Inhibition of fungal growth on wheat and rye bread by modified atmosphere packaging and active packaging using volatile mustard essential oil. J. Food Sci. 70: M37–M44.

    Article  CAS  Google Scholar 

  • Sunesen, L.O. and Stahnke, L.H. 2003. Mould starter cultures for dry sausages – selection, application and effects. Meat Sci. 65: 935–948.

    Article  CAS  PubMed  Google Scholar 

  • Szczerbanik, M., Jobling, J., Morris, S. and Holford, P. 2007. Essential oil vapours control some common postharvest fungal pathogens. Aust. J. Exp. Agric. 47: 103–109.

    Article  CAS  Google Scholar 

  • Tabuc, C. et al. 2004. Toxigenic potential of fungal mycoflora isolated from dry cured meat products: preliminary study. Rev. Med. Vet. 155: 287–291.

    Google Scholar 

  • Takatori, K. et al. 1977. Studies on the contamination of fungi and mycotoxins in spices. I. Mycoflora of imported spices and inhibitory effects of the spices on the growth of some fungi. Maikotokishin (Proc. Jpn. Assoc. Mycotoxicol.) 1: 36–38.

    Article  Google Scholar 

  • Tangni, E.K. and Pussemier, L. 2007. Ergosterol and mycotoxins in grain dusts from fourteen Belgian cereal storages: A preliminary screening survey. J. Sci. Food Agric. 87: 1263–1270.

    Article  CAS  Google Scholar 

  • Taniwaki, M.H. 1995. Growth and mycotoxin production by fungi under modified atmospheres. Ph.D. thesis. Kensington, N.S.W.: University of New South Wales.

    Google Scholar 

  • Teuber, M. and Engel, G. 1983. Low risk of mycotoxin production in cheese. Microbiol., Aliments, Nutr. 1: 193–197.

    CAS  Google Scholar 

  • Tindale, C.R. et al. 1989. Fungi isolated from packaging materials: their role in the production of 2,4,6-trichloroanisole. J. Sci. Food Agric. 49: 437–447.

    Article  CAS  Google Scholar 

  • Tonon, S.A. et al. 1997. Mycoflora of paddy and milled rice produced in the region of Northeastern Argentina and Southern Paraguay. Int. J. Food Microbiol. 37: 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Torres, R. et al. 2007. Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several mediterranean locations. Eur. J. Plant Pathol. 118: 73–83.

    Article  CAS  Google Scholar 

  • Tranquillini, R. et al. 2017. Occurrence and ecological distribution of heat resistant moulds spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. Int. J. Food Microbiol. 242: 116–123.

    Article  PubMed  Google Scholar 

  • Tsuruta, O. and Saito, M. 1980. Mycological damage of domestic brown rice during storage in warehouses under natural conditions. 3. Changes in mycoflora during storage. Trans. Mycol. Soc. Jpn 21: 121–125.

    Google Scholar 

  • Tuthill, D.E. et al. 2001. Systematics of Penicillium based on rDNA sequences, morphology and secondary metabolites. Mycologia. 93: 298–308.

    Article  CAS  Google Scholar 

  • Udagawa, S. 1959. Taxonomic studies of fungi on stored rice grains. III. Penicillium group (Penicillia and related genera). 2. Tokyo Nogyo Daigaku Nogaku Shuho (J. Agric. Sci. Tokyo) 5: 5–21.

    Google Scholar 

  • Udagawa, S. and Tsuruta, O. 1973. Isolation of an osmophilic Penicillium associated with cereals during long-term storage. Trans. Mycol. Soc. Jpn 14: 395–402.

    Google Scholar 

  • Udagawa, S. et al. 1977. Re-estimation of preservation effectiveness of potassium sorbate (food additive) in jams and marmalade. Eisei Shikensho Hokoku (Bull. Nat. Inst. Hyg. Sci., Tokyo) 95: 88–92.

    CAS  Google Scholar 

  • Ueno, Y. 1972. Temperature dependent production of citreoviridin, a neurotoxin of Penicillium citreo-viride Biourge. Jpn. J. Exp. Med. 42: 107–114.

    CAS  PubMed  Google Scholar 

  • Ueno, Y. and Ueno, I. 1972. Isolation and acute toxicity of citreoviridin, a neurotoxic mycotoxin of Penicillium citreo-viride Biourge. Jpn. J. Exp. Med. 42: 91–105.

    CAS  PubMed  Google Scholar 

  • Uraguchi, K. 1971. Yellowed rice toxins. IV. Citreoviridin. In Microbial Toxins. Vol. 4. Fungal Toxins, eds A. Ciegler, S. Kadis and S.J. Ajl. London: Academic Press. pp. 367–380.

    Google Scholar 

  • Uraguchi, K. et al. 1972. Chronic toxicity and carcinogenicity in mice of the purified mycotoxins, luteoskyrin and cyclochlorotine. Food Cosmet. Toxicol. 10: 193–207.

    Article  CAS  PubMed  Google Scholar 

  • Valdez, J.G., et al. 2006. First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol. 55: 583.

    Article  Google Scholar 

  • Valdez, J.G. et al. 2009. Identification, pathogenicity and distribution of Penicillium spp. isolated from garlic in two regions in Argentina. Plant Pathol. 58: 352–361.

    Article  Google Scholar 

  • Valero, A. et al. 2007a. Studies on the interactions between grape-associated filamentous fungi on a synthetic medium. Int. J. Food Microbiol. 113: 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Valero, A. et al. 2007b. Effect of germicidal UVC light on fungi isolated from grapes and raisins. Lett. Appl. Microbiol. 45: 238–243.

    Article  CAS  PubMed  Google Scholar 

  • Van der Spuy, J.E. et al. 1975. The heat resistance of moulds Penicillium vermiculatum Dangeard and Penicillium brefeldianum Dodge in apple juice. Phytophylactica 7: 105–108.

    Google Scholar 

  • Vanden Bossche, H. et al. 2003. Antifungal agents of use in animal health – chemical, biological and pharmacological aspects. J. Vet. Pharmacol. Ther. 26: 5–29.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, M.A. and Pitt, J.I. 1989. Penicillium allii, a new species from Egyptian garlic. Mycologia 81: 300–303.

    Google Scholar 

  • Visagie, C.M. et al. 2013. Five new Penicillium species in section Sclerotiora: a tribute to the Dutch Royal family. Persoonia 31: 42–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visagie, C.M. et al. 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78: 343–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vismer, H.F. et al. 1996. Patulin producing Penicillium species isolated from naturally infected apples in South Africa. S. Afr. J. Sci. 92: 530–534.

    CAS  Google Scholar 

  • Waje, C.K.et al. 2005. Mycological stability of minimally-processed young coconut (Cocos nucifera L.) as influenced by different chemical and physical treatments. Philipp. Agric. Sci. 88: 84–94.

    Google Scholar 

  • Wallace, H.A.H. et al. 1976. Fungi associated with small wheat bulks during prolonged storage in Manitoba. Can. J. Bot. 54: 1332–1343.

    Article  Google Scholar 

  • Wang, Z. et al. 2018. Biocontrol of Penicillium digitatum on postharvest Citrus fruits by Pseudomonas fluorescens. J. Food Qual. 2018: art. ID 2910481. doi.org/10.1155/2018/2910481.

    Article  Google Scholar 

  • Watkins, K.L. et al. 1990. Patulin in Australian apple juice. Food Aust. 42: 438–439.

    Google Scholar 

  • Wawrzyniak, J. and Waśkiewicz, A. 2014. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Addit. Contam. Part A 31: 139–148.

    Article  CAS  Google Scholar 

  • Wells, J.M. 1980. Toxigenic fungi isolated from late-season pecans. J. Food Saf. 2: 213–220.

    Article  Google Scholar 

  • Wells, J.M. and Payne, J.A. 1975. Toxigenic Aspergillus and Penicillium isolates from weevil-damaged chestnuts. Appl. Microbiol. 30: 536–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, K.A., Hocking, A.D., Pitt, J.I. and Anggawati, A. 1986. Fungi associated with Indonesian dried fish. Food Microbiol. 3: 351–357.

    Article  Google Scholar 

  • Wheeler, J.L., Harrison, M.A. and Koehler, P.E., 1987. Presence and stability of patulin in pasteurized apple cider. J. Food Sci. 52: 479-480.

    Article  CAS  Google Scholar 

  • Wheeler, K.A. et al. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Wicklow, D.T. and Cole, R.J. 1984. Citreoviridin in standing corn infested by Eupenicillium ochrosalmoneum. Mycologia 76: 959–961.

    Article  Google Scholar 

  • Wicklow, D.T. et al. 1988. Citreoviridin levels in Eupenicillium ochrosalmoneum-infested maize kernels at harvest. Appl. Environ. Microbiol. 54: 1096–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicklow, D.T. et al. 1998. Fungal colonists of maize grain conditioned at constant temperatures and humidities. J. Stored Prod. Res. 34: 355–361.

    Article  Google Scholar 

  • Wild, B.L. 1983. Double resistance by citrus green mould Penicillium digitatum to the fungicides guazatine and benomyl. Ann. Appl. Biol. 103: 237–241.

    Article  CAS  Google Scholar 

  • Wilkins, C.K. and Scholl, S. 1989. Volatile metabolites of some barley storage molds. Int. J. Food Microbiol. 8: 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Williams, C.C. et al. 1941. A facultatively anaerobic mold of unusual heat resistance. Food Res. 6: 69–73.

    Article  Google Scholar 

  • Woodward, K.N. 2005. Veterinary pharmacovigilance. Part 6. Predictability of adverse reactions in animals from laboratory toxicology studies. J. Vet. Pharmacol. Ther. 28: 213–231.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, M.K. et al. 1995. Characterization of mould growth in orange juice. Food Microbiol. 12: 347–355.

    Article  Google Scholar 

  • Wyatt, R.D. and Hamilton, P.B. 1972. The effect of rubratoxin in broiler chickens. Poult. Sci. 51: 1383–1387.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, S. et al. 2019. Detection of Talaromyces macrosporus and Talaromyces trachyspermus by a PCR assay targeting the hydrophobin gene. Lett. Appl. Microbiol. 68: 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, M. et al. 1971. [Toxic fungal metabolites isolated from home-made miso.] Shokuhin Eiseigaku Zesshi (J. Food Hyg. Soc. Jpn) 12: 370–375.

    Google Scholar 

  • Yamazaki, M. et al. 1972. [Metabolites of some strains of Penicillium isolated from foods.] Yakugaku Zasshi (J. Pharmaceut. Soc. Jpn) 92: 101–104.

    Google Scholar 

  • Yilmaz, N. et al. 2014. Polyphyletic taxonomy of the genus Talaromyces. Stud. Mycol. 78: 175–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz, N. et al. 2016. Taxonomic re-evaluation of species in Talaromyces section Islandici, using a polyphasic approach. Persoonia 36: 37–56.

    Article  CAS  PubMed  Google Scholar 

  • Yin, G. et al. 2017. Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. J. Fungi 3: 12. doi:10.3390/jof301001

    Article  CAS  Google Scholar 

  • Yu, T. et al. 2007. Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid. Int. J. Food Microbiol. 116: 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Yun, H.. et al. 2006. Isolation and characterization of Penicillium crustosum, a patulin producing fungus, from apples. Food Sci. Biotech. 15: 896–901.

    CAS  Google Scholar 

  • Zamani, M. et al. 2009. Control of Penicillium digitatum on orange fruit combining Pantoea agglomerans with hot sodium bicarbonate dipping. J. Plant Pathol. 91: 437–442.

    CAS  Google Scholar 

  • Zardetto, S. 2005. Effect of modified atmosphere packaging at abuse temperature on the growth of Penicillium aurantiogriseum isolated from fresh filled pasta. Food Microbiol. 22: 367–371.

    Article  Google Scholar 

  • Zheng, X. et al. 2007. Inhibiting Penicillium expansum infection of pear fruit by Cryptococcus laurentii and cytokinin. Postharvest Biol. Technol. 45: 221–227.

    Article  CAS  Google Scholar 

  • Zheng, X. et al. 2017. Biocontrol agents increase the specific rate of patulin production by Penicillium expansum but decrease the disease and total patulin contamination of apples. Front. Microbiol. 8: 1240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohri, A.A. and Saber, S.M. 1993. [Filamentous fungi and mycotoxins detected in coconut.] Zentralbl. Mikrobiol. 148: 325–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Penicillium and Talaromyces. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_7

Download citation

Publish with us

Policies and ethics