Skip to main content

Designing Sunflower for Biotic Stress Resilience: Everlasting Challenge

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Oilseed Crops

Abstract

Sunflower, a relevant crop for oil production in temperature regions, is subjected to various biotic stresses. Significance of a particular stress agent, both spatially and temporally, is determined by the environmental limitations and the pest population variability. This chapter provides a review of the major sunflower diseases and pests, with an emphasis on their distribution and description of the damage they may cause. Besides, we discuss different strategies used in sunflower breeding for biotic stress resistance, strategy that is reliable, durable, cost effective and with low negative impact on environment, for pest and disease control. During a long history of sunflower cultivation, several major breakthroughs in breeding for resistance to diseases and pests were made. Recent breakthrough in sunflower genomics and availability of genome data of both sunflower and its pathogens opens up the new possibilities for introduction of biotic stress resistance into cultivated sunflower. In the light of changes made over the history and the recent findings we discuss new tools available for designing sunflower crop resilient to biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Al Fadil T, Poormohammad Kiani S, Dechamp-Guillaume G, Gentzbittel L, Sarrafi (2007) QTL mapping of partial resistance to phoma basal stem and root necrosis in sunflower (Helianthus annuus L.). Plant Sci 172:815–23

    Google Scholar 

  • Aćimović M (1998) Sunflower diseases (Bolesti suncokreta, in Serbian). Institute of Field and Vegetable Crops, Novi Sad

    Google Scholar 

  • Akhtouch B, del Moral L, Leon A, Velasco L, Fernández-Martínez JM, Pérez-Vich B (2016) Genetic study of recessive broomrape resistance in sunflower. Euphytica 209:419–428

    Article  CAS  Google Scholar 

  • Akhtouch B, Muñoz‐Ruz J, Melero‐Vara J, Fernández‐Martínez J, Domínguez J (2002) Inheritance of resistance to race F of broomrape in sunflower lines of different origins. Plant Breed 121(3):266–268

    Google Scholar 

  • Al Fadil A, Naffaa W, Martinez Y, Dechamp-Guillaume G (2011) Mode of penetration by Phoma macdonaldii in susceptible and tolerant sunflower genotypes. Arab J Plant Prot 29:131–138

    Google Scholar 

  • Al-Chaarani GR, Roustaee A, Gentzbittel L, Mokrani L, Barrault G, Dechamp-Guillaume G, Sarrafi A (2002) A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs). Theor Appl Genet 104:490–496

    Article  CAS  PubMed  Google Scholar 

  • Amoozadeh AL, Darvishzadeh R, Davar R, Abdollahi Mandoulakani B, Haddadi P, Basirnia A (2015) Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. J Agric Sci Technol 17:213–226

    Google Scholar 

  • Anđelković V, Cvejić S, Jocić S, Kondic-Špika A, Marjanović Jeromela A et al (2020) Use of plant genetic resources in crop improvement–example of Serbia. Genet Resour Crop Evol 67:1935–1948. https://doi.org/10.1007/s10722-020-01029-9

    Article  Google Scholar 

  • Atlagic J, Terzic S (2014) Sunflower genetic resources—interspecific hybridization and cytogenetics in prebreeding. In: Arribas JI (ed) Sunflowers: growth and development, environmental influences and pests/diseases. Nova Science Publishers, New York

    Google Scholar 

  • Bachlava E, Radwan OE, Abratti G, Tang S, Gao W, Heesacker AF, Bazzalo ME, Zambelli A, Leon AJ, Knapp SJ (2011) Downy mildew (Pl 8 and Pl 14) and rust (R Adv) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13. Theor Appl Genet 122:1211–1221

    Article  PubMed  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Evan Staton S, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B, Legrand L, Gill N, Kane NC, Bowers JE, Hubner S, Bellec A, Bérard A, Bergès H, Blanchet N, Boniface MC, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp SJ, Lai Z, Le Paslier MC, Lippi Y, Lorenzon L, Mandel JR, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Vandecasteele C, Varès D, Vear F, Vautrin S, Crespi M, Mangin B, Burke JM, Salse J, Muños S, Vincourt P, Rieseberg LH, Langlade NB (2017) The sun-flower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:48–152

    Google Scholar 

  • Balconi C, Stevanato P, Motto M, Biancardi E (2012) Breeding for biotic stress resistance/tolerance in plants. In: Ashraf M et al (ed) Crop production for agricultural improvement. Springer, Dordrecht

    Google Scholar 

  • Barkley NA, Wang ML (2008) Application of tilling and ecotilling as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genet 9:212–226

    Article  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bert PF, Jouan I, de Labrouhe TD, Serre F, Nicolas P, Vear F (2002) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet 105:985–993

    Article  CAS  PubMed  Google Scholar 

  • Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, De-labrouhe D et al (2004) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). Theor Appl Genet 109:865–874

    Article  CAS  PubMed  Google Scholar 

  • Bertero de Romano AB, Vazquez AN (1982) New race of Verticillium dahliae Kleb (Helianthus annuus). In: Proceedings of the 10th international sunflower conference. Surfers Paradis, Australia, 14–18 Mar

    Google Scholar 

  • Bhat BN, Reddy RR (2013) Studies on seed transmission of tobacco streak virus causing sunflower necrosis disease. Intl J Plant Prot 6:48–50

    Google Scholar 

  • Bochkarev N (1991) Sunflower biology, plant breeding and production technology. In: Tikhonov O, Bochkarev N, Dyakov AB (eds) Plant and seed marker characters. Agropromizdat, Moscow

    Google Scholar 

  • Bordat A, Marchand G, Langlade NB, Pouilly N, Muños S, Dechamp-Guillaume G, Vincourt P, Bret-Mestries E (2017) Different genetic architectures underlie crop responses to the same pathogen: the Helianthus annuus* Phoma macdonaldii interaction case for black stem disease and premature ripening. BMC Plant Biol 17:167. https://doi.org/10.1186/s12870-017-1116-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borojević S (1992): Principi i metodi oplemenjivanja bilja. Naučna knjiga. Beograd

    Google Scholar 

  • Bouzidi MF, Badaoui S, Cambon F, Vear F, Tourvieille de Labrouhe D, Nicolas P, Mouzeyar S (2002) Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theor Appl Genet 104:592–600

    Article  CAS  PubMed  Google Scholar 

  • Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240

    Article  CAS  PubMed  Google Scholar 

  • Brand AI, Heldwein AB, Radons SZ, da Silva JR, Puhl AJ (2018) Severity of septoria leaf spot and sunflower yield due to leaf wetness duration. J Agric Sci 10:178–188

    Google Scholar 

  • Bulos M, Ramos ML, Altieri E, Sala CA (2013) Molecular mapping of a sunflower rust resistance gene from HAR6. Breed Sci 63:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulos M, Vergani PN, Altieri E (2014) Genetic mapping, marker assisted selection and allelic relationships for the Pu6 gene conferring rust resistance in sunflower. Breed Sci 64:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera Maderos D, Trucco V, Bejerman N, Lenardon S, Giolitti F (2019) First report of tobacco streak virus infecting sunflower in Argentina. Plant Dis 103:3290

    Article  Google Scholar 

  • Carson ML (1985a) Epidemiology and yield losses associated with Alternaria blight of sunflower. Phytopathology 75:1151–1156

    Article  Google Scholar 

  • Carson ML (1985b) Reactions of sunflower inbred lines to two foliar diseases. Plant Dis 69:986–988

    Google Scholar 

  • Charlestone K (2013) Sunflower insect pest management Northern grains region. Crop and Food Science, Queensland Department of Agriculture, Fisheries and Forestry, State of Queensland

    Google Scholar 

  • Charlet LD, Brewer GJ (1997) Management strategies for insect pests of sunflower in North America. Recent Res Dev Entomol 1:215–229

    Google Scholar 

  • Charlet LD, Armstrong JS, Hein GL (2002) Sunflower stem weevil (Coleoptera: Curculionidae) and its larval parasitoids in the central and northern plains of the USA. Biocontrol 47:513–523

    Article  Google Scholar 

  • Chen RS, Chu C, Cheng CW, Chen WY, Tsay JG (2008) Differentiation of two powdery mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. Eur J Plant Pathol 121:1–8

    Article  CAS  Google Scholar 

  • Christov M (2008) Helianthus species in breeding research in sunflower. In: Velasco J (ed) Proceedings of the 17th international sunflower conference. Cordoba, Spain, 8–12 June 2008

    Google Scholar 

  • Clemente GE, Bazzalo ME, Escande AR (2017) New variants of Verticillium dahlia causing sunflower leaf mottle and wilt in Argentina. J Plant Pathol 99(2):445–451

    Google Scholar 

  • Cockerell TDA (1929) Hybrid sunflowers. Amer Nat 63:470–475

    Article  Google Scholar 

  • Colbert TG, Hurst SR, Slade AJ (2001) Tomatoes that soften more slowly post-harvest due to non-transgenic alterations in an expansin gene. US: US Patent Application, 14178851, 2001

    Google Scholar 

  • Cvejić S, Miladinović D, Jocić S (2014) Mutation breeding for changed oil quality in sunflower. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, Wageningen, pp 77–96

    Chapter  Google Scholar 

  • Cveji´c S, Joci´c S, Dedi´c B, Miladinovi´c D, Dimitrijevi´c A, Imerovski I, Jockovi´c,M, Mikliˇc V (2018) Inheritance of resistance to broomrape in sunflower inbred line LIV-17. In Proceedings of the 4th International Symposium on Broomrape in Sunflower, Bucharest, Romania, 2–4, pp. 154–162

    Google Scholar 

  • Cvejić S, Radanović A, Dedić B, Jocković M, Jocić S, Miladinović D (2020) Genetic and genomic tools in sunflower breeding for broomrape resistance. Genes 11:152

    Article  PubMed Central  CAS  Google Scholar 

  • Darvishzadeh R, Kianu SP, Huguet T, Sarrafi A (2007) Genetic variation and identification of molecular markers associated with partial resistance to Phoma macdonaldii in gamma-irradiation-induced mutants of sunflower. Can J Plant Pathol 30:106–114

    Article  Google Scholar 

  • Das ND, Sankar GRM, Srivatsava N (1998) Studies on the progression of Alternaria blight disease, Alternaria helianthi (Hansf.) Tubaki and Nishihara of sunflower. Ann Plant Protec Sci 6:209–211

    Google Scholar 

  • Davar R, Darvishzadeh R, Majd A, Kharabian Masouleh A, Ghosta Y (2012) The Infection Processe of Sclerotinia sclerotiorumin basal stem tissue of a susceptible genotype of helianthus annuus L. Not Bot Horti Agrobo 40:143–149

    Article  Google Scholar 

  • Debaeke P, Casadebaig P, Flenet F, Langlade N (2017) Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL 24:D102

    Article  Google Scholar 

  • Dedić B (2012) Testing sunflower inbred lines for tolerance to Phoma black stem. Pesticidi i Fitomedicina 27:299–303

    Article  Google Scholar 

  • Diaz FA, Ortegon MA (1997) Influence of sunflower stem canker (Diaporthe helianthi) on seed quality and yield during seed development. Helia 20:57–62

    Google Scholar 

  • Dimitrijević A, Horn R (2018) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrijević A, Imerovski I, Miladinović D, Tančić S, Dušanić N, Jocić S, Miklič V (2010) Use of SSR markers in identification of sunflower isogenic lines in late generations of backcrossing. Helia 33:191–198

    Article  Google Scholar 

  • Duriez P, Vautrin S, Auriac MC, Bazerque J, Boniface MC, Callot C, Carrère S, Cauet S, Chabaud M, Gentou F, Lopez-Sendon M, Paris C, Pegot-Espagnet P, Rousseaux JC, Pérez-Vich B, Velasco L, Bergès H, Piquemal J, Muños S (2019) A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat Plants 5:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Dußle CM, Hahn V, Knapp SJ, Bauer E (2004) Pl Arg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109:1083–1086

    Google Scholar 

  • Encheva J, Shindrova P (2011) Developing mutant sunflower lines (Helianthus annuus L.) through induced mutagenesis and study of their combining ability. Helia 34:107–122

    Article  Google Scholar 

  • Encheva J, Shindrova P, Encheva V, Valkova D (2012) Mutant sunflower line R 12003, produced through in vitro mutagenesis. Helia 35(56):19–30

    Article  Google Scholar 

  • Fernández-Martínez JM, Velasco L, Pérez-Vich B (2004) Progress in the genetic modification of sunflower oil quality. In: Proceedings of the 16th International sunflower conference Aug 29 Sept 2, ND, USA, pp 1–14

    Google Scholar 

  • Filippi CV, Merino GA, Montecchia JF, Aguirre NC, Rivarola M et al (2020) Genetic diversity, population structure and linkage disequilibrium assessment among international sunflower breeding collections. Genes 11(3):283–298

    Article  CAS  PubMed Central  Google Scholar 

  • Filippi CV, Aguirre N, Rivas JG, Zubrzycki J, Puebla A, Cordes D, Moreno MV, Fusari CM, Alvarez D, Heinz RA, Hopp HE, Paniego NB Lia VV (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:52. https://doi.org/10.1186/s12870-014-0360-x

  • Floate KD (2017) Cutworm pests on the Canadian Prairies: Identification and management field guide. Agriculture and Agri-Food Canada, Lethbridge, Alberta

    Google Scholar 

  • Fusari CM, Di Rienzo JA, Troglia C, Nishinakamasu V, Moreno MV, Maringolo C, Quiroz F, Álvarez D, Escande A, Hopp E, Heinz R, Lia VV, Paniego NB (2012) Association mapping in sunflower for Sclerotinia head rot resistance. Plant Biol 12:93. https://doi.org/10.1186/1471-2229-12-93

    Article  CAS  Google Scholar 

  • Gandhi V, Taya RS, Kumar A (2019) Epidemiology of Collar Rot of Sunflower (Helianthus annuus L.) caused by Sclerotium rofsiiSacc. Intl J Curr Microbiol Appl Sci 8:762–771

    Article  Google Scholar 

  • Gao W, Ripley VL, Aradhya CC, Meyer DH, Velasco L, Benson RM, Perez Vich B, Erickson AL, Fernandez Martinez JM, Ren R, Avery M (2019) Molecular markers associated with Orobanche resistance in sunflower. US Patent Application 15/946, 105

    Google Scholar 

  • Garcia-Ruiz R, Garcia-Carneros AB, Molinero-Ruiz L (2014) A new race of Verticillium dahlia causing leaf mottle of sunflower in Europe. Plant Dis 98(10):1435

    Article  CAS  PubMed  Google Scholar 

  • Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L (2014) The sunflower downy mildew pathogen Plasmopara halstedii. Mol Plant Pathol 16(2):109–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavrilova VA, Rozhkova VT, Anisimova IN (2014) Sunflower genetic collection at the Vavilov institute of plant industry. Helia 37:1–16

    Article  Google Scholar 

  • Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, Tourvieille de Labrouhe D, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet 96:519–525

    Article  CAS  PubMed  Google Scholar 

  • Gilley M, Misar C, Gulya, Markell S (2016) Prevalence and virulence of Plasmopara halstedii (downy mildew) in sunflowers. In: Proceeding 38th sunflower research forum. Fargo ND http://www.sunflowernsa.com/uploads/research/1277/Prevalence.Downey_Gilley.etal_2016.rev.pdf

  • Glogoza P, Brewer G, Charlet L (1997) Sunflower midge. North Dakota State Univ Coop Ext Serv Bull E-800:1–4

    Google Scholar 

  • Gong L, Gulya TJ, Markell SG, Hulke BS, Qi LL (2013) Genetic mapping of rust resistance genes in confection sunflower line HA-R6 and oilseed line RHA 397. Theor Appl Genet 126:2039–2049

    Article  CAS  PubMed  Google Scholar 

  • Gontcharov SV (2014) Dynamics of hybrid sunflower disease resistance. Helia 37(60):99–104

    Article  Google Scholar 

  • Gopalakrishnan C, Manivannan N, Vindhiyavarman P, Thiyagarajan K (2010) Evaluation and identification of Alternaria leaf spot resistant sunflower. Elect J Plant Breed 1:177–181

    Google Scholar 

  • Gorbachenko FI, Usatenko TV, Gorbachenko OF (2011) Results of sunflower breeding in resistance to broomrape on Don. Helia 34:9–18

    Article  Google Scholar 

  • Guchetl S, Antonova T, Araslanova N, Tchelyustnikova T (2018) Sunflower resistance to race G of broomrape: The development of the lines and the study of inheritance. In Proceedings of the 4th International Symposium on Broomrape (Orobanche spp.) in Sunflower, Bucharest, Romania, p. 83

    Google Scholar 

  • Gulya TJ, Sackston WE, Viranyi F, Masirevic S, Rashid KY (1991) New races of the sunflower downy mildew pathogen (Plasmopara halstedii) in Europe and North and South America. J Phytopathol 132:303–311

    Article  Google Scholar 

  • Gulya TJ, Shiel PJ, Freeman T, Jordan RL, Isakeit T, Berger PH (2002a) Host range and characteriastion of Sunflower mosaic virus. Phytopathology 92:694–702

    Article  CAS  PubMed  Google Scholar 

  • Gulya T, Viranyi F, Appel J, Jardine D, Schwartz HF, Meyer R (2002b) First report of Albugo tragopogonis on cultivated sunflower in North America. Plant Dis 86(5):559

    PubMed  Google Scholar 

  • Gulya TJ, Markell S (2009) Sunflower rust status-2008 race frequency across the Midwest and resistance among commercial hybrids. In: Proceedings of the 31st sunflower research forum. Fargo, ND, USA, 13–14 Jan 2009. https://www.sunflowernsa.com/uploads/15/gulya_ruststatus_09.pdf

  • Gulya T, Rashid KY, Masirević SM (1997) Sunflower diseases. In: Schneiter AA (ed) Sunflower technology and production. Madison, Wisconsin, USA

    Google Scholar 

  • Gundaev AI (1971) Basic principles of sunflower selection. In: Genetic principles of plant selection. Nauka, Moscow

    Google Scholar 

  • Harveson R, Mathew F, Gulya T, Markell S, Block C, Thompson S (2018) Sunflower stalk diseases initiated trough leaf infections. Plant Health Prog 19:82–91

    Article  Google Scholar 

  • Hassan EARS, Hoeft E, Tulsieram L (2011) Genetic markers for orobanche resistance in sunflower; United States Patent No. 7872170; United States Patent: Alexandria, VA, USA, pp. 1–21

    Google Scholar 

  • Herbette S, Lenne C, Tourvieille De Labrouhe D, Drevet JR, Roeckel-Drevet P (2003) Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol Plant 119:418–428

    Article  CAS  Google Scholar 

  • Horn R, Radanović A, Fuhrmann L, Sprycha Y, Hamrit S, Jockovic M, Miladinovic D, Jansen C (2019) Development and validation of markers for the fertility restorer gene Rf1 in sunflower. Intl J Mol Sci 20:1260

    Article  CAS  Google Scholar 

  • Hosseini S, Koohi Habibi M, Mosahebi G, Mosahebi G, Motamedi M, Winter S (2012) First report on the occurrence of Tobacco Streak Virus on sunflower in Iran. J Plant Pathol 94:585–589

    Google Scholar 

  • Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute GJ, Owens GL, Grassa CJ, Ebert DP, Ostevik KL, Moyers BT, Yakimowski S, Masalia RR, Gao L, Ćalić I, Bowers JE, Kane NC, Swanevelder DZH, Kubach T, Muños S, Nicolas B, Langlade NB, Burke JM, Rieseberg LH (2019) Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants 5:54–62

    Google Scholar 

  • Huguet NI (2006) Occurrence of Phomopsis helianthi in Argentina and Uruguay. Helia 29:121–126

    Article  Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric Forest 39:515–530

    Article  CAS  Google Scholar 

  • Ijaz S, Sadaqat HA, Khan MN (2013) A review on impact of charcoal rot (Macrophomina phaseolina) on sunflower. J Agric Sci 151:222–227

    Article  Google Scholar 

  • Imerovski I, Dimitrijević A, Miladinović D, Dedić B, Jocić S et al (2016) Mapping of a new gene for resistance to broomrape races higher than F. Euphytica 209:281–289

    Article  CAS  Google Scholar 

  • Imerovski I, Dedić B, Cvejić S, Miladinović D, Jocić S, Owens GL, Kočić Tubić N, Rieseberg LH (2019) BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Mol Breed 39:41

    Article  CAS  Google Scholar 

  • Imerovski I, Dimitrijević A, Miladinović D, Dedić B, Jocić S, Cvejić S (2014) Preliminary SSR analysis of a novel broomrape resistance source. In: Proceedings of the 3rd international symposium on broomrape in sunflower. Córdoba, Spain, 3–6 June 2014

    Google Scholar 

  • Jalil S, Sadaqat HA, Tahir HN (2014) Correlation studies among yield related traits for seed yield in sunflower (Helianthus annuus L.) under charcoal rot stress conditions. Eur Sci J 10(9):391–398. https://doi.org/10.19044/esj.2014.v10n9p%p

  • Jan CC, Fernández-Martínez JM, Ruso J, Muñoz-Ruz J (2002) Registration of four sunflower germplasms with resistance to Orobanche cumana Race, F. (Registrations of Germplasm). Crop Sci 42:2217–2219

    Google Scholar 

  • Jan CC, Gulya TJ (2006) Registration of a sunflower germplasm resistant to rust, downy mildew, and virus. Crop Sci 46:1829–1829

    Google Scholar 

  • Jocić S, Miladinović D, Imerovski I, Dimitrijević A, Cvejić S, Nagl N, Kondić-Špika A (2012) Towards sustainable downy mildew resistance in sunflower. Helia 35:61–72

    Article  Google Scholar 

  • Jocić S, Miladinović D, Kaya Y (2015) Breeding and genetics of sunflower. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower: chemistry, production, processing, and utilization. American Oil Chemists Society (AOCS) Press, Urbana, pp 1–26

    Google Scholar 

  • Jocic S, Cvejic S, Hladni N, Miladinović D, Miklič V (2010) Development of sunflower genotypes resistant to downy mildew. Helia 33:173–180

    Article  Google Scholar 

  • Jordaan E, van der Waals JE, McLaren NW (2019) Effect of irrigation on charcoal rot severity, yield loss and colonization of soybean and sunflower. Crop Prot 122:63–69

    Article  Google Scholar 

  • Jyoti JL, Brewer GJ (1999a) Median lethal concentration and efficacy of Bacillus thuringiensis against banded sunflower moth (Lepidoptera: Tortricidae). J Econ Entomol 92:1289–1291

    Article  Google Scholar 

  • Jyoti JL, Brewer GJ (1999b) Resistance in sunflower and Interaction with Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). J Econ Entomol 92:1230–1233

    Article  CAS  PubMed  Google Scholar 

  • Kallamadi PR, Mulpuri S (2020) Inheritance and molecular mapping of powdery mildew (Golovinomyces orontii) resistance gene(s) in sunflower (Helianthus annuus L.). Biotechnology 10:234 https://doi.org/10.1007/s13205-020-02224-2

  • Kanyon P, Friedt W (1993) Differential reaction of sunflower genotypes to infection by Botrytis cinerea Pers. Helia 16:77–84

    Google Scholar 

  • Kaya Y (2016) Sunflower. In: Gupta SK (ed) Breeding oilseed crops for sustainable production: opportunities and constraints presents. Academic Press, USA

    Google Scholar 

  • Kaya Y, Jocic S, Miladinovic D (2012) Sunflower. In: Technological innovations in major world oil crops. Springer, New York

    Google Scholar 

  • Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology 5:111–118

    Google Scholar 

  • Khan U, Khan MR (2015) Seed treatment with bio-fungicides for management of dry root rot of Chick pea caused by Macrophomina phaseolina. Ann Plant Prot Sci 23:302–307

    Google Scholar 

  • Knodel J, Charlet L, Gavloski J (2015) Integrated pest management of sunflower insect pests in the Northern Great Plains. Fact Sheet E1457

    Google Scholar 

  • Koehler BD, Gulya TJ, Hulke BS (2019) Registration of oilseed sunflower germplasms RHA 478, RHA 479, RHA 480, and HA 481 Providing diversity in resistance to necrotrophic pathogens of sunflower. J Plant Registr 13:444–449

    Article  Google Scholar 

  • Kolte SJ (1981) Sunflower diseases. In: Disease of annual edible oilseed crops Vol III, CRC Press. Inc. Boca Raton Florida

    Google Scholar 

  • Kong A, Mitchell JHM, Kochman JK (2004) Inheritance of resistance to Alternaria blight in sunflower restorer lines. In: Proceedings of the 16th international sunflower conference, Fargo

    Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Krinski D, Godoy AG (2015) First record of Helicoverpa armigera (Lepidoptera: Noctuidae) feeding on Plectranthus neochilus (Lamiales: Lamiaceae) in Brazil. Florida Entomol 98:1238–1240

    Article  Google Scholar 

  • Krupp A, Heller A, Spring O (2019) Development of phloem connection between the parasitic plant Orobanche cumanaand its host sunflower. Protoplasma 256:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Kulnakarni VV, Shankergoud I, Govindappa MR (2015) Identification of sunflower powdery mildew resistant sources under artificial screening. SABRAO J Breed Genet 47(4):502–509

    Google Scholar 

  • Kumar AP, Boualem A, Bhattacharya A (2013) SMART–sunflower mutant population andreverse genetic tool for crop improvement. BMC Plant Biol 13:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladsous O, Vear F, Tourvieille De Labrouhe D (1991) Heredity of resistance to Botrytis cinerea in Sunflower (Helianthus annuus) measured by artificial infections. Plant Breed 107:235–241

    Article  Google Scholar 

  • Langar K, Griveau Y, Serieys H, Kann F, Berville A (2004) Mapping components of resistance to Phomopsis (Diaporthe helianthi) in a population of sunflower recombinant inbred lines. In: Proceedings of the 16th international sunflower conference. Fargo, ND, Aug 29, Sept 2, pp 643–649

    Google Scholar 

  • Lava SS, Heller A, Spring O (2013) Oospores of Pustula helianthicola in sunflower seeds and their role in the epidemiology of white blister rust. IMA Fungus 4(2):251–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1996) RAPD markers for a sunflower rust resistance gene. Aus J Agric Res 47:395–401

    Article  CAS  Google Scholar 

  • Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1998) Marker assisted selection for two rust resistance genes in sunflower. Mol Breed 4:227–234

    Article  CAS  Google Scholar 

  • Lenardon SL, Giolitti F, Leon A, Bazzalo ME, Grondona M (2001) Effect of sunflower chlorotic mottle virus infection on sunflower yield parameters. Helia 24:55–66

    Article  Google Scholar 

  • Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094

    Article  CAS  PubMed  Google Scholar 

  • Lipps PE, Herr LJ (1986) Reactions of Helianthus annuus and H. tuberosus plant introductions to Alternaria helianthi. Plant Dis 70:831–835

    Article  Google Scholar 

  • Liu Z, Gulya TJ, Seiler GJ, Vick BA, Chao-Chien J (2012) Molecular mapping of the Pl 16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. Theor Appl Genet 125:121–131

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang L, Ma GJ, Seiler GJ, Jan CC, Qi LL (2019) Molecular mapping of the downy mildew and rust resistance genes in a sunflower germplasm line TX16R. Mol Breed 39:19

    Article  CAS  Google Scholar 

  • Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R et al (2016) Diversity analysis and genomic prediction of sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129:317–329

    Article  CAS  PubMed  Google Scholar 

  • Lofgren JR, Ramaraje Urs NV (1982) Chemically induced mutations in sunflower. In: Proceedings of the 10th international sunflower conference. Surfers Paradise, Australia, 14–18 Mar 1982

    Google Scholar 

  • Louarn J, Boniface MC, Pouilly N, Velasco L, Perez-Vich B et al (2016) Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front Plant Sci 7:590

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu YH, Melero-Vara JM, Garcia-Tejada JA, Blanchard P (2000) Development of SCAR markers linked to the gene Or5 conferring resistance to broomrape (Orobanche cumana Wallr.) in sunflower. Theor Appl Genet 100:625–632

    Article  CAS  Google Scholar 

  • Ma GJ, Song QJ, Markell SG, Qi LL (2018) High throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R15, in sunflower (Helianthus annuus L.). Theor Appl Genet 131:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Maldaner IC, Heldwein AB, Blume E, Lucas DDP, Grimm EL, Cabrera IC (2009) First report of Septoria helianthin on sunflower in Brazil, Anais da XVII Reunião Nacional de Pesquisa de Girassol (RNPG) e no VI Simpósio Nacional sobre a Cultura do Girassol, Pelotas, Rio Grande do Sul, Brasilia, 30 de setembro a 1o de outubro 2009:282–287

    Google Scholar 

  • Mandel J, Dechaine J, Marek L, Burke J (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704

    Article  CAS  PubMed  Google Scholar 

  • Martín-Sanz A, Malek J, Fernández-Martínez JM, Pérez-Vich B, Velasco L (2016) Increased virulence in sunflower broomrape (Orobanche cumana Wallr.) populations from Southern Spain is associated with greater genetic diversity. Front Plant Sci 7:589

    Google Scholar 

  • Martin-Sanz A, Perez-Vich B, Rueda S, Fernandez-Martinez JM, Velasco L (2019) Characterization of post-haustorial resistance to sunflower broomrape. Crop Sci

    Google Scholar 

  • Maširević S, Gulya T (1992) Sclerotinia and Phomopsis —two devastating sunflower pathogens. Field Crops Res 30:271–300

    Article  Google Scholar 

  • Mathew GM, Ju YM, Lai CY, Mathew DC, Huang CC (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiol Ecol 79:504–517

    Article  CAS  PubMed  Google Scholar 

  • Mathew MM, Alananbeh GJ, Jordahl JG, Meyer SM, Castlebury AL, Gulya JT, Markell GS (2015) Phomopsis stem canker: a reemerging treat to sunflower (Helianthus annuus) in the United States. Phytopathology 105:990–997

    Article  PubMed  Google Scholar 

  • McLeod M (2002) Sunflower moths & banded sunflower moths fact sheets 895:73. http://openprairie.sdstate.edu/extension_fact/73

  • Mestries E, Gentzbittel L, Tourvieille de Labrouhe D (1998) Analysis of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Mol Breed 4:215–226

    Article  CAS  Google Scholar 

  • Michaud JP, Grant AK (2009) The nature of resistance to Dectes texanus (Col., Cerambycidae) in wild sunflower. Helianthus Ann J Appl Entomol 133:518–523

    Article  Google Scholar 

  • Mićić Z, Hahn V, Bauer E, Melchinger A, Knapp S et al (2005a) Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping. Theor Appl Genet 111:233–242

    Article  PubMed  CAS  Google Scholar 

  • Mićić Z, Hahn V, Bauer E, Schön CC, Melchinger AE (2005b) QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOS sel× CM625. Theor Appl Genet 110:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Mihaljčević M, Muntañola-Cvetković M, Vukojević J, Petrov M (1985) Source of infection of sunflower plants by Diaporthe helianthi in Yugoslavia. J Phytopathol 113:334–342

    Article  Google Scholar 

  • Miladinović D, Imerovski I, Dimitrijević A, Jocić S (2014) CAPS markers in breeding of oil crops. In: Shavrukov Y (ed) Cleaved amplified polymorphic sequences (CAPS) markers in plant biology. Nova Science Publishers Inc., New York, pp 61–82

    Google Scholar 

  • Miladinović D, Hladni N, Radanović A, Jocić S, Cvejić S (2019) Sunflower and climate change: possibilities of adaptation through breeding and genomic selection. In: Kole C (ed) Genomic designing of climate-smart oilseed crops. Springer, Cham, pp 173–238

    Google Scholar 

  • Miller JF, Gulya TJ (1988) Registration of six downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041

    Article  Google Scholar 

  • Miller JF, Gulya TJ, Vick BA (2006a) Registration of imidazolinone herbicide-resistant maintainer (HA 442) and fertility restorer (RHA 443) oilseed sunflower germplasms. Crop Sci 46:483–484

    Article  Google Scholar 

  • Miller JF, Gulya TJ, Vick BA (2006b) Registration of three maintainer (HA 444 to HA 446) and one restorer (RHA 447) high oleic oilseed sunflower germplasms. Crop Sci 46:484–485

    Article  Google Scholar 

  • Mirleau-Thebaud V, Scheiner J, Dayde J (2011) Influence of soil tillage and Phoma macdonaldii on sunflower (Helianthus annuus L.) yield and oil quality. Phyton Intl J Exp Bot 80:203–210

    Google Scholar 

  • Molinero-Ruiz L, Delavault P, Perez-Vich B, Pacureanu-Joita M, Bulos M, Altieri E, Dominguez J (2015) History of the race structure of Orobanchecumanaand the breeding of sunflower for resistance to this parasitic weed: a review. Span J Agric Res 13. http://dx.doi.org/10.5424/sjar/2015134-8080

  • Morris JB, Yang SM, Wilson L (1983) Reaction of Helianthus species to Alternaria helianthi. Plant Dis 67:539–540

    Article  Google Scholar 

  • Mouzeyar S, De Labrouhe DT, Vear F (1993) Histopathological studies of resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii). J Phytopathol 139:289–297

    Article  Google Scholar 

  • Mouzeyar S, Roeckel-Drevet P, Gentzbittel L, Vear F, Zhang Y-X, Bervillé A, Nicolas P (1995) RFLP and RAPD mapping of the sunflower Pl1 locus for resistance to Plasmopara halstedii race 1. Theor Appl Genet 91:733–737

    Article  CAS  PubMed  Google Scholar 

  • Mulpuri S, Soni PK, Gonela SK (2016) Morphological and molecular characterisation of powdery mildew on sunflower (Helianthus annuus L.), alternate hosts and weeds commonly found in and around sunflower fields in India. Phytoparasitica 44:353–367

    Article  CAS  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  • Muntañola-Cvetković M, Mihaljčević M, Petrov M (1981) On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwig 34:417–435

    Google Scholar 

  • Murthy UK, Lyngdoh IE, Gopalakrishna T, Shivanna MB, Prasad DT (2005) Assessment of heritability of Alternaria helianthi resistance trait in sunflower using molecular markers. Helia 28:33–42

    Article  Google Scholar 

  • Naggayya VV (2013) Genetic analysis of powdery mildew resistance, seed yield and its component traits in sunflower (Helianthus annuus L.). Post Graduate Thesis. University of Agricultural Sciences, Dharwad, India. http://krishikosh.egranth.ac.in/handle/1/87292

  • Najafzadeh R, Darvishzadeh R, Musa-Khalifani K, Abrinbana M, Alipour H (2018) Retrotransposonable regions of sunflower genome having relevance with resistance to Sclerotinia species: S. sclerotiorum and S. minor. Australas Plant Pathol 47:511–519

    Article  CAS  Google Scholar 

  • Nambeesan SU, Mandel JR, Bowers JE, Marek L, Ebert D et al (2015) Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical versus basal branching. BMC Plant Biol 15:84. https://doi.org/10.1186/s12870-015-0458-9

  • Pacureanu-Joita M, Vranceanu AV, Soare G, Marinescu A, Sandu I (1998) The evaluation of the parasite-host interaction system (Helianthus annuus L.)-(Orobanche cumana Wallr.) in Romania. In Proceedings of 2nd Balkan symposium on field crops: Novi Sad. Yugoslavia, 16–20 June 1998

    Google Scholar 

  • Pacureanu Joita M, Fernández-Martínez J, Sava E, Raranciuc S (2009) Broomrape (Orobanche cumana Wallr.), the most important parasite in sunflower. Analele Institutului Nat, ional de Cercetare-Dezvoltare Agricolă Fundulea 77:49–56

    Google Scholar 

  • Pacureanu-Joita M, Raranciuc S, Procopovici E, Sava E, Nastase, DT (2008) The impact of the new races of broomrape (Orobanche cumana Wallr.) parasite in sunflower crop in Romania. In Proceedings of the 17th Intertnational Sunflower Conference, Cordoba, Spain, 8 June 2008; pp. 225–231

    Google Scholar 

  • Panković D, Radovanović N, Jocić S, Satovic Z, Škorić D (2007) Development of codominant amplified polymorphic sequence markers for resistance of sunflower to downy mildew race 730. Plant Breed 126:440–444

    Article  CAS  Google Scholar 

  • Pecrix Y, Penouilh-Suzette C, Muños S, Vear F, Godiard L (2018) Ten broad spectrum resistances to downy mildew physically mapped on the sunflower genome. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01780

  • Peres A, Allard AM, Deverchere J, Penaud A. (1994) Phoma du tournesol: Etude de la protection fongicide au champ. In: 4eme conference internationale sur les maladies des plantes. Bordeaux 06–08 Dec, pp 1179–1185

    Google Scholar 

  • Pérez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco V et al (2004a) Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor Appl Genet 109:92–102

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Vich B, Velasco L, Rich PJ et al (2013) Marker-assisted and physiology-based breeding for resistance to root parasitic Orobanchaceae. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic orobanchaceae. Springer, Berlin, pp 369–391

    Chapter  Google Scholar 

  • Pérez-Vich B, Aguirre MR, Guta B, Fernández-Martínez M (2018) Genetic diversity of a germplasm collection of confectionery sunflower landraces from Spain. Crop Sci 58:1972–1981

    Article  CAS  Google Scholar 

  • Pérez-Vich B, Velasco L, Fernandez-Martinez JM (2004b) QTL mapping of resistance to races E and F of broomrape (Orobanche cumana Wallr.) in sunflower. In: Proceedings of the parasitic plant management in sustainable agriculture meeting on breeding for Orobanche resistance in sunflower. Bucharest, 4–6 Nov 2004

    Google Scholar 

  • Pilorge E (2020) Sunflower in the global vegetable oil system: situation, specificities and perspectives. OCL 27. https://doi.org/10.1051/ocl/2020028

  • Pineda-Martos R, Pujadas-Salva AJ, Fernandez-Martinez JM (2014) The genetic structure of wild Orobanche cumana Wallr. (Orobanchaceae) pulations in eastern Bulgaria reflects introgressions from weedy populations. Sci World J. https://doi.org/10.1155/2014/150432

  • Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Ann Rev Phytopathol 54:79–98

    Article  CAS  Google Scholar 

  • Prasifka JR, Hulke BS (2012) Current status and future perspectives on sunflower insect pests. In: Abstracts of the 18th international sunflower conference. Mar del Plata & Barcarce, Argentina, Feb 27-Mar 1, 2012, 41

    Google Scholar 

  • Pustovoit GV, Ilatovsky VP, Slyusar EL (1976) Results and prospects of sunflower breeding for group immunity by interspecific hybridization. In Proceedings of the 7th International Sunflower Conference, Krasnodar, USSR, pp. 402–408

    Google Scholar 

  • Putt ED, Sackston WE (1956) Studies on sunflower rust: i some sources of rust resistance. Can J Plant Sci 37:43–54

    Article  Google Scholar 

  • Qi LL, Hulke BS, Vick BA, Gulya TJ (2011a) Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theor Appl Genet 123:351–358

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Gulya TJ, Seiler GJ, Hulke BS, Vick BA et al (2011b) Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 101:241–249

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Seiler GJ, Hulke BS, Vick BA, Gulya TJ (2012) Genetics and mapping of the R 11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theor Appl Genet 125:921–932

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ et al (2015) Pl 17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 128:757–767

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Talukder ZI, Hulke BS, Foley ME (2017) Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.). Mol Genet Genom 292:551–563

    Article  CAS  Google Scholar 

  • Qi LL, Ma GJ, Li XH, Seiler GJ (2019) Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl35, from wild Helianthus argophyllus into oilseed and confection sunflowers (Helianthus annuus L.). Theor Appl Genet 132:2553–2565

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Ma G (2020) Marker-assisted gene pyramiding and the reliability of using SNP markers located in the recombination suppressed regions of sunflower (Helianthus annuus L.). Genes 11:10. https://doi.org/10.3390/genes11010010

  • Quiroz FJ, Edwards Molina JP, Dosio GAA (2014) Black stem by Phoma macdonaldii affected ecophysiological components that determine grain yield in sunflower (Helianthus annuus L.). Field Crops Res 160:31–40

    Article  Google Scholar 

  • Radwan O, Mouzeyar S, Venisse JS, Nicolas P, Bouzidi MF (2005) Resistance of sunflower to the biotrophic oomycete Plasmopara halstedii is associated with a delayed hypersensitive response within the hypocotyls. J Exp Bot 56:2683–2693

    Article  CAS  PubMed  Google Scholar 

  • Rajender S, Tripathi NN, Singh R (1996) Vulnerability of sunflower (Hellianthus annus L.) head to Sclerotinia sclerotiorum (Lib.) de Bary infection. Indian J Agric Res 30:22–26

    Google Scholar 

  • Ravi KS, Buttgereitt A, Kitkaru S, Deshmukh S, Lesemann DE, Winter S (2001) Sunflower necrosis disease from India is caused by an ilarvirus related to Tobacco streak virus. Plant Pathol 50:800

    Article  Google Scholar 

  • Rodríguez-Ojeda MI, Fernández-Escobar J, Alonso LC (2001) Sunflower inbred line (KI-374) carrying two recessive genes for resistance against a highly virulent Spanish population of Orobanche cernua Loefl. race F. In Proceedings of the 7th International Parasitic Weed Symposium, Nantes, France, pp. 208–211

    Google Scholar 

  • Rojas-Barros P, Jan CC, Gulya TJ (2006) Transferring powdery mildew resistance genes from wild Helianthus into cultivated sunflower. In: Proceedings of the 27th Sunflower Research Workshop. Fargo ND pp 12–13

    Google Scholar 

  • Ronicke S, Hahn V, Friedt W (2005) Resistance to Sclerotinia sclerotiorum of ‘high oleic’sunflower inbred lines. Plant Breed 124:376–381

    Article  Google Scholar 

  • Rost C, Thines M (2012) A new species of Pustula (Oomycetes, Albuginales) is the causal agent of sunflower white rust. Mycol Prog 11:351–359

    Article  Google Scholar 

  • Roustaee A, Barrault G, Dechamps-Guillaume G, Lesigne P, Sarrafi A (2000) Inheritance of partial resistance to black stem ( Phoma macdonaldii) in sunflower. Plant Pathol 49:396–401

    Google Scholar 

  • Rubiales D (2018) Can we breed for durable resistance to broomrapes? Phytopathol Mediterr 57:170–185

    Google Scholar 

  • Rystrom ZD (2015) Seasonal activity and sampling methods for the dectes stem borer, Dectes texanus Leconte, in Nebraska soybeans, Dissertation, University of Nebraska

    Google Scholar 

  • Sadras VO, Quiroz F, Echarte L, Escande A, Pereyra VR (2000) Effect of Verticillium dahliae on photosynthesis, leaf expansion and senescence of field-grown sunflower. Ann Bot 86:1007–1015

    Article  Google Scholar 

  • Saharan GS, Mehta N (2008) Economic importance. Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Dordrecht, pp 41–45

    Chapter  Google Scholar 

  • Sakr N (2011) Aggressiveness in Plasmopara halstedii (sunflower downy mildew). Plant Pathol J 27:110–115

    Article  Google Scholar 

  • Salamon P (2003) Viral disease and viruses of sunflower (Helianthus annuus L.)—a review. Novenytermetes 52:437–443

    Google Scholar 

  • Says-Lesage V, Tourvieille de Labrouhe D (1988) Recherche des sites de pollution et d’ infection des fleurons de tournesol, in situ, par les spores de Sclerotinia sclerotiorum. Infs Tech C.E.T.I.O.M. 102:3–13

    Google Scholar 

  • Sayago A, Perez-Vich B, Fernandez-Martinez JM, Velasco L (2018) A new source of posthaustorial resistance to sunflower broomrape derived from Helianthus praecox. In Proceedings of the 4th International Symposium on Broomrape in Sunflower, Bucharest, Romania, p. 147

    Google Scholar 

  • Schwanck AA, Savary S, Lepennetier A, Debaeke P, Vincourt P, Willocquet L (2016) Effects of plant morphological traits on Phoma black stem in sunflower. Eur J Plant Pathol 145:345–361

    Article  CAS  Google Scholar 

  • Seiler GJ (2019) Genetic resources of the sunflower crop wild relatives for resistance to sunflower broomrape. Helia 42:127–143

    Article  Google Scholar 

  • Seiler G, Gulya JT (2016) Sunflower: overview. In: Wrigley CW, Corke H, Seetharaman K, Faubion J (eds) Encyclopedia of food grains. Academic Press, Oxford, UK, pp 247–253

    Chapter  Google Scholar 

  • Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57:1–19

    Article  Google Scholar 

  • Seiler G, Jan CC (2010) Basic information. In: Hu J, Seiler G, Kole C (eds) Genetics, genomics and breeding of sunflower. Science Publishers, Enfield, New Hampshire, USA; CRC Press, Boca Raton, FL, pp 1–40

    Google Scholar 

  • Sessau C, Deschamp-Guillaume G, Mestries E, Debaeke P (2012) Low plant density can reduce sunflower premature ripening caused by Phoma macdonaldii. Eur J Agron 43:185–193

    Article  Google Scholar 

  • Sestacova T, Giscă I, Cucereavîi A, Port A, Duca M (2016) Expression of defence-related genes in sunflower infected with broomrape. Biotechnol Equip 30:685–691

    Google Scholar 

  • Sharman M, Thomas JE, Persley DM (2008) First report of Tobaco streak virus in sunflower (Helianthus annuus), cotton (Gossypium hirsutum), chickpea (Cicer arietinum) and mung bean (Vigna radiata) in Australia. Australas Plant Dis Notes 3:27–29

    Google Scholar 

  • Sharman M, Persley DM, Thomas JE (2009) Distribution in Australia and seed transmission of Tobacco streak virus in Parthenium hysterophorus. Plant Dis 93:708–712

    Article  PubMed  Google Scholar 

  • Shehbaz M, Rauf S, Al-Sadi AM, Shahid N, Saira B, Shahzad M, Mubashar H (2018) Introgression and inheritance of charcoal rot (Macrophomina phaseolina) resistance from silver sunflower (Helianthus argophyllus Torr. & A. Gray) into cultivated sunflower (Helianthus annuus L.). Australas Plant Pathol 47:413–420

    Article  CAS  Google Scholar 

  • Shi B, Zhao J (2020) Recent progress on sunflower broomrape research in China. OCL 27:30. https://doi.org/10.1051/ocl/2020023

    Article  Google Scholar 

  • Shirshikar SP (2010) Sunflower necrosis disease management with thiomethoxam. Helia 33:63–68

    Article  Google Scholar 

  • Shtienberg D, Vintal H (1995) Environmental influences on the development of Puccinia helianthion sunflower. Phytopathology 85:1388–1393

    Article  Google Scholar 

  • Sikora DM (2017) Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska. Dissertation, University of Nebrasca

    Google Scholar 

  • Škorić D (1985) Sunflower breeding for resistance to Diaporthe/Phomopsis helianthi. Munt.-Cvet. et al. Helia 8:21–24

    Google Scholar 

  • Škorić D (1988) Sunflower breeding. J Edible Oil Ind 25:1–90

    Google Scholar 

  • Škorić D (2016) Sunflower breeding for resistance to abiotic and biotic stresses. In: Shakner A (ed) Abiotic and biotic stress in plants—recent advances and future perspectives. IntechOpen, London, pp 585–635

    Google Scholar 

  • Škorić D, Jocić S, Cvejić S (2006) Achievements in sunflower breeding for resistance to diseases, broomrape and insects. Plant Doct (In Serb) 4–5:299–312

    Google Scholar 

  • Škorić D, Seiler GJ, Zhao L, Jan CC, Miller JF, Charlet LD (2012) Sunflower genetics and breeding. Serbian Academy of Sciences and Arts, Branch in Novi Sad

    Google Scholar 

  • Smolinska U, Kowalska B (2018) Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—a review. J Plant Pathol 100:1–12

    Article  Google Scholar 

  • Snow AA, Wilson D, Rieseberg LH, Paulsen MJ, Pleskac N et al (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13:279–286

    Article  Google Scholar 

  • Solodenko A (2018) Validation of microsatellite markers of Pl resistance genes to downy mildew of sunflower. Helia 41:73–82

    Article  Google Scholar 

  • Spring O (2009) Transition of secondary to systemic infection of sunflower with Plasmoparahalstedii– an underestimated factor in the epidemiology of the pathogen. Fungal Ecol 2:75–80

    Article  Google Scholar 

  • Spring O (2019) Spreading and global pathogenic diversity of sunflower downy mildew—review. Plant Prot Sci 55:149–158

    Article  Google Scholar 

  • Stebbins JC, Winchell CJ, Constable JVH (2013) Helianthus winteri (Asteraceae), a new perennial species from the southern Sierra Nevada foothills, California. Aliso 31:19–24

    Article  Google Scholar 

  • Sun P, Yang XB (2000) Light, temperature, and moisture effects on apothecium production of Sclerotinia sclerotiorum. Plant Dis 84:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Talukdar A, Verma K, Gowda DSS, Lal SK, Sapra R et al (2009) Molecular breeding for charcoal rot resistance in soybean I. Screening and mapping population development. Indian J Genet 69:367–370

    CAS  Google Scholar 

  • Talukder D (2014) Assessing determinants of income of rural households in Bangladesh: a regression analysis. J Appl Econ Bus Res 4:80–106

    Google Scholar 

  • Tang S, Heesacker A, Kishore VK, Fernandez A, Sadik ES, Cole G (2003) Genetic mapping of the Or 5 gene for resistance to race E in sunflower. Crop Sci 43:1021–1028

    Article  CAS  Google Scholar 

  • Terzić S, Boniface MC, Marek L, Alvarez D, Baumann K et al (2020) Gene banks for wild and cultivated sunflower genetic resource. OCL 27:9

    Article  Google Scholar 

  • Thines M, Zipper R, Spring O (2006) First report of Pustula tragopogonis, the cause of white rust on cultivated sunflower in southern Germany. Plant Dis 90:110

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EAB, Shivas RG (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia: Mol Phylogeny Evol Fungi 27:80

    Google Scholar 

  • Tirnaz S, Batley J (2019) DNA methylation: toward crop disease resistance improvement. Trends Plant Sci 24:1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Tourvieille de Labrouhe D, Serre F, Walser P, Roche S, Vear F (2008) Quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus). Euphytica 164:433–444

    Article  Google Scholar 

  • Tourvieille de Labrouhe D, Vear F, Pelletier C (1988) Use of two mycelium tests in breeding sunflower resistant to Phomopsis. In: Proceedings of the 12th international sunflower conference Novi Sad, 25–29 July II, pp 110–114

    Google Scholar 

  • Tourvieille de Labrouhe D, Gulya T, Maširević S, Penaud A, Rashid KY, Viranyi F (2000) New nomenclature of races of Plasmopara halstedii (Sunflower Downy Mildew). In: 15th international sunflower conference. Toulouse France 12–16 June I-61

    Google Scholar 

  • van Wyk PS, Jones BL, Viljoen A, Rong IH (1995) Early lodging, a novel manifestation of Albugo tragopogonis infection on sunflower in South Africa. Helia 18:83–90

    Google Scholar 

  • Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A et al (2020) Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot 71:5223–5236. https://doi.org/10.1093/jxb/eraa188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasić D, Alibert G, Škorić D (1999) In vitro screening of sunflower for resistance to Sclerotinia sclerotiorum (Lib.) de Bary. Helia 22:95–104

    Google Scholar 

  • Vear F, Grezes-Besset B (2010) Progress in breeding sunflowers for resistance to Sclerotinia. In: Proceedings of the international symposium: sunflower breeding on resistance to diseases. Krasnodar, Russia, 23–24 Jun, pp 30–35

    Google Scholar 

  • Vear F, Serre F, Jouan-Dufournel I, Bert PF, Roche S et al (2008) Inheritance of quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Euphytica 164:561–570

    Google Scholar 

  • Velasco L, Pérez-Vich B, Jan CC, Fernández-Martínez JM (2007) Inheritance of resistance to broomrape (Orobanche Cumana Wallr.) race F in a sunflower line derived from wild sunflower Species. Plant Breed 126:67–71

    Google Scholar 

  • Velasco L, Pérez-Vich B, Yassein AA, Jan CC, Fernández-Martínez JM (2012) Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp tardiflorus. Plant Breed 131:220–221

    Google Scholar 

  • Ves Losada JC, Figueruelo AM (2006) Evaluación del daño provocado por la mosquita del capítulo del girasol, Melanagromyza minimoides según le fecha de siembra. In: Manejo de Plagas y tecnología de cultivos en sistemas mixtos de producción. Boletines de Divulgación Técnica No. 91. INTA, Anguil, La Pampa, Argentina, pp 57–62

    Google Scholar 

  • Viljoen A, van Wyk PS, Jooste WJ (1999) Occurence of the white rust pathogen, Albugo tragopogonis, in seed of sunflower. Plant Dis 83:77

    Article  CAS  PubMed  Google Scholar 

  • Vincourt P, As-Sadi F, Bordat A, Langlade N, Gouzy J et al (2012) Consensus mapping of major resistance genes and independent QTL for quantitative resistance to sunflower downy mildew. Theor Appl Genet 125:909–920

    Google Scholar 

  • Vranceanu VL, Pirvu N, Stoenescu FM (1981) New sunflower downy mildew resistance genes and their management. Helia 4:23–27

    Google Scholar 

  • Vranceanu AV, Csep N, Pirvu N, Stoenescu FM (1983) Genetic variability of sunflower reaction to the attack of Phomopsis helianthi Munt.-Cvet. et al. Helia 6:23–25

    Google Scholar 

  • Warburton ML, Rauf S, Marek L, Hussain M, Ogunola O, Gonzalez JDJS (2017) The use of crop wild relatives in maize and sunflower breeding. Crop Sci 57:1227–1240

    Article  CAS  Google Scholar 

  • Wieckhorst S, Bachlava E, Dussle CM, Tang S, Gao W, Saski C, Knapp SJ, Schön CC, Hahn V, Bauer E (2010) Fine mapping of the sunflower resistance locus Pl ARG introduced from the wild species Helianthus argophyllus. Theor Appl Genet 121:1633–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue B, Radi SA, Vick BA, Cai X, Tang S et al (2008) Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology 98:926–931

    Article  CAS  PubMed  Google Scholar 

  • Zerbino MS (1991) Mosquita del capítulo del girasol Melanagromyza minimoides, nueva plaga. Agrociencia 5:90–91

    Google Scholar 

  • Zhang XQ, Powles SB (2006) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol 172:636–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Liu Z, Jan CC (2016) Molecular mapping of a rust resistance gene R14 in cultivated sunflower line PH3. Mol Breed 36:32

    Article  CAS  Google Scholar 

  • Ziaee M (2010) Oilseed pests. In: Akpan GU (ed) Oilseeds. InTech. https://doi.org/10.5772/1377

Download references

Acknowledgements

The work was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, grant number 451-03-68/2020-14/200032, the COST action CA18111 ‘Genome editing in plants—a technology with transformative potential’, the COST action CA16212 ‘Impact of Nuclear Domains on Gene Expression and Plant Traits’, the COST action CA1912 ‘EPIgenetic mechanisms of Crop Adaptation To Climate cHange’, IAEA project RER5024 ‘Enhancing Productivity and Resilience to Climate Change of Major Food Crops in Europe and Central Asia’ and project No. 50148 ‘Development of new biopesticides for seed protection—ECOPEST’ funded by Innovation Fund of Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gvozdenac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dedić, B. et al. (2022). Designing Sunflower for Biotic Stress Resilience: Everlasting Challenge. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Oilseed Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91035-8_3

Download citation

Publish with us

Policies and ethics