Skip to main content

Production of PV Modules

  • Chapter
  • First Online:
Sustainable Solar Electricity

Part of the book series: Green Energy and Technology ((GREEN))

  • 913 Accesses

Abstract

The manufacturing processes of the different photovoltaic technologies are presented in this chapter: Crystalline silicon solar cells (both mono- and multi-crystalline), including silicon purification and crystallization processes; thin film solar cells (amorphous silicon, cadmium telluride, chalcopyrites and kesterites); III-V solar cells, and emerging solar cells (organic, dye-sensitized, perovskites and others). The fabrication steps from cells to modules are also presented. The broad range of industrial processes are analysed with the aim to facilitate the compilation of life cycle inventories in the manufacturing phase of a broader life cycle assessment, including the use of materials that are embedded in the final cells and modules, the use of substances that are used in the manufacturing process and importantly, the energy consumption of every process. The challenges for an increased sustainability of all manufacturing steps of well established commercial technologies and emerging technologies are discussed from the point of view of the efficient use of materials, improved processes and recovery and reuse of substances in the manufacturing lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Efficiency charts published and updated by the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

References

  1. Aberle A, Neuhaus DH, Münzer A (2008) Industrial silicon wafer solar cells. Adv OptoElectron 2007:024521. https://doi.org/10.1155/2007/24521. Publisher: Hindawi Publishing Corporation

  2. Akbarnejad E, Ghorannevis Z, Mohammadi E, Fekriaval L (2019) Correlation between different CdTe nanostructures and the performances of solar cells based on CdTe/CdS heterojunction. J Electroanal Chem 849:113358

    Google Scholar 

  3. Allsopp BL, Orman R, Johnson SR, Baistow I, Sanderson G, Sundberg P, Stålhandske C, Grund L, Andersson A, Booth J, Bingham PA, Karlsson S (2020) Towards improved cover glasses for photovoltaic devices. Prog PhotovoltS: Res Appl 28(11):1187–1206. https://doi.org/10.1002/pip.3334. Publisher: John Wiley & Sons Ltd

  4. Ameri T, Li N, Brabec CJ (2013) Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci 6(8):2390–2413. https://doi.org/10.1039/C3EE40388B

  5. Aramoto T, Kumazawa S, Higuchi H, Arita T, Shibutani S, Nishio T, Nakajima J, Tsuji M, Hanafusa A, Hibino T, Omura K, Ohyama H, Murozono M (1997) 16.0% efficient thin-film CdS/CdTe solar cells. Jpn J Appl Phys 36(Part 1, No. 10):6304–6305. https://doi.org/10.1143/jjap.36.6304, http://dx.doi.org/10.1143/JJAP.36.6304. Publisher: IOP Publishing

  6. Azimi H, Hou Y, Brabec CJ (2014) Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ Sci 7(6):1829–1849. https://doi.org/10.1039/C3EE43865A

  7. Bard AJ (1980) Photo electro chemistry. Science 207(4427):139. https://doi.org/10.1126/science.207.4427.139

  8. Bednorz JG, Müller KA (1986) Possible high T\(_c\) superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B Condensed Matter 64(2):189–193. https://doi.org/10.1007/BF01303701

  9. Bisquert J (2017) The physics of solar cells. perovskites, organics, and photovoltaic fundamentals. CRC Press (Francis & Taylor). https://www.routledge.com/The-Physics-of-Solar-Cells-Perovskites-Organics-and-Photovoltaic-Fundamentals/Bisquert/p/book/9781138099968

  10. Bottosso C, Tao W, Wang X, Ma L, Galiazzo M (2013) Reliable metallization process for ultra fine line printing. In: Proceedings of the fourth workshop on metallization for crystalline silicon solar cells, vol 43, pp 80–85. https://doi.org/10.1016/j.egypro.2013.11.091

  11. Brabec C, Scherf U, Dyakonov V (2014) Organic photovoltaics. Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/9783527656912

  12. Bridgman PW (1925) Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proc Am Acad Arts Sci 60(6):305–383. https://doi.org/10.2307/25130058

  13. Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Shakya Tuladhar P, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133(10):3272–3275. https://doi.org/10.1021/ja110619k. Publisher: American Chemical Society

  14. Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, McMeekin DP, Hoye RLZ, Bailie CD, Leijtens T, Peters IM, Minichetti MC, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith HJ, Buonassisi T, Holman ZC, Bent SF, McGehee MD (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2(4):17009. https://doi.org/10.1038/nenergy.2017.9

  15. Bye G, Ceccaroli B (2014) Solar grade silicon: technology status and industrial trends. Solar Energy Mater Solar Cells 130:634–646. https://doi.org/10.1016/j.solmat.2014.06.019

  16. Campbell P, Green MA (2001) High performance light trapping textures for monocrystalline silicon solar cells. PVSEC 11 Part I 65(1):369–375. https://doi.org/10.1016/S0927-0248(00)00115-X, https://www.sciencedirect.com/science/article/pii/S092702480000115X

  17. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat Mater 7(2):158–164. https://doi.org/10.1038/nmat2102

  18. Cariou R, Benick J, Feldmann F, Höhn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bläsi B, Lackner D, Hermle M, Siefer G, Glunz SW, Bett AW, Dimroth F (2018) III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat Energy 3(4):326–333. https://doi.org/10.1038/s41560-018-0125-0

  19. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39(17):1098–1101. https://doi.org/10.1103/PhysRevLett.39.1098

  20. Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk YE, Bilger G, Tiwari AN (2011) Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat Mater 10(11):857–861. https://doi.org/10.1038/nmat3122

  21. Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489. https://doi.org/10.1038/nature11067

  22. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50. https://doi.org/10.1016/S1369-7021(07)70278-X

  23. Cusano D (1963) CdTe solar cells and photovoltaic heterojunctions in II-VI compounds. Solid-State Electro 6(3):217–232. https://doi.org/10.1016/0038-1101(63)90078-9

  24. Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für Physikalische Chemie 92U(1):219–221. https://doi.org/10.1515/zpch-1918-9212

  25. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, Best seller in polymer photovoltaic research. Adv Mater 23(31):3597–3602. https://doi.org/10.1002/adma.201100792. Publisher: John Wiley & Sons Ltd

  26. Emmott CJM, Urbina A, Nelson J (2012) Environmental and economic assessment of ITO-free electrodes for organic solar cells. Solar Energy Mater Solar Cells 97:14–21. https://doi.org/10.1016/j.solmat.2011.09.024. Go to ISI://WOS:000300653800003, type: Journal Article

  27. Eyer A, Schillinger N, Reis I, Räuber A (1990) Silicon sheets for solar cells grown from silicon powder by the SSP technique. J Cryst Growth 104(1):119–125. https://doi.org/10.1016/0022-0248(90)90319-G

  28. Fan Z, Razavi H, Jw Do, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8(8):648–653. https://doi.org/10.1038/nmat2493

  29. Fan Z, Ruebusch DJ, Rathore AA, Kapadia R, Ergen O, Leu PW, Javey A (2009) Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11):829. https://doi.org/10.1007/s12274-009-9091-y

  30. Filtvedt W, Javidi M, Holt A, Melaaen M, Marstein E, Tathgar H, Ramachandran P (2010) Development of fluidized bed reactors for silicon production. Solar Energy Mater Solar Cells 94(12):1980–1995. https://doi.org/10.1016/j.solmat.2010.07.027

  31. Filtvedt W, Holt A, Ramachandran P, Melaaen M (2012) Chemical vapor deposition of silicon from silane: review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Solar Energy Mater Solar Cells 107:188–200. https://doi.org/10.1016/j.solmat.2012.08.014

  32. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Santos DAD, Brédas JL, Lögdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397(6715):121–128. https://doi.org/10.1038/16393

  33. Frost JM, Cheynis F, Tuladhar SM, Nelson J (2006) Influence of polymer-blend morphology on charge transport and photocurrent generation in donor-acceptor polymer blends. Nano Lett 6(8):1674–1681. https://doi.org/10.1021/nl0608386. Publisher: American Chemical Society

  34. Galatopoulos F, Papadas IT, Armatas GS, Choulis SA (2018) Long thermal stability of inverted perovskite photovoltaics incorporating fullerene-based diffusion blocking layer. Adv Mater Interfaces 5(20):1800280. https://doi.org/10.1002/admi.201800280. Publisher: John Wiley & Sons Ltd

  35. Geisz JF, France RM, Schulte KL, Steiner MA, Norman AG, Guthrey HL, Young MR, Song T, Moriarty T (2020) Six-junction III-V solar cells with 47.1% conversion efficiency under 143\(\times \)Suns concentration. Nat Energy 5(4):326–335. https://doi.org/10.1038/s41560-020-0598-5

  36. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Adv Mater 22(34):3778–3798. https://doi.org/10.1002/adma.200903559. Publisher: John Wiley & Sons Ltd

  37. Georgiou E, Choulis SA, Hermerschmidt F, Pozov SM, Burgués-Ceballos I, Christodoulou C, Schider G, Kreissl S, Ward R, List-Kratochvil EJW, Boeffel C (2018) Printed copper nanoparticle metal grids for cost-effective ito-free solution processed solar cells. Solar RRL 2(3):1700192. https://doi.org/10.1002/solr.201700192. Publisher: John Wiley & Sons Ltd

  38. Giacomo FD, Razza S, Matteocci F, D’Epifanio A, Licoccia S, Brown TM, Carlo AD (2014) High efficiency (ch\(_3\)nh\(_3\)pbi)\(_{(3--x)}\)cl\(_x\) perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sour 251:152–156. https://doi.org/10.1016/j.jpowsour.2013.11.053

  39. Goodrich A, Hacke P, Wang Q, Sopori B, Margolis R, James TL, Woodhouse M (2013) A wafer-based monocrystalline silicon photovoltaics road map: utilizing known technology improvement opportunities for further reductions in manufacturing costs. Solar Energy Mater Solar Cells 114:110–135. https://doi.org/10.1016/j.solmat.2013.01.030

  40. Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK (2017) One-year stable perovskite solar cells by 2D/3D interface engineering. Nat CommunD 8:15684. https://doi.org/10.1038/ncomms15684

  41. Grätzel M (1981) Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14(12):376–384. https://doi.org/10.1021/ar00072a003. Publisher: American Chemical Society

  42. Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog PhotovoltS: Res Appl 9(2):123–135. https://doi.org/10.1002/pip.360. Publisher: John Wiley & Sons Ltd

  43. Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog PhotovoltS: Res Appl 17(3):183–189. https://doi.org/10.1002/pip.892. Publisher: John Wiley & Sons Ltd

  44. Green MA (2015) The Passivated Emitter and Rear Cell (PERC): from conception to mass production. Solar Energy Mater Solar Cells 143:190–197. https://doi.org/10.1016/j.solmat.2015.06.055

  45. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AW (2019) Solar cell efficiency tables (Version 53). Prog PhotovoltS: Res Appl 27(1):3–12. https://doi.org/10.1002/pip.3102. Publisher: John Wiley & Sons Ltd

  46. Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020) Solar cell efficiency tables (version 56). Prog PhotovoltS: Res Appl 28(7):629–638. https://doi.org/10.1002/pip.3303. Publisher: John Wiley & Sons Ltd

  47. Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (Version 58). Prog PhotovoltS: Res Appl 29(7):657–667. https://doi.org/10.1002/pip.3444. pubLisher: John Wiley & Sons Ltd

  48. Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R (2018) Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Solar Energy Mater Solar Cells 186:184–193. https://doi.org/10.1016/j.solmat.2018.06.020

  49. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. https://doi.org/10.1021/cr900356p. Publisher: American Chemical Society

  50. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376(6540):498–500. https://doi.org/10.1038/376498a0

  51. Hamann TW, Martinson ABF, Elam JW, Pellin MJ, Hupp JT (2008) Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells. J Phys Chem C 112(27):10303–10307. https://doi.org/10.1021/jp802216p. Publisher: American Chemical Society

  52. Hands ADP, Ryden KA, Meredith NP, Glauert SA, Horne RB (2018) Radiation effects on satellites during extreme space weather events. Space Weather 16(9):1216–1226. https://doi.org/10.1029/2018SW001913. Publisher: John Wiley & Sons Ltd

  53. Hauser A, Hahn G, Spiegel M, Fath P, Bucher E, Feist H, Breitenstein O, Rakotoniaina JP (2001) Comparison of different techniques for edge isolation. In: Proceedings of the seventeenth european photovoltaic solar energy conference, WIP-Renewable Energies, Munich, pp 1739–1742. https://www.hahn.uni-konstanz.de/typo3temp/secure_downloads/80509/0/e5ae247f78559f02e330c754c4b20fc80216de0a/VC3_11_AH.pdf

  54. He M, Yan C, Li J, Suryawanshi MP, Kim J, Green MA, Hao X (2021) Kesterite solar cells: insights into current strategies and challenges. Adv Sci n/a(n/a):2004313. https://doi.org/10.1002/advs.202004313. Publisher: John Wiley & Sons, Ltd

  55. He Y, Chen HY, Hou J, Li Y (2010) Indene-c\(_{60}\) bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(15):5532. https://doi.org/10.1021/ja101780s. Publisher: American Chemical Society

  56. Higuchi H, Negami T (2018) Largest highly efficient 203\(\times \)203 mm\(^2\) CH\(_3\)NH\(_3\)PbI\(_3\) perovskite solar modules. Jpn J Appl Phys 57(8S3):08RE11. https://doi.org/10.7567/jjap.57.08re11, http://dx.doi.org/10.7567/JJAP.57.08RE11. Publisher: IOP Publishing

  57. Hollemann C, Haase F, Rienäcker M, Barnscheidt V, Krügener J, Folchert N, Brendel R, Richter S, Großer S, Sauter E, Hübner J, Oestreich M, Peibst R (2020) Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell. Sci Rep 10(1):658. https://doi.org/10.1038/s41598-019-57310-0

  58. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. JMater Res 19(7):1924–1945. https://doi.org/10.1557/JMR.2004.0252

  59. Huang K, Peng Y, Gao Y, Shi J, Li H, Mo X, Huang H, Gao Y, Ding L, Yang J (2019) High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater 9(44):1901419. https://doi.org/10.1002/aenm.201901419. Publisher: John Wiley & Sons Ltd

  60. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093. https://doi.org/10.1039/C1NR10867K, http://dx.doi.org/10.1039/C1NR10867K

  61. Isshiki M, Wang J (2017) II-IV semiconductors for optoelectronics: CdS, CdSe, CdTe. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Cham, p 1. https://doi.org/10.1007/978-3-319-48933-9_33

  62. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C (2020) Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369(6511):1615. https://doi.org/10.1126/science.abb7167, http://science.sciencemag.org/content/369/6511/1615.abstract

  63. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749):511–515. https://doi.org/10.1038/s41586-019-1036-3

  64. Jurisch M, Eichler S, Bruder M (2015) 9 - vertical bridgman growth of binary compound semiconductors. In: Rudolph P (ed) Handbook of crystal growth (2nd edn). Elsevier, Boston, pp 331–372. https://doi.org/10.1016/B978-0-444-63303-3.00009-2, https://www.sciencedirect.com/science/article/pii/B9780444633033000092

  65. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, Higashi GS (2011) 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: 2011 37th IEEE photovoltaic specialists conference, pp 000004–000008. https://doi.org/10.1109/PVSC.2011.6185831

  66. Kim S, Yim J, Wang X, Bradley DD, Lee S, deMello JC (2010) Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater 20(14):2310–2316. https://doi.org/10.1002/adfm.200902369. Publisher: John Wiley & Sons Ltd

  67. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

  68. Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Organ Electron 10(5):761–768. https://doi.org/10.1016/j.orgel.2009.03.009

  69. Krebs FC (2010) Polymeric solar cells. DEStech Publications Inc, Lancaster, PA, U.S.A, Materials, Design, Manufacture

    Google Scholar 

  70. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19(30):5442–5451. https://doi.org/10.1039/B823001C

  71. Lee CP, Li CT, Ho KC (2017) Use of organic materials in dye-sensitized solar cells. Mater Today 20(5):267–283. https://doi.org/10.1016/j.mattod.2017.01.012

  72. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643. https://doi.org/10.1126/science.1228604

  73. Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286–1297. https://doi.org/10.1016/j.rser.2016.12.028

  74. Lenes M, Morana M, Brabec CJ, Blom PWM (2009) Recombination-limited photocurrents in low bandgap polymer/fullerene solar cells. Adv Funct Mater 19(7):1106–1111. https://doi.org/10.1002/adfm.200801514. Publisher: John Wiley & Sons Ltd

  75. Liang K, Mitzi DB, Prikas MT (1998) Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem Mater 10(1):403–411. https://doi.org/10.1021/cm970568f

  76. Little RG, Nowlan MJ (1997) Crystalline silicon photovoltaics: the hurdle for thin films. Progress Photovoltaics: Res Appl 5(5):309–315. https://doi.org/10.1002/(SICI)1099-159X (199709/10)5:5 309::AID-PIP180 3.0.CO;2-X. Publisher: John Wiley & Sons Ltd

  77. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% Efficiency organic solar cells. Sci Bull 65(4):272–275. https://doi.org/10.1016/j.scib.2020.01.001

  78. Loos J (2010) Volume morphology of printable solar cells. Mater Today 13(10):14–20. https://doi.org/10.1016/S1369-7021(10)70182-6

  79. Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB (1994) The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys Condens Matter 6(7):1379–1394. https://doi.org/10.1088/0953-8984/6/7/009

  80. Meier J, Dubail S, Golay S, Kroll U, FaÿS, Vallat-Sauvain E, Feitknecht L, Dubail J, Shah A (2002) Microcrystalline silicon and the impact on micromorph tandem solar cells. PVSEC 12 Part I 74(1):457–467. https://doi.org/10.1016/S0927-0248(02)00111-3, https://www.sciencedirect.com/science/article/pii/S0927024802001113

  81. Meier J, Spitznagel J, Kroll U, Bucher C, FaÿS, Moriarty T, Shah A (2004) Potential of amorphous and microcrystalline silicon solar cells. In: Proceedings of symposium D on thin film and nano-structured materials for photovoltaics, of the E-MRS 2003 spring conference 451-452:518–524. https://doi.org/10.1016/j.tsf.2003.11.014, https://www.sciencedirect.com/science/article/pii/S0040609003015475

  82. Meija J, Coplen TB, Berglund M, Brand WA, De Biévre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 88(3):265–291. https://doi.org/10.1515/pac-2015-0305

  83. Messenger SR, Summers GP, Burke EA, Walters RJ, Xapsos MA (2001) Modeling solar cell degradation in space: a comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches. Progress Photovoltaics: Res Appl 9(2):103–121. https://doi.org/10.1002/pip.357. Publisher: John Wiley & Sons Ltd

  84. Micha DN, Silvares Junior RT (2019) The influence of solar spectrum and concentration factor on the material choice and the efficiency of multijunction solar cells. Sci Rep 9(1):20055. https://doi.org/10.1038/s41598-019-56457-0

  85. Miles RW, Zoppi G, Forbes I (2007) Inorganic photovoltaic cells. Mater Today 10(11):20–27. https://doi.org/10.1016/S1369-7021(07)70275-4

  86. Mingorance A, Xie H, Kim HS, Wang Z, Balsells M, Morales-Melgares A, Domingo N, Kazuteru N, Tress W, Fraxedas J, Vlachopoulos N, Hagfeldt A, Lira-Cantu M (2018) Interfacial engineering of metal oxides for highly stable halide perovskite solar cells. Adv Mater Interfaces 5(22):1800367. https://doi.org/10.1002/admi.201800367. Publisher: John Wiley & Sons Ltd

  87. Mitzi DB, Feild CA, Harrison WTA, Guloy AM (1994) Conducting tin halides with a layered organic-based perovskite structure. Nature 369(6480):467–469. https://doi.org/10.1038/369467a0

  88. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Mater Solar Cells 90(14):2011–2075. https://doi.org/10.1016/j.solmat.2006.04.007

  89. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18(21):2884–2889. https://doi.org/10.1002/adma.200600160. Publisher: John Wiley & Sons Ltd

  90. Nakayama N, Matsumoto H, Yamaguchi K, Ikegami S, Hioki Y (1976) Ceramic thin film CdTe solar cell. Jpn J Appl Phys 15(11):2281–2282. https://doi.org/10.1143/jjap.15.2281

  91. Nampalli N, Hallam B, Chan C, Abbott M, Wenham S (2015) Evidence for the role of hydrogen in the stabilization of minority carrier lifetime in boron-doped Czochralski silicon. Appl Phys Lett 106(17):173501. https://doi.org/10.1063/1.4919385. Publisher: American Institute of Physics

  92. Nazeeruddin MK, Liska P, Moser J, Vlachopoulos N, Grätzel M (1990) Conversion of light into electricity with trinuclear ruthenium complexes adsorbed on textured TiO2 films. Helvetica Chimica Acta 73(6):1788–1803. https://doi.org/10.1002/hlca.19900730624. Publisher: John Wiley & Sons Ltd

  93. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl\(^-\), Br\(^-\), I\(^-\), CN\(^-\), and SCN\(^-\)) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390. https://doi.org/10.1021/ja00067a063. Publisher: American Chemical Society

  94. Nelson J (2003) The physics of solar cells. Imperial College Press and distributed by World Scientific Publishing Co. https://doi.org/10.1142/p276, https://www.worldscientific.com/doi/abs/10.1142/p276, _eprint: https://www.worldscientific.com/doi/pdf/10.1142/p276

  95. Nelson J (2011) Polymer:fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470. https://doi.org/10.1016/S1369-7021(11)70210-3

  96. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740. https://doi.org/10.1038/353737a0

  97. Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18(2):65–72. https://doi.org/10.1016/j.mattod.2014.07.007

  98. Park NG, Graetzel M, Miyasaka T (2016) Organic-inorganic halide perovskite photovoltaics: from fundamentals to device architectures. Springer, Berlin

    Google Scholar 

  99. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6(7):497–500. https://doi.org/10.1038/nmat1928

  100. Podestá A, Armani N, Salviati G, Romeo N, Bosio A, Prato M (2006) Influence of the fluorine doping on the optical properties of CdS thin films for photovoltaic applications. In: EMSR 2005—proceedings of symposium F on thin film and nanostructured materials for photovoltaics 511–512:448–452. https://doi.org/10.1016/j.tsf.2005.11.069, https://www.sciencedirect.com/science/article/pii/S0040609005022868

  101. Polizzotti A, Repins IL, Noufi R, Wei SH, Mitzi DB (2013) The state and future prospects of kesterite photovoltaics. Energy Environ Sci 6(11):3171–3182. https://doi.org/10.1039/C3EE41781F

  102. Raut HK, Ganesh VA, Nair AS, Ramakrishna S (2011) Anti-reflective coatings: A critical, in-depth review. Energy Environ Sci 4(10):3779–3804. https://doi.org/10.1039/C1EE01297E

  103. Romeo N, Bosio A, Romeo A (2010) An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. 17th Int Mater Res Congress 94(1):2–7. https://doi.org/10.1016/j.solmat.2009.06.001, https://www.sciencedirect.com/science/article/pii/S0927024809002141

  104. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8(3):208–212. https://doi.org/10.1038/nmat2379

  105. Sadula A, Azzopardi B, Chircop J (2018) Innovation updates for organic and perovskites solar cells. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC. In: 28th PVSEC & 34th EU PVSEC), pp 1090–1094. https://doi.org/10.1109/PVSC.2018.8547864; Journal Abbreviation: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)

  106. Schiff EA, Hegedus S, Deng X (2010) Amorphous silicon-based solar cells. In: Handbook of photovoltaic science and engineering. Wiley, New York, pp 487–545. https://doi.org/10.1002/9780470974704.ch12, https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470974704.ch12. Section: 12 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470974704.ch12

  107. Schneiderlöchner E, Preu R, Lüdemann R, Glunz SW (2002) Laser-fired rear contacts for crystalline silicon solar cells. Progress Photovolt Res Appl 10(1):29–34. https://doi.org/10.1002/pip.422. Publisher: John Wiley & Sons Ltd

  108. Schreurs D, Nagels S, Cardinaletti I, Vangerven T, Cornelissen R, Vodnik J, Hruby J, Deferme W, Manca JV (2018) Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications. J Mater Res 33(13):1841–1852. https://doi.org/10.1557/jmr.2018.156

  109. Schüttauf JW, Niesen B, Löfgren L, Bonnet-Eymard M, Stuckelberger M, Hänni S, Boccard M, Bugnon G, Despeisse M, Haug FJ, Meillaud F, Ballif C (2015) Amorphous silicon-germanium for triple and quadruple junction thin-film silicon based solar cells. Solar Energy Mater Solar Cells 133:163–169. https://doi.org/10.1016/j.solmat.2014.11.006

  110. Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC (2011) Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J Am Chem Soc 133(22):8416–8419. https://doi.org/10.1021/ja2037673. Publisher: American Chemical Society

  111. Shimura F (2007) Single-crystal silicon: growth and properties. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer US, Boston, MA, pp 255–269. https://doi.org/10.1007/978-0-387-29185-7_13

  112. Shirakawa H (1995) Synthesis and characterization of highly conducting polyacetylene. Proc Int Conf Sci Technol Synthetic Metals 69(1):3–8. https://doi.org/10.1016/0379-6779(94)02340-5

  113. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun 16:578–580. https://doi.org/10.1039/C39770000578

  114. Shockley W, Queisser HJ (1961) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J Appl Phys 32(3):510–519. https://doi.org/10.1063/1.1736034. Publisher: American Institute of Physics

  115. Siebentritt S (2004) Alternative buffers for chalcopyrite solar cells. Thin Film PV 77(6):767–775. https://doi.org/10.1016/j.solener.2004.06.018

  116. Sinton RA, Cuevas A (1996) Contactless determination of current-voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady state photoconductance data. Appl Phys Letts 69(17):2510–2512. https://doi.org/10.1063/1.117723. Publisher: American Institute of Physics

  117. Snaith H, Grätzel M (2007) Electron and hole transport through mesoporous TiO2 infiltrated with Spiro-MeOTAD. Adv Mater 19(21):3643–3647. https://doi.org/10.1002/adma.200602085. Publisher: John Wiley & Sons Ltd

  118. Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92(9):093303. https://doi.org/10.1063/1.2885724. Publisher: American Institute of Physics

  119. Swirhun JS, Sinton RA, Forsyth MK, Mankad T (2011) Contactless measurement of minority carrier lifetime in silicon ingots and bricks. Progress in Photovoltaics: Res Appl 19(3):313–319. https://doi.org/10.1002/pip.1029. Publisher: John Wiley & Sons Ltd

  120. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185. https://doi.org/10.1063/1.96937. Publisher: American Institute of Physics

  121. Tang J, Huo Z, Brittman S, Gao H, Yang P (2011) Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6(9):568–572. https://doi.org/10.1038/nnano.2011.139

  122. Thejo-Kalyani N, Dhoble S (2012) Organic light emitting diodes: Energy saving lighting technology-A review. Renew Sustain Energy Rev 16(5):2696–2723. https://doi.org/10.1016/j.rser.2012.02.021

  123. Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, Sakata H, Maruyama E, Tanaka M (2009) Twenty-two percent efficiency HIT solar cell. 17th Int Photovolt Sci Eng Conf 93(6):670–673. https://doi.org/10.1016/j.solmat.2008.02.037, https://www.sciencedirect.com/science/article/pii/S0927024808000834

  124. United States Geological Survey (2021) Mineral commodity summaries 2021. Report, Reston, VA. https://doi.org/10.3133/mcs2021

  125. Urbina A (2020) The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. J Phys: Energy 2(2):022001. https://doi.org/10.1088/2515-7655/ab5eee

  126. Urbina A, Abad J, Fernandez Romero AJ, Lacasa JS, Colchero J, Gonzalez-Martinez JF, Rubio-Zuazo J, Castro GR, Gutfreund P (2019) Neutron reflectometry and hard X-ray photoelectron spectroscopy study of the vertical segregation of PCBM in organic solar cells. Solar Energy Mater Solar Cells 191:62–70. https://doi.org/10.1016/j.solmat.2018.10.004, Go to ISI://WOS:000456640000009, type: Journal Article

  127. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48(6):1596–1625. https://doi.org/10.1039/C7CS00892A

  128. Walsh A, Chen S, Wei SH, Gong XG (2012) Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater 2(4):400–409. https://doi.org/10.1002/aenm.201100630. Publisher: John Wiley & Sons Ltd

  129. Wang HQ, Li N, Guldal NS, Brabec CJ (2012) Nanocrystal V\(_2\)O\(_5\) thin film as hole-extraction layer in normal architecture organic solar cells. Org Electron 13(12):3014–3021. https://doi.org/10.1016/j.orgel.2012.08.007

  130. Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2(5):385–389. https://doi.org/10.1038/nchem.610

  131. Wang M, Grätzel C, Zakeeruddin SM, Grätzel M (2012) Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ Sci 5(11):9394–9405. https://doi.org/10.1039/C2EE23081J

  132. Wang R, Yao Y, Zhang C, Zhang Y, Bin H, Xue L, Zhang ZG, Xie X, Ma H, Wang X, Li Y, Xiao M (2019) Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nat Commun 10(1):398. https://doi.org/10.1038/s41467-019-08361-4

  133. Wang R, Xu J, Fu L, Zhang C, Li Q, Yao J, Li X, Sun C, Zhang ZG, Wang X, Li Y, Ma J, Xiao M (2021) Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. J Am Chem Soc 143(11):4359–4366. https://doi.org/10.1021/jacs.0c13352. Publisher: American Chemical Society

  134. Wronski CR, Carlson DE (2001) Amorphous silicon solar cells. In: Archer M, Hill R (eds) Clean electricity from photovoltaics, series on photoconversion of solar energy, vol 1. Imperial College Press and World Scientific, pp 199–243. https://doi.org/10.1142/9781848161504_0005,

  135. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92(26):263302. https://doi.org/10.1063/1.2924771. Publisher: American Institute of Physics

  136. Yadav S, Chattopadhyay K, Singh CV (2017) Solar grade silicon production: a review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling. Renew Sustain Energy Rev 78:1288–1314. https://doi.org/10.1016/j.rser.2017.05.019

  137. Yamaguchi M (2001) Radiation-resistant solar cells for space use. Solar Cells Space 68(1):31–53. https://doi.org/10.1016/S0927-0248(00)00344-5

  138. Yan D, Cuevas A, Bullock J, Wan Y, Samundsett C (2015) Phosphorus-diffused polysilicon contacts for solar cells. In: Proceedings of the 5th international conference on crystalline silicon photovoltaics (SiliconPV 2015) 142:75–82. https://doi.org/10.1016/j.solmat.2015.06.001, https://www.sciencedirect.com/science/article/pii/S0927024815002706

  139. Yasuda K, Morita K, Okabe TH (2014) Processes for production of solar-grade silicon using hydrogen reduction and/or thermal decomposition. Energy Technol 2(2):141–154. https://doi.org/10.1002/ente.201300131. Publisher: John Wiley & Sons Ltd

  140. Yaws CL, Jelen FC, Li KY, Patel P, Fang C (1979) New technologies for solar energy silicon: cost analysis of UCC Silane Process. Solar Energy 22(6):547–553. https://doi.org/10.1016/0038-092X(79)90027-6

  141. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162. https://doi.org/10.1016/j.mattod.2014.09.001

  142. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2(5):17032. https://doi.org/10.1038/nenergy.2017.32

  143. Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017b) Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. In: Proceedings of the 7th international conference on crystalline silicon photovoltaics 173:37–42. https://doi.org/10.1016/j.solmat.2017.06.024, https://www.sciencedirect.com/science/article/pii/S092702481730332X

  144. Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78(7):4510–4515. https://doi.org/10.1063/1.359792 Publisher: American Institute of Physics

  145. Yu G, Pakbaz K, Heeger AJ (1994) Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Appl Phys Lett 64(25):3422–3424. https://doi.org/10.1063/1.111260. Publisher: American Institute of Physics

  146. Zhang J, Zhang W, Cheng HM, Silva SRP (2020) Critical review of recent progress of flexible perovskite solar cells. Mater Today 39:66–88. https://doi.org/10.1016/j.mattod.2020.05.002, https://www.sciencedirect.com/science/article/pii/S1369702120301747

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Urbina .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urbina, A. (2022). Production of PV Modules. In: Sustainable Solar Electricity. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-91771-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91771-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91770-8

  • Online ISBN: 978-3-030-91771-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics