Skip to main content

Genomic Designing for Biotic Stress Resistance in Mulberry

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Technical Crops

Abstract

Mulberry has several economic uses and all parts of the plant have one or another use and the leaves are used as a sole food for monophagous silkworm (Bombyx mori L.). Production of premium silk in the sericulture industry is directly associated with quality mulberry leaves production. However, mulberry is affected by various pathogens and pests like fungi, bacteria, virus, nematodes and cause considerable crop loss. Mulberry genetic improvement through traditional breeding relies on the availability of compatible genetic resources carrying the genes of interest. Mulberry being highly heterozygous and with a long generation gap and also due to genetic drag, it is difficult to introgress genes from wild germplasm to cultivars through recurrent back crosses. Nonetheless, significant works have been made to develop disease resistant lines/varieties through germplasm screening and identification of suitable parents for breeding. To speed up the breeding programme, DNA markers tightly linked to the trait of interest are used for early and reliable selection of desirable genotypes through the process of Marker Assisted Selection (MAS). The major limitations MAS include the sparse distribution of markers, large genetic intervals between the markers and the trait genes, many QTLs identified as minor QTLs that show a small effect on phenotypic variations and the low success rate in validating identified QTLs in different genotypes and environments. Further, to develop high resolution maps to identify markers with the tight association, more abundantly available markers like Single nucleotide polymorphisms (SNPs) have to be developed. Such effort is currently in progress at different research organizations across the globe. This chapter deals with current initiatives of genomic designing such as gene editing, and recent concepts and strategies developed for biotic stress resistance in mulberry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of Association Mapping to understanding the genetic diversity of plant germplasm resources. Int J Plan Genom

    Google Scholar 

  • Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281. https://doi.org/10.1111/NPH.12889

  • Aggarwal R, Udaykumar D (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mol Ecol Notes 4:477–479

    Article  CAS  Google Scholar 

  • Ahmed F, Alim MA, Ahmed O, Iqbal MT (2016) Mulberry varieties evaluation for foliar diseases in Bangladesh. Inte J Agri and Biosci 5(4):151–157

    Google Scholar 

  • Akio K, Hiroaki Y, Hiroaki M (2002) Conservation status of mulberry genetic resources in Japan. Paper contributed to expert consultation on promotion of global exchange of sericulture germplasm satellite session of XIXth ISC congress, 21–25th Sept, Bangkok, Thailand

    Google Scholar 

  • Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA et al (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Micro Rese 212:29–37. https://doi.org/10.1016/j.micres.2018.04.008

    Article  CAS  Google Scholar 

  • Allem AC, Mendes RA, Salomão AN, Burle ML (2001) The primary gene pool of cassava (Manihot esculenta crantz subspecies esculenta, Euphorbiaceae). Euphytica 120(1):127–132

    Article  CAS  Google Scholar 

  • Anil Kumar HV, Muralidhar TS, Munirajappa R (2012) RAPD analysis of EMS mutagenized mulberry genotype RFS135. Schol J Biotech 1:1–7

    Google Scholar 

  • Anil Kumar HV, Muralidhar TS, Acharya S, Das MJ (2013) EMS induced morphometric biomass and phytochemical variations in Morus species (Genotype RFS135). J Exp Agri Int 3(1):43–55

    Google Scholar 

  • Arfan M, Khan R, Rybarczyk A, Amarowicz R (2012) Antioxidant activity of mulberry fruit extracts. Int J Mol Sci 13(2):2472–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunakumar GS, Gnanesh BN (2022) Assessment of inoculation methods for screening resistance to dry and black root rot of mulberry. Eur J Plan Path (2nd revision submitted)

    Google Scholar 

  • Arunakumar GS, Revanna S, Kumar V, Yadav VK, Sivaprasad V (2018) Studies on scanning electron microscopy and fungal association with root knot nematode in major mulberry growing areas of Southern Karnataka. J Entomol Zool 6(4):511–518

    Google Scholar 

  • Arunakumar GS, Gnanesh BN, Pooja D, Sivaprasad V (2019a) First report of Setosphaeria rostrata causing leaf spot on mulberry in India. Plan Dis 103(4):774. https://doi.org/10.1094/PDIS-08-18-1424-PDN

    Article  Google Scholar 

  • Arunakumar GS, Gnanesh BN, Supriya M, Sivaprasad V (2019b) First report of Nigrosporasphaerica causing shot hole disease on mulberry in India. Plan Dis 103(7):1783. https://doi.org/10.1094/PDIS-12-18-2204-PDN

    Article  Google Scholar 

  • Arunakumar GS, Gnanesh BN, Manojkumar HB, Doss Gandhi S, Mogili T et al (2021) Genetic diversity, identification and utilization of novel genetic resources for resistance to Meloidogyne incognita in mulberry (Morus spp.). Plan Dis 105(10):2919–2928. https://doi.org/10.1094/PDIS-11-20-2515-RE

  • Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H et al (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agri Food Chem 49(9):4208–4213

    Google Scholar 

  • Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K et al (2004) Genetic diversity in mulberry (Genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5(1):100–104

    Article  Google Scholar 

  • Babu AM, Jalaja Kumar S, Kumar V, Sarkar A, Datta RK (2002) Tropic failure of phyllactiniacorylea contributes to mildew resistance of mulberry genotypes. Mycopathologia 156(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Das NK, Manas M, Mandal K, Bajpai AK (2009) Screening of mulberry genotypes for disease resistance in different seasons to bacterial leaf spot. Ind J Genet and Plan Breed 69:152–156

    Google Scholar 

  • Banerjee R, Roychoudhury S, Sau H, Das BK, Saha AK et al (2011) Phenotypic divergence in mulberry (Morus spp.) germplasm collections. J Crop Impr 25(5):459–471

    Google Scholar 

  • Bao L, Gao H, Zheng Z, Zhao X, Zhang M et al (2020) Integrated transcriptomic and un-targeted metabolomics analysis reveals mulberry fruit (Morusatropurpurea) in response to sclerotiniose pathogen Ciboria shiraiana infection. Int J Mol Sci 21(5):1789. https://doi.org/10.3390/ijms21051789

    Article  CAS  PubMed Central  Google Scholar 

  • Bautista-Cruz MA, Almaguer-Vargas G, Leyva-Mir SG, Colinas-León MT, Correia KC et al (2019) Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with cankers and dieback symptoms of Persian lime in Mexico. Plan Dis 103(6):1156–1165

    Article  CAS  Google Scholar 

  • Bhattacharya E, Ranade SA (2001) Molecular distinction amongst varieties of Mulberry using RAPD and DAMD profiles. BMC Plan Bio 1:3

    Article  CAS  Google Scholar 

  • Bhattacharya E, Dandin SB, Ranade SA (2005) Single primer amplification reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse. J Biosci 30:669–677

    Article  CAS  PubMed  Google Scholar 

  • Bindroo BB, Tiku AK, Pandit RK (1990) Variation of some metrical traits in mulberry varieties. Ind J Forester 116(4):320–324

    Google Scholar 

  • Campos AR, Lordello LGE, Abreu OC, Olivira DA (1974) Incidence of Meloidogyne on mulberry varieties. In: Dordello LGB (ed) Trabalhos apresentados d eseuriao de nematologia. Piracicaba Brazil

    Google Scholar 

  • Chakraborti SP, Vijayan K, Roy BN, Quadri SMH (1998) In vitro induction in tetraploidy in mulberry (Morus alba L). Plan Cell Rep 17(10):794–803

    Google Scholar 

  • Chakraborti SP, Das C, Vijayan K, Misra AK, Raghunath MK et al (1999) Field evaluation of somaclonal variant (SV1) developed from Morus alba L. var. S1. Ind J Sericul 38:69–71

    Google Scholar 

  • Chang LW, Juang LJ, Wang BS, Wang MY, Tai HM et al (2011) Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem Toxicol 49(4):785–790

    Google Scholar 

  • Chang LY, Li KT, Yang WJ, Chang JC, Chang MW (2014) Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Sci Hort 176:208–217

    Article  Google Scholar 

  • Chatterjee SN, Nagaraja GM, Srivastava PP, Naik GY (2004) Morphological and molecular variation of Morus laevigata in India. Genetica 121(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL et al (2006) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235(2):248–529

    Article  CAS  PubMed  Google Scholar 

  • Chen SF, Morgan D, Beede RH, Michailides TJ (2013) First report of Lasiodiplodia theobromae associated with stem canker of almond in California. Plant Dis 97(7):994–994

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhou W, Huang Y, Wang ZZ (2016) The complete chloroplast genome sequence of the mulberry Morus notabilis (Moreae). Mitochondrial DNA Part A 27(4):2856–2857

    Article  CAS  Google Scholar 

  • Chen J, Xiang TT, Liu XY, Wang WH, Zhang BL et al (2018) First report of Nigrosporasphaerica causing shot hole disease on mulberry in China. Plan Dis 102(1):245

    Article  Google Scholar 

  • Chen J, Zhu Z, Fu Y, Cheng J, Xie J et al (2021) Identification of Lasiodiplodiapseudotheobromae causing fruit rot of citrus in China. Plants 10(2):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3(1):1–14

    Article  Google Scholar 

  • Choi SH, Choi YS, Ryu SJ, Lee KH (1989) Bacterial leaf spot of benjamina (Ficus benjamina) caused by Xanthomonas campestris. The Plan Path J 5(4):383–385

    Google Scholar 

  • Chowdary NB (2006) Studies on root rot disease of mulberry (Morus spp.) and its management with special reference to the antagonistic microbes. PhD thesis, The University of Mysore, vol 12

    Google Scholar 

  • Chowdary NB, Govindaiah (2009) Leaf yield loss assessment due to Macrophomina root rot disease in mulberry gardens of south India. Archives Phytopath Plan Prot 42(11):1055–1058

    Google Scholar 

  • Collins FS, Guyer MS, Chakravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278(5343):1580–1581

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Groenewald JZ (2005) Hosts, species and genotypes: opinions versus data. Australas Plant Pathol 34(4):463–470

    Article  Google Scholar 

  • Cruywagen EM, Slippers B, Roux J, Wingfield MJ (2017) Phylogenetic species recognition and hybridization in Lasiodiplodia: a case study on species from baobabs. Fungal Biol 121:420–436

    Article  PubMed  Google Scholar 

  • Das BC (1984) Mulberry varieties, exploitations and pathology. Sericologia 24:369–372

    Google Scholar 

  • David BV (1993) Biodiversity in whiteflies (Aleyrodidae: Homoptera). Hexapoda 5(2):165–171

    Google Scholar 

  • de Silva NI, Phillips AJ, Liu JK, Lumyong S, Hyde KD (2019) Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Devi ML, Kumari MV (2014) Prevalence of Meloidogyne species in different crops of Indian sub continent—a review. Int J Adv Res 2(9):530–537

    Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55(4):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Dhanyalakshmi KH, Nataraja KN (2018) Mulberry (Morus spp.) has the features to treat as a potential perennial model system. Plan Signal Behav 13(8):e1491267. https://doi.org/10.1080/15592324.2018.1491267

  • Ercisli S, Orhan E (2007) Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 103(4):1380–1384

    Article  CAS  Google Scholar 

  • Fang SQ, Wu FA Chen MS (2011) Isolation and primary identification of the pathogen causing root rot disease of adult mulberry trees. Sci Sericulture 37:785–791

    Google Scholar 

  • Fang LJ, Qin RL, Liu Z, Liu CR, Gai YP et al (2019) Expression and functional analysis of a PR-1 Gene, MuPR1, involved in disease resistance response in mulberry (Morusmulticaulis). J Plan Interact 14:376–385

    Article  CAS  Google Scholar 

  • Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel KH (2004) Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeriagraminis f. sp. hordei. Mol Plan Microbe Interact 17(1):118–123

    Google Scholar 

  • Gai YP, Zhao HN, Zhao YN, Zhu BS, Yuan SS et al (2018) MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 8(1):812. https://doi.org/10.1038/s41598-018-19210-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gómez B, Gonzalez-Alvarez H, Martínez-Mora C, Luis Cenis J, del Carmen P-H et al (2019) The molecular characterization of an extended mulberry germplasm by SSR markers. Genetika 51(2):389–403

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plan Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Gnanaprakash S, Madhumitha B, Jayapradha C, Devipriya S, Kalaiarasan P (2016) Identification of resistance in mulberry, Morus spp. for root knot nematode, Meloidogyne incognita. Int J Plan Sci 11(2):262–264

    Google Scholar 

  • Gnanesh BN, Tejaswi A, Arunakumar GS, Supriya M, Manojkumar HB et al (2020) Molecular phylogeny, identification and pathogenicity of Rhizopus oryzae associated with root rot of mulberry in India. J Appl Microbiol 131(1):360–374. https://doi.org/10.1111/jam.14959

    Article  CAS  PubMed  Google Scholar 

  • Govindaiah Sharma DD, Sengupta K, Gunasekher V, Suryanarayana N, Madhava Rao YR (1989) Screening of mulberry varieties against major fungal diseases. Ind J Seric 28(2):207–213

    Google Scholar 

  • Govindaiah Sharma DD, Bajpai AK, Datta RK (1993) Identification of races of Meloidogyne incognita, infesting mulberry. Indian J Seric 32:91–93

    Google Scholar 

  • Gunasekhar V, Govindaiah Datta RK (1994) Occurrence of Alternaria leaf blight of mulberry and a key for disease assessment. Int J Tropical Plan Diseases 12:53–57

    Google Scholar 

  • Halushka MK, Fan JB, Bentley K, Hsie L, Shen N et al (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet 22(3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Hartman KM, Sasser JN (1985) Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne vol. II. North Carolina State University Graphics, Raleigh, USA, pp 69–77

    Google Scholar 

  • Hassimotto NMA, Genovese MI, Lajolo FM (2007) Identification and characterization of anthocyanins from wild mulberry (Morus nigra L.) growing in Brazil. Food Sci Technol Int 13(1):17–25

    Google Scholar 

  • He N, Zhang C, Qi X, Zhao S, Tao Y et al (2013) Draft genome sequence of the mulberry tree Morusnotabilis. Nature Commun 4:2445. https://doi.org/10.1038/ncomms3445

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hongthongdaeng B (1987) Study on the mulberry resistance to the root rot disease. Sericologia 27(2):189–191

    Google Scholar 

  • Hossain M, Rahama SM, Jorder OI (1991) Isolation of sodium chloride resistant genotypes in mulberry cultivars. Bull Sericult Res 2:67–73

    Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105(5):699–707

    Google Scholar 

  • Huang RZ, Yan XP, Li J, Zhang XW (2009) AFLP fingerprint analysis for 10 mulberry cultivars in Hunan province. Sci Seric 35(4):837–841

    CAS  Google Scholar 

  • Ii A (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical J Linn Soc 141(4):399–436

    Article  Google Scholar 

  • Jiang D, Sui Y, Lang X (2016) Timing and associated climate change of a 2 °C global warming. Int J Climatol 36(14):4512–4522

    Article  Google Scholar 

  • Jiao F, Luo R, Dai X, Liu H, Yu G et al (2020) Chromosome-level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba). Mol Plant 13(7):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH et al (2007) Overexpression of AtMYB44 enhances stomatal closure to conferabiotic stress tolerance in transgenic arabidopsis. Plant Physiol 146(2):623–635

    PubMed  Google Scholar 

  • Kang TH, Hur JY, Kim HB, Ryu JH, Kim SY (2006) Neuroprotective effects of the cyanidin-3-O-β-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci Lett 391(3):122–126

    Article  CAS  PubMed  Google Scholar 

  • Kar PK, Srivastava PP, Awasthi AK, Urs SR (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4(1):75–83

    Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong WQ, Yang JH (2016) The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 62(1):165–172

    Article  CAS  PubMed  Google Scholar 

  • Kong WQ, Yang JH (2017) The complete chloroplast genome sequence of Morus cathayana and Morus multicaulis, and comparative analysis within genus Morus L. Peer J 5:e3037. https://doi.org/10.7717/peerj.3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotikal YK (1982) Studies on the pests of mulberry, Morus alba L. with special reference to the black headed hairy caterpillar, Spilosomaobliqua Walker (Lepidoptera: Arctiidae). M. Sc.(Ag.) thesis, UAS, Bangalore, pp 37–38

    Google Scholar 

  • Kozjak P, Meglič V (2012) Mutagenesis in plant breeding for disease and pest resistance. Mutagenesis InTech: 195–220

    Google Scholar 

  • Krishnan RR, Sumathy R, Ramesh SR, Bindroo BB, Naik GV (2014) SimEli: similarity elimination method for sampling distant entries in development of core collections. Crop Sci 54(3):1070–1078

    Article  Google Scholar 

  • Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Envi Pollut 124(2):179–221

    Article  CAS  Google Scholar 

  • Kumar P, Ram K, Singh BD, Noamani MKR, Sengupta K (1989) Residual toxic effect of some insecticides against larvae of silkworm, Bombyx mori L. Oriental Entomology Cogress, Agra

    Google Scholar 

  • Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genomes 5(2):359–374

    Google Scholar 

  • Lannoo N, Van Damme EJ (2010) Nucleocytoplasmic plant lectins. Biochim Biophys Acta (BBA) Gen Subj 1800(2):190–201. https://doi.org/10.1016/j.bbagen.2009.07.021

  • Larignon P, Fulchic R, Cere L (2001) Dubos, B. Observation on black dead arm in French vineyards. Phytopathol Mediterr 40:336–342

    Google Scholar 

  • Le Houerou HN (1980) Browse in Africa: the current state of knowledge. ILCA, Addis Ababa, Ethiopia

    Google Scholar 

  • Lewis T (1997) Thrips as crop pests. Cab International

    Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D et al (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnol 31(8):688–691

    Article  CAS  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Human Genet 44(3):397

    CAS  Google Scholar 

  • Lu X, Sun B, Shen F, Pan G, Wang J et al (2008) Cloning of low-temperature induced gene from Morus mongolica CK Schn and its transformation into Petunia hybridaVilm. Afr J Biotechnol 7(5)

    Google Scholar 

  • Luo S, Zhaoxuan C (1989) Studies on Fusarium wilt disease of the medicinal Indian mulberry (Morindaofficinalis) [China]. J Fujian Agri College 18:526–531

    Google Scholar 

  • Mahadeva A, Shree MP (2007) Biochemical studies in the hopper burn mulberry (Morus spp.) leaves. Bull. Ind Acad Seri 11:56–61

    Google Scholar 

  • Maji MD (2003) Mulberry diseases and their management. Indian Silk 11:7–10

    Google Scholar 

  • Maji MD, Sau H, Das BK (2009) Screening of mulberry germplasm lines against Powdery mildew, Myrothecium leaf spot and Pseudocercospora leaf spot disease complex. Arch Phytopathol and Plan Protection 42(9):805–811

    Article  Google Scholar 

  • Manimegalai S, Chandramohan N (2007) Leaf quality of mildew affected leaves and their effect on mortality and economic characters of silkworm, Bombyx mori L. Sericologia 47:87–92

    Google Scholar 

  • Manomohan MS, Govindaiah (2012) Efficacy of botanical extracts against Fusarium oxysporiumSchlecht causing mulberry root rot—an invitro evalution. Int J Sci and Nat 3(2): 267–271

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F et al (2013) Application of the CRISPR–cas system for efficient genome engineering in plants. Mol Plan 6(6):2008–2011

    Article  CAS  Google Scholar 

  • Marques MW, Lima NB, de Morais MA, Barbosa MAG, Souza BO et al (2013) Species of Lasiodiplodia associated with mango in Brazil. Fungal Divers 61(1):181–193

    Article  Google Scholar 

  • Mir MR, Khan A, Dhar A, Bilal AW (2013) Studies on structural mechanism of resistance in mulberry against two important foliar diseases under Kashmir conditions. Int J Plant Pathol 4(1):1–8

    Article  Google Scholar 

  • Misra HP (2003) Bioefficacy of NACLFMOA-A fermentation Metabolite against Thrips, Scirtothrips dorsalis Hood infesting Chilli. Ind J Plan Protection 31(1):109–111

    CAS  Google Scholar 

  • Muhonja L, Yamanouchi H, Yang C, Kuwazaki S, Yokoi K et al (2020) Genome-wide SNP marker discovery and phylogenetic analysis of mulberry varieties using double-digest restriction site-associated DNA sequencing. Gene 726:144162

    Article  CAS  PubMed  Google Scholar 

  • Muthuswami M, Subramanian S, Gangadhara R, Bharathi M (2011) Induction of tolerance to root rot disease in Indian Mulberry varieties through in vitro approaches. Revue des Vers a Soie J of Silkworms 107

    Google Scholar 

  • Narayanan ES, Kashivishwanathan K, Iyengar MNS (1966) A note on the occurrence of root-knot nematode, Meloidogyne incognita (Kofoid and Whitc) in local mulberry. Ind J Seric 5:33–34

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci, USA 76(10):5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nepal MP, Ferguson CJ (2012) Phylogenetics of Morus (Moraceae) inferred from ITS and trnL-trnF sequence data. Syst Bot 37(2):442–450

    Article  Google Scholar 

  • Nomani KR, Mukherjee PK, Krishnaswamy S (1970) Studies on the effect of feeding multivoltine silk worm (Bombyx mori L.) larvae with mildew affected mulberry leaves. Ind J Seri 9(1):49–52

    Google Scholar 

  • Oliveira LS, Damacena MB, Guimarães LM, Siqueira DL, Alfenas AC (2016) Ceratocystis fimbriata isolates on Mangifera indica have different levels of aggressiveness. Eur J Plant Pathol 145(4):847–856

    Article  CAS  Google Scholar 

  • Oliveira LS, Pimenta LV, Guimarães LM, de Souza PV, Bhering LL et al (2021) Resistance of kiwifruit cultivars to ceratocystis wilt: an approach considering the genetic diversity and variation in aggressiveness of the pathogen. Plant Pathol 70(2):349–357

    Article  CAS  Google Scholar 

  • Orhan E, Ercisli S, Yildirim N, Agar G (2007) Genetic variations among mulberry genotypes (Morus alba) as revealed by random amplified polymorphic DNA (RAPD) markers. Plant Syst Evol 265(3–4):251–258

    Article  CAS  Google Scholar 

  • Orhan E, Akin M, Eyduran SP, Ercisli S (2020) Molecular characterization of mulberry genotypes and species in Turkey. Notulae Botanicae Horti Agro Botanici Cluj-Napoca 48(2):549–557

    Article  CAS  Google Scholar 

  • Pan YL (2003) Popularization of good mulberry varieties and sericultural development. Acta Sericologic Sinica 1:1–6

    Google Scholar 

  • Pappachan A, Rahul K, Irene L, Sivaprasad V (2020) Molecular identification of fungi associated with mulberry root rot disease in Eastern and North Eastern India. J Crop Weed 16(1):180–185

    Article  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    Article  CAS  PubMed  Google Scholar 

  • Peris NW, Lucas N, Miriam KG, Theophillus MM (2012) Field evaluation of mulberry accessions for susceptibility to foliar diseases in Uasin-Gishu district, Kenya. Afri J Biotec 11(15):3569–3574

    Google Scholar 

  • Peris NW, Gacheri KM, Theophillus MM, Lucas N (2014) Morphological characterization of Mulberry (Morus spp.) accessions grown in Kenya. Sustain Agri Res 3(526–2016–37790):10–17

    Google Scholar 

  • Philip T, Govindaiah DRK (1994) Sources of resistance in mulberry to leaf rust. Ind Phytopathol 42(2):201–202

    Google Scholar 

  • Philip T, Govindaiah SK, Nishitha Naik V (1991) Anatomical nature of resistance in mulberry genotypes against Ceroteliumfici causing leaf rust. Ind Phytopath 44(2):249–251

    Google Scholar 

  • Philip T, Bajpai AK, Govindaiah (1995a) Disease resistance breeding in mulberry. Int J Tropical Plan Dis 13:183–192

    Google Scholar 

  • Philip T, Bajpai AK, Govindaiah SA (1995b) Screening of mulberry genotypes for resistance to Mycosphaerella mori leaf spot. Int J Tropical Plan Dis 13:199–204

    Google Scholar 

  • Philip T, Latha J, Govindaiah MB, Mondal KC, Bajpai AK (1995c) Some observations on the incidence, associated microflora and control of root rot disease of mulberry in South India. Ind J Seri 34:137–139

    Google Scholar 

  • Philip T, Govindaiah LJ, Sharma DD, Bajpai AK et al (1996) Biophysical and biochemical characters of some mulberry cultivars resistant and susceptible to leaf spot (Cercosporamoricola). Sericologia 36(4):745–748

    Google Scholar 

  • Philip T, Govindaiah AK, Bajpai G, Anam N, Naidu NR (1997) A preliminary survey on mulberry diseases in South India. Ind J Seri 34:137–139

    Google Scholar 

  • Philip T, Rajan MV, Qadri SMH, Kamble CK (2009) Post infectional physio-biochemical changes in food plants of silkworm and the effect of feeding diseased leaves on silkworm. Ind J Seri 48(1):1–9

    Google Scholar 

  • Pinto MV, Poornima HS, Rukmangada MS, Triveni R, Naik VG (2018) Association mapping of quantitative resistance to charcoal root rot in mulberrygermplasm. PLoS ONE 13(7):1–25

    Article  Google Scholar 

  • Poojashree K, Arunakumar GS, Gnanesh BN (2021) In vitro evaluation of novel fungicide molecules against Cerotelium fici cast. (arth.) causing black leaf rust of mulberry. Sericologia 61 (3&4):19–22

    Google Scholar 

  • Prabhakar VK, Reddy NR, Babu HS, Sharma RCM, Kumar CK (2015) Screening of mulberry germplasm for reaction to sucking pests. Intl J Dev Res 5(1):2976–2979

    Google Scholar 

  • Prasad KV, DayakarYadav BR, Sullia SB (1993) Taxonomic status of rust on mulberry in India. Current Sci 65:424–426

    Google Scholar 

  • Prateesh Kumar PM, Maji MD, Gangavar SK, Das NK, Saratchandra B (2000) Development of leaf rust (Peridiospora mori) and dispersal of urediospores in mulberry (Morus spp). Int J Pest Manag 46(3):195–200

    Article  Google Scholar 

  • Pratheesh Kumar PM (2019) Development of antifungal formulations and their evaluation against root rot disease of mulberry. Int J Plant Protec 12(2):166–171

    Article  Google Scholar 

  • Pratheesh Kumar PM, Pal SC, Qadri SMH (2003) Screening of mulberry germplasm for resistance to leaf spot caused by Myrothecium roridum. J Mycopathol Res 41(1):105–106

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi locus genotype data. Genetics 155(2):945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qadri SMH, Pratheesh Kumar PM, Gangwar SK, Elangavon C, Das NK et al (1999) Crop loss assessment due to powdery mildew in mulberry. Bull Seri Res 9:31–35

    Google Scholar 

  • Radhakrishnan NV, Ramabardram R, Jayaraj J (1995) Botrydiplodia root rot—a new disease of mulberry. Ind Phytopathol 48(4):490–492

    Google Scholar 

  • Ramesha A, Dubey H, Vijayan K, Ponnuvel KM, Mishra RK et al (2020) Genome wide characterization revealed MnMLO2 and MnMLO6A as candidate genes involved in powdery mildew susceptibility in mulberry. Mol Bio Rep 47(4):2889–2900. https://doi.org/10.1007/s11033-020-05395-6

    Article  CAS  Google Scholar 

  • Rangaswami G, Narasimhanna MN, Kasiviswanathan K, Sastry CR, Jolly MS (1976) Sericulture manual 1. Mulberry cultivation. Food and agricultural organization of the United Nations, Rome, pp 68–82

    Google Scholar 

  • Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acid Res 26(4):967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez C, Arias R, Quiñones J (1994) Efecto de la frecuencia de poda y elnivel de fertilizaciónnitrogenada, sobreelrendimiento y calidad de la biomasa de morera (Morus spp.) eneltrópico seco de Guatemala. In: Benavides JE (ed) Arboles y arbustosforrajerosen América Central. CATIE, Turrilaba, Costa Rica, pp 515–529

    Google Scholar 

  • Rosado AWC, Machado AR, Freire FDCO, Pereira OL (2016) Phylogeny, identification, and pathogenicity of Lasiodiplodia associated with postharvest stem-end rot of coconut. Brazil Plan Dis 100(3):561–568

    Google Scholar 

  • Saeed B, Das M, Haq QMR, Khurana P (2015) Over expression of beta carotene hydroxylase -1 (bch1) in mulberry, Morus indica cv. K2, confers tolerance against high-temperature and high-irradiance stress induced damage. Plan Cell Tiss Organ Cult 120(3):1003–1015

    Google Scholar 

  • Sahu PK, Yadav BRD, Saratchandra B (1995) Evaluation of yield components in mulberry germplasm varieties. Acta Bot 23:191–197

    Google Scholar 

  • Sakthivel N, Narendra Kumar JB, DhahiraBeevi N, Devamani N., Teotia RS (2019) Mulberry pests: current status & management practices. Central Sericultural Research & Training Institute, Mysuru

    Google Scholar 

  • Sanchez MD (2000a) World distribution and utilization of mulberry, potential for animal feeding. FAO Electronic conference on mulberry for animal production Rome, Italy, vol 1. (Morus-L) Available online http://www.fao.org/DOCREP/005/X9895E/x9895e02.htm

  • Sanchez MD (2000b) Mulberry: an exceptional forage available almost worldwide. World Animal Rev 93(1). FAO, Rome

    Google Scholar 

  • Sangannavar PA, Vijayan K (2020) Role of biotechnology in genetic conservation of mulberry plants for crop improvement. J Gene Tech 10:S3 No. 7530:1–8

    Google Scholar 

  • Santos PHD, Carvalho BM, Aredes FAS, Mussi-Dias V, Pinho DB et al (2020) Is Lasiodiplodiatheobromae the only species that causes leaf blight disease in Brazilian coconut palms? Trop Plant Pathol 45(4):434–442. https://doi.org/10.1007/s40858-020-00344-x

    Article  Google Scholar 

  • Sarkar T, Mogili T, Sivaprasad V (2017) Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): an update on biotechnological interventions. 3 Biotech 7(3):1–14

    Google Scholar 

  • Sengupta K, Kumar P, Baig M, Govindaiah (1990) Hand book on pest and diseases control of mulberry and silkworm. United Nations, ESCAP, Bangkok, United Nations, Thailand, pp 3–14

    Google Scholar 

  • Sharma DD, Gupta VP (2005) Soil borne diseases of mulberry and their management. In: Govindaiah VP, Gupta DD, Sharma S, Rajadurai, Naik VN (eds) Mulberry crop protection. Central Silk Board, Bangalore, India, pp. 195–228

    Google Scholar 

  • Sharma AC, Sharma R, Machii H (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor Appl Genet 101(7):1049–1055

    Article  CAS  Google Scholar 

  • Sharma DD, Naik VN, Chowdary NB, Mala VR (2003) Soilborne diseases of mulberry and their management—a review. Int J Indust Entomol 7(4):93–106

    Google Scholar 

  • Sharma DD, Mala VR, Chowdary NB, Qadri SMH (2013) Effectiveness of compost prepared from seri residue enriched with beneficial and antagonistic microbes on management of root rot disease in mulberry. Sericologia

    Google Scholar 

  • Shinde BB, Manojkumar HB, Arunakumar GS, Bhavya MR, Gnanesh BN (2021) Assessment of statistical software to analyze genetic diversity in mulberry germplasm. Sericologia 61(3&4):19–22

    Google Scholar 

  • Siddaramaiah AL, Padaganur G, Krishna Prasad KS, Govindan R (1978) Control of mulberry Leaf spot disease caused by Cercosporamoricola Cooke. Ind J Seri 17:23–27

    Google Scholar 

  • Siddegowda K, Gupta VK, Sen AK, Benchamin KV, Manunath D (1995) Diaphania sp. Infests Mulberry in South India, Indian Silk 34:6–8

    Google Scholar 

  • Sikdar AK, Krishnaswami S (1980) Assessment of leaf yield loss of the two mulberry varieties due to leaf spot disease. Ind J Seri 9–12

    Google Scholar 

  • Singhal BK, Dhar A, Khan MA, Bindroo BB, Fotedar RK (2009) Potential economic additions by mulberry fruits in sericulture industry. Plant Hortic Tech 9(1):47–51

    Google Scholar 

  • Sinha SK, Saxena SE (1966) First record of bacterial blight of Mulberry in India caused by Pseudomonas mori (Boyer at Lambert) Stvens. Ind Phytopath 19(3):318–319

    Google Scholar 

  • Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Lombard L et al (2013) Phylogenetic lineages in the botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 76:32–49

    Article  Google Scholar 

  • Sonibare MA, Jayeola AA, Egunyomi A (2006) Comparative leaf anatomy of Ficus Linn. species (Moraceae) from Nigeria. J Appl Sci 6:3016–3025

    Article  Google Scholar 

  • Sowmya P, Naik VN, Sivaprasad V, Naik VG (2018) Characterization and correlation of pathogenicity of Botryodiplodiatheobromae isolates, the causal agent of black root rot of mulberry (Morus spp.). Arch Phytopathol Plan Prote 51(19–20):1022–1038

    Google Scholar 

  • Srikantaswamy K, Govindaiah MM, Reddy AK, Vajpai KA, Raveesha (1996) Effect of Cercospora moricola on the leaf quality in mulberry. Ind J Seri 35:144–146

    Google Scholar 

  • Srivastava PP, Vijayan K, Awasthi AK, Saratchandra B (2004) Genetic analysis of Morus alba through RAPD and ISSR markers. Ind J Biotec 3:527–532

    CAS  Google Scholar 

  • Sukumar and Ramalingam (1989) Epidemiology ofCercosporamoricola leaf spot disease of mulberry III. Conidial dispersal and disease incidence. Int Seri Comm 29:159–160

    Google Scholar 

  • Sukumar J, Padma SD (1999) Diseases of mulberry in India—research progress and priorities. In: Devaiah MC, Narayanaswamy KC, Maribashetty VG (eds) Advances in mulberry sericulture. C.V.G. Publications, Bangalore, India, pp 152–186

    Google Scholar 

  • Sullia SB, Padma SD (1987) Acceptance of Mildew affected mulberry leafs by silk worm (Bomboxy mori L.) and its effects on cocoons charecteristics. Seri Sci 27:693–696

    Google Scholar 

  • Sun YF, Long HB Lu FP (2019) First report of the root-knot nematode Meloidogyne enterolobii infecting mulberry in China. Plan Dis 103(9):2481–2481

    Google Scholar 

  • Sung GB, Seo SD, Kim YS, Ju WT, Kim HB et al (2016) Breeding of mulberry variety. Int J Indu Entomol 33(2):41–49

    Google Scholar 

  • Telan IF, Gonzales AT (1999) Botanical fungicides to control mulberry root rot. Seri Res J Philippines 2:23–38

    Google Scholar 

  • Teotia RS, Sen SK (1994) Mulberry diseases in India and their control—a preview. Sericologia 34:1–19

    Google Scholar 

  • Tewary PK, Sharma A, Raghunath MK, Sarkar A (2000) In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses. Plant Growth Regul 30(1):17–21

    Google Scholar 

  • Tikader A, Dandin SB (2006) Maintenance and utilization of mulberry (Morus spp.) genetic resources. In: Proceedings of the reports at the international jubilee scientific conference “problems of maintenance and utilization of mulberry and silkworm genetic resources, 25–29 Sept 2006, Vratza, Bulgaria, pp 1–10

    Google Scholar 

  • Tikader A, Kamble CK (2007) Mulberry breeding in India—a critical Review. Sericologia 47(4):367–390

    Google Scholar 

  • Tikader A, Kamble CK (2008) Genetic diversity of Morus species of indigenous and exotic accessions evaluated by important agronomical traits. Philippine J Sci 137(1):29–38

    Google Scholar 

  • Tikader A, Vijayan K (2017) Mulberry (Morus spp.) genetic diversity, conservation and management. In: Ahuja MR, Jain M (eds) Biodiversity and conservation of woody plants, vol 17. Springer, Cham, pp 95–127

    Google Scholar 

  • Tikader A, Vijayan K, Raghunath MK, Chakraborti SP, Roy BN et al (1995) Studies on sexual variations in mulberry (Morus spp). Euphytica 84(2):115–120

    Article  Google Scholar 

  • Tikader A, Vijayan K, Kamble CK (2009) Conservation and management of mulberry germplasm through biomolecular approaches a review. Biotechnol Mol Biol Rev 4(4):92–104

    CAS  Google Scholar 

  • Tipton J (1994) Relative drought resistance among selected southwestern landscape plants. J Arboric 20(3):150–155

    Google Scholar 

  • Tzenov PI (2002) Conservation status of mulberry germplasm resources in Bulgaria. Paper contributed to expert consultation on promotion of global exchange of sericulture germplasm satellite session of XIXth ISC Congress, September 21st–25th Bangkok, Thailand. http://www.fao.org/DOCREP/005/AD107E/ad107e01.htm

  • Úrbez-Torres JR (2011) The status of Botryosphaeriaceae species infecting grapevines. Phytopathol Mediterr 50:S5–S45

    Google Scholar 

  • Uribe TF, Sanchez MD (2001) Mulberry for animal production: animal production and health paper. FAO, Rome, pp 199–202

    Google Scholar 

  • Vijaya Kumari N (2014) Eco-friendly technologies for disease and pest management in mulberry—a review. J Agri and Vete Sci 7(2):01–06

    Google Scholar 

  • Vijayan K (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) revealed by DNA fingerprinting. Plant Syst Evol 243(3–4):221–232

    Google Scholar 

  • Vijayan K (2010) The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genet Genomes 6(4):613–625

    Article  Google Scholar 

  • Vijayan K, Chatterjee SN (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131(1):53–63

    Google Scholar 

  • Vijayan K, Das KK, Chakraborti SP, Roy BN (1997) Heterosis for leaf yield and related characters in mulberry. Indian J Genet Plant Breed 583:369–374

    Google Scholar 

  • Vijayan K, Doss SG, Chakraborti SP, Roy BN (1999) Genetic divergence in indigenous mulberry. Indian J Agricult Sci 69:851–853

    Google Scholar 

  • Vijayan K, Awasthi AK, Srivastava PP, Saratchandra B (2004a) Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141:8–14

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2004b) Screening of Mulberry (Morus spp.) for salinity tolerance through in vitro seed germination. Ind J Biotec 3:47–51

    Google Scholar 

  • Vijayan K, Kar PK, Tikader A, Srivastava PP, Awasthi AK et al (2004c) Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plan Breed 123(6):568–572

    Google Scholar 

  • Vijayan K, Srivastava PP, Awasthi AK (2004d) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47:439–448

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Nair C, Chatterjee SN (2005) Molecular characterization of mulberry genetic resources indigenous to India. Genetic Resour Crop Evol 52(1):77–86

    Article  CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Nair CV, Awasthi AK, Tikader A et al (2006) Molecular characterization and identification of markers associated with leaf yield traits in mulberry using ISSR markers. Plan Breed 125(3):298–301

    Article  CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Doss SG, Ghosh PD, Ercisli S (2008) Combining ability for morphological and biochemical characters in mulberry (Morus spp.) under salinity stress. Int J In Entomol 16(2):67–74

    Google Scholar 

  • Vijayan K, Doss SG, Chakraborti SP, Ghosh PD (2009) Breeding for salinity resistance in mulberry (Morus spp.) Euphytica 169(3): 403–411

    Google Scholar 

  • Vijayan K, Doss SG, Chackraborti SP, Ghosh PD (2010) Character association in mulberry under different magnitude of salinity stress. Emirates J Food Agric 22:318–325

    Article  Google Scholar 

  • Vijayan K, Tikader A, Weiguo Z (2011) Mulberry (Morus L.) In: Cole C (ed) Wild crop relatives: genomic & breeding resources. Springer, Heidelberg, pp 75–95

    Google Scholar 

  • Wang ZY, Tanksley SD (1989) Restriction fragment length polymorphism in Oryza sativa L. Genome 32:1113–2111

    Article  CAS  Google Scholar 

  • Wang ZW, Yu MD (2001) AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericol Sin 27(3):170–176

    CAS  Google Scholar 

  • Wei W, Davis RE, Nuss DL, Zhao Y (2013) Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc Natl Acad Sci USA 110(47):19149–19154. https://doi.org/10.1073/pnas.1318489110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiguo Z, Zhihua Z, Xuexia M, Yong Z, Sibao W et al (2007) A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodivers Conserv 16(2):275–290

    Article  Google Scholar 

  • Xiang Z, Zhang Z, Yu M (1995) A preliminary report on the application of RAPD in systematics of Morus. Acta Sericol Sin 21:203–207

    Google Scholar 

  • Xie HH, Wei JG, Liu F, Pan XH, Yang XB (2014) First report of mulberry root rot caused by Lasiodiplodia theobromae in China. Plan Dis 98(11):1581–1581

    Article  Google Scholar 

  • Xin Y, Meng S, Ma B, He W, He N (2020) Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea. Plan Sci Int J Expe Plan Bio 296:110473. https://doi.org/10.1016/j.plantsci.2020.110473

    Article  CAS  Google Scholar 

  • Yadav BRD, Sharma DD, Pratheesh Kumar PM, Naik VG (2011) Investigations into mulberry root rot disease, identification of QTLs conferring resistance and trait introgression–a pilot study. In: Annual report 2010–11. Mysuru: Central Sericultural Research and Training Institute, p 19

    Google Scholar 

  • Yang X, Yang L, Zheng H (2010) Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol 48(8–9):2374–2379

    Google Scholar 

  • Ye YB, Gu ZF (1990) Chemical control of the mulberry thrips, Pseudoendrathrips mori (Niwa). Sericologia 30:385–388

    Google Scholar 

  • Yigit D, Akar F, Baydas E, Buyukyildiz M (2010) Elemental composition of various mulberry species. Asian J Chem 22(5):3554–3560

    CAS  Google Scholar 

  • Yoshida S, Murakami R, Watanabe T, Koyama A (2001) Rhizopus rot of mulberry-grafted saplings caused by Rhizopus oryzae. J Gen Plan Pathol 67(4):291–293

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH IV, Bi YM et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Gene 38(2):203–208

    Article  CAS  Google Scholar 

  • Zeng Q, Chen H, Zhang C (2015) Definition of eight mulberry species in the genus Morus by internal transcribed spacer-based phylogeny. PLoS ONE 10(8):e0135411. https://doi.org/10.1371/journal.pone.0135411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yang T, Li RF, Zhou Y, Pang YL et al (2016) Association analysis of fruit traits in mulberry species (Morus L.). J Hort Sci Biotechnol 91(6):645–655

    Google Scholar 

  • Zhao W (2005) Studies on genetic diversity and molecular 1018 phylogeny of germplasm resources of genus Morus. (Zhengjiang, China: Chinese Academy of Agricultural Sciences) (Doctor thesis, In Chinese). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD9908&filename=2005114928.nh&uid=WEEvREcwSlJHSldRa1FhcEFLUmViSGFrN2RkM3lKNEMvZUdCNS9MYm5ocz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MjUwOTFPcDVFYlBJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWStadUZ5dmxWNzNJVjEyN0c3SzVHdGo=

    Google Scholar 

  • Zhao W (2008) Full-length cDNA library construction and analysis of the expressed sequence tags (ESTs) of young mulberry shoots. Postdoctoral report 8. Nanjing University, China

    Google Scholar 

  • Zhao W, Miao X, Jia S, Pan Y, Huang Y (2005) Isolation and characterization of microsatellite loci from the mulberry Morus l. Plant Sci 168(2):519–525

    Article  CAS  Google Scholar 

  • Zhao WG, Zhou ZH, Miao X, Wang S, Zhang L et al (2006) Genetic relatedness among cultivated and wild mulberry as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can J Plant Sci 86:251–257

    Article  CAS  Google Scholar 

  • Zhao W, Wang Y, Chen T, Jia G, Wang X et al (2007) Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an implications for conservation of local mulberry varieties. Sci Hort 115(1):47–55

    Article  CAS  Google Scholar 

  • Zhao W, Fang R, Pan Y, Yang Y, Chung JW et al (2009) Analysis of genetic relationships of mulberry (Morus spp. L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol 8(11):2604–2610

    Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acid Res 42(17):10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayan, K., Arunakumar, G.S., Gnanesh, B.N., Sangannavar, P.A., Ramesha, A., Zhao, W. (2022). Genomic Designing for Biotic Stress Resistance in Mulberry. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Technical Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-09293-0_8

Download citation

Publish with us

Policies and ethics