Skip to main content

Genomic Designing for Biotic Stress Resistance in Sugarcane

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Technical Crops

Abstract

Sugarcane (Saccharum spp hybrid) is grown across the continents, principally for white sugar and bioethanol. It is a C4 plant, generates highest amount of biomass among the cultivated crops, and meets nearly 80% of the global white sugar requirement. The modern cultivated sugarcane is a derivative of Saccharum officinarum (noble canes) and the wild relative, S. spontaneum. Worldwide, breeding strategies have improved sugarcane yield till 1970s and later cane yield remained static across the countries. Many biotic constraints seriously affect productivity of the crop which is specific to cane growing countries. Among the diseases, smut, ratoon stunting, yellow leaf and mosaic are the major constraints in most of the countries. The diseases like red rot and wilt seriously affect cane production in South and South East Asian countries with many historic red rot epiphytotics causing huge crop losses in India. Similarly, the phytoplasma diseases, grassy shoot and white leaf are serious constraints in Asian region. Recently, the diseases like rusts, pokkah boeng, red stripe etc. emerged as major diseases in different countries. Among the insect pests, stalk borers are ubiquitous in nature with serious economic losses and each country or region has unique group of borer pests. Apart from the borer pests, many sucking pests and root grub are also of serious concern to sugarcane cultivation. Among the management strategies, host resistance is successfully exploited against various diseases and healthy seed, heat treatment, and chemicals are the other management strategies adopted in tandem. In case of insect pests, an integrated management is followed with more emphasis on biological control and chemicals depending on the pests and the location. Though remarkable gains were achieved through breeding strategies, complex polyploidy hinders genetic advancements for various traits in sugarcane. Recently, various genomic tools, especially transcriptomics were applied to understand gene functions and molecular markers are partially successful. Although, genetic transformation was successful in developing many transgenic lines against various biotic constraints, application of genome editing is in nascent stage due to multiple alleles. Overall, the various biotic constraints are managed through host resistance and other strategies in an integrated approach. Genomic applications have helped to understand genomes of the crop and pathogens/insects and, host resistance and genetic engineering supports trait improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J Biol Pest Control 28:52. https://doi.org/10.1186/s41938-018-0051-2

    Article  Google Scholar 

  • Abberton M, Bailey J, Bentley A, Bryant J, Cai H, Cockram J et al (2016) Global agricultural intensification during climate change; a role for genomics. Plant Biotechnol J 14:1095–1098

    Article  PubMed  Google Scholar 

  • Abu Ahmad Y, Rassaby L, Royer M, Borg Z, Braithwaite KS et al (2006a) Yellow leaf of sugarcane is caused by at least three different genotypes of Sugarcane yellow leaf virus, one of which predominates on the Island of Reunion. Arch Virol 151:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Abu Ahmad Y, Royer M, Daugrois JH, Costet L, Lett JM et al (2006b) Geographical distribution of four Sugarcane yellow leaf virus genotypes. Plant Dis 90:1156–1160

    Article  CAS  Google Scholar 

  • Achadian EM, Kristini A, Magarey RC, Sallam N, Samson P et al (2011) Hama dan Penyakit Tebu (in Bahasa) (Pasuruan: P3GI) 156

    Google Scholar 

  • Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47:217–225

    Article  CAS  PubMed  Google Scholar 

  • Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS et al (2021) Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci 12:663849. https://doi.org/10.3389/fpls.2021.663849

    Article  PubMed  PubMed Central  Google Scholar 

  • Aitken K, Berkman P, Rae A (2016) The first sugarcane genome assembly: how can we use it. Proc Aust Soc Sugar Cane Technol 38:193–199

    Google Scholar 

  • Alarmelu S, Nagarajan R, Shanthi RM, Mohanraj D, Padmanabhan P (2010) A study on genetics of red rot resistance in sugarcane. Electronic J Plant Breed 1(4):656–659

    Google Scholar 

  • Alexander KC (1987) Durable resistance to red rot and smut disease of sugarcane. In: Naidu KM, Sreenivasan TV, Premachandran MN (eds) Sugarcane varietal improvement. Sugarcane Breeding Institute, Coimbatore, India, pp 257–276

    Google Scholar 

  • Alexander KC, Rao MM (1976) Identification of genetic stock possessing high resistance to red rot and smut. Sugarcane Pathol Newsl 37:6–10

    Google Scholar 

  • Alexander KC, Rao MM, Mohanraj D (1983) Disease reaction: catalogue on genetic resources-I Saccharum spontaneum. Sugarcane Breeding Institute, Coimbatore, India

    Google Scholar 

  • Allsopp PG, Manners JM (1997) Novel approaches for managing pests and diseases in sugarcane. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenge beyond 2000. CAB International, Wallingford, UK, pp 173–188

    Google Scholar 

  • Allsopp PG, Suasaard W (2000) Sugarcane pest management strategies in the new millennium. Proc Int Soc Sug Cane Technol Entomol Workshop, Khon Kaen, Thailand, p 4

    Google Scholar 

  • Allsopp PG, Bull RM, McGill NG (1991) Effect of Antitrogus consanguineous (Blackburn) (Coleoptera: Scarabaeidae) infestations on sugar cane yield in Australia. Crop Protect 10:205–208

    Article  Google Scholar 

  • Amalraj VA, Balasundaram N (2009) Status of sugar cane genetic resources in India. PGR Newsl 148:26–31

    Google Scholar 

  • Anonymous (2006) The Protection of Plant varieties and farmers Right Act, 2001 (53 of 2003) along with the protection of plant varieties and farmers Rights Rules, 2003. Universal Law Publishing Co Pvt Ltd., Bare Act with short Notes, p 103p

    Google Scholar 

  • Anonymous (2019) Annual report 2019. ICAR-Indian Institute of Sugarcane Research, Lucknow, India

    Google Scholar 

  • Anonymous (2020) ICAR-SBI annual report 2020. ICAR-Sugarcane Breeding Institute, Coimbatore, India

    Google Scholar 

  • Aono AH, Costa EA, Rody HVS, Nagai JS, Pimenta RJG et al (2020) Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance. Sci Rep 18(10):20057

    Article  Google Scholar 

  • Apriasti R, Widyaningrum S, Hidayati WN, Sawitri WD, Darsono N et al (2018) Full sequence of the coat protein gene is required for the induction of pathogen-derived resistance against sugarcane mosaic virus in transgenic sugarcane. Mol Biol Rep 45:2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Arencibia AD, Vazquez-Padron SDP (1997) Transgenic sugarcane plants resistant to stem-borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Arencibia A, Carmona E, Tellez P, Chan MT, Yu SM et al (1998) An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgen Res 7:213–222

    Article  CAS  Google Scholar 

  • Arruda P (2001) Sugarcane transcriptome: a landmark in plant genomics in the tropics. Genet Mol Biol 24:1–4

    Article  Google Scholar 

  • Arvinth S, Selvakesavan RK, Subramonian N, Premachandran MN (2009) Transmission and expression of transgenes in progeny of sugarcane clones with cry1Ab and aprotinin genes. Sugar Tech 11:292–295

    Article  CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N et al (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29:383–395

    Article  CAS  PubMed  Google Scholar 

  • Asha N, Patel VN, Sugeetha G, Pankaja NS, Mahdev J, Vijayalaxmi K (2019) Antixenosis and antibiosis of sugarcane varieties on the incidence of sugarcane internode borer, Chilo sacchariphagus indicus. Intl J Chem Stud 7(6):1008–1012

    Google Scholar 

  • Aslam U, Tabassum B, Nasir IA, Khan A, Husnain T (2018) A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgen Res 27:203–210

    Article  CAS  Google Scholar 

  • Asnaghi C, D’Hont A, Glaszmann JC, Rott P (2001) Resistance of sugarcane cultivar R 570 to Puccinia melanocephala isolates from different geographic locations. Plant Dis 85:282–286

    Article  CAS  PubMed  Google Scholar 

  • Atkinson PR, Nuss KJ (1989) Associations between host-plant nitrogen and infestations of the sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). Bull Entomol Res 79:489–506

    Article  Google Scholar 

  • Atkinson AH, Heath RL, Simpson RJ, Clarke AE, Anderson MA (1993) Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5:203–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babu HK, Nerkar YS (2012) Transient GUS expression studies of single and double CaMV35S promoter in sugarcane and comparison with tobacco leaves and rice callus. Adv Biotechnol 11(9):33–35

    Google Scholar 

  • Babu C, Natarajan US, Shanthi RM, Govindaraj P, Sundar AR, Viswanathan R (2010) Inheritance of red rot resistance in sugarcane (Saccharum sp. hybrids). Sugar Tech 12:167–171

    Article  Google Scholar 

  • Babu KH, Devarumath RM, Thorat AS, Nalavade VM, Saindane M, Appunu C, Suprasanna P (2021) Sugarcane transgenics: developments and opportunities. In: Kavi Kishor PB, Rajam MV, Pullaiah T (eds) Genetically modified crops current status, prospects and challenges volume 1. Springer Nature, Singapore, pp 241–265

    Google Scholar 

  • Baez-Gonzalez AD, Kiniry JR, Meki MN, Williams JR, Cilva MA et al (2018) Potential impact of future climate change on sugarcane under dryland conditions in Mexico. J Agron Crop Sci 2018:1–14. https://doi.org/10.1111/jac.12278

    Article  Google Scholar 

  • Bagyalakshmi K, Viswanathan R (2020) Identification of the RNA silencing suppressor activity of Sugarcane streak mosaic virus P1 gene. Virus Dis 31:333–340

    Article  CAS  Google Scholar 

  • Bagyalakshmi K, Viswanathan R (2021) Development of a scoring system for sugarcane mosaic disease and genotyping of sugarcane germplasm for mosaic viruses. Sugar Tech 23:1105–1117

    Article  Google Scholar 

  • Bagyalakshmi K, Parameswari B, Viswanathan R (2019a) Phylogenetic analysis and signature of recombination hotspots in sugarcane mosaic virus infecting sugarcane in India. Phytoparasitica 47:275–291

    Article  CAS  Google Scholar 

  • Bagyalakshmi K, Viswanathan R, Ravichandran V (2019b) Impact of the viruses associated with mosaic and yellow leaf disease on varietal degeneration in sugarcane. Phytoparasitica 47:591–604

    Article  CAS  Google Scholar 

  • Bailey R, Bechet G (1986) The effect of ratoon stunting diseases on the yield of south African sugarcane varieties under irrigated and rainfed conditions. Proc South Afr Sugar Technol Assoc 69:74–78

    Google Scholar 

  • Bao YX, Sun HJ, Li YF, Duan ZZ, McCord PH, Cui YP, Zhang MQ (2016) First report of Fusarium oxysporum isolate gx3 causing sugarcane pokkah boeng in Guangxi of China. Plant Dis 100:1785

    Article  Google Scholar 

  • Barbasso D, Jordão H, Maccheroni W, Boldini BJ, Sanguino A (2010) First report of Puccinia kuehnii, causal agent of orange rust of sugarcane, in Brazil. Plant Dis 94:1170

    Article  CAS  PubMed  Google Scholar 

  • Barber CA (1916) Classification of Indigenous India canes. Agri J India 11(4):371–376

    Google Scholar 

  • Barber CA (1918) Studies on Indian sugarcanes. No. 3. The classification of Indian sugarcane with special reference to Saretha and Sunnabile groups. Mem Dep Agric India Bot Series 9(4):134–160

    Google Scholar 

  • Barnabas L, Ashwin NMR, Nalayeni K, Sundar AR, Malathi P, Viswanathan R (2018) Genetic and pathogenic variability among the Indian isolates of Sporisorium scitamineum causing sugarcane smut. J Sugarcane Res 8:138–154

    Google Scholar 

  • Bedre R, Irigoyen S, Schaker PDC, Monteiro-Vitorello CB, Da Silva JA et al (2019) Genome-wide alternative splicing landscapes modulated by biotrophic sugarcane smut pathogen. Sci Rep 9:8876

    Article  PubMed  PubMed Central  Google Scholar 

  • Behnam-Oskuyee S, Ziaee M, Shishehbor P (2020) Evaluation of different insecticides for the control of sugarcane whitefly, Neomaskellia andropogonis Corbett (Homoptera: Aleyrodidae). J Saudi Soc Agri Sci 19:255–260

    Google Scholar 

  • Benda GTA, Ricaud C (1977) The use of heat treatment for disease control. Proc Intl Soc Sugar Cane Technol 16:483–496

    Google Scholar 

  • Bessin RT, Reagan TE, Moser EB (1990) Integration of control tactics for management of the sugarcane borer (Lepidoptera: Pyralidae) in Louisiana sugarcane. J Econ Entomol 83:1563–1569

    Article  Google Scholar 

  • Bezuidenhout CN, Goebel R, Hull PJ, Schulze RE, Maharaj M (2008) Assessing the potential threat of Chilo sacchariphagus (Lepidoptera: Crambidae) as a pest in South Africa and Swaziland: realistic scenarios based on climatic indices. Afr Entomol 16:86–90

    Article  Google Scholar 

  • Bhargava KS, Joshi RD, Lal KM (1971) Strain D of sugarcane mosaic virus in India. Sugarcane Pathol Newsl 8:23

    Google Scholar 

  • Bhatti IB, Khatri I, Rustamani MA, Sultana R (2019) Effect of different control methods on the population of sugarcane whitefly (AleurolobusBarodensis Mask.). Pak J Agri Res 32:595–600

    Google Scholar 

  • Bhavani B, Rao VN (2013) Management of sugarcane white fly (Aleurolobus barodensis Mask.) in North Coastal district of Andhra Pradesh, India. Intl J Soc Sci Interdisciplin Res 2(9):112–115

    Google Scholar 

  • Bhuiyan S, Croft BJ, Cox M (2013a) Breeding for sugarcane smut resistance in Australia and industry response: 2006–2011. Proc Aust Soc Sugar Cane Technol 35:1–9

    Google Scholar 

  • Bhuiyan SA, Croft BJ, Deomano EC, James RS, Stringer JK (2013b) Mechanism of resistance in Australian sugarcane parent clones to smut and the effect of hot water treatment. Crop Pasture Sci 64:892–900

    Article  CAS  Google Scholar 

  • Bhuiyan SA, Garlick K, Piperidis G (2019) Saccharum spontaneum, a novel source of resistance to root-lesion and root-knot nematodes in sugarcane. Plant Dis 103:2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS (2021) Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane -A contemporary review. Phytopathology 111:1905–1917

    Article  PubMed  Google Scholar 

  • Bigarre L, Salah M, Granier M, Frutos R, Thouvenel J-C, Peterschmitt M (1999) Nucleotide sequence evidence for three distinct sugarcane streak mastreviruses. Arch Virol 144:2331–2344

    Article  CAS  PubMed  Google Scholar 

  • Blair BL, Stirling GR (2007) The role of plant-parasitic nematodes in reducing yield of sugarcane in fine-textured soils in Queensland, Australia. Aust J Exp Agri 47:620–634

    Article  Google Scholar 

  • Bleszynski S (1969) The taxonomy of the cambrine moth borers of sugarcane In. Williams JR, Metcalfe JR, Mungomery RW, Mathes R (eds) Pests of Sugarcane. Elsevier, Amsterdam, The Netherlands, pp 11–41

    Google Scholar 

  • Bock KR, Guthrie EJ, Woods RD (1974) Purification of maize streak virus and its relationship to viruses associated with streak diseases of sugar cane and Panicum maximum. Ann Appl Biol 77:289–296

    Article  CAS  Google Scholar 

  • Botha FC, Groenewald JH (2001) Method for regulating or manipulating sucrose content and metabolism in sugar storing plants e.g., increasing sucrose content by regulating activity of pyrophosphate- dependent phosphofructokinase enzyme in plants. South Africa Patent Application ZA200101047-A25Jul2001

    Google Scholar 

  • Bouhida M, Lockhart BEL, Olszewski NE (1993) An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. J Gen Virol 74:15–22

    Article  CAS  PubMed  Google Scholar 

  • Boukari W, Alcalá-Briseño RI, Kraberger S, Fernadez E, Filloux D et al (2017) Occurrence of a novel mastrevirus in sugarcane germplasm collections in Florida, Guadeloupe and Réunion. BMC Virol J 14:146

    Article  Google Scholar 

  • Boukari W, Filloux D, Daugrois JH, Fernadez E, Mollov D et al (2020) Molecular detection of sugarcane striate virus and sugarcane white streak virus and their prevalence in the Miami World Collection of sugarcane and related grasses. Plant Pathol 69:1060–1069

    Article  CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seeds 5:209–221

    Article  Google Scholar 

  • Braithwaite KS, Croft BJ, Magarey RC, Scharaschkin T (2009) Phylogenetic placement of the sugarcane orange rust pathogen Puccinia kuehnii in a historical and regional context. Australas Plant Pathol 38:380–388

    Article  CAS  Google Scholar 

  • Braithwaite KS, Tom L, Kuniata LS (2019) Planthopper transmission of Ramu Stunt Virus, a Tenuivirus causing the sugarcane disease Ramu stunt, and its distribution in Papua New Guinea. Plant Dis 103:2527–2535

    Article  CAS  PubMed  Google Scholar 

  • Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP et al (2021) Genetic transformation of sugarcane, current status and future prospects. Front Plant Sci 12:768609. https://doi.org/10.3389/fpls.2021.768609

    Article  PubMed  PubMed Central  Google Scholar 

  • Burbano RCV, Gonçalves MC, Nobile PM, dos Anjos IA, da Silva MF et al (2021) Screening of Saccharum spp. genotypes for sugarcane yellow leaf virus resistance by combining symptom phenotyping and highly precise virus titration. Crop Protect. https://doi.org/10.1016/j.cropro.2021.105577

  • Burner DM, Grisham MP, Legendre BL (1993) Resistance of sugarcane relatives injected with Ustilago scitaminea. Plant Dis 77:1221–1223

    Article  Google Scholar 

  • Buss EA (2003) Tomarus subtropicus Blatchley (Insecta: Coleoptera: Scarabaeidae). Available at htttp://entnemdept.ufl.edu/creatures/orn/turf/sugarcane_grub.htm. Accessed on 12 January 2022

  • Butterfield MK, Rutherford RS, Carson DL, Huckett BI, Bornman CH (2004) Application of gene discovery to varietal improvement in sugarcane. South Afr J Bot 70:167–172

    Article  CAS  Google Scholar 

  • Cai Q, Aitken K, Fan YH, Piperidis G, Liu XL et al (2012) Assessment of the genetic diversity in a collection of Erianthus arundinaceus. Genet Resour Crop Evol 59:1483–1491

    Article  Google Scholar 

  • Cameron P, Hill R, Bain J, Thomas W (1993) Analysis of importations for biological control of insect pests and weeds in New Zealand. Biocontrol Sci Technol 3:387–404

    Article  Google Scholar 

  • Candresse T, Filloux D, Muhire B, Julian C, Galzi S, Fort G et al (2014) Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS ONE 9:e102945

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20. https://doi.org/10.1002/jctb.2742

    Article  CAS  Google Scholar 

  • Chatenet M, Mazarin C, Girard JC, Fernandez E, Gargani D et al (2005) Detection of Sugarcane streak mosaic virus in sugarcane from several Asian countries. Proc Intl Soc Sugar Cane Technol 25:656–662

    Google Scholar 

  • Chaudhary OP, Jaipal S (2006) Evaluation of new insecticides for controlling whitefly in sugarcane. Coop Sugar 38:37–40

    Google Scholar 

  • Chaulagain B, Dufault N, Raid RN, Rott P (2019a) Sensitivity of two sugarcane rust fungi to fungicides in urediniospore germination and detached leaf bioassays. Crop Protect 117:86–93

    Article  CAS  Google Scholar 

  • Chaulagain B, Raid RN, Rott P (2019b) Timing and frequency of fungicide applications for the management of sugarcane brown rust. Crop Protect 124:104826

    Article  CAS  Google Scholar 

  • Chavarría E, Subriós F, Vega J, Ralda G, Glynn NC et al (2009) First report of orange rust of sugarcane caused by Puccinia kuehnii in Costa Rica and Nicaragua. Plant Dis 93:425

    Article  PubMed  Google Scholar 

  • Chaves-Bedoya G, Espejel F, Alcala-Briseno RI, Hernández-Vela J, Silva-Rosales L (2011) Short distance movement of genomic negative strands in a host and nonhost for Sugarcane mosaic virus (SCMV). Virol J 8:1–8

    Article  Google Scholar 

  • Chawdhary MKU, Vasil I (1992) Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep 11:494–498

    Google Scholar 

  • Chen, Kusalwong (2000) White leaf. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases, CIRAD/ISSCT: Montpellier, France, pp 231–236

    Google Scholar 

  • Chen WH, Gartland KMA, Davey MR, Sotak R, Garland JS et al (1987) Transformation of sugarcane protoplast by direct uptake of a selectable chimeric gene. Plant Cell Rep 6:297–301

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Chinnaraja C, Viswanathan R, Karuppaiah R, Bagyalakshmi K, Malathi P et al (2013) Complete genome characterization of Sugarcane yellow leaf virus from India: evidence for RNA recombination. Eur J Plant Pathol 135:335–349

    Article  CAS  Google Scholar 

  • Chinnaraja C, Viswanathan R, Sathyabhama M, Parameswari B, Bagyalakshmi K et al (2014) Quantification of Sugarcane yellow leaf virus in in vitro plantlets and asymptomatic plants of sugarcane by RT-qPCR. Curr Sci 106:729–734

    CAS  Google Scholar 

  • Christy LA, Aravith S, Saravanakumar M, Kanchana M, Mukunthan N et al (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Chu TL, Serapion J, Rodriguez JL (1982) Varietal reaction and inheritance trends of susceptibility of sugarcane to rust (Puccinia melanocephala H. & P. Syd.). J Agri Univ Puerto Rico 66:99–108

    Google Scholar 

  • Cock CH (2001) Sugarcane growth and development. Intl Sugar J 105:5–15

    Google Scholar 

  • Comstock JC (2000) Eye spot. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 100–103

    Google Scholar 

  • Comstock JC, Miller JD, Schnell RJ (2001) Incidence of Sugarcane yellow leaf virus in clones maintained in the world collection of sugarcane and related grasses at the United States national repository in Miami. Florida. Sugar Tech 3(4):128–133

    Article  Google Scholar 

  • Comstock JC, Wu KK, Schnell RJ (1992) Heritability of resistance to the sugarcane rust. Sugar Cane 6:7–10

    Google Scholar 

  • Comstock JC, Glynn NC, Davidson RW (2010) Sugarcane rusts in Florida. Proc Intl Soc Sugar Cane Technol 27:1–9

    Google Scholar 

  • Conlong DE, Goebel R (2002) Biological control of Chilo sacchariphagus (Lepidoptera: Crambidae) in Mozambique: the first steps. Proc South Afr Sugar Technol Assoc 76:310–320

    Google Scholar 

  • Costet L, Cunff LL, Royaert S, Raboin L-M, Hervouet C et al (2012) Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet 125:825–836

    Article  CAS  PubMed  Google Scholar 

  • Cotrim CA, Soares JSM, Kobe B, Menossi M (2018) Crystal structure and insights into the oligomeric state of UDP-glucose pyrophosphorylase from sugarcane. PLoS ONE 13:e0193667–e0193667

    Article  PubMed  PubMed Central  Google Scholar 

  • Croft BJ (2000) Ring spot. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 167–169

    Google Scholar 

  • Croft BJ, Berding N, Cox MC, Bhuiyan S (2008a) Breeding smut-resistant sugarcane varieties in Australia: progress and future directions. Proc Austral Soc Sugar Cane Technol 30:125–134

    Google Scholar 

  • Croft BJ, Magarey RC, Allsopp PG, Cox MC, Willcox TG et al (2008b) Sugarcane smut in Queensland: arrival and emergency response. Austral Plant Pathol 37:26–34

    Article  Google Scholar 

  • Cullis C, Contento AL, Schell MA (2014) DNA and protein analysis throughout the industrial refining process of sugar cane. Irish J Agri Food Res 3(2):1–15

    Google Scholar 

  • Cursi DE, Hoffmann HP, Barbosa GVS, Bressiani JA, Gazaffi R et al (2022) History and current status of sugarcane breeding, germplasm development and molecular genetics in Brazil. Sugar Tech 24:112–133

    Article  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cyto-genetics. Mol Gen Genet 250:405–413. https://doi.org/10.1007/BF021740128

    Article  PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41(221–225):19

    Google Scholar 

  • da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME et al (1995) Saccharum spontaneum SES 208 genetic linkage map combination in RFLP and CR based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • da Silva MF, Gonçalves MC, Pinto LR, Perecin D, Xavier MA et al (2015) Evaluation of Brazilian sugarcane genotypes for resistance to Sugarcane mosaic virus under greenhouse and field conditions. Crop Protect 70:15–20

    Article  Google Scholar 

  • Daros E, Oliveira RA, Barbosa GVS (2015) 45 anos de variedades RB de cana-de-açúcar: 25 anos de Ridesa. Graciosa, 156 p

    Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H et al (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570.’ Theor Appl Genet 92:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Daugrois JH, Edon-Jock C, Bonoto S, Vaillant J, Rott P (2011) Spread of Sugarcane yellow leaf virus in initially disease-free sugarcane is linked to rainfall and host resistance in the humid tropical environment of Guadeloupe. Eur J Plant Pathol 129:71–80

    Article  Google Scholar 

  • Daugrois JH, Roumagnac P, Kouakou Y, Oura OJDT, Pita JS (2020) First report of Sugarcane streak mosaic virus in sugarcane (Saccharumspp.) in Côte d’Ivoire. New Dis Rep 41:22. https://doi.org/10.5197/j.2044-0588.2020.041.022

  • Davis MJ, Dean JL, Miller JD, Shine JM Jr (1994) A method to screen for resistance to ratoon stunting disease of sugarcane. Sugar Cane 6:9–16

    Google Scholar 

  • Davis MJ, Rott P, Warmuth CJ, Chatenet M, Baudin P (1997) Intraspecific genomic variation within Xanthomonas albilineans, the sugarcane leaf scald pathogen. Phytopathology 87:316–324

    Article  CAS  PubMed  Google Scholar 

  • de Francisco EV, García-Estepa RM (2018) Nanotechnology in the Agrofood Industry. J Food Eng 238:1–11

    Article  Google Scholar 

  • de Freitas MRT, da Silva EL, Mendonça ADEL, da Silva CE, da Fonseca APP et al (2007) The biology of Diatraea flavipennella (Lepidoptera: Crambidae) reared under laboratory conditions. Fla Entomol 90(2):309–313

    Article  Google Scholar 

  • De Morais LK, de Aguiar MS, de Albuquerque e Silva P, Camara TMM, Cursi DE et al (2015) Breeding of sugarcane. In: Cruz VMV, Dierig DA (eds) Industrial crops: breeding for bioenergy and bioproducts. Springer, New York, USA, pp 29–42

    Google Scholar 

  • de Paula VS, Razzera G, Barreto-Bergter E, Almeida FC, Valente AP (2011) Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. Structure 19:26–36

    Article  PubMed  Google Scholar 

  • de Souza AP, Gaspar M, da Silva EA (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127

    Article  PubMed  Google Scholar 

  • Debibakas S, Rocher S, Garsmeur O, Toubi L, Roques D et al (2014) Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127:1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng ZN, Wei YW, Lü WL, Li YR (2008) Fusion insect-resistant gene mediated by matrix attachment region (MAR) sequence in transgenic sugarcane. Sugar Tech 10:87–90

    Article  CAS  Google Scholar 

  • Deressa T, Hassan R, Poonyth D (2005) Measuring the impact of climate change on South African agriculture: the case of sugarcane growing regions. Agrekon 44:524–542

    Article  Google Scholar 

  • Dessoky ES, Ismail R, Elarabi M, Abdelhadi AA, Abdallah NA (2020) Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM Crops Food 12(1):47–56

    Article  PubMed Central  Google Scholar 

  • Dinardo-Miranda LL, Fracasso JV (2013) Sugarcane straw and the populations of pests and nematodes. Sci Agri 70:305–310

    Article  Google Scholar 

  • Dinardo-Miranda LL, Anjos IAD, Costa VPD, Fracasso JV (2012) Resistance of sugar cane cultivars to Diatraea saccharalis. Pesq Agrop Brasileira 47:1–7

    Article  Google Scholar 

  • Dlamini PJ (2021) Drought stress tolerance mechanisms and breeding effort in sugarcane: a review of progress and constraints in South Africa. Plant Stress 2:100027. https://doi.org/10.1016/j.stress.2021.100027

    Article  CAS  Google Scholar 

  • Dohare S, Mishra MM, Kumar B (2003) Effect of wilt on juice quality of sugarcane. Ann Biol 19:183–186

    Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Google Scholar 

  • Durai AA, Mahadevaiah C, Gopinath K (2020) Identification of early and mid-late maturing sugarcane varieties for western region of Tamil Nadu. J Sugarcane Res 10(1):32–42

    Article  Google Scholar 

  • Dutt NL, Rao KSS (1933) Observation on the cytology of sugarcane. Indian J Agri Sci 3:37–56

    Google Scholar 

  • Edmé SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci 45:92–97

    Article  Google Scholar 

  • Egan BT (1980) A review of the world distribution of Puccinia spp. attacking sugarcane. Proc Intl Soc Sugar Cane Technol 17:1373–1381

    Google Scholar 

  • Eid A, Mohan C, Sanchez S, Wang D, Altpeter F (2021) Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Editing 3:654996

    Article  Google Scholar 

  • ElSayed AI, Weig AR, Komor E (2011) Molecular characterization of Hawaiian Sugarcane yellow leaf virus genotypes and their phylogenetic relationship to strains from other sugarcane growing countries. Eur J Plant Pathol 129:399–412

    Article  Google Scholar 

  • ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC (2015) Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 160:2921–2934

    Article  CAS  PubMed  Google Scholar 

  • El-Wakeil N, Alkahtani S, Gaafar N (2017) Is nanotechnology a promising field for insect pest control in IPM programs.https://doi.org/10.1016/B978-0-12-804299-1.00008-4

  • Enriquez GA, Trujillo LE, Menendez C, Vazquez RI, Tiel K et al (2000) Sugarcane (Saccharun hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier, Amsterdam, pp 76–81

    Google Scholar 

  • Enríquez-Obregón G, Vázquez-Padrón R, Prieto-Samsonov D, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  • EPPO (2019a) https://gd.eppo.int/taxon/PUCCML/distribution

  • EPPO (2019b) https://gd.eppo.int/taxon/PUCCKU/distribution

  • Falco MC, Silva-Filho MC (2003) Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol Biochem 41:761–766

    Article  CAS  Google Scholar 

  • Farrag AEFB, Zeinab GE, Wafaa GE (2018) Sugarcane family and individual clone selection based on best linear unbiased predictors (BLUPS) analysis at single stool stage. J Sugarcane Res 8(2):155–168

    Google Scholar 

  • Fartek B, Nibouche S, Atiama-Nurbel T, Reynaud B, Costet L (2014) Genotypic variability of sugarcane resistance to the aphid Melanaphis sacchari, vector of the Sugarcane yellow leaf virus. Plant Breeding 133:771–776

    Google Scholar 

  • Fellers JP, Seifers D, Ryba-White M, Martin TJ (2009) The complete genome sequence of Triticum mosaic virus, a new wheat-infecting virus of the high plains. Arch Virol 154:1511–1515

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Zhang Q, Liu Q et al (2018) Application of nanoemulsions in formulation of pesticides. In: Mahdi JS, McClements DJ (eds) Nanoemulsions: formulation. Applications, and characterization. Academic Press, Waltham, pp 379–413

    Google Scholar 

  • Filloux D, Fernandez E, Comstock JC, Mollov D, Roumagnac P, Rott P (2018) Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis 102:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Fletcher TB (1920) Report of the imperial entomologist. In: Science Reports of Agriculture Research Institute; Department of Agriculture: Calcutta, India, pp 68–94

    Google Scholar 

  • Flores RC, Loyo JR, Ojeda RA, Rangel OCA, Cerón FA et al (2009) First report of orange rust of sugarcane caused by Puccinia kuehnii in Mexico, El Salvador and Panama. Plant Dis 93:1347

    Article  CAS  PubMed  Google Scholar 

  • Fontana PD, Rago AM, Fontana CA, Vignolo GM, Cocconcelli PS et al (2013) Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol 137:525–534

    Article  CAS  Google Scholar 

  • Fontana PD, Fontana CA, Bassi D, Puglisi E, Salazar SM, Vignolo GM et al (2016) Genome sequence of Acidovorax avenae strain T10_61 associated with sugarcane red stripe in Argentina. Genome Announce 4:e01669-e1715

    Google Scholar 

  • Fontana PD, Tomasini N, Fontana CA, Di Pauli V, Cocconcelli PS, Vignolo GM et al (2019) MLST reveals a separate and novel clonal group for Acidovorax avenae strains causing red stripe in sugarcane from Argentina. Phytopathology 109:358–365

    Article  CAS  PubMed  Google Scholar 

  • Francischini FJB, Cordeiro EMG, de Campos JB, Alves-Pereira A, Viana JPG et al (2019) Diatraea saccharalis history of colonization in the Americas. The case for human-mediated dispersal. PLoS ONE 14(7):e0220031

    Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust J Plant Physiol 18:471–480

    CAS  Google Scholar 

  • Gallo D, Nakano O, SilveiraNeto S, Carvalho RPL, Batista GC et al (2002) Entomologia Agrícola, 2nd edn. Ed Fealq, Piracicaba, p 920

    Google Scholar 

  • Gao S-J, Lin Y-H, Pan Y-B, Damaj MB, Wang Q-N, Mirkov TE et al (2012) Molecular characterization and phylogenetic analysis of Sugarcane yellow leaf virus isolates from China. Virus Gene 45:340–349

    Article  CAS  Google Scholar 

  • Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q (2016) Transgenic sugarcane with acry1ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane Borer. PLoS ONE 11(4):e0153929

    Article  PubMed  PubMed Central  Google Scholar 

  • García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol 30:573–581

    Google Scholar 

  • Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B et al (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638. https://doi.org/10.1038/s41467-018-05051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazaffi R, Cursi DE, Chapola RG, Santos JM, Fernandes AR Jr et al (2016) RB varieties: a major contribution to the sugarcane industry in Brazil. Proc Intl Soc Sugar Cane Technol 29:1677–1682

    Google Scholar 

  • Geetha N, Shekinah ED, Rakkiyappan P (2010) Comparative impact of release frequency of Trichogramma chilonis Ishii against Chilo sacchariphagus indicus (Kapur) in sugarcane. J Biol Control 23:343–351

    Google Scholar 

  • Geetha MV, Kalyanasundram M, Jayaraj J, Shanthi M, Vijayashanthi VA et al (2018) Pests of sugarcane pests and their management. In: Omkar (ed) Pests and their management. Springer, Singapore, pp 241–310

    Google Scholar 

  • Geijskes RJ, Braithwaite KS, Dale JL, Harding RM, Smith GR (2002) Sequence analysis of an Australian isolate of sugarcane bacilliform badnavirus. Arch Virol 147:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Gemechu AL, Chiemsombat P, Attathom S, Lersrutaiyotin R, Reanwarakorn K (2004) The variations among isolates of Sugarcane mosaic virus in Thailand as determined by virus-host interaction. Kasetsart J (nat Sci) 38:369–379

    Google Scholar 

  • Gianotto AC, Gentile A, Oldemburgo DA, Merheb GDA, Sereno ML et al (2018) Lack of detection of Bt sugarcane Cry1ab and NPTII DNA and Proteins in sugarcane processing products including raw sugar. Front Bioeng Biotechnol 6:24. https://doi.org/10.3389/fbioe.2018.00024

    Article  Google Scholar 

  • Gianotto AC, Rocha MS, Cutri L, Lopes FC, Dal’Acqua W et al (2019) The insect-protected CTC91087-6 sugarcane event expresses Cry1Ac protein preferentially in leaves and presents compositional equivalence to conventional sugarcane. GM Crops Food 10:208-219

    Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M et al (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Res 111:39–46

    Article  Google Scholar 

  • Girard J-C, Rott P (2000) Pineapple disease. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 131–135

    Google Scholar 

  • Glaszmann JC, Fautret A, Noyer JL, Feldmann P, Lanaud C (1989) Biochemical genetic markers in sugarcane. Theor Appl Genet 78:537–543

    Article  CAS  PubMed  Google Scholar 

  • Glynn NC, Gilbert RA, Comstock JC, Davis MJ (2010) Transmission of a Sugarcane yellow leaf virus resistance transgene to sexual progeny and screening by kanamycin inoculation. Field Crops Res 119:308–313

    Article  Google Scholar 

  • Goble TA (2012) Towards the development of a mycoinsecticide to control white grubs (Coleoptera: Scarabaeidae) in South African sugarcane. PhD thesis, Rhodes University, South Africa

    Google Scholar 

  • Goebel FR, Achadian E, Mcguire P (2014) The economic impact of sugarcane moth borers in Indonesia. Sugar Tech 16:405–410. https://doi.org/10.1007/s12355-013-0281-2

    Article  Google Scholar 

  • Gonçalves M, Rossini Pinto L, Creste Souza S, Landell M (2012) Virus diseases of sugarcane. A constant challenge to sugarcane breeding in Brazil. In: Viswanathan R, Sundar AR (eds) Functional plant science and biotechnology. Global Science Books, Japan, pp 108–116

    Google Scholar 

  • Gonzales RV, Manzano CA, Ordosgoitti FA, Salazar P (1987) Genética de la reacción de la Cana de Azúcar (Saccharum Spp) a Puccinia melanocephala, causante de la roya. Agron Trop 37:99–116

    Google Scholar 

  • Goswami D, Handique PJ, Deka S (2014) Rhamnolipid biosurfactant against Fusarium sacchari-the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol 54:548–557

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Rousselle Y, Chane AT, Anglade A, Royaert S et al (2015) Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 202:269–284

    Article  Google Scholar 

  • Govender P, McFarlane SA, Rutherford RS (2010) Fusarium species causing pokkah boeng and their effect on Eldana saccharina Walker (Lepidoptera: Pyralidae). Proc South Afr Sugar Technol Assoc 83:267–270

    Google Scholar 

  • Goyal SP, Vir S, Taneja AD (1982) Effect of whip smut of sugarcane on yield and juice quality. Indian Sugar 32:173–175

    Google Scholar 

  • Grisham MP (2000) Mosaic. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 249–254

    Google Scholar 

  • Grisham MP (2001) An international project on sugarcane variability within sugarcane smut. Proc Intl Soc Sugar Cane Technol 24:459–461

    Google Scholar 

  • Grisham MP, Johnson RM (2014) Red stripe caused by Acidovorax avenae subsp avenae in Louisiana sugarcane. Phytopathology 104(Suppl. 3):472

    Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C et al (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewald JH, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgen Res 17:85–92

    Article  CAS  Google Scholar 

  • Guo Y, Ruan MH, Yao W, Chen L, Chen RK, Zhang MQ (2008) Difference of coat protein mediated resistance to sugarcane mosaic virus between Badila and Funong 91–4621. J Fujian Agri Forest Univ (nat Sci Edn) 37(1):7–12

    Google Scholar 

  • Guo J, Gao S, Lin Q, Wang H, Que Y, Xu L (2015) Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference. BioMed Res Intl. https://doi.org/10.1155/2015/861907

    Article  Google Scholar 

  • Gupta MR, Gupta SC (1976) Assessment of losses caused by wilt disease of sugarcane in western UP. Indian Sugar 26:151–152

    Google Scholar 

  • Gutierrez AF, Hoy JW, Kimbeng CA, Baisakh N (2018) Identification of genomic regions controlling leaf scald resistance in sugarcane using a bi-parental mapping population and selective genotyping by sequencing. Front Plant Sci 877:1–10

    Google Scholar 

  • Hall RW, Ehler LE (1979) Rate of establishment on natural enemies in classical biological control. Bull Entomol Soc Amer 25:280–282

    Google Scholar 

  • Hall FR, Menn JJ (1999) Biopesticides. Humana Press, Totowa, NJ, p 640

    Google Scholar 

  • Hanboonsong Y, Ritthison W, Choosai C, Sirithorn P (2006) Transmission of sugarcane white leaf phytoplasma by Yamatotettix flavovittatus, a new leafhopper vector. J Eco Entomol 99:1531–1537

    Article  CAS  Google Scholar 

  • Hanboonsong Y, Sakuanrungsirikul S, Saengsai W, Kumhong S, Pituk S et al (2021) Healthy seed cane propagation and distribution manual against sugarcane white leaf disease. First Edition, March 2021, Japan International Research Centre for Agricultural Sciences

    Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M et al (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Harvell HC, Mitchell CE, Ward JR, Altizer S, Dobson AP et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hassan MN, Afghan S, Hafeez FY (2010) Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. Biocontrol 55:531–542

    Article  Google Scholar 

  • Hassan MN, Afghan S, Hafeez FY (2012) Biological suppression of sugarcane red rot by Bacillus spp. under field conditions. J Plant Pathol 94:325–329

    Google Scholar 

  • Heathcote RJ (1984) Insecticide testing against Eldana saccharina Walker. Proc South Afr Sugar Technol Assoc 58:154–158

    CAS  Google Scholar 

  • Hema M, Joseph J, Gopinath K, Sreenivasulu P, Savithri HS (1999) Molecular characterization and interviral relationships of a flexuous filamentous virus causing mosaic disease of sugarcane (Saccharum officinarum L.) in India. Arch Virol 144:479–490

    Article  CAS  PubMed  Google Scholar 

  • Hemaprabha G, Alarmelu S, Shanthi RM (2012) Relative performance of Co canes developed at Sugarcane Breeding Institute for Sucrose content. In: Proc Intl Symp New Paradigms in Sugarcane Res, 15–18 Oct 2012, Coimbatore, pp 105–107

    Google Scholar 

  • Henry RJ (2010) Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J 8:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner JB, Richman DB, Naranjo SE, Habeck D, Asaro C et al. (2008) Sugarcane pests and their management. Encyclopedia Entomol 3613–3630.https://doi.org/10.1007/978-1-4020-6359-64466

  • Hidayati WN, Apriasti R, Addy HS, Sugiharto B (2021) Distinguishing resistances of transgenic sugarcane generated from RNA interference and pathogen-derived resistance approaches to combating sugarcane mosaic virus. Indones J Biotechnol 26(2):107–114

    Article  Google Scholar 

  • Hittori I (1971) Stem borers of gramineous crops in southeast Asia. Available at https://www.jircas.go.jp/sites/default/files/publication/tars/tars5-_145–153.pdf

  • Hoang NV, Furtado A, Mason PJ, Marquardt A, Kasirajan L, Thirugnanasambandam PP et al (2017) A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. BMC Genomics 18:395. https://doi.org/10.1186/s12864-017-3757-8

  • Hoat TX, Thanh DVT, Dickinson M, Bon NG, Quan MV et al (2012) Disease problems of sugarcane in Viet Nam, with special reference to Phytoplasmas: An overview. In: Viswanathan R, Sundar AR (eds) Functional plant science and biotechnology 2 (Special issue 2). Global Science Books, Japan, pp 117–123

    Google Scholar 

  • Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D et al (2020) Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat Food 1:416–425

    Google Scholar 

  • Hogarth DM, Ryan CC, Taylor PWJ (1993) Quantitative inheritance of rust resistance in sugarcane. Field Crops Res 34:187–193

    Article  Google Scholar 

  • Holkar SK, Parameswari B, Kumar A, Nithya K, Singhote PR et al (2020) Present status and future management strategies for sugarcane yellow leaf virus: A major constraint to the global sugarcane production: an overview. Plant Pathol J 36:1–22

    Article  Google Scholar 

  • Hossain MI, Rahman MS, Reza ME, Khaiyam MO (2017) Screening of some sugarcane genotypes to wilt. Amer J Plant Biol 2(4):125–128

    Google Scholar 

  • Hossain MI, Ahmad K, Siddiqui Y, Saad N, Rahman Z et al (2020) Current and prospective strategies on detecting and managing Colletotrichum falcatum causing red rot of sugarcane. Agronomy 10:1253. https://doi.org/10.3390/agronomy10091253

  • Hughes FL, Rybicki EP, Kirby R (1993) Complete nucleotide sequence of sugarcane streak Monogeminivirus. Arch Virol 132:171–182

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Khaliq A, Mehmood U, Qadir R, Saqip M et al (2018) sugarcane production under changing climate: effects of environmental vulnerabilities on sugarcane diseases, insects and weeds. Chapter 5. Sugarcane production—agronomic, scientific and industrial perspectives. https://doi.org/10.5772/intechopen.81131

  • Ijaz S, Rana IA, Khan IA (2018) Engineering sugarcane genome to develop resistance against Colletotrichum falcatum to control red rot diseases. Acad J Agri Res 6(5):106–116. https://doi.org/10.15413/ajar.2018.0104

    Article  CAS  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploidy genome. Plant Physiol 119:11187–11197

    Article  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Irvine JE, Mirkov TE (1997) The development of genetic transformation of sugarcane in Texas. Sugar J 60:25–29

    Google Scholar 

  • ISAAA (International service for the Acquisition of Agri-biotech Applications) (2018a) Global status of commercialized Biotech/GM crops in 2018a. Biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief 54, Ithaca, New York, pp 88–105

    Google Scholar 

  • ISAAA (2018b). Crop Biotech Update, FDA Approves Sugar from Brazil’s Bt Sugarcane. Available online at https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=16704 (accessed 10 Jan 2022)

  • ISAAA (2021). Crop Biotech Update, July. Available online at: https://www.isaaa.org/gmapprovaldatabase/crop/default.asp?CropID=27&Crop=Sugarcane (accessed 12 July 2021)

  • Islam M, Yang X, Sood S, Comstock JC, Wang J (2018) Molecular characterization of genetic basis of Sugarcane yellow leaf virus (SCYLV) resistance in Saccharum spp. hybrid. Plant Breed 137:598–604

    Article  CAS  Google Scholar 

  • Izaguirre-Mayoral ML, Carballo O, Alceste C, Romano M, Nass HA (2002) Physiological performance of asymptomatic and yellow leaf syndrome-affected sugarcanes in Venezuela. J Phytopathol 150:13–19

    Article  CAS  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crop Res 92:277–290

    Article  Google Scholar 

  • Jagathesan D, Sreenivasan TV, Rethanammal MJ (1970) Chromosome number in Noble sugarcane. Indian J Hered 2:89–96

    Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid). Plant Cell Rep 26:581–590

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar V, Sundar AR, Viswanathan R (2021) Biocontrol of Colletotrichum falcatum with volatile metabolites produced by endophytic bacteria and profiling VOCs by headspace SPME coupled with GC–MS. Sugar Tech 23:94–107

    Article  CAS  Google Scholar 

  • Jeevanandham N, Ramiah N, Chockalingam V, Jegadeesan R (2020) An overview of the bionomics, host plant resistance and molecular perspectives of Sesamia inferens Walker in cereals and millets. Agronomy 10(11):1705

    Article  CAS  Google Scholar 

  • Johnson SS, Tyagi AP (2010) Effect of ratoon stunting disease on sugarcane yield in Fiji. South Pacific J Nat Appl Sci 28:69–76

    Article  Google Scholar 

  • Johnson RM, Grisham MP, Warnke KZ, Maggio JR (2016) Relationship of soil properties and sugarcane yields to red stripe in Louisiana. Phytopathology 106:737–744

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Singh P, Holkar SK, Kumar S (2019) Trichoderma-mediated suppression of red rot of sugarcane under field conditions in subtropical India. Sugar Tech 21:496–504

    Google Scholar 

  • Joyce PA, Mcqualter RB, Handley JA, Dale JL, Harding RM et al (1998) Transgenic sugarcane resistant to sugarcane mosaic virus. Proc Aust Soc Sugar Cane Technol 20:204–210

    Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29:173–183

    Google Scholar 

  • Joyce PA, Dinh SQ, Burns EM, O’Shea MG (2013) Sugar from genetically modified sugarcane: tracking transgenes, transgene products, and compositional analysis. Int Sugar J 115(1380):864–867

    CAS  Google Scholar 

  • Joyce AL, White WH, Nuessly GS et al (2014) Geographic population structure of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the Southern United States. PLoS One 9(10):e110036. https://doi.org/10.1371/journalpone.0110036

  • Joyce AL, Sermeno CM, Serrano SL, Paniagua M et al (2016) Host-plant associated genetic divergence of two Diatraea spp. (Lepidoptera: Crambidae) stem borers on novel crop plants. Ecol Evol 6(23):8632–8644

    Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142. https://doi.org/10.1007/s11103-016-0499-y

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F et al (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  PubMed  Google Scholar 

  • Kalunke MR, Archana MK, Babu KH, Prasad DT (2009) Agrobacterium-mediated transformation of sugarcane for borer resistance using Cry1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 11:355–359

    Article  CAS  Google Scholar 

  • Kanchana M (2007) Integration and expression of genes coding for pathogenesis related proteins in a sugarcane cultivar with particular reference to red rot resistance. PhD thesis, Bharathiar University, Coimbatore, India, 87p

    Google Scholar 

  • Kandasami PA, Sreenivasan TV, Rao TCR, Palanichamy K (1983) Sugarcane genetic resources. I. Saccharum spontaneum L. Sugarcane Breeding Institute, Coimbatore, India

    Google Scholar 

  • Kannan B, Jung JH, Moxley GW, Lee S-M, Altpeter F et al (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16:856–866

    Google Scholar 

  • Karuppaiah R, Viswanathan R, Kumar VG (2013) Genetic diversity of Sugarcane bacilliform virus isolates infecting Saccharum spp. in India. Virus Genes 46:505–516

    Article  CAS  PubMed  Google Scholar 

  • Keeping MG, Meyer JH (2002) Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina W (Lepidoptera: Pyralidae). Agri Forest Entomol 4:256–274

    Article  Google Scholar 

  • Keeping MG, Miles N, Sewpersad C (2014) Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Front Plant Sci 5.https://doi.org/10.3389/fpls.2014.00289

  • Kfir R, Overholt WA, Khan ZR, Polaszek A (2002) Biology and management of economically important lepidopteran cereal stem borers in Africa. Ann Rev Entomol 47:701–731

    Article  CAS  Google Scholar 

  • Khani KT, Alizadeh A, Nejad RF, Tehrani AS (2013) Pathogenicity of Fusarium proliferatum, a new causal agent of pokkah boeng in sugarcane. Proc Intl Soc Sugar Cane Technol 28:1–5

    Google Scholar 

  • Khalil F, Yueyu X, Xiao N, Liu D, Tayyab M, Wang H et al (2018) Genome characterization of Sugarcane yellow leaf virus with special reference to RNAi based molecular breeding. Micro Pathogen. https://doi.org/10.1016/j.micpath.2018.05.001

    Article  Google Scholar 

  • Khumla N, Sakuanrungsirikul S, Punpee P, Punpee P, Hamarn T et al (2022) Sugarcane breeding, germplasm development and supporting genetics research in Thailand. Sugar Tech 24(1):193–209

    Article  Google Scholar 

  • Kirdat K, Tiwarekar B, Thorat V, Narawade N, Dhotre D et al (2020) Draft genome sequences of two phytoplasma strains associated with sugarcane grassy shoot (SCGS) and bermuda grass white leaf (BGWL) diseases. Mol Plant-Microbe Interact 33:715–717

    Article  CAS  PubMed  Google Scholar 

  • Klosowski AC, Bespalhok Filho JC, Ruaro L, May De Mio LL (2013) Inheritance of resistance to orange rust (Puccinia kuehnii) in sugarcane families from crosses between parents with different orange rust reactions. Sugar Tech 15:379–383

    Article  Google Scholar 

  • Koerniati S, Sukmadjaja D, Samudra IM (2020) C synthetic gene of CryIAb-CryIAc fusion to generate resistant sugarcane to shoot or stem borer. IOP Conf Ser Earth Environ Sci 418:012069. https://doi.org/10.1088/1755-1315/418/1/012069

    Article  Google Scholar 

  • Koike H, Gillaspie AG Jr (1989) Mosaic. In: Ricaud C, Egan BT, GillaspieJr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier Science Publishers, Amsterdam, pp 301–322

    Chapter  Google Scholar 

  • Koohzad-Mohammadi P, Ziaee M, Nikpay A (2017) Insecticides from different classes impact on Neomaskellia andropogonis population under sugarcane field conditions. Sugar Tech 19:623–631

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Mishra GP, Dwivedi GP, Sharma NN (1987) Sugarcane pests in Bihar: retrospect and prospect—a review. Agri Rev 8:59–66

    Google Scholar 

  • Kumar S, Kumar D, Sinha RN (1989) Change in yield attributes, juice quality and mineral nutrients in cane juice due to smut infection. Indian Sugar 39:233–237

    Google Scholar 

  • Kumar A, Pal S, Chand H (2019) Insect pests of sugarcane and their management: an overview. In: Ghoneim K (ed) Advances in agricultural entomology (volume 3). AkiNik Publications, New Delhi, India, pp 1–18

    Google Scholar 

  • Kumarasinghe NC, Jones P (2001) Identification of white leaf disease of sugarcane in Sri Lanka. Sugar Tech 3:55–58

    Article  Google Scholar 

  • Kumaraswamy S, Rabindra D (1978) Influence of soil fertility status and pH on the incidence of red eye leaf spot disease of sugarcane. Curr Res 5:89

    Google Scholar 

  • Kuzma JR, VerHage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Project on emerging nanotechnologies, One Woodrow Wilson Plaza 1300 Pennsylvania Avenue, N.W. Washington, DC 20004-3027

    Google Scholar 

  • Kvedaras OL, Byrne MJ, Coombes NE, Keeping MG (2009) Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agri for Entomol 11:301–306

    Article  Google Scholar 

  • La OM, Perera MF, Bertani FRP, Acevedo R, Arias ME, Casas MA et al (2018) An overview of sugarcane brown rust in Cuba. Sci Agri (piracicaba, Braz) 75:233–238

    Article  Google Scholar 

  • Lajoloi FM, Yokoyama SM, Gianotto AC (2021) Sugar derived from genetically modified sugarcane. Food Sci Technol Campinas 41(1):1–7

    Article  Google Scholar 

  • Lamani N, Guledagudda SS, Kambrekar DN (2017) An economic impact of white grub infestation on sugarcane in Northern Karnataka. J Entomol Zool Stud 5(3):18–23

    Google Scholar 

  • Lange CL, Scott KD, Graham GC, Sallam MN, Allsopp PG (2004) Sugarcane moth borers (Lepidoptera: Noctuidae and Pyraloidea): phylogenetics constructed using COII and 16S mitochondrial partial gene sequences. Bull Entomol Res 94:457–464

    Article  CAS  PubMed  Google Scholar 

  • Lawry R, Martin DP, Shepherd DN, van Antwerpen T, Varsani A (2009) A novel sugarcane-infecting mastrevirus from South Africa. Arch Virol 154:1699–1703

    Article  CAS  PubMed  Google Scholar 

  • Legaspi JC, Mirkov TE (2000) Evaluation of transgenic sugarcane against stalk borers. Proc Intl Soc Sug Cane Technol Entomol Workshop, Thailand

    Google Scholar 

  • Lehrer AT, Komor E (2008) Symptom expression of yellow leaf disease in sugarcane cultivars with different degrees of infection by Sugarcane yellow leaf virus. Plant Pathol 57:178–189

    Google Scholar 

  • Lehrer AT, Kusalwong A, Komor E (2008) High incidence of Sugarcane yellow leaf virus (SCYLV) in sugar plantations and germplasm collections in Thailand. Australas Plant Dis Notes 3:89–92

    Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual. Blackwell Publishing Ltd., UK

    Book  Google Scholar 

  • Leu LS, Kusalwong A (2000) Control of sugarcane white leaf disease in Taiwan and Thailand. In: Proc 6th Intl Soc Sugar Cane Technol Pathol, Workshop, Thailand

    Google Scholar 

  • Leul M, Thangavel S (2013) Diversity of sugarcane borer species and their extent of damage status on sugar yield in three commercial sugarcane plantations of Ethiopia. J Agri Technol 9:1461–1473

    Google Scholar 

  • Li WF, Huang YK, Jiang DM, Zhang ZX, Zhang BL et al (2010) Detection of Sugarcane bacilliform virus isolate and its influence on yield and quality of cane in Yunnan. Acta Phytopathol Sin 40:651–654 [In Chinese]

    Google Scholar 

  • Li J, Norville FJ, Aach J, McCormack M, Zhang S et al (2013a) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WF, Shang HL, Huang YK, Pu CH, Yin J et al (2013b) Occurrence dynamics and control strategies of major pests and disease of sugarcane in Yunnan. Sugar Crops China 1:59–62

    Google Scholar 

  • Li WF, Wang XY, Huang YK, Shan HL, Luo ZM et al (2013c) Screening sugarcane germplasm resistant to Sorghum mosaic virus. Crop Protect 43:27–30

    Article  Google Scholar 

  • Li W-F, Shen K, Huang Y-K, Wang X-Y, Yin J et al (2014) Incidence of sugarcane ratoon stunting disease in the major cane-growing regions of China. Crop Protect 60:44–47

    Article  Google Scholar 

  • Li WF, Wang XY, Huang YK, Zhang RY, Yin J et al (2017a) Loss of cane and sugar yield due to damage by Tetramoera schistaceana (Snellen) and Chilo sacchariphagus (Bojer) in the cane-growing regions of China. Pak J Zool 50:265–271

    Google Scholar 

  • Li XY, Sun HD, Rott PC, Wang JD, Huang MT et al (2017b) Molecular identification and prevalence of Acidovorax avenae subsp. avenae causing red stripe of sugarcane in China. Plant Pathol 67:929–937

    Article  Google Scholar 

  • Li WF, Shan HL, Zhang RY, Wang XY, Yang K et al (2018) Identification of resistance to Sugarcane streak mosaic virus (SCSMV) and Sorghum mosaic virus (SrMV) in new elite sugarcane varieties/clones in China. Crop Protect 110:77–82

    Article  CAS  Google Scholar 

  • Li WF, Shan HL, Cang X-Y, Zhang RY, Wang XY et al (2019) Identification and evaluation of resistance to Sugarcane streak mosaic virus (SCSMV) and Sorghum mosaic virus (SrMV) in excellent sugarcane innovation germplasms in China. Sugar Tech 21:481–485

    Article  CAS  Google Scholar 

  • Liang SS, Alabi OJ, Damaj MB, Fu WL, Sun SR et al (2016) Genomic variability and molecular evolution of Asian isolates of Sugarcane streak mosaic virus. Arch Virol 161:1493–1503

    Article  CAS  PubMed  Google Scholar 

  • Lin L-H, Ntambo MS, Rott PC, Wang Q-N, Lin Y-H et al (2018) Molecular detection and prevalence of Xanthomonas albilineans, the causal agent of sugarcane leaf scald, in China. Crop Protect 109:17–23

    Article  CAS  Google Scholar 

  • Lin Y-HH, Gao S-JJ, Damaj MB, Fu H-YY, Chen R-KK et al (2014a) Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype. Arch Virol 159:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Lin ZY, Xu SQ, Que YX, Wang J, Comstock JC et al (2014b) Species-specific detection and identification of Fusarium species complex, the causal agent of sugarcane pokkah boeng in China. PLoS One 9:e104195. https://doi.org/10.1371/journal.pone.0104195

  • Lockhart BEL, Autrey LJC (1988) Occurrence in sugarcane of a bacilliform virus related serologically to Banana streak virus. Plant Dis 72:230–233

    Article  Google Scholar 

  • Lockhart BE, Autrey LJC (2000) Mild mosaic. In: Rott P, Comstock JC, Croft BJ and Saumtally AS (eds) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 245–248

    Google Scholar 

  • Lu G, Wang Z, Xu F, Pan Y‐B, Grisham MP, Xu L (2021) Sugarcane mosaic disease: characteristics, identification and control. Microorganisms 9:1984. https://doi.org/10.3390/microorganisms9091984

  • Lu X, Siemann E, Shao X, Wei H, Ding J (2013) Climate warming affects biological invasions by shifting interactions of plants and herbivores. Glob Chang Biol 19:2339–2347

    Article  PubMed  Google Scholar 

  • Lu X, Siemann E, He M, Wei H, Shao X, Ding J (2015) Climate warming increases biological control agent impact on a non-target species. Ecol Lett 18:48–56

    Google Scholar 

  • Macedo N, Araujo JR (2000) Effects of sugarcane burning on larval and egg parasitoids of Diatraea saccharalis (Fabr.) (Lepidoptera: Crambidae). Ann Soc Entomol Bras 29:79–84

    Google Scholar 

  • Magarey R, Croft B, Willcox T (2001a) An epidemic of orange rust on sugarcane in Australia. Proc Int Soc Sugar Cane Technol 24:410–416

    Google Scholar 

  • Magarey RC, Willcox T, Croft B, Cordingley A (2001b) Orange rust, a major pathogen affecting crops of Q124 in Queensland in 2000. Proc Aust Soc Sugar Cane Technol 23:274–280

    Google Scholar 

  • Magarey R, Bull J, Sheahan T, Denney D, Bruce R (2010a) Yield losses caused by sugarcane smut in several crops in Queensland. Proc Aust Soc Sugar Cane Technol 32:347–354

    Google Scholar 

  • Magarey RC, Bull JI, Sheahan T, Denney D (2010b) Yield losses caused by sugarcane smut in several crops in Queensland. Proc Aust Soc Sugar Cane Technol 32:347–354

    Google Scholar 

  • Magarey R, Bull J, Royal A (2013) Surveys assessing the incidence and severity of pachymetra root rot in the Australian sugarcane industry. Proc Aust Soc Sugar Cane Technol 35:160–167

    Google Scholar 

  • Magarey RC, McHardie R, Hession M, Cripps G, Burgess D et al (2021) Incidence and economic effects of ratoon stunting disease on the Queensland sugarcane industry. Proc Aust Soc Sugar Cane Technol 42:520–526

    Google Scholar 

  • Maia LBL, Pereira HD, Garratt RC, Brandão-Neto J, Henrique-Silva F et al (2021) Structural and evolutionary analyses of PR-4 SUGARWINs points to a different pattern of protein function. Front Plant Sci 12:1884

    Article  Google Scholar 

  • Malathi P, Viswanathan R (2012a) Identification of pathogenicity determinants in Colletotrichum falcatum using wild and mutant cultures. Sugar Tech 14:383–390

    Article  CAS  Google Scholar 

  • Malathi P, Viswanathan R (2012b) Variation in Colletotrichum falcatum-red rot pathogen of sugarcane in relation to host resistance. Sugar Tech 14:181–187

    Article  CAS  Google Scholar 

  • Malathi P, Viswanathan R, Padmanaban P, Mohanraj D, Sundar AR (2002) Compatibility of biocontrol agents with fungicides against red rot disease of sugarcane. Sugar Tech 4(3&4):131–136

    Article  Google Scholar 

  • Malathi P, Padmanaban P, Viswanathan R, Sundar MD, AR, (2004) Efficacy of thiophanate methyl against red rot of sugarcane. Acta Phytopathol Entamol Humgarica 39:39–47

    Article  CAS  Google Scholar 

  • Malathi P, Viswanathan R, Jothi R (2006) Specific adaptation of Colletotrichum falcatum pathotypes to sugarcane cultivars. Sugar Tech 8(1):54–58

    Article  Google Scholar 

  • Malathi P, Padmanaban P, Viswanathan R, Mohanraj D (2008) Interaction between Colletotrichum falcatum pathotypes and biocontrol agents. Arch Phytopathol Plant Protect 41:311–317

    Article  Google Scholar 

  • Malathi P, Viswanathan R, Sundar AR (2017) Mechanized means of sett treatment: an effective way of delivering fungicides for the management of red rot in sugarcane. Sugar Tech 19:176–182

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N et al (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23(3):134–143

    Article  CAS  PubMed  Google Scholar 

  • Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM et al (2018) Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS ONE 13(2):e0191567. https://doi.org/10.1371/journalpone.0191567

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JP, Egan BT (1989) Brown stripe. In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 97–106

    Google Scholar 

  • Martin JP, Wismer CA (1989) Red stripe (revised by C. C. Ryan). In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 81–95

    Google Scholar 

  • Martin J, Handojo H, Wismer C (1989) Pokkah boeng. In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 157–168

    Google Scholar 

  • Martin LA, Lloyd Evans D, Castlebury LA, Sifundza JT, Comstock JC et al (2017) Macruropyxis fulva sp nov, a new rust (Pucciniales) infecting sugarcane in southern Africa. Aust Plant Pathol 46:63–74

    Article  Google Scholar 

  • Martins LF, Tonelli M, Bento JMS, Bueno CJ, Leite LG (2020) Attraction of the sugarcane billbug, Sphenophorus levis, to vinasse and its volatile composition. Chemoecology 30:205–214

    Article  CAS  Google Scholar 

  • Matsuoka S, Costa A (1974) Perdasocasionadaspelo virus domosaico da cana-de-acucaremparcelas com diferentesniveisinicias de infeccao no material de plantio. I. Perdasnacana-Planta. Pesquisa Agropecuaria Brasileira 9:89–92

    Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Kapil Dev G et al (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • McAllister CD, Hoy JW, ReaganTE (2008) Temporal increase and spatial distribution of the sugar cane yellow leaf and infestations of the aphid vector, Melanaphis sacchari. Plant Dis 92:607–615

    Google Scholar 

  • McArthur D, Leslie G (2004) Preliminary observations on the impact of white grub on sugarcane yields in the Midlands North Region of the South African sugar industry. Proc South Afr Sugar Technol Assoc 78:283–286

    Google Scholar 

  • McFarlane S, Rutherford R (2005) Fusarium species isolated from sugarcane in KwaZulu-Natal and their effect on Eldana saccharina (Lepidoptera: Pyralidae) development in vitro. Proc South Afr Sugar Technol Assoc 79:120–123

    Google Scholar 

  • McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR et al (2005) Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed 16:151–161

    Article  CAS  Google Scholar 

  • McLeod RS, McMahon GG, Allsopp PG (1999) Costs of major pests and diseases to the Australian sugar industry. Plant Protect Qtrly 14(2):42–46

    Google Scholar 

  • McQualter RB, Harding RM, Dale JC, Smith GR (2001) Virus derived resistance to Fiji disease in transgenic plants. Proc Intl Soc Sugar Cane Technol 24:584–585

    Google Scholar 

  • Meng JR, Huang HJ, Li YX, Li YJ, Li JQ, Chen BS (2020) First report of Fusarium sacchari causing sugarcane pokkah boeng in China. Plant Dis. https://doi.org/10.1094/PDIS-05-19-0906-PDN

  • Mengistu L, Selvaraj T (2013) Diversity of sugarcane borer species and their extent of damage status on cane and sugar yield in three commercial sugarcane plantations of Ethiopia. Intl J Agri Technol 9:1461–1473

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Google Scholar 

  • Michael KT, Mulatu B, Negeri M (2018) Identification and monitoring of stem borers (Lepidoptera: Noctuidae) at Tendaho sugar factory, Ethiopia. Intl J Adv Res Biol Sci 5(11):27–38

    Google Scholar 

  • Miller JD, Davis MJ, Dean JL, Shine JM Jr (1995) Heritability of resistance to ratoon stunting disease in sugarcane. Sugar Cane 1:3–8

    Google Scholar 

  • Ming R, Moore PH, Wu KK, D Hont A, Glazsmann JC et al (2010) Sugarcane improvement through breeding and biotechnology. Plant Breed Rev 27:15–118. Wiley Blackwell, Hoboken NJ, USA. https://doi.org/10.1002/9780470650349.ch2

  • Mohammadi A, Nejad RF, Mofrad NN (2012) Fusarium verticillioides from sugarcane, vegetative compatibility groups and pathogenicity. Plant Protect Sci 48:80–84

    Article  CAS  Google Scholar 

  • Mohanraj K, Nair NV (2010) Evaluation of backcross progenies of intergeneric hybrids involving Erianthus for developing sugarcane varieties with diverse genetic base. Proc Third National Congress on Plant Breeding and Genomics, 79-th July 2010. Indian Society of Plant Breeders, Coimbatore, 183p

    Google Scholar 

  • Mohanraj K, Nair NV (2012) Evaluation of interspecific hybrids involving Saccharum spontaneum from Arunachal Pradesh for yield, quality and red rot resistance. Proc Intl Symp New Paradigm in Sugarcane Research, 15–19 Oct, Coimbatore, India, pp 183–184

    Google Scholar 

  • Mohanraj D, Padmanaban P, Viswanathan R (2012) Screening for red rot resistance in sugarcane. In: Viswanathan R, Sundar AR (eds) Functional plant science and biotechnology 6 (Special Issue 2). Global Science Books, Ikenobe, Japan, pp 51–62

    Google Scholar 

  • Monteiro-Vitorello CB, Camargo LEA, Van Sluys MA, Kitajima JP, Ruffi D et al (2004) The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. Mol Plant-Microbe Interact 17:827–836

    Article  CAS  PubMed  Google Scholar 

  • Moonan F, Mirkov TE (2002) Analyses of genotypic diversity among North, South, and Central American isolates of sugarcane yellow leaf virus: evidence for Colombian origins and for intraspecific spatial phylogenetic variation. J Virol 76:1339–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore PH, Paterson AH, Tew T (2013) Sugarcane: the crop, the plant, and domestication. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry and functional biology. Wiley, Hoboken, NJ, USA, pp 1–17

    Chapter  Google Scholar 

  • Moradi Z, Mehrvar M, Nazifi E, Zakiaghl M (2016) The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran. Virus Genes 52:270–280

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Majumdar S, ServinAD PL, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172. https://doi.org/10.3389/fpls.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukunthan N (1989) Life tables of top borer, Scirpophaga excerptalis Wlk. Insect Sci Appl 10:269–276

    Google Scholar 

  • Mukunthan N (1994) Annual report of Sugarcane Breeding Institute (ICAR), Coimbatore p 57

    Google Scholar 

  • Mukunthan N, Nirmala R (2002) Tolerance to white grub Holotrichia serrata in Saccharum and Erianthus species. Sugar Cane Intl 2:16–28

    Google Scholar 

  • Muller E, Dupuy V, Blondin L, Bauffe F, Daugrois J-H et al (2011) High molecular variability of sugarcane bacilliform viruses in Guadeloupe implying existence of at least three new species. Virus Res 160:414–419

    Article  CAS  PubMed  Google Scholar 

  • Naidu KM, Sreenivasan TV (1987) Conservation of sugarcane germplasm. In: Proceedings of copersucar international sugarcane breeding workshop, Copersucar Technology Centres, Piracicaba-Sao Paula, Brazil, pp 33–53

    Google Scholar 

  • Nair NV (1999) Production and Cyto-morphological analysis of sorghum x Saccharum hybrids. Euphytica 108:187–191

    Article  Google Scholar 

  • Nair NV, Praneetha M (2006) Cyto-morphological studies on three Erianthus arundinaceus (Retz.) Jeswiet accessions from the Andaman-Nicobar Islands, India. Cytologia 71(2):107–109

    Google Scholar 

  • Nair NV, Mohanraj K, Sunadaravelpandian K, Suganya A, Selvi A, Appunu C (2017) Characterization of an intergeneric hybrid of Erianthus procerus × Saccharum officinarum and its backcross progenies. Euphytica 213:267

    Article  Google Scholar 

  • Nasare K, Yadav A, Singh AK, Shivasharanappa KB, Nerkar YS, Reddy VS (2007) Molecular and symptom analysis reveal the presence of new phytoplasmas associated with sugarcane grassy shoot disease in India. Plant Dis 91:1413–1418

    Article  CAS  PubMed  Google Scholar 

  • Natarajan US, Balasundaram N, Rao TCR, Padmanaban P, Mohanraj D, Karthigeyan S, Dhamodaran S (2001) Role of Saccharum spontaneum in imparting stable resistance against sugarcane red rot. Sugar Cane Intern 1:17–20

    Google Scholar 

  • Nayyar S, Sharma BK, Kaur A, Kalia A, Sanghera GS, Thind KS et al (2017) Red rot resistant transgenic sugarcane developed through expression of β-1,3-glucanase gene. PLoS ONE 12(6):e0179723

    Article  PubMed  PubMed Central  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotech 31:691–693

    Article  CAS  Google Scholar 

  • Neupane FP (1990) Status and control of Chilo spp on cereal crops in southern Asia. Insect Sci Appl 11:501–534

    Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Nibouche S, Tibere R (2009) Genotypic variation of resistance to the spotted stalk borer Chilo sacchariphagus (Bojer) in sugarcane: evidence of two distinct resistance mechanisms. Plant Breed 128:74–77

    Article  CAS  Google Scholar 

  • Nibouche S, Tibére R (2010) Mechanisms of resistance to the spotted stalk borer, Chilo sacchariphagus, in the sugarcane cultivar R570. Entomol Exp Appl 135:308–314

    Article  Google Scholar 

  • Nithya K, Parameswari B, Bertaccini A, Rao GP, Viswanathan R (2020) Grassy shoot: the destructive disease of sugarcane. Phytopathogen Mollicutes 10(1):10–24

    Article  Google Scholar 

  • Nordahliawate MSS, Izzati M, Azmi A, Salleh B (2008) Distribution, morphological characterization and pathogenicity of Fusarium sacchari associated with pokkah boeng disease of sugarcane in Peninsular Malaysia. Pertanika J Trop Agri Sci 31:279–286

    Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA, Taylor GO, McQualter RB, Smith GR, Hogarth DM (1999) Transgenic sugarcane with increased resistance to cane grubs. Proceedings of the Australian Society of Sugar Cane Technol, Townsville, Queensland, Australia 27–30, pp 171–176

    Google Scholar 

  • Nutt KA, Allsopp PG, Geijskes RJ, McKeon MG, Smith GR (2001) Canegrub resistant sugarcane. Proc Intl Soc Sugar Cane Technol 24:584–585

    Google Scholar 

  • OECD (2016) Sugarcane (Saccharum spp.), in safety assessment of transgenic organisms in the environment, volume 6: OECD Consensus Documents, OECD Publishing, Paris. https://doi.org/10.1787/9789264253421-5-en

  • Ovalle W, Viswanathan R (2020) Sustaining sugarcane production in Guatemala and Nicaragua through efficient disease management approaches. Sugar Tech 22:361–366

    Article  CAS  Google Scholar 

  • Ovalle W, Comstock JC, Glynn NC, Castlebury LA (2008) First report of Puccinia kuehnii, causal agent of orange rust of sugarcane, in Guatemala. Plant Dis 92:973

    Article  CAS  PubMed  Google Scholar 

  • Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F (2021) CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Edit 3:673566

    Article  Google Scholar 

  • Padmanaban P, Mohanraj D, Viswanathan R, Rao MM, Prakasam N et al (1996) Differential interaction of sugarcane clones to pathotypes of Colletotrichum falcatum Went. Sugar Cane 4:16–20

    Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Panje R, Babu CN (1960) Studies on Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Article  Google Scholar 

  • Parameswari B, Bagyalakshmi K, Viswanathan R, Chinnaraja C (2013) Molecular characterization of Indian Sugarcane streak mosaic virus isolate. Virus Genes 46:186–189

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy N, Rao S (1947) Chromosome counts on some geographical forms of Sclerostachya. Proc India Sci Congress 34

    Google Scholar 

  • Pashley DP, Hardy TN, Hammond AM, Mihm JA (1990) Genetic evidence for sibling species within the sugarcane borer (Lepidoptera: Pyralidae). Ann Entomol Soc Amer 83:1048–1053

    Article  Google Scholar 

  • Peixoto S, Henriques I, Loureiro S (2021) Long-term effects of Cu(OH)2 nanopesticide exposure on soil microbial communities. Environ Pollution 269, Article ID: 116113

    Google Scholar 

  • Pene CB, Boua MB, Coulibaly-Ouattara Y, Goebel FR (2018) Stem borer (Eldana saccharina W) infestation outbreak in sugarcane plantation:27–35. https://doi.org/10.11648/j.bio.20180604.11

  • Peterschmitt M, Reynaud B, Sommermeyer G, Baudin P (1991) Characterization of maize streak virus isolates using monoclonal and polyclonal antibodies and by transmission to a few hosts. Plant Dis 75:27–32

    Article  Google Scholar 

  • Petrasovits LA, Purnell MP, Nielson LK, Brumbley AM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172

    Article  CAS  PubMed  Google Scholar 

  • Pholan HAJ, Toledo E, Leyva A, Marroquín F (2005) Manejoagroecológico de la caña de azúcar (Saccharum spp.) en el Soconusco, Chiapas, México. III Congreso Brasileiro de Agroecología, Florianópolis/SD, Brazil, 17–20 Oct 2005

    Google Scholar 

  • Pimenta RJG, Aono AH, Burbano RCV, da Silva CC, dos Anjos IA et al (2021) Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 11:15730. https://doi.org/10.1038/s41598-021-95116-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel GV, Tomaz AC, Brasileiro BP, Peternelli LA, Barbosa MHP (2017) Oviposition preference and larval performance of sugarcane borer in eight sugarcane genotypes. Ciência e Agrotecnologia 41:439–446

    Article  Google Scholar 

  • Pinto LR, Gonçalves MC, Galdeano DM, Perecin D, Medeiros CNF et al (2013) Preliminary investigation of sugarcane mosaic virus resistance and marker association in a sugarcane family sample derived from a bi-parental cross. Proc Intl Soc Sugar Cane Technol 28:1–3

    Google Scholar 

  • Poongothai M, Viswanathan R, Ramesh MP, Sundar A (2014a) Fusarium sacchari causing sugarcane wilt: variation in morphological characteristics of the pathogen. Intl Sugar J 116:54–63

    Google Scholar 

  • Poongothai M, Viswanathan R, Malathi P, Sundar AR (2014b) Sugarcane wilt: pathogen recovery from different tissues and variation in cultural characters. Sugar Tech 16:50–66

    Article  Google Scholar 

  • Poongothai M, Viswanathan R, Malathi P, Sundar AR, Prasanth NC et al (2015) Genetic relatedness among Fusarium populations associated with sugarcane wilt in India: bridging molecular variability and phylogenetic diversity. J Sugarcane Res 5(1):33–48

    Google Scholar 

  • Posey FR, White WH, Reay-Jones FF, Gravois K, Salassi ME et al (2006) Sugarcane borer (Lepidoptera: Crambidae) management threshold assessment on four sugarcane cultivars. J Econ Entomol 99:966–971

    Article  CAS  PubMed  Google Scholar 

  • Prasad SK, Thakur C (1959) White grub (Lechnosterna consanguinea) Blanch: a new menace to sugarcane. Indian J Entomol 21:184–189

    Google Scholar 

  • Purwar JP (2013) Bio-efficacy of entomopathogenic fungi against fruit fly infesting pear in Uttarakhand. Ann Plant Protect Sci 21:233–236

    Google Scholar 

  • Putra LK, Damayanti TS (2012) Major diseases affecting sugarcane production in Indonesia In: Viswanathan R, Sundar AR (eds) Functional plant science and biotechnology volume 6. Global Science Books, pp 124–129

    Google Scholar 

  • Putra LK, Kristini A, Achadian EM, Damayanti TA (2014) Sugarcane streak mosaic virus in Indonesia: distribution, characterization, yield losses and management approaches. Sugar Tech 16:392–399

    Article  CAS  Google Scholar 

  • Que YX, Xu LP, Lin JW, Chen RK, Grisham MP (2012) Molecular variation of Sporisorium scitamineum in Mainland China revealed by RAPD and SRAP markers. Plant Dis 96:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Raboin LM, Pauquet J, Butterfield M, D’Hont A, Glaszmann JC (2006) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714

    Article  Google Scholar 

  • Raboin LM, Selvi A, Oliveira KM, Paulet F, Calatalyud C et al (2007) Evidence for the dispersal of a unique lineage from Asia to America and Africa in the sugarcane fungal pathogen Ustilago scitaminea. Fungal Genet Biol 44:64–76

    Article  CAS  PubMed  Google Scholar 

  • Raid RN (1988) Physiologic specialization in sugarcane rust (Puccinia melanocephala) in Florida. Plant Dis 73:183

    Article  Google Scholar 

  • Raid RN, Comstock JC (2006) Sugarcane rust disease. UF/IFAS Ext. SS- AGR-207. University of Florida, Gainesville

    Google Scholar 

  • Raid RN, Rott PC, Comstock JC (2015) Varietal resistance to sugarcane rusts in Florida: A historical perspective and future prospects. Proc Intl Soc Sugar Cane Technol 11th Pathology and Entomology Workshops, September 14–18, Guayaquil, Ecuador

    Google Scholar 

  • Raid RN, Chaulagain B, Hincapie, Sanjel MS, Hartman D, Sood S, Comstock J, Rott PC (2018) A decade of orange rust in Florida (USA): where we were and where we are going. Proc Intl Soc Sugar Cane Technol XII Pathology Workshop, 3–7 Sep 2018, Coimbatore, India, p 44

    Google Scholar 

  • Rajabalee A, Chong LS, Ganeshan S (1990) Estimation of sugar loss due to infestation by the stem borer, Chilo sacchariphagus, in Mauritius. Proc South Afr Sugar Technol Assoc 120–123

    Google Scholar 

  • Rajiv P, Chen X, Li H, Rehaman S, Vanathi P et al (2020) Silica-based nanosystems: their role in sustainable agriculture. In: Abd-Elsalam KA (ed) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems: micro and nano technologies. Elsevier, Amsterdam, pp 437–459

    Chapter  Google Scholar 

  • Rajput MA, Rajput NA, Syed RN, Lodhi AM, Que Y (2021) Sugarcane smut: current knowledge and the way forward for management. J Fungi 7:1095. https://doi.org/10.3390/jof7121095

    Article  CAS  Google Scholar 

  • Ram B, Singh N, Sahi BK (2005) Combining ability and heterosis for disease index of red rot in sugarcane (Saccharum officinarum L.). Indian J Genet Plant Breed 65:112–114

    Google Scholar 

  • Ram B, Hemaprabha G (2020) The sugarcane variety Co 0238—a reward to farmers and elixir to India’s sugar sector. Curr Sci 118:1643–1646

    Google Scholar 

  • Ram B, Hemaprabha G, Singh BD, Appunu C (2021) History and current status of sugarcane breeding, germplasm development and molecular biology in India. Sugar Tech 23:1–26

    Google Scholar 

  • Ramana Rao TC, Bhagyalakshmi KV, Thljaram Rao J (1979) Indian atlas of sugarcane. Sugarcane Breeding Institute, Coimbatore, India

    Google Scholar 

  • Ramouthar PV, Bhuiyan SA (2018) Nematode parasites of sugarcane. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 3rd edn. CABI, Boston, MA, pp 658–686

    Chapter  Google Scholar 

  • Rangel MP, Lorena G, Jorge IV, Fernando A (2005) Transgenic plants of CC 84–75 resistant to the virus associated with the sugarcane yellow leaf disease. Proc Intl Soc Sugar Cane Technol 25:564–570

    Google Scholar 

  • Rao ChVN, Bhavani B, Rao V, Naidu NV (2011) Management of whitefly (Aleurolobus barodensis Mask.) in sugarcane agro-ecosystem. Pestology 35 10):67–69

    Google Scholar 

  • Rao KSS, Raghavan TS (1951) Genus Erianthus—some cytotaxonic consideration. Proc Bien Conf Sugarcane Res and Dev Workers, Coimbatore 1:55–60

    Google Scholar 

  • Rao GP, Agnihotri VP (2000) Wilt. In: Rott P, Bailey R, Comstock JC, Croft B, SaumtallyS (ed) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 193–197

    Google Scholar 

  • Rao GP, Sharma SK, Singh D, Arya M, Singh P, Baranwal VK (2014) Genetically diverse variants of Sugarcane bacilliform virus infecting sugarcane in India and evidence of a novel recombinant Badnavirus variant. J Phytopathol 162:779–787

    Article  CAS  Google Scholar 

  • Rao GP, Madhupriya V, Thorat R, Tiwari AK, Manimekalai R et al (2017) A century progress of research on phytoplasma diseases in India. Phytopathogen Mollicutes 7(1):1–38

    Article  Google Scholar 

  • Rassaby L, Girard JC, Lemaire O, Costet L, Irey MS et al (2004) Spread of Sugarcane yellow leaf virus in sugarcane plants and fields on the Island of Reunion. Plant Pathol 53:117–125

    Article  Google Scholar 

  • Rathus C, Birch RG (1992) Stable transformation of callus from electroporated sugarcane protoplast. Plant Sci 82:81–89

    Article  CAS  Google Scholar 

  • Reagan TE, Martin FA (1982) Plant resistance: a key management tool for control of the sugarcane borer in Louisiana. Proceedings of the Inter-American sugar cane seminar: varieties and breeding, Miami, FL, USA, 3–6 Oct, pp 13–22

    Google Scholar 

  • Reagan TE, Mulcahy MM (2019) Interaction of cultural, biological, and varietal controls for management of stalk borers in Louisiana sugarcane. Insects 10(9):305. https://doi.org/10.3390/insects10090305

    Article  PubMed Central  Google Scholar 

  • Reagan TE, Akbar W, Beuzelin JM (2008) Identifying sugarcane varieties resistance to borers and aphids. La Agri 51:18–19

    Google Scholar 

  • Reay-Jones FPF, Way MO, Sètamou M, Legendre BL, Reagan TE (2003) Resistance to the Mexican rice borer (Lepidoptera: Crambidae) among Louisiana and Texas sugarcane cultivars. J Econ Entomol 96:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Reetha BMA, Mohan M (2018) Development of SSRs and its application in genetic diversity study of Indian population of Sesamia inferens (Walker) (Lepidoptera: Noctuidae). J Entomol Zool Stud 6:26–32

    Google Scholar 

  • Research Corridor (2020) Nanopesticide market size, share, growth, global trends, industry analysis and forecast to 2027. https://www.researchcorridor.com/nanopesticide-market/

  • Ribeiro CW, Soares Costa A, Falco MC, Chabregas SM, Ulian EC, Cotrin SS, Carmona AK, Santana LA, Oliva ML, Henrique Silva R (2008) Production of a His-tagged cane cystatin in transgenic sugarcane and subsequent purification. Biotechnol Prog 24:1060–1066

    Google Scholar 

  • Ricaud C, Autrey LJC (1989) Yellow spot. In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 231–245

    Google Scholar 

  • Ricaud, C, Ryan CC (1989) Leaf scald. In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 39–58

    Google Scholar 

  • Ricaud C, Ryan CC, Egan BT, Gillaspie AG, Hughes CG (1989) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, 400 p

    Google Scholar 

  • Righetto GL, Sriranganadane D, Halabelian L, Chiodi CG, Elkins JM et al (2019) The C-terminal domains SnRK2 Box and ABA Box have a role in sugarcane SnRK2s auto-activation and activity. Front Plant Sci 10:1105. https://doi.org/10.3389/fpls.2019.01105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rishi N, Chen CT (1989) Grassy shoot and white leaf disease. In: Ricaud C, Egan ET, Gillaspie Jr AG, Hughes CG (eds) Diseases of sugarcane: major diseases. Elsevier, Amsterdam, pp 289–300

    Google Scholar 

  • Roach B (1989) Origin and improvement of the genetic base of sugarcane germplasm. Proc Aust Soc Sugar Cane Techanol, 2–5 May 1989, pp 34–47

    Google Scholar 

  • Roach BT (1992) Susceptibility to ratoon stunting disease in the Saccharum complex and feasibility of breeding for resistance. Sugar Cane 3:1–11

    Google Scholar 

  • Rochat J, Goebel R, Tabone E, Begue JM, Fernandez E et al (2001) Integrated control of the sugarcane spotted stalk borer Chilo sacchariphagus (Lep: Pyrialidae) in Reunion Island. Proc South Afr Sugar Technol Assoc 75:253–254

    Google Scholar 

  • Rodríguez-del-Bosque LA, Reyes-Méndez CA (2013) Eoreumaloftini displaced Diatraea lineolate and D. saccharalis (Lepidoptera: Crambidae) as the main corn stalk borer in Northern Tamaulipas, México. Southwestern Entomologist 38:75–78

    Article  Google Scholar 

  • Romeis J, Babendreier D, Wäckers FL (2003) Consumption of snowdrop lectin (Galanthus nivalisagglutinin) causes direct effects on adult parasitic wasps. Oecologia 134:528–536

    Article  PubMed  Google Scholar 

  • Rosas-Guevara V, Hernández-Arenas M, Miranda-Marini R, Bravo-Mosqueda E, Berriozabal-Onofre A (2014) Identification and morphological variability of pokkah boeng (Fusarium spp) on sugar cane, Mexico. Investigación Agropecuaria 11(2):119–126

    Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Muller C et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model inter comparison. Proc Natl Acad Sci USA 111:3268–3273

    Article  CAS  PubMed  Google Scholar 

  • Rossato JADS, Costa GHG, Madaleno LL, Mutton MJR, Higley LG et al (2013) Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agron J 105:643–648

    Article  Google Scholar 

  • Rott P (2018) Achieving sustainable cultivation of sugarcane Volume 1, Achieving sustainable cultivation of sugarcane Volume 1. Burleigh Dodds Science Publishing. https://doi.org/10.4324/9781351114356

    Article  Google Scholar 

  • Rott P, Chatenet M (2000) Red leaf mottle. In: Rott P, Comstock JC, Croft BJ and Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 255–258

    Google Scholar 

  • Rott P, Davis MJ (2000a) Leaf scald. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 38–44

    Google Scholar 

  • Rott P, Davis MJ (2000b) Red stripe (top rot). In: Rott P, Bailey RA, Comstock JC, Croft BJ, SaumtallyAS (eds) A guide to sugarcane diseases, CIRAD/ISSCT, Montpellier, France, pp 58–62

    Google Scholar 

  • Rott P, Mohamed IS, Klett P, Soupa D et al (1997) Resistance to leaf scald disease is associated with limited colonization of sugarcane and wild relatives by Xanthomonas albilineans. Phytopathology 87:1202–1213

    Article  CAS  PubMed  Google Scholar 

  • Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (2000) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France

    Google Scholar 

  • Sakaigaichia T, Terajimab Y, Matsuokac M et al (2018) Evaluation of sugarcane smut resistance in wild sugarcane (Saccharum spontaneum L.) accessions collected in Japan. Plant Prod Sci 22:327–332

    Article  Google Scholar 

  • Salgado LD, Wilson BE, Villegas JM, Richard RT, Penn HJ (2021) Resistance to the sugarcane borer (Lepidoptera: Crambidae) in Louisiana sugarcane cultivars. Environ Entomol 118.https://doi.org/10.1093/ee/nvab118

  • Sallam MN (2006) A review of sugarcane stem borers and their natural enemies in Asia and Indian Ocean Islands: an Australian perspective. Ann Soc Entomol France 42:263–283

    Article  Google Scholar 

  • Sallam N, Achadian E, Kristini A, Sochib M, Adi H (2010) Monitoring sugarcane moth borers in Indonesia: towards better preparedness for exotic incursions. Proc Aust Soc Sugar Cane Technol 32:181–192

    Google Scholar 

  • Sarma MN (1976) Wilt disease of sugarcane. Sugarcane Pathol Newsl 15(16):30–33

    Google Scholar 

  • Sattar M, Mehmood SS, Khan MR, Ahmad S (2016) Influence of egg parasitoid Trichogramma chilonis Ishii on sugarcane stem borer (Chilo infuscatellus Snellen) in Pakistan. Pak J Zool 48:989–994

    Google Scholar 

  • Saumtally AS, Sullivan S (2000) Brown spot. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 77–80

    Google Scholar 

  • Saumtally AS, Viremouneix TR, Ahondokpê B, Girard JCR, Castlebury LA et al (2011) First report of orange rust of sugarcane caused by Puccinia kuehnii in Ivory Coast and Cameroon. Plant Dis 95:357

    Article  CAS  PubMed  Google Scholar 

  • Schexnayder HP Jr, Reagan TE, Ring DR (2001) Sampling for the sugarcane borer (Lepidoptera: Crambidae) on sugarcane in Louisiana. J Econ Entomol 94:766–771

    Article  PubMed  Google Scholar 

  • Schneider VK, Soares-Costa A, Chakravarthi M, Ribeiro C, Chabregas SM, Falco MC, Henrique-Silva F (2017) Transgenic sugarcane overexpressing CaneCPI-1 negatively and affects the growth and development of the sugarcane weevil Sphenophorus levis. Plant Cell Rep 36:193–201

    Article  CAS  PubMed  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends Biotechnol 17:210–216

    Article  CAS  PubMed  Google Scholar 

  • Sdoodee R, Schneider B, Padovan A, Gibb K (1999) Detection and genetic relatedness of phytoplasmas associated with plant diseases in Thailand. J Biochem Mol Biol Biophys 3:133–140

    CAS  Google Scholar 

  • Selvakumar R, Viswanathan R (2019) Sugarcane rust: changing disease dynamics and its management. J Sugarcane Res 9:97–118

    Article  Google Scholar 

  • Selvakumar R, Lakshmi Pathy T, Viswanathan R (2018) Assessing resistance of sugarcane clones to brown rust in the field. Proc Intern Soc Sugar Cane Technol XII Pathology workshop, 3–7 Sep 2018, Coimbatore, India, 90 p

    Google Scholar 

  • Selvi A, Nair NV (2010) Molecular breeding in sugarcane. Intl J Agri Environ Biotechnol 3(1):115–127

    Google Scholar 

  • Selvi A, Mukunthan N, Shanthi RM, Govindaraj P, Singaravelu B, Prabu TK (2008) Assessment of genetic relationships and marker identification in sugarcane cultivars with different levels of top borer resistance. Sugar Tech 10:53–59

    Article  CAS  Google Scholar 

  • Setamou M, Bernal JS, Legaspi JC, Mirkov TE (2002a) Effects of snowdrop lectin (Galanthus nivalis agglutinin) expressed in transgenic sugarcane on fitness of Cotesia flavipes (Hymenoptera: Braconidae), a parasitoid of the nontarget pest Diatraea saccharalis (Lepidoptera: Crambidae). Ann Entomol Soc Amer 95:75–83. https://doi.org/10.1603/0013-8746

    Article  CAS  Google Scholar 

  • Setamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi BC (2002b) Evaluation of lectin-expressing transgenic sugarcane against stalk borers (Lepidoptera: Pyralidae): effects on life history parameters. J Econ Entomol 95:469–477

    Article  CAS  PubMed  Google Scholar 

  • Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A et al (2021) Modern Biotechnologies: innovative and sustainable approaches for the improvement of sugarcane tolerance to environmental stresses. Agronomy 11(6):1042

    Article  CAS  Google Scholar 

  • Shailbala KA (2016) Field evaluation of Azoxystrobin 18.2% + Difenoconazole 11.4% w/w SC, a new fungicide for the management of major sugarcane diseases. Intl J Bio-Resource Stress Manage 7:732–737

    Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Singh S, Ganguli AK, Shanmugam V (2017) Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon 115:781–790.https://doi.org/10.1016/j.carbon.2017.01.075

  • Shen WK, Deng HH, Li QW, Yang ZD, Jiang ZD (2014) Evaluation of BC1 and BC2 from the crossing Erianthus arundinaceus with Saccharum for resistance to sugarcane smut caused by Sporisorium scitamineum. Trop Plant Pathol 39:368–373

    Article  Google Scholar 

  • Showler AT (2012) Drought and arthropod pests of crops. In: Neves DF, Sanz JD (eds) Droughts: new research. Hauppauge, NY, USA: Nova, pp 131–156

    Google Scholar 

  • Showler AT, Castro BA (2010) Influence of drought stress on Mexican rice borer (Lepidoptera: Crambidae) oviposition preference in sugarcane. Crop Protect 29:415–421

    Article  Google Scholar 

  • Showler AT, Reagan TE (2017) Mexican rice borer, Eoreum aloftini (Dyar) (Lepidoptera: Crambidae): Range expansion, biology, ecology, control tactics, and new resistance factors in United States sugarcane. Amer Entomol 63:36–51

    Article  Google Scholar 

  • Shukla G, Gaurav SS, Singh A (2020) Synthesis of mycogenic zinc oxidenanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). IntNano Lett 10:131–139

    CAS  Google Scholar 

  • Singh O, Waraitch KS (1981) Effect of wilt and red rot induced stress on quality deterioration of sugarcane. Sugarcane Pathol Newsl 27:25–30

    Google Scholar 

  • Singh RP, Lal S (2000) Red rot. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT: Montpellier, France, pp 153–158

    Google Scholar 

  • Singh SP, Rao GP, Singh J, Singh SB (1997) Effect of sugarcane mosaic potyvirus infection on metabolic activity, yield and juice quality. Sugar Cane 5:19–23

    Google Scholar 

  • Singh V, Sinha OK, Kumar R (2003) Progressive decline in yield and quality of sugarcane due to Sugarcane mosaic virus. Indian Phytopathol 56:500–502

    Google Scholar 

  • Singh A, Chauhan SS, Singh A, Singh SB (2006) Deterioration in sugarcane due to pokkah boeng disease. Sugar Tech 8:187–190

    Article  CAS  Google Scholar 

  • Singh V, Joshi BB, Awasthi SK, Srivastava SN (2008) Ecofriendly management of red rot disease of sugarcane with Trichoderma strains. Sugar Tech 10:58–61

    Article  Google Scholar 

  • Singh RK, Banerjee N, Khan MS et al (2016) Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol Genet Genom 291:1363–1377

    Article  CAS  Google Scholar 

  • Smith GR. (2000). Fiji disease. In: Rott P, Comstock JC, Croft BJ and Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 239–244

    Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM, Haricharan N, Gamgareeb S et al (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 25:1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Sobhakumari VP (2009) Chromosome survey of wild and cultivated species of Saccharum. The Nucleus 52(1):17–23

    Google Scholar 

  • Sobhakumari VP (2020) Exploration of diversity and distribution of cytotypes of S. spontaneum a wild species of sugarcane in India. Caryologia 73(4):45–54

    Google Scholar 

  • Solomon S, Shahi HN, Gupta AP, Rao GP, Srivastava BL (2000) Cane sugar: production management. IBD, Lucknow, India, 474 p

    Google Scholar 

  • Soma A, Ganeshan S (1998) Status of the sugarcane spotted borer Chilo sacchariphagus Bojer (Lepidoptera: Pyralidae: Craminae) in Mauritius. AMAS 1998. Food and agricultural research council, Réduit, Mauritius, pp 111–117

    Google Scholar 

  • Sood SG, Comstock JC, Glynn NC (2009) Leaf whorl inoculation method for screening sugarcane rust resistance. Plant Dis 93:1335–1340

    Article  PubMed  Google Scholar 

  • Sood SG, Comstock JC, Raid RN (2013) Evaluation of sugarcane clones in the CP cultivar program for resistance to Puccinia kuehnii, the pathogen of orange rust. Proc Intern Soc Sugar Cane Technol 28:1–7

    Google Scholar 

  • Sosa O Jr (1984) Effect of white grub (Coleoptera: Scarabaeidae) infestation on sugarcane yields. J Econ Entomol 77:83–185

    Google Scholar 

  • Souza JA, Costa G, Madaleno L et al (2013) Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agron J 105:643–548

    Article  Google Scholar 

  • Souza A, Grandis A, Leite D, Buckeridge M (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35

    Article  CAS  Google Scholar 

  • Spurthi NN, Song J, Villa A et al (2014) Promoting Utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9:e110856

    Google Scholar 

  • Srinivasan KV, Alexander KC (1971) Source of resistant in the species of Saccharum to red rot and smut disease of sugarcane. Sugarcane Pathol Newsl 6:6–7

    Google Scholar 

  • Sreenivasan TV, Nair NV (1991) Catalogue on sugarcane genetic resources. Vol. III. Saccharum officinarum. Sugarcane Breeding Institute, Coimbatore, India

    Google Scholar 

  • Sreenivasan TV, Sreenivasan J (1994) Chromosome number of Saccharum and related grasses. Sugar Cane 1:16–22

    Google Scholar 

  • Sreenivasan TV, Amalraj VA, Jebadhas AW (2001) Catalogue on sugarcane genetic resources. IV. Erianthus species. Sugarcane Breeding Institute, Coimbatore, India 98 p

    Google Scholar 

  • Srisink S, Taylor PWJ, Stringer JK, Teakle DS (1994) An abrasive pad rubbing method for inoculating sugarcane with sugarcane mosaic virus. Aust J Agri Res 45:625–631

    Article  Google Scholar 

  • Stirling G, Blair B (2000). Nematodes. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 299–305

    Google Scholar 

  • Suma S, Magarey RC (2000) Downy mildew. In: Rott P, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, Montpellier, France, pp 91–95.

    Google Scholar 

  • Sun S, Damaj MB, Alabi OJ, Wu X, Mirkov ET et al (2016) Molecular characterization of two divergent variants of sugarcane bacilliform viruses infecting sugarcane in China. Eur J Plant Pathol 145:375–384

    Article  CAS  Google Scholar 

  • Sundar AR, Barnabas EL, Malathi P, Viswanathan R (2012) A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. In: Mworia J (ed) Botany, InTech, pp 107–128

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Taher-Khani K, Martin AC, Sohi HH, Nassir-Pour N (2013) First report of Leifsonia xyli subsp. xyli, causal agent of ratoon stunt of sugarcane in Iran. Intern Soc Sugar Cane Technol 28:317–319

    Google Scholar 

  • Tai PYP, Miller JD, Dean JL (1981) Inheritance of resistance to rust in sugarcane. Field Crops Res 4:261–268

    Article  Google Scholar 

  • Tariq M, Khan A, Tabassum B, Toufiq N, Bhatti MU et al (2018) Antifungal activity of chitinase II against Colletotrichum falcatum Went causing red rot disease in transgenic sugarcane. Turkish J Biol 42(1):45–53

    Article  CAS  Google Scholar 

  • Taylor PWJ, Croft BJ, Ryan CC (1986) Studies into the effect of sugarcane rust (Puccinia melanocephala) on yield. Proc Intl Soc Sugar Cane Technol 19:411–419

    Google Scholar 

  • Thirumurugan A, Joseph M, Sudhagar R, Ganesah NM (2006) Improving efficacy of Trichogramma chilonis against shoot borer, Chilo infuscatellus (Snellen) in sugarcane ecosystem of tropical India. Sugar Tech 8(2&3):155–159

    Article  Google Scholar 

  • Thirumurugan A, Ravichandran V, Jayakumar J (2020) Ecofriendly approach for management of white grub Holotrichia serrata (Blanch) in sugarcane. Intl J Curr Microbiol Appl Sci 9:1302–1307

    Article  CAS  Google Scholar 

  • Thomas L, Bautista K (2020) Preliminary investigation on insect pests of sugarcane in the northern sugar belt region of Belize. J Entomol Zool Stud 8(2):1334–1340

    Google Scholar 

  • Thompson N, Randles JW (2001) The genome organisation and taxonomy of Sugarcane striate mosaic associated virus. Arch Virol 146:1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Thorat AS, Nakade HD, Sonone NA, Babu KH (2017) In vitro bioassay to determine the toxicity of cry1F protein against sugarcane early shoot borer (Chilo infuscatellus Snell). Intl J Sci Eng Res 8:648–652

    Google Scholar 

  • Tippannavar PS (2013) Studies on present status of white grub, Holotrichia serrata (fabricius) (Coleoptera: Scarabaeidae) in Belagavi district and its management. PhD thesis, Univ Agric Sci, Dharwad, India

    Google Scholar 

  • Tiwari AK, Vishwakarma SK, Rao GP (2012) Increasing incidence of sugarcane grassy shoot disease in Uttar Pradesh and its impact on yield and quality of sugarcane. Phytopathogen Mollicutes 2(2):63–67

    Article  Google Scholar 

  • Tomaz AC, Coutinho AE, Soares BO, Peternelli LA, Pereira EJG et al (2018) Assessing resistance of sugarcane varieties to sugar cane borer Diatraea saccharalis Fab (Lepidoptera: Crambidae). Bull Entomol Res 108:547–555

    Article  PubMed  Google Scholar 

  • Tomaz AC, Wartha CA, de Resende MDV, Brasileiro BP, Peternelli LA et al (2019) Genetic parameters and selection of sugarcane in early selection stages for resistance to sugarcane borer Diatraea saccharalis. Crop Breed Appl Biotechnol 19:208–216

    Article  Google Scholar 

  • Tomov BW, Bernal JS (2003) Effects of GNA transgenic sugarcane on life history parameters of Parallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae), a parasitoid of Mexican rice borer. J Econ Entomol 96:570–576

    Article  PubMed  Google Scholar 

  • Triana MF, França PHB, Queiroz AFO, Santos JM, Goulart HF, Santana AEG (2020) Morphological, chemical and electrophysiological investigations of Telchinlicus (Lepidoptera: Castniidae). PLoS ONE 15(4):e0231689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaniklidis G, Chatzistathis T, Fanourakis D, Nikoloudakis N, Kotsiras A et al (2021) Leaf antioxidant machinery stimulation by Meloidogyne javanica infestation: A case study on Cucumis melo seedlings. Plant Stress 1:100002. https://doi.org/10.1590/1984-70332017v17n2a17

  • Valadares NF, de Oliveira-Silva R, Cavini IA, Marques IDA, Pereira HD'M et al (2013) X-ray crystallography and NMR studies of domain-swapped canecystatin-1. FEBS J 280:1028–1038

    Google Scholar 

  • Valdespino RA, Goebel FR, Pérez MJR, Mérida Rodriguez R, Fernandez L (2016) Yield loss in sugarcane due to Diatraea tabernelle Dyar (Lepidoptera: Crambidae) in Panama. Proc Intl Soc Sugar Cane Technol 29:1153–1158

    Google Scholar 

  • van Antwerpen T, McFarlane SA, Buchanan GF, Shepherd DN, Martin DP et al (2008) First report of maize streak virus field infection of sugarcane in South Africa. Plant Dis 92:982

    Article  PubMed  Google Scholar 

  • Van Weelden M, Swanson S, Davidson W, Rice R (2017) Sugarcane variety census: Florida 2016. Sugar J 6:12–24

    Google Scholar 

  • Vega J, Scagliusi SMM, Ulian EC (1997) Sugarcane yellow leaf disease in Brazil: evidence of association with a Luteovirus. Plant Dis 81:21–26

    Article  PubMed  Google Scholar 

  • Vermeulen H, Gouse M, Delport M, Louw M, Miller T (2020) Consumer acceptance of sugar derived from genetically modified sugarcane in South Africa. AgBioForum, Pre-production publication, 1–12. Available on the World Wide Web: http://www.agbioforum.org

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005) Effects of tissue culture, biolistic transformation and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Aust J Agri Res 56:57–68

    Article  CAS  Google Scholar 

  • Victoria JI, Avellaneda MC, Angel JC, Guzman ML (2005) Resistance to sugarcane yellow leaf virus in Colombia. Proc Intl Soc Sugar Cane Technol 25:664–669

    Google Scholar 

  • Vijayaraghavan C, Regupathy A (2006) Bioefficacy of thiamethoxam (Actara 25WG) against sugarcane whitefly Aleurolobus barodensis Maskell. Intl J Agri Sci 2:299–304

    Google Scholar 

  • Vishwakarma S, Kumar P, Nigam A, Singh A, Kumar A (2013) Pokkah boeng: an emerging disease of sugarcane. J Plant Pathol Microbiol 4:170. https://doi.org/10.4172/2157-7471.1000170

    Article  Google Scholar 

  • Viswanathan R (2000) Grassy shoot. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT: Montpellier, France, pp 215–220

    Google Scholar 

  • Viswanathan R (2001a) Growing severity of ratoon stunting disease of sugarcane in India. Sugar Tech 3(4):154–159

    Article  Google Scholar 

  • Viswanathan R (2001b) Different aerated steam therapy (AST) regimes on the development of grassy shoot disease symptoms in sugarcane. Sugar Tech 3(3):83–91

    Article  Google Scholar 

  • Viswanathan R (2002) Sugarcane yellow leaf syndrome in India: Incidence and effect on yield parameters. Sugar Cane Intl 20:17–23

    Google Scholar 

  • Viswanathan R (2004) Ratoon stunting disease infection favours severity of yellow leaf syndrome caused by sugarcane yellow leaf virus in sugarcane. Sugar Cane Intl 22(2):3–7

    Google Scholar 

  • Viswanathan R (2010) Plant disease: red rot of sugarcane. Anmol Publications Pvt Ltd., New Delhi, India, p 301

    Google Scholar 

  • Viswanathan R (2012a) Sugarcane diseases and their management. ICAR-Sugarcane Breeding Institute, Coimbatore, India, 140 p

    Google Scholar 

  • Viswanathan R (2012b) Need for a paradigm shift in sugarcane disease management. In: Nair NV, Pratap DP, Viswanathan R, Srikanth J, Bhaskaran A, Ram B (eds) Perspectives in sugarcane agriculture. Society for Sugarcane Research and Development, Coimbatore, India, pp 171–206

    Google Scholar 

  • Viswanathan R (2013a) Status of sugarcane wilt: one hundred years after its occurrence in India. J Sugarcane Res 3(2):86–106

    Google Scholar 

  • Viswanathan R (2013b) Sustainable ecofriendly disease management systems in sugarcane production under the changing climate—a review. J Mycol Plant Pathol 43:12–27

    Google Scholar 

  • Viswanathan R (2016) Varietal degeneration in sugarcane and its management in India. Sugar Tech 18:1–7

    Article  Google Scholar 

  • Viswanathan R (2017) Pathogen virulence in sugarcane red rot pathogen versus varieties in cultivation: classical case of loss in virulence in the pathotype CF06 (Cf671). Sugar Tech 19:293–299

    Article  CAS  Google Scholar 

  • Viswanathan R (2018) Changing scenario of sugarcane diseases in India since introduction of hybrid cane varieties: path travelled for a century. J Sugarcane Res 8:1–35

    Google Scholar 

  • Viswanathan R (2020) Fusarium diseases affecting sugarcane production in India. Indian Phytopathol 73:415–424

    Article  Google Scholar 

  • Viswanathan R (2021a) Red rot of sugarcane (Colletotrichum falcatum Went). CAB Reviews 16(023). https://doi.org/10.1079/PAVSNNR202116023

  • Viswanathan R (2021b) Sustainable sugarcane cultivation in India through threats of red rot by varietal management. Sugar Tech 23:239–253

    Article  CAS  Google Scholar 

  • Viswanathan R (2021c) Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. Indian Phytopathol 74:573–586

    Article  Google Scholar 

  • Viswanathan R, Ashwin NMR (2020) Brown spot of sugarcane: an emerging disease in South Western region in India. J Sugarcane Res 10:79–85

    Article  Google Scholar 

  • Viswanathan R, Balamuralikrishnan M (2005) Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech 7:61–65

    Article  CAS  Google Scholar 

  • Viswanathan R, Malathi P (2019) Biocontrol strategies to manage fungal diseases in sugarcane. Sugar Tech 21:202–212

    Article  CAS  Google Scholar 

  • Viswanathan R, Premachandran MN (1998) Occurrence and distribution of sugarcane bacilliform virus in the germplasm collection in India. Sugar Cane 6:9–18

    Google Scholar 

  • Viswanathan R, Samiyappan R (2002a) Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protect 21:1–10

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R (2002b) Role of oxidative enzymes in the plant growth promoting rhizobacteria (PGPR) mediated induced systemic resistance against Colletotrichum falcatum in sugarcane. J Plant Dis Protect 109:88–100

    CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2008) Bio-formulation of fluorescent Pseudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Arch Phytopathol Plant Protect 41:377–388

    Article  CAS  Google Scholar 

  • Viswanathan R, Karuppaiah R (2010) Distribution pattern of RNA viruses causing mosaic symptoms and yellow leaf in Indian sugarcane varieties. Sugar Cane Intl 28:202–205

    Google Scholar 

  • Viswanathan R, Selvakumar R (2020) Varietal breakdown to red rot in sugarcane revealed by comparing two Colletotrichum falcatum inoculation methods. Sugar Tech 22:1063–1075

    Article  CAS  Google Scholar 

  • Viswanathan R, Selvakumar R (2021) Impact of climate change on plant pathogen interactions and disease epidemics. In: Gomathi R, Prakhash AH, Ram B (eds) Physiological interventions for developing climate resilient commercial crops. Satish Serial Publishing House, New Delhi. ISBN: 978-93-90660-53-7; E-ISBN: 978-93-90660-54-4, pp 301–328

    Google Scholar 

  • Viswanathan R, Alexander KC, Garg ID (1996) Detection of Sugarcane bacilliform virus in sugarcane germplasm. Acta Virol 40:5–8

    CAS  PubMed  Google Scholar 

  • Viswanathan R, Balamuralikrishnan M, Premachandran MN, Tripathi BK (1999) Sugarcane bacilliformvirus: symptoms, detection and distribution in the world germplasm collection at Cannanore. Proc Intl Soc Sugar Cane Technol 23(2):347–354

    Google Scholar 

  • Viswanathan R, Malathi P, Padmanaban P (2003a) Variation in sugarcane red rot pathogen Colletotrichum falcatum went. In: Rao GP, Manoharachari C, Bhat DJ, Rajak RC, Lakhanpal TN (eds) Frontiers of fungal diversity in India. International Book Distributing Co, Lucknow, India, pp 639–667

    Google Scholar 

  • Viswanathan R, Nandakumar R, Samiyappan R (2003b) Involvement of pathogenesis-related proteins in Pseudomonas spp. induced systemic resistance against Colletotrichum falcatum in sugarcane. J Plant Dis Protect 110:524–534

    CAS  Google Scholar 

  • Viswanathan R, Rajitha R, Sundar AR, Ramamoorthy V (2003c) Isolation and characterization of endophytic bacterial strains from sugarcane stalks and their in vitro antagonism against the red rot pathogen. Sugar Tech 5(1&2):25–29

    Article  CAS  Google Scholar 

  • Viswanathan R, Malathi P, Ramesh Sundar A, Poongothai M, Singh N (2006) Current status of sugarcane wilt in India. Sugar Cane Intl 24(4):1–7

    Google Scholar 

  • Viswanathan R, Balamuralikrishnan M, Karuppaiah R (2008a) Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization. Virus Gene 37:368–379

    Article  CAS  Google Scholar 

  • Viswanathan R, Balamuralikrishnan M, Karuppaiah R (2008b) Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane. Virus Gene 36:553–564

    Article  CAS  Google Scholar 

  • Viswanathan R, Karuppaiah R, Balamuralikrishnan M (2009) Identification of new variants of SCMV causing sugarcane mosaic in India and assessing their genetic diversity in relation to SCMV type strains. Virus Gene 39:375–386

    Article  CAS  Google Scholar 

  • Viswanathan R, Chinnaraja C, Karuppaiah R, Ganesh KV, Jenshi RJJ et al (2011a) Genetic diversity of sugarcane grassy shoot (SCGS)-phytoplasmas causing grassy shoot disease in India. Sugar Tech 13:220–228

    Article  CAS  Google Scholar 

  • Viswanathan R, Poongothai M, Malathi P (2011b) Pathogenic and molecular confirmation of Fusarium sacchari causing wilt in sugarcane. Sugar Tech 13:68–76

    Article  CAS  Google Scholar 

  • Viswanathan R, Chinnaraja C, Malathi P, Gomathi R, Rakkiyappan P et al (2014a) Impact of Sugarcane yellow leaf virus (ScYLV) infection on physiological efficiency and growth parameters in sugarcane in India. Acta Physiol Plant 36:1805–1822

    Article  CAS  Google Scholar 

  • Viswanathan R, Malathi P, Annadurai A, Naveen Prasanth C, Scindiya M (2014b) Sudden occurrence of wilt and pokkah boeng in sugarcane and status of resistance in the parental clones in national hybridization garden to these diseases. J Sugarcane Res 4(1):62–81

    Google Scholar 

  • Viswanathan R, Chinnaraja C, Parameswari B, Chhabra ML (2016a) Status of yellow leaf resistance in sugarcane germplasm and parental clones at Sugarcane Breeding Institute, India. Intl Sugar J118:60–71

    Google Scholar 

  • Viswanathan R, Malathi P, Naik R (2016b) A sett treatment device for fungal disease management and healthy nursery programme in sugarcane. Proc Annu Con Sugar Technol India 77:236–253

    Google Scholar 

  • Viswanathan R, Balaji CG, Selvakumar R, Malathi P, Sundar AR et al (2017a) Epidemiology of Fusarium diseases in sugarcane: a new discovery of same Fusarium sacchari causing two distinct diseases, wilt and pokkah boeng. Sugar Tech 19:638–646

    Article  CAS  Google Scholar 

  • Viswanathan R, Malathi P, Chandran K, Gopi R (2017b) Screening of sugarcane germplasm for red rot resistance. J Sugarcane Res 7(2):100–111

    Google Scholar 

  • Viswanathan R, Malathi P, Ramesh Sundar A, Kaverinathan K, Chhabra ML, Parameswari B, Jothi R (2017c) Diversity of Colletotrichum falcatum population in India: comparative virulence at two different agro-climatic regions. Int Sugar J 119:966–977

    Google Scholar 

  • Viswanathan R, Malathi P, Neelamathi D (2018a) Enhancing sugarcane yield per hectare through improved virus-free seed nursery programme. ICAR News 24(4):4–5

    Google Scholar 

  • Viswanathan R, Padmanaban P, Mohanraj D, Prakasam N, Singh N et al (2018b) Status of red rot resistance in wild relatives of sugarcane, Saccharum spontaneum, interspecific hybrids and intergeneric hybrids. J Sugarcane Res 8(2):169–184

    Google Scholar 

  • Viswanathan R, Parameswari B, Nithya K (2018c) Molecular characterization of sugarcane viruses and their diagnostics. In: Prasad R, Gill SS, Tuteja N (eds) Crop Improvement through microbial biotechnology. Elsevier, Amsterdam, pp 175–193

    Google Scholar 

  • Viswanathan R, Sundar AR, Selvakumar R, Malathi P (2018d) Progress in understanding fungal diseases affecting sugarcane: red rot. In: Rott P (ed) Achieving sustainable cultivation of sugarcane volume 2: breeding, pests and diseases. Burleigh Dodds Science Publishing, Cambridge, UK, pp 201–220. https://doi.org/10.19103/AS.2017.0035.21

  • Viswanathan R, Balaji CG, Selvakumar R, Malathi P, Sundar AR et al (2019a) Identification of sources of resistance to wilt caused by Fusarium sacchari in Indian sugarcane parental population. Intl Sugar J 121(1451):838–846

    Google Scholar 

  • Viswanathan R, Karuppaiah R, Bagyalakshmi K, Balan S, Kaverinathan K (2019b) Emergence of leaf fleck caused by sugarcane bacilliform virus in sugarcane as a serious disease under field conditions in India. Intl Sugar J 121:146–153

    Google Scholar 

  • Viswanathan R, Padmanaban P, Selvakumar R (2020a) Emergence of new pathogenic variants in Colletotrichum falcatum, stalk infecting ascomycete in sugarcane: role of host varieties. Sugar Tech 22:473–484

    Article  CAS  Google Scholar 

  • Viswanathan R, Selvakumar R, Manivannan K, Nithyanandam R, Kaverinathan K (2020b) Pathogenic behaviour of soil borne inoculum of Colletotrichum falcatum in causing red rot in sugarcane varieties with varying disease resistance. Sugar Tech 22:485–497

    Article  CAS  Google Scholar 

  • Viswanathan R, Singh SP, Selvakumar R, Singh D, Bharti YP et al (2022c) Varietal break down to red rot in the sugarcane variety Co 0238 mimics Vertifolia effect: characterizing new Colletotrichum falcatum pathotype CF13. Sugar Tech. https://doi.org/10.1007/s12355-021-01070-7

    Article  Google Scholar 

  • Viswanathan R, Rao GP, Solomon S (2021a) Measures to minimize the growing menace of red rot of sugarcane in subtropical India. Sugar Tech 23:1207–1210

    Article  Google Scholar 

  • Viswanathan R, Selvakumar R, Govindaraj P, Chhabra ML, Parameswari B et al (2021b) Identification of resistance to red rot in interspecific and intergeneric hybrid clones of sugarcane. Intl Sugar J 123(1476):840–848

    Google Scholar 

  • Viswanathan R, Selvakumar R, Malathi P, Prakasam N (2021c) Controlled condition testing (CCT): an ideal high-throughput method for screening of pre-release clones and progenies for red rot resistance in sugarcane. Sugar Tech 23:1045–1055

    Article  Google Scholar 

  • Viswanathan R, Ramasubramanian T, Chinnaraja C, Selvakumar R, Lakshmi Pathy T et al (2022a) Population dynamics of Melanaphis sacchari (Zehntner), the aphid vector of sugarcane yellow leaf virus under tropical conditions in India. Trop Plant Pathol. https://doi.org/10.1007/s40858-021-00483-9

    Article  Google Scholar 

  • Viswanathan R, Selvakumar R, Malathi P, Sundar AR (2022b) Modified scale for evaluating sugarcane clones for Fusarium wilt resistance with plug method of inoculation. Sugar Tech 24:502–512. https://doi.org/10.1007/s12355-021-01044-9

    Article  Google Scholar 

  • Wang M-Q, Zhou G-H (2010) A near-complete genome sequence of a distinct isolate of Sugarcane yellow leaf virus from China, representing a sixth new genotype. Virus Gene 41:268–272

    Article  CAS  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgen Res 14:167–178

    Article  Google Scholar 

  • Wang MQ, Xu DL, Li R, Zhou GH (2012) Genotype identification and genetic diversity of sugarcane yellow leaf virus in China. Plant Pathol 61:986–993

    Article  Google Scholar 

  • Wang XY, Li WF, Huang YK, Lu X, Luo ZM, Yin J, Shan HL, Zhang RY (2013) Evaluation of sugarcane introgression lines for resistance to brown rust disease caused by Puccinia melanocephala. Trop Plant Pathol 38:097–101

    Article  Google Scholar 

  • Wang ZP, Liu L, Deng YC, YiJie L, GeMin Z et al (2017a) Establishing a forecast mathematical model of sugarcane yield and brix reduction based on the extent of pokkah boeng disease. Sugar Tech 19:656–661

    Article  CAS  Google Scholar 

  • Wang WZ, Yang BP, Feng XY et al (2017b) Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Front Plant Sci 8:1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Qin Z, Liu X, Song X, Zhang X et al (2019) Sugarcane ratoon stunting disease in China: review of the current situation and disease control. Proc Intern Soc Sugar Cane Technol 30:1773–1776

    Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Wang LH et al (2006) Regeneration of sugarcane elite breeding lines and engineering of strong stem borer resistance. Pest Manage Sci 62:178–187

    Article  CAS  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ et al (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgen Res 20:759–777

    Article  CAS  Google Scholar 

  • White WH, Tew TL, Richard EP Jr (2006) Association of sugarcane pith, rind hardness, and fiber with resistance to the sugarcane borer. J Am Soc Sugarcane Technol 26:87–100

    Google Scholar 

  • White WH, Miller JD, Milligan S, Burner DM, Legendre BL (2001) Inheritance of sugarcane borer resistance in sugarcane derived from two measures of insect damage. Crop Sci 41.https://doi.org/10.2135/cropsci2001.1706

  • White WH, Viator RP, Dufrene EO, Dalley CD, Richard EP et al (2008) Re-evaluation of sugarcane borer (Lepidoptera: Crambidae) bioeconomics in Louisiana. Crop Protect 27:1256–1261

    Article  Google Scholar 

  • White WH, Kimbeng CA, Gravois KA, Zhou MM (2010) Breeding resistant sugarcane for managing the stem borer Diatraea saccharalis: progress and prospects for Louisiana. Proc Intl Soc Sugar Cane Technol 27:1–8

    Google Scholar 

  • White WH, Hale AL, Veremis JC, Tew TL, Richard EP Jr (2011) Registration of two sugarcane germplasm clones with antibiosis to the sugarcane borer (Lepidoptera: Crambidae). J Plant Regist 5(2):248–253

    Article  Google Scholar 

  • Wijayanti KS, Garusti AN (2021) The reappearance of the early shoot borer Chilo infuscatellus in Java’s sugarcane. IOP Conf Ser Earth Environ Sci 648:012088

    Article  Google Scholar 

  • Williams JR (1983) The sugar cane stem borer (Chilo sacchariphagus) in Mauritius. Rev Agri Sucr Ile Maurice 62:5–23

    Google Scholar 

  • Wilson BE (2011) Master’s thesis on advanced management of the Mexican rice borer (Eoreuma loftini) in Sugarcane. Louisiana State University, Baton Rouge, LA, USA

    Google Scholar 

  • Wilson BE (2021) Successful integrated pest management minimizes the economic impact of Diatraeasaccharalis (Lepidoptera: Crambidae) on the Louisiana sugarcane industry. J Econ Entomol 114:468–471

    Article  CAS  PubMed  Google Scholar 

  • Wilson BE, Vanweelden MT, Beuzelin JM, Reagan TE, Way MO et al (2015) A relative resistance ratio for evaluation of Mexican rice borer (Lepidoptera: Crambidae) susceptibility among sugarcane cultivars. J Econ Entomol 108:1363–1370

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Salgado L, Villegas JM (2021) Optimizing chemical control for Diatraea saccharalis (Lepidoptera: Crambidae) in sugarcane. Crop Protect 152:105843.19. 1016/j.cropro.2021.105843

    Google Scholar 

  • Wongkaew P (2012) Sugarcane white leaf disease characterization, diagnosis development, and control strategies. In: Viswanathan R, Sundar AR (eds) Functional plant science and biotechnology, vol 6. Global Science Books, Japan, pp 73–84

    Google Scholar 

  • Wongkaew P, Fletcher J (2004) Sugarcane white leaf phytoplasma in tissue culture: long- term maintenance, transmission, and oxytetracycline remission. Plant Cell Rep 23:426–434

    Article  CAS  PubMed  Google Scholar 

  • Wongkaew P, Hanboonsong Y, Sirithorn P, Choosai C, Boonkrong S et al (1997) Differentiation of phytoplasma associated with sugarcane and gramineous weed white leaf disease and sugarcane grassy shoot disease by RFLP and sequencing. Theore Appl Genet 95:660–663

    Article  CAS  Google Scholar 

  • Wu X, Rogers Leonard B, Zhu YC, Abel CA, Head GP, Huang F (2009) Susceptibility of cry1Ab- resistant and susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Invertebr Pathol 100:29–34

    Article  CAS  Google Scholar 

  • Wu L, Zu X, Wang S, Chen Y (2012) Sugarcane mosaic virus—long history but still a threat to industry. Crop Protect 42:74–78

    Article  Google Scholar 

  • Xie K, Yinong Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Chen W, Fu Q, Zhang P, An T et al (2016) Molecular variability and distribution of Sugarcane mosaic virus in Shanxi, China. Plos One 11(3):e0151549

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie XM, Lin MJ, Yang LH, Zhou YW, Chen G (2012) The causes of heavier damage of sugarcane borers and the management and control. Sugarcane Canesugar 6:26–29

    Google Scholar 

  • Xu DL, Park JW, Mirkov TE, Zhou GH (2008) Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol 153:1031–1039

    Article  PubMed  Google Scholar 

  • Xu DL, Zhou GH, Xie YJ, Mock R, Li R (2010) Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Gene 40:432–439

    Article  CAS  Google Scholar 

  • Yadav A, Thorat V, Deokule S, Shouche Y, Prasad DT (2017) New subgroup 16SrXI-F phytoplasma strain associated with sugarcane grassy shoot (SCGS) disease in India. Intl J System Evol Microbiol 67:374–378

    Article  Google Scholar 

  • Yadav S, Jackson P, Wei X, Ross EM, Aitken K et al (2020) Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy 10:585. https://doi.org/10.3390/agronomy10040585

    Article  CAS  Google Scholar 

  • Yahaya A, Dangora DB, Alegbejo MD, Kumar PL, Alabi OJ (2017) Identification and molecular characterization of a novel sugarcane streak mastrevirus and an isolate of the A-strain of maize streak virus from sugarcane in Nigeria. Arch Virol 162:597–602

    Article  CAS  PubMed  Google Scholar 

  • Yan SL, Lehrer AT, Hajirezaei MR, Springer A, Komor E (2009) Modulation of carbohydrate metabolism and chloroplast structure in sugarcane leaves which were infected by Sugarcane yellow leaf virus (SCYLV). Physiol Mol Plant Pathol 73:78–87

    Article  Google Scholar 

  • Yang X, Islam MS, Sood S, Maya S, Hanson EA et al (2018) Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Front Plant Sci 9:350

    Google Scholar 

  • Yang X, Sood S, Luo Z, Todd J, Wang J (2019) Genome-wide association studies identified resistance loci to orange rust and yellow leaf virus diseases in sugarcane (Saccharum spp.). Phytopathology 109:623–631

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Yu A, Xu J, Geng G, Zhang M, Chen R (2004) Analysis and identification for transgenic sugarcane of ScMV-CP gene. Mol Plant Breed 2:13–18. (In Chinese)

    Google Scholar 

  • Yao W, Ruan M, Qin L, Yang C, Chen R et al (2017) Field performance of transgenic sugarcane lines resistant to sugarcane mosaic virus. Front Plant Sci 8:104

    Google Scholar 

  • You Q, Yang X, Peng Z, Islam MS, Sood S et al (2019) Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theor Appl Genet 132:2829–2845

    Article  CAS  PubMed  Google Scholar 

  • You Q, Sood S, Luo Z, Liu H, Sariful IM et al (2020) Identifying genomic regions controlling ratoon stunting disease resistance in Sugarcane (Saccharum spp.) clonal F1 population. Crop J 9:1070–1078

    Article  Google Scholar 

  • Youdeowi A (1989) Major arthropod pests of food and industrial crops of Africa and their economic importance. In: Yanninek JS, Herren HR (eds) Biological control: a sustainable solution to crop pest problems in Africa, Int Inst Trop Agric, Ibadan, Nigeria, pp 51–60

    Google Scholar 

  • Zhang M, Govindaraju M (2018a) Sugarcane production in China, Sugarcane—Technology and Research, Alexandre Bosco de Oliveira, Intech Open. https://doi.org/10.5772/intechopen.73113. https://www.intechopen.com/chapters/59391

  • Zhang M, Govindaraju M (2018b) Sugarcane production in China. In: de Oliveira AB (ed) Sugarcane-technology and research, IntechOpen, London

    Google Scholar 

  • Zhang H-L, Ntambo MS, Rott PC, Chen G, Chen L-L et al (2020) Complete genome sequence reveals evolutionary and comparative genomic features of Xanthomonas albilineans causing sugarcane leaf scald. Microorganisms 8(2):182. https://doi.org/10.3390/microorganisms8020182

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC et al (2011) Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol 153:181–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nagai C, Yu Q, Pan Y-B, Ayala-Silva T et al (2012) Genome size variation in three Saccharum species. Euphytica 185:511–519

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X, Tang H, Zhang Q, Hua X et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573. https://doi.org/10.1038/s41588-018-0237-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Liang YJ, Qin ZQ, Li DW, Wei CY et al (2019) Application of multi-rotor unmanned aerial vehicle application in management of stem borer (Lepidoptera) in sugarcane. Sugar Tech 21:847–852

    Article  CAS  Google Scholar 

  • Zhangsun DT, Luo SL, Chen RK, Tang KX (2007) Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia (bratislava) 62:386–393

    Article  CAS  Google Scholar 

  • Zhao D, Li Y-R (2015a) Climate change and sugarcane production: Potential impact and mitigation strategies. Int J Agron 2015:547386. https://doi.org/10.1155/2015/547386

    Article  CAS  Google Scholar 

  • Zhao D, Li YL (2015b) Climate change and sugarcane production: potential impact and mitigation strategies. Intl J Agron 2015:1–10

    Article  Google Scholar 

  • Zhao Y, Karan R, Altpeter F (2021) Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase. Biotechnol J 16:2000650

    Article  CAS  Google Scholar 

  • Zhou M (2015) Selection for Eldana saccharina borer resistance in early stages of sugarcane breeding in South Africa. Am J Plant Sci 6:2168–2176

    Article  CAS  Google Scholar 

  • Zhou M (2016) Family selection as a strategy for stem borer (Eldana saccharina Lepidoptera: Pyralidae) resistance breeding in South Africa. Am J Plant Sci 7:2006–2019

    Article  Google Scholar 

  • Zhou M, Mokwele A (2016) Family versus individual plant selection for stem borer (Eldana saccharina) resistance in early stages of sugarcane breeding in South Africa. South Afr J Plant Soil 33:89–96

    Article  CAS  Google Scholar 

  • Zhou D, Xu L, Gao S, Guo J, Luo J et al (2016) Cry1Ac transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season. Front Plant Sci 7:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Lim STS, Schenck S, Arcinas A, Komor E (2010a) RT-PCR and quantitative real-time RT-PCR detection of Sugarcane yellow leaf virus (SCYLV) in symptomatic and asymptomatic plants of Hawaiian sugarcane cultivars and the correlation of SCYLV titre to yield. Eur J Plant Pathol 127:263–273

    Article  CAS  Google Scholar 

  • Zhu YJ, McCafferty H, Osterman G, Lim S, Agbayani R et al (2010b) Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane. Transgen Res 20:503–512

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR-Sugarcane Breeding Institute, Coimbatore, India for the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Viswanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanathan, R. et al. (2022). Genomic Designing for Biotic Stress Resistance in Sugarcane. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Technical Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-09293-0_9

Download citation

Publish with us

Policies and ethics