Skip to main content

Features and Trends of Meadow Landscape Evolution

  • Chapter
  • First Online:
Psammic Peinobiomes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 247))

  • 63 Accesses

Abstract

Four biophysical features were selected to describe and interpret evolution trends in the meadow environment, including sedimentary stratifications and lithological discontinuities, vegetation and soil contacts in ecotone areas, erosion and suffusion microrelief, and buried Spodosols. The frequency of stratifications, some of which are contrasting enough to constitute lithological discontinuities, indicates that the regional sand cover under meadow is overall of sedimentary origin, formed by discontinuous sedimentation episodes during parts of the Holocene. Wooded vegetation (caatinga, bana) in contact areas with adjacent meadows is established on stratified sand sediments similar to those underlying the meadows. There is thus spatial continuity of the sand cover under both vegetation types. Caatinga terrain in ecotone areas is incised by erosion channels that seem not to be functional today, as there are no deposits at their outlets into the neighboring meadow areas. Channel incision is possibly related to climatic conditions drier than the current ones resulting in a lowering of the regional drainage base level in rivers and streams. Coalescing channel networks at the exit of the caatinga terrains cause truncation of the original sedimentary surface in the meadow. Microrelief is a relevant terrain feature in relatively stabilized alluvial flats and peneplain glacis. Erosion rills and channels caused by rainfall runoff and closed pans and channels resulting from suffusion evidence dynamic terrain surface morphology. Truncated Spodosols buried under subsequent sand sediments are possibly remnants of an earlier terrain surface under caatinga existing before the regional sand cover took place. There is no evidence of podzolization in the sand cover under the current meadow vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M (2016) White-sand ecosystems in Amazonia. Biotropica 48(1):7–23

    Article  Google Scholar 

  • Arnold RW (1968) Pedological significance of lithologic discontinuities. Trans 9th Intl Congr Soil Sci 4:595–603

    CAS  Google Scholar 

  • Berry PE, Riina R (2005) Insights into the diversity of the Pantepui flora and the biogeographic complexity of the Guayana Shield. Biologiske Skrifter 55:145–167

    Google Scholar 

  • Bravard S, Righi D (1989) Geochemical differences in an Oxisol-Spodosol toposequence of Amazonia, Brazil. Geoderma 44:29–42

    Article  CAS  Google Scholar 

  • Bravard S, Righi D (1990) Podzols in Amazonia. Catena 17:461–475

    Article  Google Scholar 

  • Carneiro Filho A, Schwartz D, Tatumi SH, Rosique T (2002) Amazonian paleodunes provide evidence of drier climate phases during the Late Pleistocene-Holocene. Quat Res 58:205–209

    Article  Google Scholar 

  • Colinvaux PA, De Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169

    Article  Google Scholar 

  • Cordeiro RC, Turcq B, Suguio K, Oliveira da Silva A, Sifeddine A, Volkmer-Ribeiro C (2008) Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Elsevier Global Planetary Change 61:49–62

    Article  Google Scholar 

  • De Dapper M (1991) Late Quaternary geomorphological evolution of the sand-covered plateaus near Kolwezi, Southern Shaba, ZaĂŻre. Bull Soc GĂ©og de Liège 27:157–173

    Google Scholar 

  • Do Nascimento NR, Bueno GT, Fritsch E, Herbillon AJ, Allard T, Melfi AJ, Astolfo R, Boucher H, Li Y (2004) Podzolisation as a deferralitization process: a study of an Acrisol-Podzol sequence derived from Palaeozoic sandstones in the northern upper Amazon Basin. Eur J Soil Sci 55:523–538

    Article  CAS  Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001) Lecture notes on the major soils of the world. FAO, Rome, pp 35–37

    Google Scholar 

  • Dubroeucq D, Blancaneaux P (1987) Les podzols du Haut Rio Negro, rĂ©gion de Maroa, Venezuela. Environment et relations lithologiques. In: Righi D, Chauvel A (eds) Podzols et podzolization. AFES $ INRA, Plaisir et Paris, pp 37–52

    Google Scholar 

  • Dubroeucq D, Volkoff B (1998) From Oxisols to Spodosols and Histosols: evolution of the soil mantles in the Rio Negro basin (Amazonia). Catena 32:245–280

    Article  Google Scholar 

  • Fairbridge RW (1976) Shellfish-eating preceramic Indians in coastal Brazil. Science 191:353–359

    Article  CAS  PubMed  Google Scholar 

  • Goosen D (1971) Physiography and soils of the Llanos Orientales, Colombia. International Institute for Aerial Survey and Earth Sciences (ITC), Series B, 64. Enschede, The Netherlands

    Google Scholar 

  • Horbe AMC, Horbe MA, Kenitiro S (2004) Tropical Spodosols in northeastern Amazonas State, Brazil. Geoderma 119(1-2):55–68

    Article  CAS  Google Scholar 

  • Huber O (2005) Diversity of vegetation types in the Guayana Region: an overview. Biol Skr 55:169–188

    Google Scholar 

  • Huber O (2006) Herbaceous ecosystems on the Guayana Shield: a regional overview. J Biogeogr 33:464–475

    Article  Google Scholar 

  • IGAC (2014a) Estudio general de suelos y zonificaciĂłn de tierras del Departamento de GuainĂ­a, escala 1:100,000. Instituto Geográfico AgustĂ­n Codazzi, SubdirecciĂłn de AgrologĂ­a, Bogotá

    Google Scholar 

  • IGAC (2014b) Estudio general de suelos y zonificaciĂłn de tierras del Departamento de Vichada, escala 1:100,000. Instituto Geográfico AgustĂ­n Codazzi, SubdirecciĂłn de AgrologĂ­a, Bogotá

    Google Scholar 

  • Klinge H (1965) Podzol soils in the Amazon basin. J Soil Sci 16(1):96–103

    Article  Google Scholar 

  • Klinge H, Medina E, Herrera R (1977) Studies on the ecology of amazon caatinga forest in southern Venezuela 1. General features. Acta Cient Venezolana 28:270–276

    CAS  Google Scholar 

  • Maguire B (1970) On the flora of the Guayana Highland. Biotropica 2:85–100

    Article  Google Scholar 

  • Maguire B (1979) Guayana, region of the Roraima Sandstone Formation. In: Larsen K, Holm-Nielsen LB (eds) Tropical botany. Academic, London, pp 223–238

    Google Scholar 

  • MalagĂłn Castro D (1995) Estudio genĂ©tico-taxonĂłmico de Espodosoles, Ultisoles y Oxisoles y su relaciĂłn con el manejo de las tierras en el Departamento del VaupĂ©s (Colombia). Universidad Nacional de Colombia, Bogotá, Colombia

    Google Scholar 

  • MARNR-ORSTOM (1986) Atlas del inventario de tierras del Territorio Federal Amazonas (Venezuela). DirecciĂłn de CartografĂ­a Nacional, MARNR, Caracas

    Google Scholar 

  • Medina E, Cuevas E (2011) Complejo caatinga amazĂłnica bosques pluviales esclerĂłfilos sobre arenas blancas. BioLlania edic espec 10:241–249, UNELLEZ, Guanare, Venezuela

    Google Scholar 

  • Mendonça BAFD, Simas FNB, Schaefer CEGR, Fernandes Filho EI, Vale JĂşnior JFD, Mendonça JGFD (2014) Podzolized soils and paleoenvironmental implications of white-sand vegetation (Campinarana) in the Viruá National Park, Brazil. Geoderma Reg 2–3:9–20

    Article  Google Scholar 

  • Moyersoen B (1993) Ectomicorrizas y microrrizas vesiculo arbusculares en caatinga Amaz6nica del sur de Venezuela. Scientia Guaianae 3

    Google Scholar 

  • Pivel MAG, Santarosa ACA, Toledo FAL, Costa KB (2013) The Holocene onset in the southwestern South Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 374:164–172

    Article  Google Scholar 

  • Pulido Roa C, MalagĂłn Castro D (1996) Estudio genĂ©tico y taxonĂłmico de Espodosoles, Ultisoles y Oxisoles y su relaciĂłn con el manejo de las tierras. In: Aspectos ambientales para el ordenamiento territorial del Municipio de MitĂş, Departamento del VaupĂ©s. Instituto Geográfico AgustĂ­n Codazzi, Bogotá, Colombia, Tomo I:307–399

    Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, LuizĂŁo FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Article  CAS  Google Scholar 

  • Saldarriaga JG, West DC (1986) Holocene fires in the Northern Amazon Basin. Quat Res 26:358–366

    Article  Google Scholar 

  • Sanford RL Jr, Saldarriaga J, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science 227:53–55

    Article  PubMed  Google Scholar 

  • Schargel R, Marvez P (2009) Suelos. In: Aymard GA, Schargel R (eds) Estudio de los suelos y la vegetaciĂłn (estructura, composiciĂłn florĂ­stica y diversidad) en bosques macrotĂ©rmicos no-inundables, Estado Amazonas, Venezuela. BioLlania edic esp 9:99–125, UNELLEZ, Guanare, Venezuela

    Google Scholar 

  • Schargel R, Aymard G, Berry P (2000) CaracterĂ­sticas y factores formadores de Spodosoles en el sector Maroa-Yavita, Amazonia Venezolana. Revista UNELLEZ de Ciencia y TecnologĂ­a 18(1):85–96

    Google Scholar 

  • Schargel R, Marvez P, Aymard G, Basil S, Berry P (2001) CaracterĂ­sticas de los suelos alrededor de San Carlos de RĂ­o Negro, Estado Amazonas, Venezuela. BioLlania edic esp 7:234–264, UNELLEZ, Guanare, Venezuela

    Google Scholar 

  • SchnĂĽtgen A, Bremer H (1985) Die Entstehung von Decksanden im oberen Rio Negro-Gebiet. Z Geomorph NF Suppl-Bd 56:55–67

    Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA, Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Stagno P, Steegmayer P (1972) La erosiĂłn reticular en el sur del lago de Maracaibo. AgronomĂ­a Tropical 22(2):99–118

    Google Scholar 

  • Stark NM, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437

    Article  CAS  Google Scholar 

  • Steyermark JA (1979) Flora of the Guayana Highland: endemicity of the generic flora of the summits of the Venezuelan tepuis. Taxon 28:45–54

    Article  Google Scholar 

  • Zinck JA, GarcĂ­a P, van der Plicht J (2011) Tepui peatlands: age record and environmental changes. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela. Ecological studies 217. Springer, Heidelberg, pp 189–236

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinck, J.A., Montero, P.G. (2023). Features and Trends of Meadow Landscape Evolution. In: Zinck, J.A., Huber, O., GarcĂ­a Montero, P., Medina, E. (eds) Psammic Peinobiomes. Ecological Studies, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-031-20799-0_10

Download citation

Publish with us

Policies and ethics