Skip to main content

Trametes betulina (L.) Pilát.; Trametes cinnabarina (Jacq.) Fr.; Trametes gibbosa (Pers.) Fr.; Trametes hirsuta (Wulfen) Lloyd; Trametes pubescens (Schumach.) Pilát; Trametes suaveolens (L.) Fr.; Trametes versicolor (L.) Lloyd - POLYPORACEAE

  • Chapter
  • First Online:
Ethnobiology of Uzbekistan

Abstract

Trametes betulina (L.) Pilát.; Trametes cinnabarina (Jacq.) Fr.; Trametes gibbosa (Pers.) Fr.; Trametes hirsuta (Wulfen) Lloyd; Trametes pubescens (Schumach.) Pilát; Trametes suaveolens (L.) Fr.; Trametes versicolor (L.) Lloyd - POLYPORACEAE

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa SA, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akgul H, Sevindik M, Coban C, Allı H, Selamoğlu Z (2017) New approaches in traditional and complementary alternative medicine practices: Auricularia auricula and Trametes versicolor. J Tradit Med Clin Natur 6:4

    Google Scholar 

  • Akgul H, Aslan A, Akata I, Günal S, Bal C, Baba H (2021) Phenolic content and biological activities of Trametes hirsuta. Fresenius Environ Bull 30:4130–4135

    CAS  Google Scholar 

  • Alvandi H, Ghahremani M, Hatamian-Zarmi A, Hosseinzadeh BE, Mokhtari-Hosseini ZB, Farjam SN (2020) Optimization of soy-based media for the production of biologically active exopolysaccharides by medicinal mushroom Trametes versicolor. Appl Food Biotechnol 7(4):251–261

    CAS  Google Scholar 

  • Andriani A, Sukorini AI, Perwitasari U, Yopi (2019) Enhancement of laccase production in a new isolated Trametes hirsuta LBF-AA017 by lignocellulosic materials and its application for removal of chemical dyes. IOP Conf Ser Earth Environ Sci 308:012015

    Google Scholar 

  • Aoyagi H, Takeo T, Horii Y, Morishita Y, Horiuchi R (1997) Effects of OK-432 (picibanil) on the estrogen receptors of MCF-7 cells and potentiation of antiproliferative effects of tamoxifen in combination with OK-432. Oncology 54(5):414–423

    CAS  PubMed  Google Scholar 

  • Appiah T, Agyare C, Luo Y, Boamah VE, Boakye YD (2020) Antimicrobial and resistance modifying activities of cerevisterol isolated from Trametes species. Curr Bioact Compd 16:115–123

    CAS  Google Scholar 

  • Aranha GM, Contato AG, Salgado JC, de Oliveira TB, Retamiro KM, Ortolan GG, Crevelin EJ, Nakamura CV, de Moraes LA, Peralta RM, Polizeli MD (2022) Biochemical characterization and biological properties of mycelium extracts from Lepista sordida GMA-05 and Trametes hirsuta GMA-01: new mushroom strains isolated in Brazil. Braz J Microbiol 53:349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Musa Hago A, Bamba D, Meyiah A, Gift C, Xin Y (2017) Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLoS One 12(2):e0171270

    PubMed  PubMed Central  Google Scholar 

  • Bains A, Chawla P (2020) In vitro bioactivity, antimicrobial and anti-inflammatory efficacy of modified solvent evaporation assisted Trametes versicolor extract. 3 Biotech 10:404

    PubMed  PubMed Central  Google Scholar 

  • Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S (2021) Bioactives from mushroom: health attributes and food industry applications. Materials 14:7640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshi Jouybari H, Bekhradnia A, Mirzaee F, Hosseinzadeh MH, Habibi E (2022) Chemical composition of the lumpy bracket mushroom (Trametes gibbosa). Res J Pharmacogn (RJP) 9(2):19–27

    Google Scholar 

  • Benson KF, Stamets P, Davis R, Nally R, Taylor A, Slater S, Jensen GS (2019) The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC Complement Altern Med 19(1):342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernicchia A (2005) Polyporaceae s.l. (Fungi Europaei). Edizioni Candusso, Alassio, p 807

    Google Scholar 

  • Bernicchia A, Gorjón SP (2020) Polypores of the Mediterranean region. Romar, Segrate. 903 p

    Google Scholar 

  • Bessette AE, Smith DG, Bessette AR (2021) Polypores and similar fungi of Eastern and Central North America. University of Texas Press, Austin, p 430

    Google Scholar 

  • Birkinshaw JH, Bracken A, Findlay WP (1944) Biochemistry of the wood-rotting fungi: 4. Metabolic products of Trametes suaveolens (Linn.) Fr. Biochem J 38(2):131–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitenbach J, Kränzlin F (1986) Fungi of Switzerland. Volume 2: non-gilled fungi. Verlag Mykologia, Luzern, p 412

    Google Scholar 

  • Canli K, Benek A, Şenturan M, Akata I, Altuner EM (2019) In vitro antimicrobial activity of Morchella esculenta and Trametes versicolor. J Fungus 10(3):28–33

    Google Scholar 

  • Cerig SA (2021) Safety assessment of hot aqueous mycelium extracts from Trametes versicolor and Lepista nuda as a food supplement. Biologia 76:2381–2391

    CAS  Google Scholar 

  • Chang Y, Zhang M, Jiang Y, Liu Y, Luo H, Hao C, Zeng P, Zhang L (2017) Preclinical and clinical studies of Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Discov Med 23(127):207–219

    PubMed  Google Scholar 

  • Chen C, Kang L, Lo H, Hsu T, Lin F, Lin Y, Wang Z, Chen S, Shen C (2015) Polysaccharides of Trametes versicolor improve bone properties in diabetic rats. J Agric Food Chem 63(42):9232–9238

    Google Scholar 

  • Chkhenkeli VA (2021) Veterinary drug Trametin obtained on the basis of Trametes pubescens xylotroph fungi: its effect on the biosynthesis of interferons and its prophylactic activity against calf respiratory diseases. Proc Univ Appl Chem Biotechnol 11(4):581–589

    CAS  Google Scholar 

  • Chu K, Ho SS, Chow A (2002) Coriolus versicolor: a medicinal mushroom with promising immunotherapeutic values. J Clin Pharmacol 42(9):976–984

    PubMed  Google Scholar 

  • Collins PJ, Dobson A (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63(9):3444–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz A, Pimentel LL, Rodríguez-Alcalá LM, Fernandes T, Pintado ME (2016) Health benefits of edible mushrooms focused on Coriolus versicolor: a review. J Food Nutr Res 4:773–781

    CAS  Google Scholar 

  • Czarnecki R, Grzybek J (1995) Antiinflammatory and vasoprotective activities of polysaccharides isolated from fruit bodies of higher fungi P.1. polysaccharides from Trametes gibbosa (Pers.: Fr) Fr. (Polyporaceae). Phytother Res 9(2):123–127

    CAS  Google Scholar 

  • Desjardin DE, Wood MG, Stevens FA (2015) California mushrooms: the comprehensive identification guide. Timber Press, Portland, p 560

    Google Scholar 

  • Deveci E, Çayan F, Tel-Çayan G, Duru ME (2021) Inhibitory activities of medicinal mushrooms on α-amylase and α-glucosidase-enzymes related to type 2 diabetes. S Afr J Bot 137:19–23

    CAS  Google Scholar 

  • Dias DA, Urban S (2009) HPLC and NMR studies of phenoxazone alkaloids from Pycnoporus cinnabarinus. Nat Prod Commun 4(4):489–498

    CAS  PubMed  Google Scholar 

  • Díaz-Godínez G, Téllez-Téllez M, Rodríguez A, Obregón-Barbosa V, Acosta-Urdapilleta MD, Villegas E (2016) Enzymatic, antioxidant, antimicrobial, and insecticidal activities of Pleurotus pulmonarius and Pycnoporus cinnabarinus grown separately in an airlift reactor. Bioresources 11:4186–4200

    Google Scholar 

  • Ding HY, Lin HC, Teng CM, Wu YC (2000) Phytochemical and pharmacological studies on Chinese Paeonia species. J Chin Chem Soc 47:381–388

    CAS  Google Scholar 

  • Diorio LA, Fréchou D, Levin LN (2020) Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system. Rev Argent Microbiol 53(1):3–10

    PubMed  Google Scholar 

  • Doğan HH, Şanda MA, Uyanöz R, Öztürk C, Çetin Ü (2006) Contents of metals in some wild mushrooms. Biol Trace Elem Res 110:79–94

    PubMed  Google Scholar 

  • Dong Y, Kwan CY, Chen ZN, Yang MMP (1996) Antitumor effects of a refined polysaccharide peptide fraction isolated from Coriolus versicolor: in vitro and in vivo studies. Res Commun Mol Pathol Pharmacol 92(2):140–148

    CAS  PubMed  Google Scholar 

  • Dou H, Chang Y, Zhang L (2019) Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Prog Mol Biol Transl Sci 163:361–381

    CAS  PubMed  Google Scholar 

  • Eggert C (1997) Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol Res 152(3):315–318

    CAS  PubMed  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) Lignolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert C, LaFayette PR, Temp U, Eriksson KE, Dean JF (1998) Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64:1766–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis MB, Ellis JP (1990) Fungi without gills (Hymenomycetes and Gasteromycetes). Chapman and Hall, London, p 329

    Google Scholar 

  • Essien EE, Akpan SM (2014) Phytochemical and anti-nutrients evaluation of some wild fruiting polypore macrofungi. J Chem Pharm Res 6(12):280–283

    Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719

    CAS  PubMed  Google Scholar 

  • Fujimoto H, Nakayama M, Nakayama Y, Yamazaki M (1994) Isolation and characterization of immunosuppressive components of three mushrooms, Pisolithus tinctorius, Microporus flabelliformis and Lenzites betulina. Chem Pharm Bull (Tokyo) 42(3):694–697

    CAS  PubMed  Google Scholar 

  • Fukushima M (1996) Adjuvant therapy of gastric cancer: the Japanese experience. Semin Oncol 23(3):369–378

    CAS  PubMed  Google Scholar 

  • Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Front Microbiol 11:598321

    PubMed  PubMed Central  Google Scholar 

  • Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo Á, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102(3):3632–3635

    CAS  PubMed  Google Scholar 

  • Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002a) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzym Microb Technol 30:529–536

    CAS  Google Scholar 

  • Galhaup C, Goller SP, Peterbauer CK, Strauss J, Haltrich D (2002b) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148(7):2159–2169

    CAS  PubMed  Google Scholar 

  • Goud JVS, Vasu K, Charya MAS (2009) Polysaccharides, proteins and lipids from Basidiomycetous fungi. Nat Environ Pollut Technol 8(4):737–739

    CAS  Google Scholar 

  • Gross B, Yonnet G, Picque D, Brunerie P, Corrieu G, Asther M (1990) Production of methylanthranilate by the basidiomycete Pycnoporus cinnabarinus (Karst.). Appl Microbiol Biotechnol 34:387–391

    CAS  Google Scholar 

  • Grosse M, Heuser V, Ersoy F, Berger RG, Krings U (2022) Biogenesis of spiroketals by submerged cultured basidiomycete Trametes hirsuta. Mycol Prog 21:58

    Google Scholar 

  • Guo LC, Lu JH, Yao L, Yao QG, Zhang JX, Wang LA (2018) Antioxidant and anti-tumor activities and main chemical constituent analysis of Trametes cinnabarina fruiting body extract. Mycosystema 37(6):772–781

    Google Scholar 

  • Guo L, Tan D, Hui F, Gu F, Xiao K, Hua Y (2019) Optimization of the cellulase−ultrasonic synergistic extraction conditions of polysaccharides from Lenzites betulina. Chem Biodivers 16:e1900369

    CAS  PubMed  Google Scholar 

  • Habibi E, Sadat-Ebrahimi SE, Mousazadeh SA, Amanzadeh Y (2015) Mycochemical investigation of the Turkey tail medicinal mushroom Trametes versicolor (higher Basidiomycetes): a potential application of the isolated compounds in documented pharmacological studies. Int J Med Mushrooms 17:255–265

    PubMed  Google Scholar 

  • Habtemariam S (2020) Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy. Biomedicine 8(5):135

    CAS  Google Scholar 

  • Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C (2009) Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol Lett 31:837–843

    PubMed  Google Scholar 

  • Hao G, Barker GC (2021) Fatty acid secretion by the white-rot fungus, Trametes versicolor. J Ind Microbiol Biotechnol 49:kuab083

    PubMed Central  Google Scholar 

  • Hayashi T, Rao SP, Takabayashi K, Van Uden JH, Kornbluth RS, Baird SM, Taylor MW, Carson DA, Catanzaro A, Raz E (2001) Enhancement of innate immunity against Mycobacterium avium infection by immunostimulatory DNA is mediated by indoleamine 2,3-dioxygenase. Infect Immun 69:6156–6164

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Liu S, Newburg DS (2021) Musarin, a novel protein with tyrosine kinase inhibitory activity from Trametes versicolor, accepted inhibits colorectal cancer stem cell growth. Biomed Pharmacother 144:112339

    CAS  PubMed  Google Scholar 

  • Hirahara N, Edamatsu T, Fujieda A, Fujioka M, Wada T, Tajima Y (2012) Protein-bound polysaccharide-K (PSK) induces apoptosis via p38 mitogen-activated protein kinase pathway in promyelomonocytic leukemia HL-60 cells. Anticancer Res 32(7):2631–2637

    CAS  PubMed  Google Scholar 

  • Hirose K, Hakozaki M, Matsunaga K, Yoshikumi C, Hotta T, Yanagisawa M, Yamamoto M, Endo H (1985) Cloning of sequences induced and suppressed by administration of PSK, antitumor protein-bound polysaccharide. Biochem Biophys Res Commun 126(2):884–892

    CAS  PubMed  Google Scholar 

  • Hleba L, Vuković N, Petrova J, Kačániova M (2014) Antimicrobial activity of crude methanolic extracts from Ganoderma lucidum and Trametes versicolor. Anim Sci Biotechnol 47(2):89–93

    Google Scholar 

  • Ho CY, Lau CB, Kim CF, Leung KN, Fung KP, Tse TF, Chan HHL, Chow MS (2004) Differential effect of Coriolus versicolor (Yunzhi) extract on cytokine production by murine lymphocytes in vitro. Int Immunopharmacol 4(12):1549–1557

    CAS  PubMed  Google Scholar 

  • Ho CY, Kim CF, Leung KN, Kwok-Pui F, Tse TF, Chan H, Bik-San Lau C (2005) Differential anti-tumor activity of Coriolus versicolor (Yunzhi) extract through p53-and/or Bcl-2-dependent apoptotic pathway in human breast cancer cells. Cancer Biol Ther 4(6):638–644

    PubMed  Google Scholar 

  • Hobbs СK (2004) Medicinal value of Turkey tail fungus Trametes versicolor (L.:Fr.) Pilát (Aphyllophoromycetideae). A literature review. Int J Med Mushrooms 6:195–218

    CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    CAS  Google Scholar 

  • Huang Q, Wang C, Zhu L, Zhang D, Pan C (2020a) Purification, characterization, and gene cloning of two laccase isoenzymes (Lac1 and Lac2) from Trametes hirsuta MX2 and their potential in dye decolorization. Mol Biol Rep 47:477–488

    Google Scholar 

  • Huang Z, Zhang M, Wang Y, Zhang S, Jiang X (2020b) Extracellular and intracellular polysaccharide extracts of Trametes versicolor improve lipid profiles via serum regulation of lipid-regulating enzymes in hyperlipidemic mice. Curr Microbiol 77:1–12

    Google Scholar 

  • Ikekawa T, Nakanishi M, Uehara N, Chihara G, Fukuoka F (1968) Anti-tumor action of some basidiomycetes, especially Phellinus linteus. Jpn J Cancer Res 59(2):155–157

    CAS  Google Scholar 

  • Im KH, Nguyen TK, Choi J, Lee TS (2016) In vitro antioxidant, anti-diabetes, anti-dementia, and inflammation inhibitory effect of Trametes pubescens fruiting body extracts. Molecules 21:639

    PubMed  PubMed Central  Google Scholar 

  • Imtiaj A, Lee TS (2007) Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J Agric Sci 3(3):316–321

    Google Scholar 

  • Ito H, Hidaka H, Sugiura M (1979) Effects of coriolan, an antitumor polysaccharide, produced by Coriolus versicolor Iwade. Jpn J Pharmacol 29(6):953–957

    CAS  PubMed  Google Scholar 

  • Janjušević L, Karaman M, Šibul F, Tommonaro G, Iodice C, Jakovljević D, Pejin B (2017) The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents. J Enzyme Inhib Med Chem 32(1):355–362

    PubMed  PubMed Central  Google Scholar 

  • Janjušević L, Pejin B, Kaisarevic S, Gorjanović S, Pastor FT, Tešanović K, Karaman M (2018) Trametes versicolor ethanol extract, a promising candidate for health–promoting food supplement. Nat Prod Res 32:963–967

    PubMed  Google Scholar 

  • Järvinen P, Nybond S, Marcourt L, Ferreira Queiroz E, Wolfender J, Mettälä A, Karp M, Vuorela HJ, Vuorela PM, Hatakka AI, Tammela P (2016) Cell-based bioreporter assay coupled to HPLC micro-fractionation in the evaluation of antimicrobial properties of the basidiomycete fungus Pycnoporus cinnabarinus. Pharm Biol 54:1108–1115

    PubMed  Google Scholar 

  • Jin M, Zhou W, Jin C, Jiang Z, Diao S, Jin Z, Li G (2019) Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Nat Prod Res 33:2422–2425

    CAS  PubMed  Google Scholar 

  • Johnsy G, Kaviyarasan V (2011) Antimicrobial and antioxidant properties of Trametes gibbosa (Pers.) Fr. J Pharm Res 4(11):3939–3942

    Google Scholar 

  • Kamiyama M, Shibamoto T, Horiuchi M, Umano K, Kondo K, Otsuka Y (2013) Antioxidant/anti-inflammatory activities and chemical composition of extracts from the mushroom Trametes versicolor. Int J Nutr Food Sci 2:85

    Google Scholar 

  • Kang YF, Liu CM, Kao CL, Chen CY (2014) Antioxidant and anticancer constituents from the leaves of Liriodendron tulipifera. Molecules 9:4234–4245

    Google Scholar 

  • Kaplan Ö, Tosun NG, Özgür A, Tayhan SE, Bilgin S, Türkekul I, Gökce I (2021) Microwave-assisted green synthesis of silver nanoparticles using crude extracts of oletus edulis and Coriolus versicolor: characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol 64:102641

    CAS  Google Scholar 

  • Karaman M, Čapelja E, Rašeta M, Rakić M (2022) Diversity, chemistry, and environmental contamination of wild growing medicinal mushroom species as sources of biologically active substances (antioxidants, anti-diabetics, and AChE inhibitors). In: Arya A, Rusevska K (eds) Biology, cultivation and applications of mushrooms. Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_8

    Chapter  Google Scholar 

  • Kıvrak I, Kıvrak Ş, Karababa E (2020) Assessment of bioactive compounds and antioxidant activity of Turkey tail medicinal mushroom Trametes versicolor (Agaricomycetes). Int J Med Mushrooms 22(6):559–571

    PubMed  Google Scholar 

  • Knežević A, Milovanović I, Stajić M, Vukojević J (2013a) Potential of Trametes species to degrade lignin. Int Biodeterior Biodegrad 85:52–56

    Google Scholar 

  • Knežević A, Milovanović I, Stajić M, Vukojević J (2013b) Trametes suaveolens as ligninolytic enzyme producer. J Nat Sci Matica Srpska Novi Sad 124:437–444

    Google Scholar 

  • Knežević A, Živković L, Stajić M, Vukojević J, Milovanović I, Spremo-Potparević B (2015) Antigenotoxic effect of Trametes spp. extracts against DNA damage on human peripheral white blood cells. Sci World J 2015:146378

    Google Scholar 

  • Knežević A, Stajić M, Milovanović I, Vukojević J (2017) Degradation of beech wood and wheat straw by Trametes gibbosa. Wood Sci Technol 51:1227–1247

    Google Scholar 

  • Knežević A, Stajić M, Sofrenić I, Stanojković TP, Milovanović I, Tešević VV, Vukojević J (2018) Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS One 13(8):1–18

    Google Scholar 

  • Kolesnikova LI, Kolesnikov SI, Romanova ED, Chkhenkeli VA, Darenskaya MA, Grebenkina LA, Korytov LI, Bugun OV, Koroleva NV, Gutnik IN, Antonenko FF (2017) Effect of preparation based on Trametes pubescens xylotroph fungi on lipid peroxidation in the blood of experimental animals under conditions of dark stress. Bull Exp Biol Med 162:762–764

    CAS  PubMed  Google Scholar 

  • Kowalczewska M, Piotrowski J, Jędrzejewski T, Kozak W (2016) Polysaccharide peptides from Coriolus versicolor exert differential immunomodulatory effects on blood lymphocytes and breast cancer cell line MCF-7 in vitro. Immunol Lett 174:37–44

    CAS  PubMed  Google Scholar 

  • Kozarski M, Klaus A, Nikšić MP, Vrvić MM, Todorović N, Jakovljević DV, Griensven LJ (2012) Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J Food Compos Anal 26:144–153

    CAS  Google Scholar 

  • Krsmanović N, Rašeta M, Mišković J, Bekvalac K, Bogavac M, Karaman M, Isikhuemhen OS (2023) Effects of UV stress in promoting antioxidant activities in fungal species Trametes versicolor (L.) Lloyd and Flammulina velutipes (Curtis) Singer. Antioxidants 12:302

    Google Scholar 

  • Lee IK, Yun BS, Cho SM, Kim WK, Kim JP, Ryoo IJ, Koshino H, Yoo ID (1996) Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J Nat Prod 59(11):1090–1092

    CAS  PubMed  Google Scholar 

  • Leliebre-Lara V, Monzote Fidalgo L, Pferschy-Wenzig EM, Kunert O, Nogueiras Lima C, Bauer R (2016) In vitro antileishmanial activity of sterols from Trametes versicolor (Bres. Rivarden). Molecules 21(8):1045

    PubMed  PubMed Central  Google Scholar 

  • Li F, Wen H, Zhang Y, Aa M, Liu X (2011) Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor. Sci China Life Sci 54:379–385

    PubMed  Google Scholar 

  • Li YC, Ngan NT, Cheng KC, Hwang TL, Thang TD, Tuan NN, Yang ML, Kuo PC, Wu TS (2021) Constituents from the fruiting bodies of Trametes cubensis and Trametes suaveolens in Vietnam and their anti-inflammatory bioactivity. Molecules 26:7311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liew GM, Khong HY, Kutoi CJ (2015) Phytochemical screening, antimicrobial and antioxidant activities of selected fungi from Mount Singai, Sarawak, Malaysia. Int J Res Stud Biosci 3:191–197

    Google Scholar 

  • Lin F, Lai Y, Yu H, Chen N, Chang C, Lo H, Hsu T (2008) Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor. Food Chem 110(2):446–453

    Google Scholar 

  • Liu B (1978) Medicinal fungi of China. Sanxi People Press, Taiyuan, pp 101–129

    Google Scholar 

  • Liu K, Wang J, Zhao L, Wang Q (2014) Anticancer and antimicrobial activities and chemical composition of the birch mazegill mushroom Lenzites betulina (higher Basidiomycetes). Int J Med Mushrooms 16(4):327–337

    PubMed  Google Scholar 

  • Lo HC, Hsu TH, Lee CH (2020) Extracellular polysaccharopeptides from fermented Turkey tail medicinal mushroom, Trametes versicolor (Agaricomycetes), mitigate oxidative stress, hyperglycemia, and hyperlipidemia in rats with type 2 diabetes mellitus. Int J Med Mushrooms 22(5):417–429

    PubMed  Google Scholar 

  • Lomascolo A, Asther M, Navarro D, Antona C, Delattre M, Lesage-Meessen L (2001) Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin. Lett Appl Microbiol 32(4):262–267

    CAS  PubMed  Google Scholar 

  • Ludwig R, Salamon A, Varga J, Zámocky M, Peterbauer CK, Kulbe KD, Haltrich D (2004) Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa. Appl Microbiol Biotechnol 64:213–222

    CAS  PubMed  Google Scholar 

  • Luk SU, Lee TKW, Liu J, Lee DTW, Chiu YT, Ma S, Ng IOL, Wong YC, Chan FL, Ling MT (2011) Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population. PLoS One 6(5):e19804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo KW, Yue GGL, Ko CH, Lee JKM, Gao S, Li LF, Li G, Fung KP, Leung PC, Bik-San Lau C (2014) In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma. Phytomedicine 21(8–9):1078–1087

    PubMed  Google Scholar 

  • Ma Y, Mao D, Geng L, Wang Z, Xu C (2013) Production, fractionation, characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydr Polym 96(2):460–465

    CAS  PubMed  Google Scholar 

  • Ma R, Yang R, Liu X, Chen Z, Yang C, Wang S (2015) Chemical composition and immunomodulatory activity of mycelia of the hairy bracket mushroom, Trametes hirsuta (higher basidiomycetes). Int J Med Mushrooms 17(3):267–276

    Google Scholar 

  • Ma L, Han Y, Bao H, Bau T, Li Y (2020) GC-MS analysis and cytotoxicity detection of volatile oil from the fragrant bracket mushroom, Trametes suaveolens (Agaricomycetes). Int J Med Mushrooms 22(4):397–406

    PubMed  Google Scholar 

  • Maehara Y, Tsujitani S, Saeki H, Oki E, Yoshinaga K, Emi Y, Morita M, Kohnoe S, Kakeji Y, Yano T, Baba H (2011) Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives. Surg Today 42:8–28

    PubMed  PubMed Central  Google Scholar 

  • Malakottabary S, Ghorbanli M, Safaian S, Mosazade SA (2013) Comparison of antioxidant properties and of phytochemical compounds from Trametes gibbosa. N Cell Mol Biotechnol J 3(10):73–78

    Google Scholar 

  • Mao XW, Archambeau JO, Gridley DS (1996) Immunotherapy with low-dose interleukin-2 and a polysaccharopeptide derived from Coriolus versicolor. Cancer Biother Radiopharm 11(6):393–403

    CAS  PubMed  Google Scholar 

  • Mao GH, Ren Y, Feng WW, Li Q, Wu HY, Jin D, Zhao T, Xu CQ, Yang LQ, Wu XY (2015) Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydr Polym 134:406–412

    CAS  PubMed  Google Scholar 

  • Mejía-Otálvaro F, Merino-Restrepo A, Hormaza-Anaguano A (2021) Evaluation of a Trametes pubescens laccase concentrated extract on allura red AC decolorization without the addition of synthetic mediators. J Environ Manag 285:112117

    Google Scholar 

  • Meza J, Auria R, Lomascolo A, Sigoillot JC, Casalot L (2007) Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzym Microb Technol 41:162–168

    CAS  Google Scholar 

  • Ming A (1996) Chinese-English manual of common used in traditional Chinese medicine, Publishing House of Guangdong Science and Technology, Mycomedica.eu 09.10.2021

    Google Scholar 

  • Miyaji C, Ogawa Y, Imajo Y, Imanaka K, Kimura S (1983) Combination therapy of radiation and immunomodulators in the treatment of MM46 tumor transplanted in C3H/He mice. Oncology 40(2):115–119

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Yadomae T, Sugiura M, Ito H, Fujii K (1974) Chemical structure of antitumor polysaccharide, coriolan, produced by Coriolus versicolor. Chem Pharm Bull 22(8):1739–1742

    CAS  Google Scholar 

  • Mlinarič A, Kac J, Pohleven F (2005) Screening of selected wood-damaging fungi for the HIV-1 reverse transcriptase inhibitors. Acta Pharma 55:69–79

    Google Scholar 

  • Mleczek M, Gąsecka M, Budka A, Siwulski M, Mleczek P, Magdziak Z, Budzyńska S, Niedzielski P (2021) Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. Environ Sci Pollut Res Int 28(4):4430–4442

    Google Scholar 

  • Moazzem Hossen SM, Akramul Hoque Tanim M, Shahadat Hossain M, Ahmed Sami S, Uddin Emon N (2021) Deciphering the CNS anti-depressant, antioxidant and cytotoxic profiling of methanol and aqueous extracts of Trametes versicolor and molecular interactions of its phenolic compounds. Saudi J Biol Sci 28(11):6375–6383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseenko KV, Savinova OS, Vasina DV, Kononikhin AS, Tyazhelova TV, Fedorova TV (2018) Laccase isoenzymes of Trametes hirsuta LE-BIN072: degradation of industrial dyes and secretion under the different induction conditions. Appl Biochem Microbiol 54:834–841

    CAS  Google Scholar 

  • Moldes D, Gallego PP, Rodríguez Couto S, Sanromán A (2004) Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnol Lett 25:491–495

    Google Scholar 

  • Nakajima T, Ichikawa S, Uchida S, Komada T (1990) Effects of a protein-bound polysaccharide from a Basidiomycetes against hepatocarcinogenesis induced by 3′-methyl-4-dimethylaminoazobenzene in rats. Clin Ther 12(5):385–392

    CAS  PubMed  Google Scholar 

  • Ng TB (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 30(1):1–4

    CAS  PubMed  Google Scholar 

  • Ngan NT, Cheng KC, Hwang TL, Thang TD, Tuan NN, Yang ML, Kuo PC, Wu TS (2021) Constituents from the fruiting bodies of Trametes cubensis and Trametes suaveolens in Vietnam and their anti-inflammatory bioactivity. Molecules 26:7311

    PubMed  PubMed Central  Google Scholar 

  • Niedzielski P, Mleczek M, Budka A, Rzymski P, Siwulski M, Jasińska A, Gąsecka M, Budzyńska S (2017) A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. Eur Food Res Technol 243:1759–1771

    CAS  Google Scholar 

  • Nikitina OV, Shleev S, Gorshina ES, Rusinova TV, Serezhenkov VA, Burbaev DS, Belovolova LV, Yaropolov AI (2005) Isolation and purification of enzymes from ligninolytic complex of the Basidial fungus Trametes pubescens (Schumach.) Pilat and study of their properties. Biochem Mosc 70:1274–1279

    CAS  Google Scholar 

  • Ohtsuka S, Ueno S, Yoshikumi C, Hirose F, Ohmura Y, Wada T, Fujii T, Takahashi E (1973) Polysaccharides having an anticarcinogenic effect and a method of producing them from species of Basidiomycetes. UK Patent 1331513, 26 Sept 1973

    Google Scholar 

  • Olennikov DN, Agafonova SV, Penzina TA, Borovskiĭ GB (2014) Fatty acid composition of fourteen wood-decaying Basidiomycete species growing in permafrost conditions. Rec Nat Prod 8(2):184–188

    Google Scholar 

  • Orhan I, Üstün O (2011) Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compos Anal 24(3):386–390

    CAS  Google Scholar 

  • Osma JF, Herrera JL, Couto SM (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigments 75:32–37

    CAS  Google Scholar 

  • Oyetayo VO, Nieto-Camacho A, Rodriguez BE, Jimenez M (2012) Assessment of anti-inflammatory, lipid peroxidation and acute toxicity of extracts obtained from wild higher Basidiomycetes mushrooms collected from Akure (Southwest Nigeria). Int J Med Mushrooms 14(6):575–580

    PubMed  Google Scholar 

  • Oyinloye BE, Onikanni SA, Ajiboye BO (2020) Structure-based docking studies of monoamine oxidase against bioactive compounds from Trametes pubescens in the treatment of neurodegenerative diseases. Pharmacol Online 2:337–347

    CAS  Google Scholar 

  • Patil PD, Yadav GD (2018) Comparative studies of white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for effective degradation and bioconversion of ferulic acid. ACS Omega 3:14858–14868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT, Brożyna AA (2020) Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res 34(1):173–183

    CAS  PubMed  Google Scholar 

  • Payamnoor V, Kavosi MR, Nazari J (2019) Polypore fungi of Caucasian alder as a source of antioxidant and antitumor agents. J For Res 31:1381–1390

    Google Scholar 

  • Pop RM, Puia IC, Puia A, Chedea VS, Leopold N, Bocșan IC, Buzoianu AD (2018) Characterization of Trametes versicolor: medicinal mushroom with important health benefits. Not Bot Horti Agrobot Cluj Napoca 46:343–349

    CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar RK, Sharma A, Kumar R, Sharma R, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510

    CAS  PubMed  Google Scholar 

  • Rašeta M, Popović M, Knežević P, Šibul F, Kaišarević S, Karaman M (2020) Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents. Chem Biodivers 17:e2000683

    PubMed  Google Scholar 

  • Razmovski-Naumovski V, Kimble B, Laurenti D, Nammi S, Norimoto H, Chan K (2022) Polysaccharide peptide extract from Coriolus versicolor increased tmax of tamoxifen and maintained biochemical serum parameters, with no change in the metabolism of tamoxifen in the rat. Front Pharmacol 13. https://doi.org/10.3389/fphar.2022.857864

  • Rekik H, Zaraî Jaouadi N, Bouacem K, Zenati B, Kourdali S, Badis A, Annane R, Bouanane-Darenfed A, Bejar S, Jaouadi B (2019) Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 125:514–525

    CAS  PubMed  Google Scholar 

  • Ren G, Liu XY, Zhu HK, Yang SZ, Fu CX (2006) Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia 77(5):408–410

    CAS  PubMed  Google Scholar 

  • Ricciardi MR, Licchetta R, Mirabilii S, Scarpari M, Parroni A, Fabbri AA, Cescutti P, Reverberi M, Fanelli C, Tafuri A (2017) Preclinical antileukemia activity of tramesan: a newly identified bioactive fungal metabolite. Oxidative Med Cell Longev 2017:1

    Google Scholar 

  • Roca-Lema D, Martinez-Iglesias O, Fernandez de Ana Portela C, Rodriguez-Blanco A, ValladaresAyerbes M, Diaz-Diaz A, Casas-Pais A, Prego C, Figueroa A (2019) In vitro anti-proliferative and anti-invasive effect of polysaccharide-rich extracts from Trametes versicolor and Grifola frondosa in colon cancer cells. Int J Med Sci 16:231240

    Google Scholar 

  • Rosales E, Rodríguez Couto S, Sanromán A (2004) New uses of food waste: application to laccase production by Trametes hirsuta. Biotechnol Lett 24:701–704

    Google Scholar 

  • Rösecke J, König WA (2000) Constituents of various wood-rotting basidiomycetes. Phytochemistry 54(6):603–610

    Google Scholar 

  • Ryvarden L, Girbertson RL (1993) European polypores, part 1. Fungiflora, Oslo

    Google Scholar 

  • Ryvarden L, Gilbertson RL (1994) European polypores, part 2. Fungiflora, Oslo

    Google Scholar 

  • Saleh MH, Rashedi I, Keating A (2017) Immunomodulatory properties of Coriolus versicolor: the role of polysaccharopeptide. Front Immunol 8:1087

    PubMed  PubMed Central  Google Scholar 

  • Scarpari M, Reverberi M, Parroni A, Scala V, Fanelli C, Pietricola C, Zjalić S, Maresca V, Tafuri A, Ricciardi M, Licchetta R, Mirabilii S, Sveronis A, Cescutti P, Rizzo R (2017) Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS One 12(8):e0171412

    PubMed  PubMed Central  Google Scholar 

  • Shahbazyan TA (2017) Antifungal activity of mycelia of Trametes gibbosa regarding potentially pathogenic for humans and animals filamentous fungi. Proc Yerevan State Univ 51(2):118–122

    Google Scholar 

  • Sheikh IA, Vyas D, Dar RA (2016) Evaluation of pharmacotherapeutic potential of Trametes hirsuta in experimental rat models. J Bot Soci University of Saugor 47:59–67

    Google Scholar 

  • Shenbhagaraman R, Premalatha M, Jenefar S, Jagadish L, Saravanamurali K, Kaveri K, Karthik S, Kaviyarasan V (2014) Immunopotentiating properties of extracellular polysaccharide from Trametes hirsuta strain VKESR. Carbohydr Polym 106:299–304

    CAS  Google Scholar 

  • Shi S, Yin L, Shen X, Dai Y, Wang J, Yin D, Zhang D, Pan X (2022) β-Glucans from Trametes versicolor (L.) Lloyd is effective for prevention of influenza virus infection. Viruses 14(2):237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shittu OB, Alofe F, Onawunmi GO, Ogundaini AO, Tiwalade TA (2006) Mycelial growth and antibacterial metabolite production by wild mushrooms. Afr J Biomed Res 8:157–162

    Google Scholar 

  • Shleev S, Nikitina OV, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L (2007) Characterization of two new multiforms of Trametes pubescens laccase. Bioorg Chem 35(1):35–49

    CAS  PubMed  Google Scholar 

  • Shnyreva AV, Shnyreva AA, Espinoza C, Padrón JM, Trigos Á (2018) Antiproliferative activity and cytotoxicity of some medicinal wood-destroying mushrooms from Russia. Int J Med Mushrooms 20(1):1

    PubMed  Google Scholar 

  • Si J, Cui BK (2013) Study of the physiological characteristics of the medicinal mushroom Trametes pubescens (higher basidiomycetes) during the laccase-producing process. Int J Med Mushrooms 15:199–210

    PubMed  Google Scholar 

  • Si J, Peng F, Cui B (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour Technol 128:49–57

    CAS  PubMed  Google Scholar 

  • Sivaprakasam E, Kavitha D, Balakumar R, Sridhar S, Suresh Kumar J (2011) Antimicrobial activity of whole fruiting bodies of Trametes hirsuta (Wulf. Fr.) against some common pathogenic bacteria and fungus. Int J Pharm Sci Drug Res 3(3):219–221

    Google Scholar 

  • Stajić M, Kneževic A, Vukojevic J (2011) Effect of selected nitrogen sources on Mn-oxidizing peroxidases activity in Trametes gibbosa. In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) 2011, pp 150–154

    Google Scholar 

  • Su CH, Lai MN, Ng LT (2013) Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase – enzymes related to hyperglycemia. Food Funct 4(4):644–649

    CAS  PubMed  Google Scholar 

  • Su CH, Lai MN, Lin CC, Ng LT (2016) Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl Microbiol Biotechnol 100:4385–4393

    CAS  PubMed  Google Scholar 

  • Suay I, Arenal FE, Asensio FJ, Basilio A, Angeles Cabello M, Teresa Díez MT, García JB, González del Val A, Gorrochategui J, Hernández P, Peláez F, Francisca Vicente M (2000) Screening of Basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek 78:129–140

    CAS  PubMed  Google Scholar 

  • Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398

    CAS  PubMed  Google Scholar 

  • Sun X, Yanping S, Zhang Q, Zhang H, Yang B, Wang Z, Zhu W, Li B, Wang Q, Kuang H (2014) Screening and comparison of antioxidant activities of polysaccharides from Coriolus versicolor. Int J Biol Macromol 69:12–19

    CAS  PubMed  Google Scholar 

  • Tel-Çayan G, Çayan F, Deveci E, Duru ME (2021) Phenolic profile, antioxidant and cholinesterase inhibitory activities of four Trametes species: T. bicolor, T. pubescens, T. suaveolens, and T. versicolor. J Food Meas Charact 15:4608–4616

    Google Scholar 

  • Teplyakova TV, Psurtseva NV, Kosogova TA, Mazurkova NA, Khanin VA, Vlasenko VA (2012) Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms 14(1):37–45

    PubMed  Google Scholar 

  • Thakeow P, Angeli S, Weissbecker B, Schütz S (2008) Anntenal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33:379–387

    CAS  PubMed  Google Scholar 

  • Udeh AS, Ezebialu CU, Eze EA, Engwa GA (2021) Antibacterial and antioxidant activity of different extracts of some wild medicinal mushrooms from Nigeria. Int J Med Mushrooms 23(10):83–95

    PubMed  Google Scholar 

  • Ulziijargal E, Mau JL (2011) Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms 13(4):343–349

    CAS  PubMed  Google Scholar 

  • Upadhyaya J, Raut JK, Koirala N (2018) Analysis of nutritional and nutraceutical properties of wild-grown mushrooms of Nepal. EC Microbiol 12(3):136–145

    Google Scholar 

  • Vampola P, Charvátová E (2021) Choroše Evropy ve sbírkách Muzea Vysočiny [Polypores of Europe in collection of the Museum of Highlands, Jihlava]. Vampola, Jihlava, p 727

    Google Scholar 

  • Waithaka PN, Gathuru EM, Githaiga BM, Onkoba KM (2017) Antimicrobial activity of mushroom (Agaricus bisporus) and fungal (Trametes gibbosa) extracts from mushrooms and fungi of Egerton Main campus, Njoro Kenya. J Biomed Sci 6:3

    Google Scholar 

  • Wan JMF, Sit WH, Louie JCY (2008) Polysaccharopeptide enhances the anticancer activity of doxorubicin and etoposide on human breast cancer cells ZR-75-30. Int J Oncol 32(3):689–699

    CAS  PubMed  Google Scholar 

  • Wang SR, Zhang L, Chen HP, Li ZH, Dong ZJ, Wei K, Liu JK (2015) Four new spiroaxane sesquiterpenes and one new rosenonolactone derivative from cultures of Basidiomycete Trametes versicolor. Fitoterapia 105:127–131

    CAS  PubMed  Google Scholar 

  • Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L (2019) Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 33(10):2737–2748

    CAS  PubMed  Google Scholar 

  • Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biom J 37:345–356

    Google Scholar 

  • Wei WS, Tan JQ, Guo F, Ghen HS, Zhou ZY, Zhang ZH, Gui L (1996) Effects of Coriolus versicolor polysaccharides on superoxide dismutase activities in mice. Zhongguo Yao li xue bao Acta Pharmacol Sin 17(2):174–178

    CAS  Google Scholar 

  • Wen CN, Chen HP, Zhao ZZ, Hu DB, Li ZH, Feng T, Liu JK (2017) Two new γ-lactones from the cultures of Basidiomycete Lenzites betulinus. Phytochem Lett 20:9–12

    CAS  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351(9):1187–1209

    CAS  Google Scholar 

  • Xie J, Zou L, Xie Y, Wu X, Wang L (2021) Analysis of the monosaccharide composition of water-soluble Coriolus versicolor polysaccharides by ultra-performance liquid chromatography/photodiode array detector. Chromatographia 84:615–622

    CAS  Google Scholar 

  • Yamac M, Bilgili F (2006) Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol 44(9):660–667

    Google Scholar 

  • Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu G, Senturk H (2009) Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin – induced diabetic rats. Pharm Biol 47(2):168–174

    CAS  Google Scholar 

  • Yasrebi N, Zarmi AHS, Larypoor M (2020) Optimization of chitosan production from Iranian medicinal fungus Trametes versicolor by taguchi method and evaluation of antibacterial properties. Iran J Med Microbiol 14(3):186–200

    Google Scholar 

  • Yasrebi N, Zarmi AH, Larypoor M, Zeynali M, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Alvandi H (2021) In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. J Polym Res 28:399

    CAS  Google Scholar 

  • Yassin M, Mahajna JA, Wasser SP (2003) Submerged cultured mycelium extracts of higher basidiomycetes mushrooms selectively inhibit proliferation and induce differentiation of K562 human chronic myelogenous leukemia cells. Int J Med Mushrooms 5:261–276

    Google Scholar 

  • Zengin G, Karanfilbv A, Urenc MC, Kocakc MS, Sarikurkcud C, Gungore H, Picotf CMN, Mahomoodallyf MF (2016) Phenolic content, antioxidant and enzyme inhibitory capacity of two Trametes species. RSC Adv 6:73351–73357

    CAS  Google Scholar 

  • Zhang X, Cai Z, Mao H, Hu P, Li X (2020) Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int J Biol Macromol 1(166):1387–1395

    Google Scholar 

  • Zhang J, Chi Y, Feng L (2021) The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa. BMC Biotechnol 21:64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen J, Wang J, Li L, Du Z, Li G, Yang W (2022) Biodegradation of PAHs by Trametes hirsuta zlh237 and effect of bioaugmentation on PAHs-contaminated soil. Pol J Environ Stud 31(3):2473–2484

    CAS  Google Scholar 

  • Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98(5):1115–1119

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusufjon Gafforov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gafforov, Y. et al. (2023). Trametes betulina (L.) Pilát.; Trametes cinnabarina (Jacq.) Fr.; Trametes gibbosa (Pers.) Fr.; Trametes hirsuta (Wulfen) Lloyd; Trametes pubescens (Schumach.) Pilát; Trametes suaveolens (L.) Fr.; Trametes versicolor (L.) Lloyd - POLYPORACEAE. In: Khojimatov, O.K., Gafforov, Y., Bussmann, R.W. (eds) Ethnobiology of Uzbekistan. Ethnobiology. Springer, Cham. https://doi.org/10.1007/978-3-031-23031-8_126

Download citation

Publish with us

Policies and ethics