Skip to main content

Agaricus bisporus (J.E. Lange) Imbach; Agaricus campestris L.; Agaricus xanthodermus Genev. - AGARICACEAE

  • Chapter
  • First Online:
Ethnobiology of Uzbekistan

Abstract

Agaricus bisporus (J.E. Lange) Imbach; Agaricus campestris L.; Agaricus xanthodermus Genev. - AGARICACEAE

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abah SE, Abah G (2010) Antimicrobial and antioxidant potentials of Agaricus bisporus. Adv Biol Res 4(5):277–282

    Google Scholar 

  • Adams LS, Phung S, Wu X, Ki L, Chen S (2008) White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr Cancer 60(6):744–756

    PubMed  Google Scholar 

  • Ahmad N, Bansal R, Rastogi AK, Kidwai JR (1984) Effect of PHA–B fraction of Agaricus bisporus lectin on insulin release and 45Ca2+ uptake by islets of Langerhans in vitro. Acta Diabetol Lat 21:63–70

    CAS  PubMed  Google Scholar 

  • Akata I, Zengin G, Picot CMN, Mahomoodally MF (2019) Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. S Afr J Bot 120:95–99

    CAS  Google Scholar 

  • Akyüz M, Onganer AN, Erecevit P, Kirbağ S (2010) Antimicrobial activity of some edible mushrooms in the Eastern and Southeast Anatolia region of Turkey. Gazi Univ J Sci 23(2):125–130

    Google Scholar 

  • Alonso-Aguilar LE, Montoya A, Kong A, Estrada-Torres A, Garibay-Orijel R (2014) The cultural significance of wild mushrooms in San Mateo Huexoyucan, Tlaxcala, Mexico. J Ethnobiol Ethnomed 10(1):1–15

    Google Scholar 

  • Alves MJ, Ferreira ICFR, Froufe HJC, Abreu RMV, Martins A, Pintado M (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 115:346–357

    CAS  PubMed  Google Scholar 

  • Asad F, Anwar H, Yassine HM, Ullah MI, Ul-Rahman A, Kamran Z, Sohail MU (2020) White button mushroom, Agaricus bisporus (Agaricomycetes), and a probiotics mixture supplementation correct dyslipidemia without influencing the colon microbiome profile in hypercholesterolemic rats. Int J Med Mushrooms 22(3):235–244

    PubMed  Google Scholar 

  • Asef Shayan MR (2010) قارچهای سمی ایران (Qarch–ha-ye Sammi-ye Iran) [Poisonous mushrooms of Iran] (in Persian). Iran Shenasi, p 214

    Google Scholar 

  • Atila F, Owaid MN, Shariati MA (2017) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 7(3):281–286

    CAS  Google Scholar 

  • Atkinson N (1946) Antibacterial activity in members of the higher fungi; Cortinarius rotundisporus and Psalliota xanthoderma Genev. Aust J Exp Biol Med Sci 24(3):169–173

    CAS  PubMed  Google Scholar 

  • Atkinson N (1949) Antibiotics in Australian plants and fungi. Med J Aust 1(19):605–610

    CAS  PubMed  Google Scholar 

  • Atkinson N (1954) Psalliotin, the antibiotic of Psalliota xanthoderma. Nature 174:598

    CAS  PubMed  Google Scholar 

  • Atkinson N (1955) Antibacterial activity in members of the higher fungi II. Psalliotin, the antibiotic of Psalliota xanthoderma. N. Aust J Exp Biol Med Sci 33:237–242

    CAS  PubMed  Google Scholar 

  • Badalyan SM, Barkhudaryan A, Rapior S (2021) The cardioprotective properties of Agaricomycetes mushrooms growing in the territory of Armenia: review. Int J Med Mushrooms 23(5):21–31

    PubMed  Google Scholar 

  • Badalyan SM, Barkhudaryan A, Rapior S (2022) Medicinal macrofungi as cosmeceuticals: a review. Int J Med Mushrooms 24(4):1–13

    PubMed  Google Scholar 

  • Bernas E, Jaworska G (2016) Vitamins profile as an indicator of the quality of frozen Agaricus bisporus mushrooms. J Food Compos Anal 49:1–8

    CAS  Google Scholar 

  • Bhushan A, Kulshreshtha M (2018) The medicinal mushroom Agaricus bisporus: review of phytopharmacology and potential role in the treatment of various diseases. J Nat Sci Med 1(1):4–9

    Google Scholar 

  • Bose SR (1952) Antibacterial principles from some higher fungi. J Sci Ind Res 11B:159–160

    CAS  Google Scholar 

  • Bose SR (1953) Antibiotics from higher fungi. Arch Mikrobiol 18:349–355

    CAS  PubMed  Google Scholar 

  • Bose SR (1955) Campestrin, the antibiotic of Psalliota campestris. Nature 175:468–468

    CAS  PubMed  Google Scholar 

  • Boxshall A, Birch JL, Lebel T, Symonds MR, Callahan DL (2021) A field-based investigation of simple phenol variation in Australian Agaricus xanthodermus. Mycologia 113:1123–1135

    CAS  PubMed  Google Scholar 

  • Bubueanu C, Popa G, Pirvu L (2015) Comparative analysis of polyphenolic profiles and antioxidant activity of Agaricus bisporus and Agaricus campestris. Scientific Bulletin. Series F. Biotechnologies 19:29–33

    Google Scholar 

  • Caglarırmak N (2009) Determination of nutrients and volatile constituents of Agaricus bisporus (brown) at different stages. J Sci Food Agric 89:634–638

    Google Scholar 

  • Callac P, Guinberteau J (2005) Morphological and molecular characterization of two novel species of Agaricus section Xanthodermatei. Mycologia 97(2):416–424

    CAS  PubMed  Google Scholar 

  • Callac P, Billette C, Imbernon M, Kerrigan RW (1993) Morphological, genetic, and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran Desert of California. Mycologia 85(5):835–851

    Google Scholar 

  • Callac P, Jacobé de Haut I, Imbernon M, Guinberteau J, Desmerger C, Theochari I (2003) A novel homothallic variety of Agaricus bisporus comprises rare tetrasporic isolates from Europe. Mycologia 95:222–231

    Google Scholar 

  • Callac P, Guinberteau J, Rapior S (2005) New hypotheses from integration of morphological traits, biochemical data and molecular phylogeny in Agaricus spp. Proceedings of the 5th international conference on mushroom biology and mushroom products, Shanghai. Acta Edulis Fungi 12:37–44

    Google Scholar 

  • Calvo MS, Mehrotra A, Beelman RB, Nadkarni G, Wang L, Cai W, Goh BC, Kalaras MD, Uribarri J (2016) A retrospective study in adults with metabolic syndrome: diabetic risk factor response to daily consumption of Agaricus bisporus (white button mushrooms). Plant Foods Hum Nutr 71:245–251

    CAS  PubMed  Google Scholar 

  • Carluccio A (2003) The complete mushroom book. Quadrille:224

    Google Scholar 

  • Chaitanya MVNL, Jose A, Ramalingam P, Mandal SC, Kumar PN (2019) Multitargeting cytotoxic drug leads from mushrooms. Asian Pac J Trop Med 12:531

    CAS  Google Scholar 

  • Chen S, Oh S-R, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 66:12026–12034

    CAS  PubMed  Google Scholar 

  • Chen YC, Ho K, Hsieh Y, Wang T, Mau J (2012) Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT − Food Sci Technol 47:274–278

    Google Scholar 

  • Cherno N, Osalina S, Nikitina A (2013) Chemical composition of Agaricus bisporus and Pleurotus ostreatus fruiting bodies and their morphological parts. Food Environ Saf 7(4):291–299

    Google Scholar 

  • Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. J Am Med Assoc 289(19):2560–2571

    CAS  Google Scholar 

  • Courtecuisse R, Duhem B (1994) Guide des champignons de France et d’Europe. Delachaux et Niestlé:258

    Google Scholar 

  • Dai YC, Yang ZL, Cui BK, Yu CY, Zhou ZW (2009) Species diversity and utulization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11(3):287–302

    Google Scholar 

  • Davis M, Sommer R, Menge J (2012) Field guide to mushrooms of western North America, vol 106. University of California Press, pp 224–225

    Google Scholar 

  • De Silva DD, Rapior S, Hyde KD, Bahkali AH (2012) Medicinal mushrooms in preventing and control of diabetes mellitus. Fungal Divers 56:1–29

    Google Scholar 

  • Delgado-Povedano MM, Sanchez DMV, Bautista J, Priego-Capote F, Castro MDL (2016) Tentative identification of the composition of Agaricus bisporus aqueous enzymatic extracts with antiviral activity against HCV: a study by liquid chromatography tandem mass spectrometry in high resolution mode. J Funct Foods 24:403–419

    CAS  Google Scholar 

  • Demi̇rel K, Uzun Y, Kaya A (2004) Some poisonous fungi of East Anatolia. Turk J Bot 28(1–2):215–219

    Google Scholar 

  • Dornberger K, Gutsche W, Horschak R, Zureck A (1978) Search for nucleic acid influencing, as well as membrane active, potential cancerostatic fungal metabolites using microbiological and cytological screening methods. Z Allg Mikrobiol 18:647–664

    CAS  PubMed  Google Scholar 

  • Dornberger K, Ihn W, Schade W, Tresselt D, Zureck A, Radics L (1986) Antibiotics from Basidiomycetes - evidence for the occurrence of the 4–hydroxybenzenediazonium ion in the extracts of Agaricus xanthodermus Genevier (Agaricales). Tetrahedron Lett 27(5):559–560

    CAS  Google Scholar 

  • Dundar A, Okumus V, Ozdemir S, Celik KS, Boğa M, Ozcagli E (2016) Determination of cytotoxic, anticholinesterase, antioxidant and antimicrobial activities of some wild mushroom species. Cogent Food Agric 2(1):1178060

    Google Scholar 

  • Ekowati N, Yuniati NI, Hernayanti H, Ratnaningtyas NI (2018) Anti-diabetic potentials of Button Mushroom (Agaricus bisporus) on alloxan-induced diabetic rats. Biosaintifika J Biol Biol Educ 10:655–662

    Google Scholar 

  • Elbatrawy EN, Ghonimy EA, Alassar MM, Wu FS (2015) Medicinal mushroom extracts possess differential antioxidant activity and cytotoxicity to cancer cells. Int J Med Mushrooms 17(5):471–479

    PubMed  Google Scholar 

  • Erdoğan MK, Ağca CA, Geçibesler İH (2021) Agaricus campestris metanol ekstraktının yağ asidi kompozisyonu ve terapötik potansiyelinin araştırılması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11(2):869–879

    Google Scholar 

  • Espín JC, Wichers HJ (1999) Kinetics of activation of latent mushroom (Agaricus bisporus) tyrosinase by benzyl alcohol. J Agric Food Chem 47(9):3503–3508

    PubMed  Google Scholar 

  • Ewart RBL, Kornfeld S, Kipnis DM (1975) Effect of lectins on hormone release from isolated rat islets of Langerhans. Diabetes 24:705–714

    CAS  PubMed  Google Scholar 

  • Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C: Toxicol Carcinog Ecotoxicol Rev 26(3):256–299

    CAS  Google Scholar 

  • Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risk. Appl Microbiol Biotechnol 97:477–501

    CAS  PubMed  Google Scholar 

  • Feng Y, Zhang J, Wen C, Dzaha CS, Julieta IC, Duana Y, Zhang H (2020) Recent advances in Agaricus bisporus polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Process Biochem 94:39–50

    CAS  Google Scholar 

  • Fox RTV (2006) Fungal foes in your garden: fairy ring mushrooms. Mycologist 20(1):36–37

    Google Scholar 

  • Gałgowska M, Pietrzak-Fiećko R (2021) Cadmium and lead content in selected fungi from Poland and their edible safety assessment. Molecules 26(23):7289

    PubMed  PubMed Central  Google Scholar 

  • Gąsecka M, Magdziak Z, Siwulski M, Mleczek M (2018) Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur Food Res Technol 244(2):259–268

    Google Scholar 

  • Gill M, Strauch RJ (1984) Constituents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Zeitschrift für Naturforschung C 39(11–12):1027–1029

    CAS  Google Scholar 

  • Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, Barros L, Soković M (2015) A comparative study on edible Agaricus mushrooms as functional foods. Food Funct 6(6):1900–1910

    PubMed  Google Scholar 

  • Gray AM, Flatt PR (1998) Insulin˗releasing and insulin˗like activity of Agaricus campestris (mushroom). J Endocrinol 157:259–266

    CAS  PubMed  Google Scholar 

  • Grigson J (1975) The mushroom feast. Penguin, London, UK, p 250

    Google Scholar 

  • Grube BJ, Eng ET, Kao YC, Kwon A, Chen S (2001) White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J Nutr 131:3288–3293

    CAS  PubMed  Google Scholar 

  • Guillamon E, García-Lafuente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, Martínez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715–723

    CAS  PubMed  Google Scholar 

  • Hassan M, Rouf R, Tiralongo E, May T, Tiralongo J (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16(4):7802–7838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkeswood TJ (2021) A record of the common edible mushroom, Agaricus campestris L., 1753 (Basidiomycota: Agaricaceae) from Glenbrook, Blue Mountains, New South Wales, Australia. CAL 840:1–5

    Google Scholar 

  • Heleno SA, Diz P, Prieto MA, Barros L, Rodrigues A, Barreiro MF, Ferreira ICFR (2016) Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem 197:1054–1063

    CAS  PubMed  Google Scholar 

  • Hilbig S, Andries T, Steglich W, Anke T (1985) The chemistry and antibiotic activity of the toadstool Agaricus xanthoderma (Agaricales). Angew Chem Int Ed 24(12):1063–1065

    Google Scholar 

  • Hong SA, Kim K, Nam SJ, Kong G, Kim MK (2008) A case control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int J Cancer 122(4):919–923

    CAS  PubMed  Google Scholar 

  • Hossain MS, Alam N, Amin SMR, Basunia MA, Rahman A (2007) Essential fatty acids content of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J Mushroom 1(1):1–7

    Google Scholar 

  • Hu D, Yang X, Hu CY, Feng Z, Chen W, Shi H (2021) Comparison of ergosterol and vitamin D2 in mushrooms Agaricus bisporus and Cordyceps militaris using ultraviolet irradiation directly on dry powder or in ethanol suspension. ACS Omega 6:29506–29515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hender EA, May T, Beulke SH (2000) Poisoning due to eating fungi in Victoria. Aust Fam Physician 29(10):1000–1004

    Google Scholar 

  • Ismaya WT, Yunita EA, Lai X, Retnoningrum DS, Rachmawati H, Dijkstra BW, Tjandrawinata RR (2016) A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus. Biochem Biophys Res Commun 473:1090–1093

    CAS  PubMed  Google Scholar 

  • Ismaya WT, Tjandrawinata RR, Rachmawati H (2020) Lectins from the edible mushroom Agaricus bisporus and their therapeutic potentials. Molecules 25:2368

    CAS  PubMed  Google Scholar 

  • Jagadish LK, Krishnan VV, Shenbhagaraman R, Kaviyarasan V (2009) Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J. E. Lange) Imbach before and after boiling. Afr J Biotechnol 8(4):654–661

    CAS  Google Scholar 

  • Jameel MS, Aziz AB, Dheyab MA, Khaniabadi PM, Kareem AA, Alrosan M, Ali AT, Rabeea MA, Mehrdel B (2022) Mycosynthesis of ultrasonically-assisted uniform cubic silver nanoparticles by isolated phenols from Agaricus bisporus and its antibacterial activity. Surf Interfaces 29:101774

    CAS  Google Scholar 

  • Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56

    CAS  PubMed  Google Scholar 

  • Jeong SC, Koyyalamudi SR, Pan G (2012) Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition 28:527–531

    CAS  PubMed  Google Scholar 

  • Jonnalagadda SB, Pienaar DH, Haripersad K (2006) Elemental distribution in selected Agaricus and Rhizina mushrooms in South Africa. J Environ Sci Health A 41(3):507–514

    CAS  Google Scholar 

  • Jordan P (2000) The mushroom guide and identifier: The ultimate guide to identifying, picking and using mushrooms. London: Hermes House. p. 100

    Google Scholar 

  • Kała K, Kryczyk-Poprawa A, Rzewińska A, Muszyńska B (2020) Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. Eur Food Res Technol 246:713–722

    Google Scholar 

  • Kalbarczyk J, Radzki W (2009) Cultivated mushrooms as a valuable diet constituent and a source of biologically active substances. Herba Polonica 55:224–232

    Google Scholar 

  • Kanaya N, Kubo M, Liu Z, Chu P, Wang C, Yuan YC, Chen S (2011) Protective effects of white button mushroom (Agaricus bisporus) against hepatic steatosis in ovariectomized mice as a model of postmenopausal women. PLoS One 6(10):1–11

    Google Scholar 

  • Karunarathna SC, Chen J, Mortimer PE, Xu JC, Zhao RL, Callac P, Hyde KD (2016) Mycosphere Essay 8: a review of genus Agaricus in tropical and humid subtropical regions of Asia. Mycosphere 7(4):417–439

    Google Scholar 

  • Komura DL, Carbonero ER, Gracher AHP, Baggio CH, Freitas CS, Marcon R, Santos AR, Gorin PA, Iacomini M (2010) Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour Technol 101:6192–6199

    CAS  PubMed  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T (2017a) Bioactivity of edible mushroom Agaricus campestris. XXII Savetovanje o Biotehnologiji, 579–584

    Google Scholar 

  • Kosanić M, Ranković B, Rančić A, Stanojković T (2017b) Evaluation of metal contents and bioactivity of two edible mushrooms Agaricus campestris and Boletus edulis. Emir J Food Agric 29(2):98–103

    Google Scholar 

  • Koyyalamudi SR, Jeong SC, Song CH, Cho KY, Pang G (2009) Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J Agric Food Chem 57(8):3351–3355

    CAS  PubMed  Google Scholar 

  • Kozarski MS, Klaus AS, Vunduk JD, Jakovljević DM, Jadranin MB, Nikšić MP (2020) Health impact of the commercially cultivated mushroom Agaricus bisporus and the wild-growing mushroom Ganoderma resinaceum: a comparative overview. J Serb Chem Soc 85(6):721–735

    CAS  Google Scholar 

  • Kuvibidila S, Korlagunta K (2010) Extracts from culinary-medicinal mushrooms increase intracellular α–defensins 1-3 concentration in HL60 cells. Int J Med Mushrooms 12(1):33–41

    Google Scholar 

  • Lakhanpal TN, Rana M (2005) Medicinal and nutraceutical genetic resources of mushrooms. Plant Genet Res 3:288–303

    CAS  Google Scholar 

  • Lau CC, Abdullah N, Shuib AS, Aminudin N (2012) Proteomic analysis of antihypertensive proteins in edible mushrooms. J Agric Food Chem 60(50):12341–12348

    CAS  PubMed  Google Scholar 

  • Lau CC, Abdullah N, Shuib AS, Aminudin N (2014) Novel angiotensin I-converting enzyme inhibitory peptides derived from edible mushroom Agaricus bisporus (J.E. Lange) Imbach identified by LC-MS/MS. Food Chem 148:396–401

    CAS  PubMed  Google Scholar 

  • Lin SY, Chen YK, Yu HT, Barseghyan GS, Asatiani MD, Wasser SP, Mau JL (2013) Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms 15:315–323

    CAS  PubMed  Google Scholar 

  • Liu J, Jia L, Kan J, Jin CH (2013) In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51:310–316

    CAS  PubMed  Google Scholar 

  • Lee NK, Aan BY (2016) Optimization of ergosterol to vitamin D2 synthesis in Agaricus bisporus powder using ultraviolet-B radiation. Food Sci Biotechnol 25(6):1627–1631

    Google Scholar 

  • Mabey R (1972) Food for free, a guide to the edible wild plants of Britain. Fontana/Collins, p 192

    Google Scholar 

  • Maiden JH (1889) The useful native plants of Australia: including Tasmania. Turner and Henderson, Sydney, p 696

    Google Scholar 

  • Mauvernay RY, Pourrat HJ, Lamaison JL (1978) Glycoproten extracted from the mushroom Psalliota xanthoderma and its application in antiviral therapy, United States Patent, 4,086,216

    Google Scholar 

  • McCleary BV, Draga A (2016) Measurement of β-glucan in mushrooms and mycelial products. J AOAC Int 99(2):364–373

    CAS  PubMed  Google Scholar 

  • Miller HR, Miller OK Jr (2006) North American mushrooms: a field guide to edible and inedible fungi. Falcon Guides, Guilford, p 283

    Google Scholar 

  • Miyake M, Yamamoto S, Sano O, Fujii M, Kohno K, Ushio S, Iwaki K, Fukuda S (2010) Inhibitory effects of 2-amino-3H-phenoxazin-3one on themelanogenesis of murine B16 melanoma cell line. Biosci Biotechnol Biochem 74:753–758

    CAS  PubMed  Google Scholar 

  • Mleczek M, Budka A, Siwulski M, Mleczek P, Gąsecka M, Jasińska A, Kalač P, Sobieralski K, Niedzielski P, Proch J, Rzymski P (2020) Investigation of differentiation of metal contents of Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus sold commercially in Poland between 2009 and 2017. J Food Compos Anal 90:103488

    CAS  Google Scholar 

  • Molitoris HP (1994) Mushrooms in medicine. Folia Microbiol 39(2):91–98

    CAS  Google Scholar 

  • Moro C, Palacios I, Lozano M, D’Arrigo M, Guillamón E, Villares A, Martínez JA, García-Lafuente A (2012) Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130:350–355

    CAS  Google Scholar 

  • Moumita S, Das B (2022) Assessment of the prebiotic potential and bioactive components of common edible mushrooms in India and formulation of synbiotic microcapsules. LWT Food Sci Technol 156:113050

    CAS  Google Scholar 

  • Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2011) Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem 125:1306–1308

    Google Scholar 

  • Muszyńska B, Kała K, Sułkowska-Ziaja K, Gaweł K, Zając M, Opoka W (2015a) Determination of indole compounds released from selected edible mushrooms and their biomass to artificial stomach juice. LWT Food Sci Technol 62:27–31

    Google Scholar 

  • Muszyńska B, Smalec A, Sułkowska-Ziaja K, Opoka W, Reczyński W, Baś B (2015b) Culinary-medicinal Agaricus bisporus (white button mushroom) and it’s in vitro cultures as a source of selected biologically-active elements. J Food Sci Technol 52:7337–7344

    Google Scholar 

  • Muszyńska B, Kała K, Sułkowska-Ziaja K, Krakowska A, Opoka W (2016) Agaricus bisporus and its in vitro culture as a source of indole compounds released into artificial digestive juices. Food Chem 199:509–515

    PubMed  Google Scholar 

  • Muszyńska B, Kała K, Rojowski J, Grzywacz A, Opoka W (2017) Composition and biological properties of Agaricus bisporus fruiting bodies - a review. Polish J Food Nutr Sci 67(3):173–181

    Google Scholar 

  • Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S (2018) Deep brain stimulation and L-DOPA therapy: concepts of action and clinical applications in Parkinson’s disease. Front Neurol 9:711

    PubMed  PubMed Central  Google Scholar 

  • Navarro P, Savoie JM (2015) Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C. Rev Iberoam Micol 32(1):54–58

    PubMed  Google Scholar 

  • Ndungutse V, Mereddy R, Sultanbawa Y (2015) Bioactive properties of mushroom (Agaricus bisporus) stipe extracts. J Food Process Preserv 39:2225–2233

    CAS  Google Scholar 

  • Nilsson S, Persson O (1977) Fungi of northern Europe 2: Gill-fungi. Penguin, New York, p 130

    Google Scholar 

  • Nitschke J, Altenbach HJ, Malolepszy T, Mölleken H (2011) A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohydr Res 346:1307–1310

    CAS  PubMed  Google Scholar 

  • Oms-Oliu G, Aguilo-Aguayo I, Martin-Belloso O, Soliva-Fortuny R (2010) Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol Technol 56:216–222

    CAS  Google Scholar 

  • Opoka W, Kała K, Krężałek R, Sułkowska-Ziaja K, Maślanka A, Muszyńska B (2018) TLC–Densitometry analysis of indole compounds in mycelial culture of Imleria badia and Agaricus bisporus enriched with precursors - serine or anthranilic acid. Acta Chromatogr 30(4):236–242

    CAS  Google Scholar 

  • Owaid MN, Barish A, Ali Shariati M (2017) Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric 2:537–543

    Google Scholar 

  • Ozturk M, Duru ME, Kivrak S, Dogan NM, Turkoglu A, Ozler MA (2011) In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49:1353–1360

    PubMed  Google Scholar 

  • Özaltun B, Sevindik M (2020) Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. Eur Res J 6(6):539–544

    Google Scholar 

  • Özcan Ö, Ertan F, Tunçakın B (2019) Agaricus campestris, Pleurotus eryngii ve Lactarius deliciosus mantarlarının antioksidan özelliklerinin belirlenmesi. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi 5(1):58–67

    Google Scholar 

  • Pala SA, Wani AH, Bhat MY (2013) Ethnomycological studies of some wild medicinal and edible mushrooms in the Kashmir Himalayas (India). Int J Med Mushrooms 15(2):211–220

    PubMed  Google Scholar 

  • Panda SK, Sahoo G, Swain SS, Luyten W (2022) Anticancer activities of mushrooms: a neglected source for drug discovery. Pharmaceuticals 15:176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patinho I, Saldaña E, Selani MM, de Camargo AC, Merlo TC, Menegali BS, de Souza Silva AP, Contreras-Castillo CJ (2019) Use of Agaricus bisporus mushroom in beef burgers: antioxidant, flavor enhancer and fat replacing potential. Food Prod Process Nutr 1(1):7

    Google Scholar 

  • Pewlong W, Sajjabut S, Eamsiri J, Chookaew S, Kemthong K (2019) Effects of gamma irradiation on antioxidant activities and chemical properties in Agaricus bisporus mushrooms. In: Journal of physics: conference series, vol 1285, No. 1. IOP Publishing, p 012005

    Google Scholar 

  • Piljac-Žegarac J, Šamec D, Piljac A, Mešić A, Tkalčec Z (2011) Antioxidant properties of extracts of wild medicinal mushroom species from Croatia. Int J Med Mushrooms 13(3):257–263

    PubMed  Google Scholar 

  • Quchi Y, Yoshikawa E, Futatsubashi M, Yagi S, Ueki T, Nakamura K (2009) Altered brain serotonin transporter and associated glucose metabolism in Alzheimer disease. J Nucl Med 50:1260–1266

    Google Scholar 

  • Rachmawati H, Sundari S, Nabila N, Tandrasasmita OM, Amalia R, Siahaan TJ, Tjandrawinata RR, Ismaya WT (2019) Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein. Biochem Biophys Res Commun 515:99–103

    CAS  PubMed  Google Scholar 

  • Ramos M, Burgos N, Barnard A, Evans G, Preece J, Graz M, Ruthes AC, Jiménez-Quero A, Martínez-Abada A, Vilaplana F, PhamNgo L, Brouwer A, der Burg B, Garrigós MC, Jiménez A (2019) Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem 292:176–187

    CAS  PubMed  Google Scholar 

  • Rexhepi B, Reka A (2020) Ethno-mycological knowledge of some wild medicinal and food mushrooms from Osogovo Mountains (North Macedonia). J Nat Sci Math UT 5(9–10):10–19

    Google Scholar 

  • Rezaeian S, Pourianfar HR (2016) Antimicrobial properties of the button mushroom, Agaricus bisporus: a mini–review. Int J Adv Res 4(1):426–429

    CAS  Google Scholar 

  • Roberts P, Evans S (2011) The book of fungi. University of Chicago Press, Chicago, p 35

    Google Scholar 

  • Roberts JS, Teichert A, McHugh TH (2008) Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J Agric Food Chem 56:4541–4544

    CAS  PubMed  Google Scholar 

  • Rutckeviski R, Corso CR, Román-Ochoa Y, Cipriani TR, Centa A, Smiderle FR (2022) Agaricus bisporus β-(1 → 6)-D-glucan induces M1 phenotype on macrophages and increases sensitivity to doxorubicin of triple negative breast cancer cells. Carbohydr Polym 278:118917

    CAS  PubMed  Google Scholar 

  • Ruthes AC, Rattmann YD, Malquevicz-Paiva SM, Carbonero ER, Cordova MM, Baggio CH, Santos AR, Gorin PA, Iacomini M (2013) Agaricus bisporus fucogalactan: structural characterization and pharmacological approaches. Carbohydr Polym 92:184–191

    CAS  PubMed  Google Scholar 

  • Sadiq S, Bhatti HN, Hanif MA (2008) Studies on chemical composition and nutritive evaluation of wild edible mushrooms. Iran J Chem Chem Eng 27(3):151–154

    Google Scholar 

  • Salmones D, Gaitan-Hernandez R, Mata G (2018) Cultivation of Mexican wild strains of Agaricus bisporus, the button mushroom, under different growth conditions in vitro and determination of their productivity. BASE 22(1):45–53

    CAS  Google Scholar 

  • Sarikaya SBO, Gulcin I (2013) Radical scavenging and antioxidant capacity of serotonin. Curr Bioact Compd 9:143–152

    CAS  Google Scholar 

  • Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    CAS  PubMed  Google Scholar 

  • Sevindik M, Bal C, Akgül H (2018) Comparison of antioxidant potentials of the wild and cultivated forms of edible Pleurotus ostreatus and Agaricus bisporus mushrooms. Türk Yaşam Bilimleri Dergisi 3(2):263–266

    Google Scholar 

  • Shao S, Hernandez M, Kramer JKG, Rinke DL, Tsao R (2010) Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J Agric Food Chem 58(22):11616–11625

    CAS  PubMed  Google Scholar 

  • Shnyreva AV, Song W, Van Griensven LJLD (2010) Extracts of medicinal mushrooms Agaricus bisporus and Phellinus linteus induce proapoptotic effects in the human leukemia cell line K562. Int J Med Mushrooms 12(2):167–175

    Google Scholar 

  • Singh S, Lal AA, Simon S, Ramteke PW (2017) Efficacy of selected botanicals on biochemical constituents of white button mushroom Agaricus bisporus (Lange) Imbach. J Pharmacogn Phytochem 6:2070–2076

    CAS  Google Scholar 

  • Smiderle FR, Ruthes AC, Van Arkel J, Chanput W, Lacomin M, Wichers HJ, Van Griensven LJLD (2011) Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement Altern Med 11:58

    PubMed  PubMed Central  Google Scholar 

  • Smiderle FR, Alquini G, Tadra-Sfeir MZ, Iacomini M, Wichers HJ, Van Griensven LJLD (2013) Agaricus bisporus and Agaricus brasiliensis (1→6)-β-D-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr Polym 94:91–99

    CAS  PubMed  Google Scholar 

  • Sun W, Shahrajabian MH, Cheng Q (2020) Traditional Iranian and Arabic herbal medicines as natural anticancer drugs. Agrociencia 54(1):129–142

    Google Scholar 

  • Taofiq O, González-Paramás AM, Martins A, Barreiro MF, Ferreira ICFR (2016a) Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—a review. Ind Crop Prod 90:38–48

    CAS  Google Scholar 

  • Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, Barreiro MF, González-Paramás AM, Ferreira ICFR (2016b) Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules 21:1372

    PubMed  PubMed Central  Google Scholar 

  • Taşkın H, Kafkas E, Büyükalaca S (2013) Comparison of various extraction conditions in Agaricus bisporus by gas chromatography mass spectrometry (HS-GC/MS) technique. J Food Agric Environ 11(2):97–99

    Google Scholar 

  • Tehrani MHH, Fakhrehoseini E, Nejad MK, Mehregan H, Hakemi-Vala M (2012) Search for proteins in the liquid extract of edible mushroom, Agaricus bisporus, and studying their antibacterial effects. Iran J Pharm Res 11(1):145–150

    CAS  Google Scholar 

  • Teichmann A, Dutta PC, Staffas A, Jägerstad M (2007) Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: effects of UV irradiation. LWT Food Sci Technol 40:815–822

    CAS  Google Scholar 

  • Thakur MP (2020) Advances in mushroom production: key to food, nutritional and employment security: a review. Indian Phytopathol 73:377–395

    Google Scholar 

  • Tibuhwa DD (2012) Folk taxonomy and use of mushrooms in communities around Ngorongoro and Serengeti National Park, Tanzania. J Ethnobiol Ethnomed 8:36

    PubMed  PubMed Central  Google Scholar 

  • Todesco T, Rao AV, Bosello O (1991) Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr 54:860–865

    CAS  PubMed  Google Scholar 

  • Tóth B, Patil KD, Taylor J, Stessman C, Gannett PM (1989) Cancer induction in mice by 4-hydroxybenzenediazonium sulfate of the Agaricus xanthodermus mushroom. In Vivo 3(5):301–305

    PubMed  Google Scholar 

  • Tsiantas K, Tsiaka T, Koutrotsios G, Siapi E, Zervakis GI, Kalogeropoulos N, Zoumpoulakis P (2021) On the identification and quantification of ergothioneine and lovastatin in various mushroom species: assets and challenges of different analytical approaches. Molecules 26:1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Türsen Uthan E, Yamaç M, Yildiz Z (2022) In vitro prebiotic activity of polysaccharides extracted from edible / medicinal macrofungi species. J Fungus 13(1):15–29

    Google Scholar 

  • Usman M, Murtaza G, Ditta A (2021) Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): a review. Appl Sci 11:5943

    CAS  Google Scholar 

  • Uyanoglu M, Canbek M, Van Griensven LJLD, Yamaç M, Senturk H, Kartkaya K, Oglakci A, Turgak Ö, Kanbak G (2014) Effects of polysaccharide from fruiting bodies of Agaricus bisporus, Agaricus brasiliensis, and Phellinus linteus on alcoholic liver injury. Int J Food Sci Nutr 65(4):482–488

    CAS  PubMed  Google Scholar 

  • Van der Westhuizen GCA, Eicker A (1994) Mushrooms of southern Africa, field guide. Struik Publishers, Cape Town, p 207

    Google Scholar 

  • Vetter J (2007) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102:6–9

    CAS  Google Scholar 

  • Volman JJ, Mensink RP, Van Griensven LJLD, Plat J (2010) Effects of α-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr 64:720–726

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, Wang H, Li C, Qi P, Bao J (2012) Agaricus bisporus lectins mediates islet β-cell proliferation through regulation of cell cycle proteins. Exp Biol Med 237:287–296

    CAS  Google Scholar 

  • Wilkins WH (1946) Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of more of the larger Basidiomycetes and some of the large Ascomycetes. Ann Appl Biol 33:188–189

    CAS  PubMed  Google Scholar 

  • Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR (2014) Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem 157:30–36

    CAS  PubMed  Google Scholar 

  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    CAS  PubMed  Google Scholar 

  • Wu Y, Choi MH, Li J, Yang H, Shin HJ (2016) Mushroom cosmetics: the present and future. Cosmetics 3:22

    Google Scholar 

  • Yahaya NFM, Rahman MA, Abdullah N (2014) Therapeutic potential of mushrooms in preventing and ameliorating hypertension. Trends Food Sci Technol 39:104–115

    Google Scholar 

  • Yamaç M, Kanbak G, Zeytinoglu M, Senturk H, Bayramoglu G, Dokumacioglu A, Van Griensven LJLD (2010) Pancreas protective effect of Agaricus bisporus extract on rats with streptozotocin induced diabetes. Int J Med Mushrooms 12(4):379–389

    Google Scholar 

  • Yasin H, Zahoor M, Yousaf Z, Aftab A, Saleh N, Riaz N, Shamsheer B (2019) Ethnopharmacological exploration of medicinal mushroom from Pakistan. Phytomedicine 54:43–55

    CAS  PubMed  Google Scholar 

  • Yesil OF, Yildiz A, Yavuz O (2004) Level of heavy metals in some edible and poisonous macrofungi from Batman of South East Anatolia, Turkey. J Environ Biol 25(3):263–268

    CAS  PubMed  Google Scholar 

  • Yılmaz N, Solmaz M, Turkekul I, Elmastas M (2006) Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea Region of Turkey. Food Chem 99:168–174

    Google Scholar 

  • Yu L, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 153:4627–4632

    Google Scholar 

  • Yu LG, Fernig DG, White MR, Spiller DG, Appleton P, Evans RC, Grierson I, Smith JA, Davies H, Gerasimenko OV, Petersen OH, Milton JD, Rhodes JM (1999) Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J Biol Chem 274:4890–4899

    CAS  PubMed  Google Scholar 

  • Zakhary JW, Abo-Bakr TM, El-Mahdy A, El-Tabey SA (1983) Chemical composition of wild mushrooms collected from Alexandria, Egypt. Food Chem 11:31–41

    CAS  Google Scholar 

  • Zeitlmayr L (1976) Wild mushrooms: an illustrated handbook. Garden City Press, Hertfordshire, pp 82–83

    Google Scholar 

  • Zhang M, Huang J, Xie X, Holman CDJ (2009) Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 124:1404–1408

    CAS  PubMed  Google Scholar 

  • Zhou J, Su S, Su H, Wang B, Callac P, Guinberteau J, Hyde KD, Zhao R (2016) A description of eleven new species of Agaricus sections Xanthodermatei and Hondenses collected from Tibet and the surrounding areas. Phytotaxa 257:99–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusufjon Gafforov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gafforov, Y. et al. (2023). Agaricus bisporus (J.E. Lange) Imbach; Agaricus campestris L.; Agaricus xanthodermus Genev. - AGARICACEAE. In: Khojimatov, O.K., Gafforov, Y., Bussmann, R.W. (eds) Ethnobiology of Uzbekistan. Ethnobiology. Springer, Cham. https://doi.org/10.1007/978-3-031-23031-8_99

Download citation

Publish with us

Policies and ethics