Skip to main content

Naturally Occurring Organohalogen Compounds—A Comprehensive Review

  • Chapter
  • First Online:
Naturally Occurring Organohalogen Compounds

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 121))

Abstract

The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number—from fewer than 25 in 1968—to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gribble GW (1996) Naturally occurring organohalogen compounds—a comprehensive survey. Prog Chem Org Nat Prod 68:1

    CAS  Google Scholar 

  2. Gribble GW (2010) Naturally occurring organohalogen compounds—a comprehensive update. Prog Chem Org Nat Prod 91:1

    CAS  Google Scholar 

  3. Gribble GW (2021) Recent discoveries of naturally occurring halogenated nitrogen heterocycles. Prog Heterocycl Chem 33:1

    Article  CAS  Google Scholar 

  4. Gribble GW (2018) Newly discovered naturally occurring organohalogens. Arkivoc i:372

    Google Scholar 

  5. Gribble GW (2015) Biological activity of recently discovered halogenated marine natural products. Mar Drugs 13:4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gribble GW (2015) A recent survey of naturally occurring organohalogen compounds. Environ Chem 12:396

    Article  CAS  Google Scholar 

  7. Gribble GW (2012) Occurrence of halogenated alkaloids. The Alkaloids 71:1

    CAS  PubMed  Google Scholar 

  8. Gribble GW (2011) Recently discovered naturally occurring heterocyclic organohalogen compounds. Heterocycles 84:157

    Article  Google Scholar 

  9. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2021) Marine natural products. Nat Prod Rep 38:362

    Article  CAS  PubMed  Google Scholar 

  10. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2020) Marine natural products. Nat Prod Rep 37:175

    Article  PubMed  Google Scholar 

  11. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Marine natural products. Nat Prod Rep 36:122

    Article  CAS  PubMed  Google Scholar 

  12. Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8

    Article  CAS  PubMed  Google Scholar 

  13. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34:235

    Article  CAS  PubMed  Google Scholar 

  14. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382

    Article  CAS  PubMed  Google Scholar 

  15. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116

    Article  CAS  PubMed  Google Scholar 

  16. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160

    Article  CAS  PubMed  Google Scholar 

  17. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237

    Article  CAS  PubMed  Google Scholar 

  18. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144

    Article  CAS  PubMed  Google Scholar 

  19. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196

    Article  CAS  PubMed  Google Scholar 

  20. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165

    Article  CAS  PubMed  Google Scholar 

  21. Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170

    Article  CAS  PubMed  Google Scholar 

  22. Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2008) Marine natural products. Nat Prod Rep 25:35

    Article  CAS  PubMed  Google Scholar 

  23. Vetter W (2012) Polyhalogenated alkaloids in environmental and food samples. The Alkaloids 7:211

    Google Scholar 

  24. Pauletti PM, Cintra LS, Braguine CG, da Silva Filho AA, Andrade e Silva ML, Cunha WR, Januário AH (2010) Halogenated indole alkaloids from marine invertebrates. Mar Drugs 8:1526

    Google Scholar 

  25. Wang L, Zhou X, Fredimoses M, Liao S, Liu Y (2014) Naturally occurring organoiodines. RSC Adv 4:57350

    Article  CAS  Google Scholar 

  26. Kundeti LSR, Ambati S, Srividya GS, Yadav JS, Kommu N (2019) A review on chloro substituted marine natural product, chemical examination and biological activity. Curr Trends Biotechnol Pharm 13:83

    CAS  Google Scholar 

  27. El-Demerdash A, Tammam MA, Atanasov AG, Hooper JNA, Al-Mourabit A, Kijjoa A (2018) Chemistry and biological activities of the marine sponges of the genera Mycale (Arenochalina), Biemna and Clathria. Mar Drugs 16:214

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shady NH, Fouad MA, Kamel MS, Schirmeister T, Abdelmohsen UR (2019) Natural product repertoire of the genus Amphimedon. Mar Drugs 17:19

    Article  CAS  Google Scholar 

  29. Winder PL, Pomponi SA, Wright AE (2011) Natural products from the Lithistida: a review of the literature since 2000. Mar Drugs 9:2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dembitsky VM (2002) Bromo- and iodo-containing alkaloids from marine microorganisms and sponges. Russ J Bioorg Chem 28:170

    Article  CAS  Google Scholar 

  31. Noro JC, Kalaitzis JA, Neilan BA (2012) Bioactive natural products from Papua New Guinea marine sponges. Chem Biodivers 9:2077

    Article  CAS  PubMed  Google Scholar 

  32. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Dong M, Chen J, Wang H, Tenney K, Crews P (2017) Bioactive secondary metabolites from the marine sponge genus Agelas. Mar Drugs 15:351

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lira NS, Montes RC, Tavares JF, da Silva MS, da Cunha EVL, de Athayde-Filho PF, Rodrigues LC, da Silva DC, Barbosa-Filho JM (2011) Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR spectral data. Mar Drugs 9:2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Proksch P, Putz A, Ortlepp S, Kjer J, Bayer M (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 9:475

    Article  CAS  Google Scholar 

  36. El-Demerdash A, Atanasov AG, Horbanczuk OK, Tammam MA, Abdel-Mogib M, Hooper JNA, Sekeroglu N, Al-Mourabit A, Kijjoa A (2019) Chemical diversity and biological activities of marine sponges of the genus Suberea: a systematic review. Mar Drugs 17:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sagar S, Kaur M, Minneman KP (2010) Antiviral lead compounds from marine sponges. Mar Drugs 8:2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ercolano G, De Cicco P, Ianaro A (2019) New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds. Mar Drugs 17:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. García-Ruiz C, Sarabia F (2014) Chemistry and biology of bengamides and bengazoles, bioactive natural products from Jaspis sponges. Mar Drugs 12:1580

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roué M, Quévrain E, Domart-Coulon I, Bourguet-Kondracki M-L (2012) Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep 29:739

    Article  PubMed  Google Scholar 

  41. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Microbiology 10:641

    CAS  PubMed  Google Scholar 

  42. Protopapa M, Kotsiri M, Mouratidis S, Roussis V, Ioannou E, Dedos SG (2019) Evaluation of antifouling potential and ecotoxicity of secondary metabolites derived from red algae of the genus Laurencia. Mar Drugs 17:646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. La Barre S, Potin P, Leblanc C, Delage L (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs 8:988

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang B-G, Gloer JB, Ji N-Y, Zhao J-C (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632

    Article  CAS  PubMed  Google Scholar 

  46. Osako K, Teixeira VL (2013) Natural products from marine algae of the genus Osmundaria (Rhodophyceae, Ceramiales). Nat Prod Commun 8:533

    CAS  PubMed  Google Scholar 

  47. Harizani M, Ioannou E, Roussis V (2016) The Laurencia paradox: an endless source of chemodiversity. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 102. Springer International Publishing Switzerland, p 91

    Google Scholar 

  48. Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303

    Article  CAS  Google Scholar 

  49. Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290

    Article  CAS  PubMed  Google Scholar 

  50. Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142

    Article  CAS  PubMed  Google Scholar 

  51. Xu K, Yuan X-L, Li C, Li X-D (2020) Recent discovery of heterocyclic alkaloids from marine-derived Aspergillus species. Mar Drugs 18:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang C, Lu H, Lan J, Zaman KHAU, Cao S (2021) A review: halogenated compounds from marine fungi. Molecules 26:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2018) Mangrove-associated fungi: A novel source of potential anticancer compounds. J Fungi 4:101

    Article  CAS  Google Scholar 

  54. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338

    Article  CAS  PubMed  Google Scholar 

  56. Xiong Z-Q, Wang J-F, Hao Y-Y, Wang Y (2013) Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 11:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dávila-Céspedes A, Hufendiek P, Crüsemann M, Schäberle TF, König GM (2016) Marine-derived myxobacteria of the suborder Nannocystineae: an underexplored source of structurally intriguing and biologically active metabolites. Beilstein J Org Chem 12:969

    Article  PubMed  PubMed Central  Google Scholar 

  58. Albataineh H, Stevens DC (2018) Marine myxobacteria: a few good halophiles. Mar Drugs 16:209

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408

    Article  CAS  PubMed  Google Scholar 

  60. Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 8:498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Genilloud O (2018) Mining actinomycetes for novel antibiotics in the omics era: are we ready to exploit this new paradigm? Antibiotics 7:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kasanah N, Triyanto T (2019) Bioactivities of halometabolites from marine actinobacteria. Biomolecules 9:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil eosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1

    Article  CAS  PubMed  Google Scholar 

  66. Shah SAA, Akhter N, Auckloo BN, Khan I, Lu Y, Wang K, Wu B, Guo Y-W (2017) Structural diversity, biological properties and applications of natural products from cyanobacteria. A review. Mar Drugs 15:354

    Article  PubMed  PubMed Central  Google Scholar 

  67. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372

    Article  PubMed  PubMed Central  Google Scholar 

  68. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27

    Article  CAS  PubMed  Google Scholar 

  69. Mondal A, Bose S, Banerjee S, Patra JK, Malik J, Mandal SK, Kilpatrick KL, Das G, Kerry RG, Fimognari C, Bishayee A (2020) Marine cyanobacteria and microalgae metabolites—a rich source of potential anticancer drugs. Mar Drugs 18:476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH (2011) Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13:1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32:478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6:e20657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palanisamy SK, Rajendran NM, Marino A (2017) Natural products diversity of marine ascidians (tunicates; Ascidiacea) and successful drugs in clinical development. Nat Prod Bioprospect 7:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng Y, Khokhar S, Davis RA (2017) Crinoids: ancient organisms, modern chemistry. Nat Prod Rep 34:571

    Article  CAS  PubMed  Google Scholar 

  75. Pereira RB, Andrade PB, Valentão P (2016) Chemical diversity and biological properties of secondary metabolites from sea hares of Aplysia genus. Mar Drugs 14:39

    Article  PubMed  PubMed Central  Google Scholar 

  76. Asakawa Y, Ludwiczuk A, Nagashima F, Toyota M, Hashimoto T, Tori M, Fukuyama Y, Harinantenaina L (2009) Bryophytes: bio- and chemical diversity, bioactivity and chemosystematics. Heterocycles 77:99

    Article  CAS  Google Scholar 

  77. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52

    Article  CAS  PubMed  Google Scholar 

  78. Asakawa Y, Ludwiczuk A (2018) Chemical constituents of bryophytes: structures and biological activity. J Nat Prod 81:641

    Article  CAS  PubMed  Google Scholar 

  79. Dean LJ, Prinsep MR (2017) The chemistry and chemical ecology of nudibranchs. Nat Prod Rep 34:1359

    Article  CAS  PubMed  Google Scholar 

  80. Turner AH, Craik DJ, Kaas Q, Schroeder CI (2018) Bioactive compounds isolated from neglected predatory marine gastropods. Mar Drugs 16:118

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu Y-C, Su J-H, Chou T-T, Cheng Y-P, Weng C-F, Lee C-H, Fang L-S, Wang W-H, Li J-J, Lu M-C, Kuo J, Sheu J-H, Sung P-J (2011) Natural product chemistry of gorgonian corals of genus Junceella—Part II. Mar Drugs 9:2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223

    Article  CAS  PubMed  Google Scholar 

  83. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400

    Article  CAS  PubMed  Google Scholar 

  84. Qi S-H, Ma X (2017) Antifouling compounds from marine invertebrates. Mar Drugs 15:263

    Article  PubMed  PubMed Central  Google Scholar 

  85. Worthington RJ, Richards JJ, Melander C (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10:7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Armstrong E, Boyd KG, Burgess JG (2000) Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Ann Rev 6:221

    Article  CAS  Google Scholar 

  87. Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25:1131

    Article  CAS  PubMed  Google Scholar 

  88. Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31:999

    Article  CAS  PubMed  Google Scholar 

  89. Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774

    Article  CAS  PubMed  Google Scholar 

  90. Soldatou S, Baker BJ (2017) Cold-water marine natural products, 2006 to 2016. Nat Prod Rep 34:585

    Article  CAS  PubMed  Google Scholar 

  91. Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ (2014) Marine chemical ecology in benthic environments. Nat Prod Rep 31:1510

    Article  CAS  PubMed  Google Scholar 

  92. Schwarzbauer J (2020) Organic matter in the hydrosphere. In: Wilkes H (ed) Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate, handbook of hydrocarbon and lipid microbiology. Springer Nature Switzerland AG, p 823

    Google Scholar 

  93. Wu J, Xiao Q, Xu J, Li M-Y, Pan J-Y, Yang M (2008) Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 25:955

    Article  CAS  PubMed  Google Scholar 

  94. Solntsev KM, Schramm S, Kremb S, Gunsalus KC, Amin SA (2019) Isolation of biologically active compounds from mangrove sediments. Anal Bioanal Chem 411:6521

    Article  CAS  PubMed  Google Scholar 

  95. Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X (2022) Natural products from mangrove sediments-derived microbes: structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 230:114117

    Article  CAS  PubMed  Google Scholar 

  96. El-Hossary EM, Abdel-Halim M, Ibrahim ES, Pimentel-Elardo SM, Nodwell JR, Handoussa H, Abdelwahab MF, Holzgrabe U, Abdelmohsen UR (2020) Natural products repertoire of the Red Sea. Mar Drugs 18:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kobayashi J (2009) Chemistry and biology of Okinawan marine natural products. Pure Appl Chem 81:1009

    Article  CAS  Google Scholar 

  98. Morris JC, Phillips AJ (2011) Marine natural products: synthetic aspects. Nat Prod Rep 28:269

    Article  CAS  PubMed  Google Scholar 

  99. Le Bideau F, Kousara M, Chen L, Wei L, Dumas F (2017) Tricyclic sesquiterpenes from marine origin. Chem Rev 117:6110

    Article  PubMed  Google Scholar 

  100. Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM (2010) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 27:1871

    Article  CAS  PubMed  Google Scholar 

  101. Berlinck RGS, Burtoloso ACB, Kossuga MH (2008) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 25:919

    Article  CAS  PubMed  Google Scholar 

  102. Emsermann J, Kauhl U, Opatz T (2016) Marine isonitriles and their related compounds. Mar Drugs 14:16

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hille-Rehfeld A (2014) Halogenierte naturstoffe. Chem Unserer Zeit 48:402

    Article  CAS  Google Scholar 

  104. Crawford JM, Clardy J (2011) Bacterial symbionts and natural products. Chem Commun 47:7559

    Article  CAS  Google Scholar 

  105. Goldberg ED (1963) The oceans as a chemical system. In: Hill MN (ed) The sea, vol 2. Wiley-Interscience, New York, p 3

    Google Scholar 

  106. Hylin JW, Spenger RE, Gunther FA (1969) Potential interferences in certain pesticide residue analyses from organochlorine compounds occurring naturally in plants. Residue Rev 26:127

    CAS  PubMed  Google Scholar 

  107. Harper DB, O’Hagan D (1994) The fluorinated natural products. Nat Prod Rep 11:123

    Article  CAS  PubMed  Google Scholar 

  108. Stijve T (1984) Inorganic bromide in higher fungi. Z Naturforsch 39C:863

    Article  CAS  Google Scholar 

  109. Isidorov VA (1990) Organic chemistry of the earth’s atmosphere. Springer, Berlin, Heidelberg, p 72

    Book  Google Scholar 

  110. Harper DB (1985) Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315:55

    Article  CAS  Google Scholar 

  111. Read KA, Mahajan AS, Carpenter LJ, Faria BE, Heard DE, Hopkins JR, Lee JD, Moller SJ, Lewis AC, Mendes L, McQuaid JB, Oetjen H, Saiz-Lopez A, Pilling MJ, Plane JMC (2008) Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232

    Article  CAS  PubMed  Google Scholar 

  112. Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, von Glasow R (2015) Tropospheric halogen chemistry: sources, cycling and impacts. Chem Rev 115:4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carpenter LJ, Nightingale PD (2015) Chemistry and release of gases from the surface ocean. Chem Rev 115:4015

    Article  CAS  PubMed  Google Scholar 

  114. Burkholder JB, Cox RA, Ravishankara AR (2015) Atmospheric degradation of ozone depleting substances, their substitutes, and related species. Chem Rev 115:3704

    Article  CAS  PubMed  Google Scholar 

  115. Singh HB, Kasting JF (1988) Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7:261

    Article  CAS  Google Scholar 

  116. Pszenny AAP, Keene WC, Jacob DJ, Fan S, Maben JR, Zetwo MP, Springer-Young M, Galloway JN (1993) Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophys Res Lett 20:699

    Article  CAS  Google Scholar 

  117. Erickson DJ III, Seuzaret C, Keene WC, Gong SL (1999) A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory. J Geophys Res 104:8347

    Article  CAS  Google Scholar 

  118. Osthoff HD, Roberts JM, Ravishankara AR, Williams EJ, Lerner BM, Sommariva R, Bates TS, Coffman D, Quinn PK, Dibb JE, Stark H, Burkholder JB, Talukdar RK, Meagher J, Fehsenfeld FC, Brown SS (2008) High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geosci 1:324

    Article  CAS  Google Scholar 

  119. Thornton JA, Kercher JP, Riedel TP, Wagner NL, Cozic J, Holloway JS, Dubé WP, Wolfe GM, Quinn PK, Middlebrook AM, Alexander B, Brown SS (2010) A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464:271

    Article  CAS  PubMed  Google Scholar 

  120. Finlayson-Pitts BJ (1983) Reaction of NO2 with NaCl and atmospheric implications of NOCl formation. Nature 306:676

    Article  CAS  Google Scholar 

  121. Keene WC, Stutz J, Pszenny AAP, Maben JR, Fischer EV, Smith AM, von Glasow R, Pechtl S, Sive BC, Varner RK (2007) Inorganic chlorine and bromine in coastal New England air during summer. J Geophys Res 112:D10S12

    Google Scholar 

  122. Kamilli KA, Ofner J, Krause T, Sattler T, Schmitt-Kopplin P, Eitenberger E, Friedbacher G, Lendl B, Lohninger H, Schöler HF, Held A (2016) How salt lakes affect atmospheric new particle formation: a case study in Western Australia. Sci Total Environ 573:985

    Article  CAS  PubMed  Google Scholar 

  123. Knipping EM, Dabdub D (2003) Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ Sci Technol 37:275

    Article  CAS  PubMed  Google Scholar 

  124. Stutz J, Ackermann R, Fast JD, Barrie L (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys Res Lett 29:18–21

    Article  Google Scholar 

  125. Holla R, Schmitt S, Frieβ U, Pöhler D, Zingler J, Corsmeier U, Platt U (2015) Vertical distribution of BrO in the boundary layer at the Dead Sea. Environ Chem 12:438

    Google Scholar 

  126. Keil AD, Shepson PB (2006) Chlorine and bromine atom ratios in the springtime Arctic troposphere as determined from measurements of halogenated volatile organic compounds. J Geophys Res 111:D17303

    Article  Google Scholar 

  127. McConnell JC, Henderson GS, Barrie L, Bottenheim J, Niki H, Langford CH, Templeton EMJ (1992) Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 355:150

    Article  CAS  Google Scholar 

  128. Pratt KA, Custard KD, Shepson PB, Douglas TA, Pöhler D, General S, Zielcke J, Simpson WR, Platt U, Tanner DJ, Huey LG, Carlsen M, Stirm BH (2013) Photochemical production of molecular bromine in Arctic surface snowpacks. Nature Geosci 6:351

    Article  CAS  Google Scholar 

  129. Wittmer J, Bleicher S, Ofner J, Zetzsch C (2015) Iron(III)-induced activation of chloride from artificial sea-salt aerosol. Environ Chem 12:461

    Article  CAS  Google Scholar 

  130. Buxmann J, Bleicher S, Platt U, von Glasow R, Sommariva R, Held A, Zetzsch C, Ofner J (2015) Consumption of reactive halogen species from sea-salt aerosol by secondary organic aerosol: slowing down the bromine explosion. Environ Chem 12:476

    Article  CAS  Google Scholar 

  131. Putschew A, Mania M, Jekel M (2003) Occurrence and source of brominated organic compounds in surface waters. Chemosphere 52:399

    Article  CAS  PubMed  Google Scholar 

  132. Moreno F, Moreno J, Fatela F, Guise L, Vieira C, Leira M (2020) Bromine biogeodynamics in the NE Atlantic: a perspective from natural wetlands of western Portugal. Sci Total Environ 722:137649

    Article  CAS  PubMed  Google Scholar 

  133. De Laurentiis E, Minella M, Maurino V, Minero C, Mailhot G, Sarakha M, Brigante M, Vione D (2012) Assessing the occurrence of the dibromide radical (Br2–•) in natural waters: measures of triplet-sensitised formation, reactivity, and modelling. Sci Total Environ 439:299

    Article  PubMed  Google Scholar 

  134. Solomon S, Garcia RR, Ravishankara AR (1994) On the role of iodine in ozone depletion. J Geophys Res 99(20):491

    Google Scholar 

  135. Zingler J, Platt U (2005) Iodine oxide in the Dead Sea Valley: evidence for inorganic sources of boundary layer IO. J Geophys Res 110:D07307

    Google Scholar 

  136. Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg E-M, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW III, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Soc USA 105:6954

    Article  Google Scholar 

  137. Alicke B, Hebestreit K, Stutz J, Platt U (1999) Iodine oxide in the marine boundary layer. Nature 397:572

    Article  CAS  Google Scholar 

  138. O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Hameri K, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002) Marine aerosol formation from biogenic iodine emissions. Nature 417:632

    Article  PubMed  Google Scholar 

  139. Fuge R (2019) Fluorine in the environment, a review of its sources and geochemistry. Appl Geochem 100:393

    Article  CAS  Google Scholar 

  140. auf der Günne JS, Mangstl M, Kraus F (2012) Occurrence of difluorine F2 in nature—in situ proof and quantification by NMR spectroscopy. Angew Chem Int Ed 51:7847

    Google Scholar 

  141. Sekimoto S, Ebihara M (2013) Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data. Anal Chem 85:6336

    Article  CAS  PubMed  Google Scholar 

  142. Sharp ZD, Draper DS (2013) The chlorine abundance of Earth: implications for a habitable planet. Earth Planet Sci Lett 369–370:71

    Article  Google Scholar 

  143. Leri AC, Mayer LM, Thornton KR, Northrup PA, Dunigan MR, Ness KJ, Gellis AB (2015) A marine sink for chlorine in natural organic matter. Nat Geosci 8:620

    Article  CAS  Google Scholar 

  144. Song Y, Müller G (1993) Freshwater sediments: sinks and sources of bromine. Naturwissenschaften 80:558

    Article  CAS  Google Scholar 

  145. Leri AC, Hakala JA, Marcus MA, Lanzirotti A, Reddy CM, Myneni SCB (2010) Natural organobromine in marine sediments: new evidence of biogeochemical Br cycling. Global Biogeochem Cycl 24:GB4017

    Google Scholar 

  146. Leri AC, Myneni SCB (2012) Natural organobromine in terrestrial ecosystems. Geochim Cosmochim Acta 77:1

    Article  CAS  Google Scholar 

  147. Leri AC, Ravel B (2015) Abiotic bromination of soil organic matter. Environ Sci Technol 49:13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zlamal JE, Raab TK, Little M, Edwards RA, Lipson DA (2017) Biological chlorine cycling in the Arctic Coastal Plain. Biogeochemistry 134:243

    Article  CAS  Google Scholar 

  149. Johansson E, Sandén P, Öberg G (2003) Spatial patterns of organic chlorine and chloride in Swedish forest soil. Chemosphere 52:391

    Article  CAS  PubMed  Google Scholar 

  150. Johansson E, Sandén P, Öberg G (2003) Organic chlorine in deciduous and coniferous forest soils in southern Sweden. Soil Sci 168:347

    Article  CAS  Google Scholar 

  151. Öberg G, Holm M, Sandén P, Svensson T, Parikka M (2005) The role of organic-matter-bound chlorine in the chlorine cycle: a case study of the Stubbetorp catchment, Sweden. Biogeochemistry 75:241

    Article  Google Scholar 

  152. Rohlenová J, Gryndler M, Forczek ST, Fuksová K, Handová V, Matucha M (2009) Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its methodology. Environ Sci Technol 43:3652

    Article  PubMed  Google Scholar 

  153. Matucha M, Clarke N, Lachmanová Z, Forczek ST, Fuksová K, Gryndler M (2010) Biogeochemical cycles of chlorine in the coniferous forest ecosystem: practical implications. Plant Soil Environ 56:357

    Article  CAS  Google Scholar 

  154. Leri AC, Myneni SCB (2010) Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Global Biogeochem Cycl 24:GB4021

    Google Scholar 

  155. Gustavsson M, Karlsson S, Öberg G, Sandén P, Svensson T, Valinia S, Thiry Y, Bastviken D (2012) Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environ Sci Technol 46:1504

    Article  CAS  PubMed  Google Scholar 

  156. Redon P-O, Abdelouas A, Bastviken D, Cecchini S, Nicolas M, Thiry Y (2011) Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions. Environ Sci Technol 45:7202

    Article  CAS  PubMed  Google Scholar 

  157. Montelius M, Thiry Y, Marang L, Ranger J, Cornelis J-T, Svensson T, Bastviken D (2015) Experimental evidence of large changes in terrestrial chlorine cycling following altered tree species composition. Environ Sci Technol 49:4921

    Article  CAS  PubMed  Google Scholar 

  158. Montelius M, Svensson T, Lourino-Cabana B, Thiry Y, Bastviken D (2016) Chlorination and dechlorination rates in a forest soil—a combined modeling and experimental approach. Sci Total Environ 554–555:203

    Article  PubMed  Google Scholar 

  159. Montelius M, Svensson T, Lourino-Cabana B, Thiry Y, Bastviken D (2019) Radiotracer evidence that the rhizosphere is a hot-spot for chlorination of soil organic matter. Plant Soil 443:245

    Article  CAS  Google Scholar 

  160. Svensson T, Kylin H, Montelius M, Sandén P, Bastviken D (2021) Chlorine cycling and the fate of Cl in terrestrial environments. Environ Sci Pollut Res 28:7691

    Article  CAS  Google Scholar 

  161. Biester H, Selimović D, Hemmerich S, Petri M (2005) Halogens in porewater of peat bogs—the role of peat decomposition and dissolved organic matter. Biogeosci Disc 2:1457

    Google Scholar 

  162. Biester H, Selimović D, Hemmerich S, Petri M (2006) Halogens in pore water of peat bogs—the role of peat decomposition and dissolved organic matter. Biogeosciences 3:53

    Article  CAS  Google Scholar 

  163. Cadle RD (1975) Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere. J Geophys Res 80:1650

    Article  CAS  Google Scholar 

  164. Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1

    Article  CAS  Google Scholar 

  165. Graeber EJ, Modreski PJ, Gerlach TM (1979) Compositions of gases collected during the 1977 East Rift Eruption, Kilauea, Hawaii. J Volcanol Geotherm Res 5:337

    Article  CAS  Google Scholar 

  166. Zelenski M, Taran Y (2012) Volcanic emissions of molecular chlorine. Geochim Cosmochim Acta 87:210

    Article  CAS  Google Scholar 

  167. Bani P, Boudon G, Balcone-Boissard H, Delmelle P, Quiniou T, Lefevre J, Bule EG, Hiroshi S, Lardy M (2016) The 2009–2010 eruption of Gaua volcano (Vanuatu archipelago): eruptive dynamics and unsuspected strong halogens source. J Volcan Geotherm Res 322:63

    Article  CAS  Google Scholar 

  168. Anazawa K, Wood CP, Browne PRL (2011) Fluorine and chlorine behavior in chlorine-rich volcanic rocks from White Island, New Zealand. J Fluorine Chem 132:1182

    Article  CAS  Google Scholar 

  169. Kutterolf S, Hansteen TH, Appel K, Freundt A, Krüger K, Pérez W, Wehrmann H (2013) Combined bromine and chlorine release from large explosive volcanic eruptions: a threat to stratospheric ozone? Geology 41:707

    Article  CAS  Google Scholar 

  170. Kutterolf S, Hansteen TH, Freundt A, Wehrmann H, Appel K, Krüger K, Pérez W (2015) Bromine and chlorine emissions from Plinian eruptions along the Central American Volcanic Arc: from source to atmosphere. Earth Planet Sci Lett 429:234

    Article  CAS  Google Scholar 

  171. Gutmann A, Bobrowski N, Liotta M, Hoffmann T (2021) Bromine speciation in volcanic plumes: new in situ derivatization LC-MS method for the determination of gaseous hydrogen bromide by gas diffusion denuder samping. Atmos Meas Tech 14:6395

    Article  CAS  Google Scholar 

  172. Snyder GT, Fehn U (2002) Origin of iodine in volcanic fluids: 129I results from the Central American volcanic arc. Geochim Cosmochim Acta 66:3827

    Article  CAS  Google Scholar 

  173. Takeda A, Nakao A, Yamasaki S, Tsuchiya N (2018) Distribution and speciation of bromine and iodine in volcanic ash soil profiles. Soil Sci Soc Am J 82:815

    Article  CAS  Google Scholar 

  174. Teiber H, Marks MAW, Wenzel T, Siebel W, Altherr R, Markl G (2014) The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem Geol 374:92

    Article  Google Scholar 

  175. Aiuppa A, Federico C, Franco A, Giudice G, Gurrieri S, Inguaggiato S, Liuzzo M, McGonigle AJS, Valenza M (2005) Emission of bromine and iodine from Mount Etna volcano. Geochem Geophys Geosyst 6. https://doi.org/10.1029/2005GC000965

  176. General S, Bobrowski N, Pöhler D, Weber K, Fischer C, Platt U (2015) Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume. J Volcanol Geoth Res 300:175

    Google Scholar 

  177. Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273

    Article  CAS  PubMed  Google Scholar 

  178. Kern C, Lyons JJ (2018) Spatial distribution of halogen oxides in the plume of Mount Pagan volcano, Mariana Islands. Geophys Res Lett 45:9588

    Article  CAS  Google Scholar 

  179. Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008) Sulfur and chlorine in Late Cretaceous deccan magmas and eruptive gas release. Science 319:1654

    Article  CAS  PubMed  Google Scholar 

  180. Kendrick MA, Danyushevsky LV, Falloon TJ, Woodhead JD, Arculus RJ, Ireland T (2020) SW Pacific arc and backarc lavas and the role of slab-bend serpentinites in the global halogen cycle. Earth Planet Sci Lett 530:115921

    Article  CAS  Google Scholar 

  181. Connes P, Connes J, Benedict WS, Kaplan LD (1967) Traces of HCl and HF in the atmosphere of Venus. Astrophys J 147:1230

    Article  CAS  Google Scholar 

  182. Krasnopolsky VA (2010) Spatially-resolved high-resolution spectroscopy of Venus 1. Variations of CO2, CO, HF, and HCl at the cloud tops. Icarus 208:539

    Google Scholar 

  183. Sandor BJ, Clancy RT (2017) Diurnal observations of HCl altitude variation in the 70–100 km mesosphere of Venus. Icarus 290:156

    Article  CAS  Google Scholar 

  184. Sandor BJ, Clancy RT (2018) First measurements of ClO in the Venus atmosphere—altitude dependence and temporal variation. Icarus 313:15

    Article  CAS  Google Scholar 

  185. Krasnopolsky VA, Belyaev DA (2017) Search for HBr and bromine photochemistry on Venus. Icarus 293:114

    Article  CAS  Google Scholar 

  186. Boyce JW, Kanee SA, McCubbin FM, Barnes JJ, Bricker H, Treiman AH (2018) Early loss, fractionation, and redistribution of chlorine in the Moon as revealed by the low-Ti lunar mare basalt suite. Earth Planet Sci Lett 500:205

    Article  CAS  Google Scholar 

  187. Stephant A, Anand M, Zhao X, Chan QHS, Bonifacie M, Franchi IA (2019) The chlorine isotopic composition of the Moon: insights from melt inclusions. Earth Planet Sci Lett 523:115715

    Article  CAS  Google Scholar 

  188. Filiberto J, Treiman AH (2009) The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth. Chem Geol 263:60

    Article  CAS  Google Scholar 

  189. Bellucci JJ, Whitehouse MJ, John T, Nemchin AA, Snape JF, Bland PA, Benedix GK (2017) Halogen and Cl isotopic systematics in Martian phosphates: implications for the Cl cycle and surface halogen reservoirs on Mars. Earth Planet Sci Lett 458:192

    Article  CAS  Google Scholar 

  190. Shearer CK, Messenger S, Sharp ZD, Burger PV, Nguyen AN, McCubbin FM (2018) Distinct chlorine isotopic reservoirs on Mars. Implications for character, extent and relative timing of crustal interactions with mantle-derived magmas, evolution of the Martian atmosphere, and the building blocks of an early Mars. Geochim Cosmochim Acta 234:24

    Google Scholar 

  191. Filiberto J, Treiman AH (2009) Martian magmas contained abundant chlorine, but little water. Geology 37:1087

    Article  CAS  Google Scholar 

  192. Schuttlefield JD, Sambur JB, Gelwicks M, Eggleston CM, Parkinson BA (2011) Photooxidation of chloride by oxide minerals: implications for perchlorate on Mars. J Am Chem Soc 133:17521

    Article  CAS  PubMed  Google Scholar 

  193. Kolb VM, Hoover R (2013) Perchlorates are compatible with life on Earth—why not Mars? In: Hoover RB, Levin GV, Rozanov A Y, Wickramasisnghe NC (eds) Instruments, Methods, and Missions for Astrobiology XVI, Proc SPIE, vol 8865, p 886504-1

    Google Scholar 

  194. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325:64

    Article  CAS  PubMed  Google Scholar 

  195. Korablev O, Olsen KS, Trokhimovskiy A, Lefèvre F, Montmessin F, Fedorova AA, Toplis MJ, Alday J, Belyaev DA, Patrakeev A, Ignatiev NI, Shakum AV, Grigoriev AV, Baggio L, Abdenour I, Lacombe G, Ivanov YS, Aoki S, Thomas IR, Daerden F, Ristic B, Erwin JT, Patel M, Bellucci G, Lopez-Moreno J-J, Vandaele AC (2021) Transient HCl in the atmosphere of Mars. Sci Adv 7:eabe4386

    Google Scholar 

  196. Aoki S, Daerden F, Viscardy S, Thomas IR, Erwin JT, Robert S, Trompet L, Neary L, Villanueva GL, Liuzzi G, Crismani MMJ, Clancy RT, Whiteway J, Schmidt F, Lopez-Valverde MA, Ristic B, Patel MR, Bellucci G, Lopez-Moreno J-J, Olsen KS, Lefèvre F, Montmessin F, Trokhimovskiy A, Fedorova AA, Korablev O, Vandaele AC (2021) Annual appearance of hydrogen chloride in Mars and a striking similarity with the water vapor vertical distribution observed by TGO/NOMAD. Geophys Res Lett 48:e2021GL092506

    Google Scholar 

  197. Krasnopolsky VA (2022) Photochemistry of HCl in the martial atmosphere. Icarus 374:114807

    Article  CAS  Google Scholar 

  198. Forni O, Gaft M, Toplis MJ, Clegg SM, Maurice S, Wiens RC, Mangold N, Gasnault O, Sautter V, Le Mouélic S, Meslin P-Y, Nachon M, McInroy RE, Ollila AM, Cousin A, Bridges JC, Lanza NL, Dyar MD (2015) First detection of fluorine on Mars: implications for Gale Crater’s geochemistry. Geophys Res Lett 42:1020

    Article  CAS  Google Scholar 

  199. Evans LG, Peplowski PN, McCubbin FM, McCoy TJ, Nittler LR, Zolotov MY, Ebel DS, Lawrence DJ, Starr RD, Weider SZ, Solomon SC (2015) Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus 257:417

    Article  CAS  Google Scholar 

  200. Sarafian AR, John T, Roszjar J, Whitehouse MJ (2017) Chlorine and hydrogen degassing in Vesta’s magna ocean. Earth Planet Sci Lett 459:311

    Article  CAS  Google Scholar 

  201. Bockelée-Morvan D, Biver N, Crovisier J, Lis DC, Hartogh P, Moreno R, de Val-Borro M, Blake GA, Szutowicz S, Boissier J, Cernicharo J, Charnley SB, Combi M, Cordiner MA, de Graauw T, Encrenaz P, Jarchow C, Kidger M, Küppers M, Milam SN, Müller HSP, Phillips TG, Rengel M (2014) Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel Space Observatory. Astron Astrophys 526:A51

    Google Scholar 

  202. Dhooghe F, De Keyser J, Altwegg K, Briois C, Balsiger H, Berthelier J-J, Calmonte U, Cessateur G, Combi MR, Equeter E, Fiethe B, Fray N, Fuselier S, Gasc S, Gibbons A, Gombosi T, Gunell H, Hässig M, Hilchenbach M, Le Roy L, Maggiolo R, Mall U, Marty B, Neefs E, Rème H, Rubin M, Sémon T, Tzou C-Y, Wurz P (2017) Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko. MNRAS 472:1336

    Article  CAS  Google Scholar 

  203. De Keyser J, Dhooghe F, Altwegg K, Balsiger H, Berthelier J-J, Briois C, Calmonte U, Cessateur G, Combi MR, Equeter E, Fiethe B, Fuselier S, Gasc S, Gibbons A, Gombosi T, Gunell H, Hässig M, Le Roy L, Maggiolo R, Mall U, Marty B, Neefs E, Rème H, Rubin M, Sémon T, Tzou C-Y, Wurz P (2017) Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumov-Gerasimenko. MNRAS 469:S695

    Article  Google Scholar 

  204. Neufeld DA, Zmuidzinas J, Schilke P, Phillips TG (1997) Discovery of interstellar hydrogen fluoride. Astrophys J 488:L141

    Article  CAS  Google Scholar 

  205. Peng R, Yoshida H, Chamberlin RA, Phillips TG, Lis DC, Gerin M (2010) A comprehensive survey of hydrogen chloride in the galaxy. Astrophys J 723:218

    Article  CAS  Google Scholar 

  206. De Luca M, Gupta H, Neufeld D, Gerin M, Teyssier D, Drouin BJ, Pearson JC, Lis DC, Monie R, Phillips TG, Goicoechea JR, Godard B, Falgarone E, Coutens A, Bell TA (2012) Herschel/HIFI discovery of HCl+ in the interstellar medium. Astrophys J Lett 751:L37

    Article  Google Scholar 

  207. Lis DC, Pearson JC, Neufeld DA, Schilke P, Müller HSP, Gupta H, Bell TA, Comito C, Phillips TG, Bergin EA, Ceccarelli C, Goldsmith PF, Blake GA, Bacmann A, Baudry A, Benedettini M, Benz A, Black J, Boogert A, Bottinelli S, Cabrit S, Caselli P, Castets A, Caux E, Cernicharo J, Codella C, Coutens A, Crimier N, Crockett NR, Daniel F, Demyk K, Dominic C, Dubernet M-L, Emprechtinger M, Encrenaz P, Falgarone E, Fuente A, Gerin M, Giesen TF, Goicoechea JR, Helmich F, Hennebelle P, Henning T, Herbst E, Hily-Blant P, Hjalmarson Å, Hollenbach D, Jack T, Joblin C, Johnstone D, Kahane C, Kama M, Kaufman M, Klotz A, Langer WD, Larsson B, Le Bourlot J, Lefloch B, Le Petit F, Li D, Liseau R, Lord SD, Lorenzani A, Maret S, Martin PG, Melnick GJ, Menten KM, Morris P, Murphy JA, Nagy Z, Nisini B, Ossenkopf V, Pacheco S, Pagani L, Parise B, Pérault M, Plume R, Qin S-L, Roueff E, Salez M, Sandqvist A, Saraceno P, Schlemmer S, Schuster K, Snell R, Stutzki J, Tielens A, Trappe N, van der Tak FFS, van der Wiel MHD, van Dishoeck E, Vastel C, Viti S, Wakelam V, Walters A, Wang S, Wyrowski F, Yorke HW, Yu S, Zmuidzinas J, Delorme Y, Desbat J-P, Güsten R, Krieg J-M, Delforge B (2010) Herschel/HIFI discovery of interstellar chloronium (H2Cl+). Astron Astrophys 521:L9

    Article  Google Scholar 

  208. Neufeld DA, Schilke P, Menten KM, Wolfire MG, Black JH, Schuller F, Müller HSP, Thorwirth S, Güsten R, Philipp S (2006) Discovery of interstellar CF+. Astron Astrophys 454:L37

    Article  CAS  Google Scholar 

  209. Neufeld DA, Schilke P, Menten KM, Wolfire MG, Black JH, Schuller F, Müller H, Thorwirth S, Güsten R, Philipp S (2006) First astronomical detection of the CF+ ion. In: Lis DC, Blake GA, Herbst E (eds) Astrochemistry: recent successes and current challenges, proceedings IAU symposium No 231, 2005, p 163

    Google Scholar 

  210. Neufeld DA, Wolfire MG, Schilke P (2005) The chemistry of fluorine-bearing molecules in diffuse and dense interstellar gas clouds. Astrophys J 628:260

    Article  CAS  Google Scholar 

  211. Koga KT, Rose-Koga EF (2018) Fluorine in the Earth and the solar system, where does it come from and can it be found? C R Chimie 21:749

    Article  CAS  Google Scholar 

  212. Guaita C (2017) Did Viking discover life on Mars? Eur Phys J Plus 132:346

    Article  Google Scholar 

  213. Tanaka N, Rye DM (1991) Chlorine in the stratosphere. Nature 353:707

    Article  CAS  Google Scholar 

  214. Yoshida Y, Wang Y, Shim C, Cunnold D, Blake DR, Dutton GS (2006) Inverse modeling of the global methyl chloride sources. J Geophys Res 111:D16307

    Article  Google Scholar 

  215. Bahlmann E, Keppler F, Wittmer J, Greule M, Schöler HF, Seifert R, Zetzsch C (2019) Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes. Atmos Chem Phys 19:1703

    Article  CAS  Google Scholar 

  216. Moore RM (2000) The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere. Chemosphere: Global Change Sci 2:95

    Google Scholar 

  217. Rhew RC, Miller BR, Bill M, Goldstein AH, Weiss RF (2002) Environmental and biological controls on methyl halide emissions from southern California coastal salt marshes. Biogeochemistry 60:141

    Article  CAS  Google Scholar 

  218. Bill M, Rhew RC, Weiss RF, Goldstein AH (2002) Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh. Geophys Res Lett 29:1045

    Article  Google Scholar 

  219. Rhew R, Mazéas O (2010) Gross production exceeds gross consumption of methyl halides in northern California salt marshes. Geophys Res Lett 37:L18813

    Article  Google Scholar 

  220. Blei E, Heal MR, Heal KV (2010) Long-term CH3Br and CH3Cl flux measurements in temperate salt marshes. Biogeosciences 7:3657

    Article  CAS  Google Scholar 

  221. Ooki A, Tsuda A, Kameyama S, Takeda S, Itoh S, Suga T, Tazoe H, Okubo A, Yokouchi Y (2010) Methyl halides in surface seawater and marine boundary layer of the northwest Pacific. J Geophys Res 115:C10013

    Google Scholar 

  222. Hu L, Yvon-Lewis SA, Liu Y, Salisbury JE, O'Hern JE (2010) Coastal emissions of methyl bromide and methyl chloride along the eastern Gulf of Mexico and the east coast of the United States. Global Biogeochem Cycl 24:GB1007

    Google Scholar 

  223. Khan MAH, Rhew RC, Whelan ME, Zhou K, Deverel SJ (2011) Methyl halide and chloroform emissions from a subsiding Sacramento-San Joaquin delta island converted to rice fields. Atmos Environ 45:977

    Article  CAS  Google Scholar 

  224. Kotte K, Löw F, Huber SG, Krause T, Mulder I, Schöler HF (2012) Organohalogen emissions from saline environments—spatial extrapolation using remote sensing as most promising tool. Biogeosciences 9:1225

    Article  CAS  Google Scholar 

  225. Mulder I, Krause T, Sattler T, Tubbesing C, Studenroth S, Bukowski K, Atlas E, Schöler HF (2015) Thermolytic degradation of methylmethionine and implications for its role in DMS and MeCl formation in hypersaline environments. Environ Chem 12:415

    Article  CAS  Google Scholar 

  226. Lim Y-K, Phang S-M, Rahman NA, Sturges WT, Malin G (2017) Halocarbon emissions from marine phytoplankton and climate change. Int J Environ Sci Technol 14:1355

    Article  CAS  Google Scholar 

  227. Xiao X, Prinn RG, Fraser PJ, Simmonds PG, Weiss RF, O’Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Porter LW, Mühle J, Greally BR, Cunnold D, Wang R, Montzka SA, Elkins JW, Dutton GS, Thompson TM, Butler JH, Hall BD, Reimann S, Vollmer MK, Stordal F, Lunder C, Maione M, Arduini J, Yokouchi Y (2010) Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmos Chem Phys 10:5515

    Article  CAS  Google Scholar 

  228. Moore RM (2008) A photochemical source of methyl chloride in saline waters. Environ Sci Technol 42:1933

    Article  CAS  PubMed  Google Scholar 

  229. Keppler F, Kalin RM, Harper DB, McRoberts WC, Hamilton JTG (2004) Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications. Biogeosciences 1:123

    Article  CAS  Google Scholar 

  230. McAnulla C, McDonald IR, Murrell JC (2001) Methyl chloride utilising bacteria are ubiquitous in the natural environment. FEMS Microbiol Lett 201:151

    Article  CAS  PubMed  Google Scholar 

  231. Rhew RC, Aydin M, Saltzman ES (2003) Measuring terrestrial fluxes of methyl chloride and methyl bromide using a stable isotope tracer technique. Geophys Res Lett 30:2103

    Article  Google Scholar 

  232. Rhew RC, Teh YA, Abel T (2007) Methyl halide and methane fluxes in the northern Alaskan coastal tundra. J Geophys Res 112:G02009

    Google Scholar 

  233. Teh YA, Mazéas O, Atwood AR, Abel T, Rhew RC (2009) Hydrologic regulation of gross methyl chloride and methyl bromide uptake from Alaskan Arctic tundra. Global Change Biol 15:330

    Article  Google Scholar 

  234. Blei E, Heal MR (2011) Methyl bromide and methyl chloride fluxes from temperate forest litter. Atmos Environ 45:1543

    Article  CAS  Google Scholar 

  235. Derendorp L, Holzinger R, Wishkerman A, Keppler F, Röckmann T (2011) Methyl chloride and C2–C5 hydrocarbon emissions from dry leaf litter and their dependence on temperature. Atmos Environ 45:3112

    Article  CAS  Google Scholar 

  236. Derendorp L, Wishkerman A, Keppler F, McRoberts C, Holzinger R, Röckmann T (2012) Methyl chloride emissions from halophyte leaf litter: dependence on temperature and chloride content. Chemosphere 87:483

    Article  CAS  PubMed  Google Scholar 

  237. Rhew RC, Abel T (2007) Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands. Environ Sci Technol 41:7837

    Article  CAS  PubMed  Google Scholar 

  238. Teh YA, Rhew RC, Atwood A, Abel T (2008) Water, temperature, and vegetation regulation of methyl chloride and methyl bromide fluxes from a shortgrass steppe ecosystem. Global Change Biol 14:77

    Article  Google Scholar 

  239. Yokouchi Y, Saito T, Ishigaki C, Aramoto M (2007) Identification of methyl chloride-emitting plants and atmospheric measurements on a subtropical island. Chemosphere 69:549

    Article  CAS  PubMed  Google Scholar 

  240. Saito T, Yokouchi Y (2008) Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget. Geophys Res Lett 35:L08807

    Article  Google Scholar 

  241. Blei E, Hardacre CJ, Mills GP, Heal KV, Heal MR (2010) Identification and quantification of methyl halide sources in a lowland tropical rainforest. Atmos Environ 44:1005

    Article  CAS  Google Scholar 

  242. Saito T, Yokouchi Y, Kosugi Y, Tani M, Philip E, Okuda T (2008) Methyl chloride and isoprene emissions from tropical rain forest in southeast Asia. Geophys Res Lett 35:L19812

    Article  Google Scholar 

  243. Manley SL, Wang N-Y, Walser ML, Cicerone RJ (2007) Methyl halide emissions from greenhouse-grown mangroves. Geophys Res Lett 34:L01806

    Article  Google Scholar 

  244. Berberich GM, Sattler T, Klimetzek D, Benk SA, Berberich MB, Polag D, Schöler HF, Atlas E (2017) Halogenation processes linked to red wood ant nests (Formica spp.) and tectonics. J Atmos Chem 74:261

    Google Scholar 

  245. Anke H, Weber RWS (2006) White-rots, chlorine and the environment—a tale of many twists. Mycologist 20:83

    Article  Google Scholar 

  246. McRoberts WC, Keppler F, Harper DB, Hamilton JTG (2015) Seasonal changes in chlorine and methoxyl content of leaves of deciduous trees and their impact on release of chloromethane and methanol at elevated temperatures. Environ Chem 12:426

    Article  CAS  Google Scholar 

  247. Inn ECY, Vedder JF, Concon EP, O’Hara D (1981) Gaseous constituents in the plume from eruptions of Mount St. Helens. Science 211:821

    Article  CAS  PubMed  Google Scholar 

  248. Frische M, Garofalo K, Hansteen TH, Borchers R (2006) Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem Geophys Geosyst 7:Q05020

    Article  Google Scholar 

  249. Tassi F, Capecchiacci F, Cabassi J, Calabrese S, Vaselli O, Rouwet D, Pecoraino G, Chiodini G (2012) Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy). J Geophys Res 117:D17305

    Google Scholar 

  250. Schwandner FM, Seward TM, Giże AP, Hall K, Dietrich VJ (2013) Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy). Geochim Cosmochim Acta 101:191

    Article  CAS  Google Scholar 

  251. Blake D, Hinwood AL, Horwitz P (2009) Peat fires and air quality: volatile organic compounds and particulates. Chemosphere 76:419

    Article  CAS  PubMed  Google Scholar 

  252. Mulder I, Huber SG, Krause T, Zetzsch C, Kotte K, Dultz S, Schöler HF (2013) A new purge and trap headspace technique to analyze low volatile compounds from fluid inclusions of rock and minerals. Chem Geol 358:148

    Article  CAS  Google Scholar 

  253. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environment crisis. Earth Planet Sci Lett 277:490

    Article  CAS  Google Scholar 

  254. Clay PL, Burgess R, Busemann H, Ruzié-Hamilton L, Joachim B, Day JMD, Ballentine CJ (2017) Halogens in chondritic meteorites and terrestrial accretion. Nature 551:614

    Article  CAS  PubMed  Google Scholar 

  255. Keppler F, Harper DB, Greule M, Ott U, Sattler T, Schöler HF, Hamilton JTG (2014) Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci Rep 4:7010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Navarro-González R, Vargas E, de la Rosa J, Raga AC, McKay CP (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010

    Article  Google Scholar 

  257. Glavin DP, Freissinet C, Miller KE, Eigenbrode JL, Brunner AE, Buch A, Sutter B, Archer PD Jr, Atreya SK, Brinckerhoff WB, Cabane M, Coll P, Conrad PG, Coscia D, Dworkin JP, Franz HB, Grotzinger JP, Leshin LA, Martin MG, McKay C, Ming DW, Navarro-González R, Pavlov A, Steele A, Summons RE, Szopa C, Teinturier S, Mahaffy PR (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest Aeolian deposit in Gale Crater. J Geophys Res: Planets 118:1955

    Article  CAS  Google Scholar 

  258. Fernanders MS, Gough RV, Chevrier VF, Schiffman ZR, Ushijima SB, Martinez GM, Rivera-Valentín EG, Archer PD Jr, Clark JV, Sutter B, Tolbert MA (2022) Water uptake by chlorate salts under Mars-relevant conditions. Icarus 371:114715

    Article  CAS  Google Scholar 

  259. Fayolle EC, Öberg KI, Jørgensen JK, Altwegg K, Calcutt H, Müller HSP, Rubin M, van der Wiel MHD, Bjerkeli P, Bourke TL, Coutens A, van Dishoeck EF, Drozdovskaya MN, Garrod RT, Ligterink NFW, Persson MV, Wampfler SF, ROSINA Team (2017) Protostellar and cometary detections of organohalogens. Nat Astron 1:703

    Article  Google Scholar 

  260. Jordan A, Stoy P, Sneddon HF (2021) Chlorinated solvents: their advantages, disadvantages, and alternatives in organic and medicinal chemistry. Chem Rev 121:1582

    Article  CAS  PubMed  Google Scholar 

  261. Peng P, Lu Y, Bosma TNP, Nijenhuis I, Nijsse B, Shetty SA, Ruecker A, Umanets A, Ramiro-Garcia J, Kappler A, Sipkema D, Smidt H, Atashgahi S (2020) Metagenomic- and cultivation-based exploration of anaerobic chloroform biotransformation in hypersaline sediments as natural source of chloromethanes. Microorganisms 8:665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Colomb A, Yassaa N, Williams J, Peeken I, Lochte K (2008) Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J Environ Monit 10:325

    Article  CAS  PubMed  Google Scholar 

  263. Andrews S (2014) Review of the chlorine revolution: water disinfection and the fight to save lives. J Chem Educ 91:466

    Article  CAS  Google Scholar 

  264. Matucha M, Gryndler M, Schröder P, Forczek ST, Uhlířová H, Fuksová K, Rohlenová J (2007) Chloroacetic acids—degradation intermediates of organic matter in forest soil. Soil Biol Biochem 39:382

    Article  CAS  Google Scholar 

  265. Albers CN, Jacobsen OS, Flores EMM, Pereira JSF, Laier T (2011) Spatial variation in natural formation of chloroform in the soils of four coniferous forests. Biogeochemistry 103:317

    Article  CAS  Google Scholar 

  266. Albers CN, Laier T, Jacobsen OS (2010) Formation, fate and leaching of chloroform in coniferous forest soils. Appl Geochem 25:1525

    Article  CAS  Google Scholar 

  267. Hunkeler D, Laier T, Breider F, Jacobsen OS (2012) Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes. Environ Sci Technol 46:6096

    Article  CAS  PubMed  Google Scholar 

  268. Grøn C, Laturnus F, Jacobsen OS (2012) Reliable test methods for the determination of a natural production of chloroform in soils. Environ Monit Assess 184:1231

    Article  PubMed  Google Scholar 

  269. Wang JJ, Ng TW, Zhang Q, Yang XB, Dahlgren RA, Chow AT, Wong PK (2012) Technical note: Reactivity of C1 and C2 organohalogens formation—from plant litter to bacteria. Biogeosciences 9:3721

    Article  CAS  Google Scholar 

  270. Breider F, Hunkeler D (2014) Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis. Geochim Cosmochim Acta 125:85

    Article  CAS  Google Scholar 

  271. Weigold P, Ruecker A, Jochmann M, Barajas XLO, Lege S, Zwiener C, Kappler A, Behrens S (2015) Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021. Lett Appl Microbiol 61:346

    Article  CAS  PubMed  Google Scholar 

  272. Forczek ST, Pavlík M, Holík J, Rederer L, Ferenčík M (2016) The natural chlorine cycle—formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs. Chemosphere 157:190

    Article  CAS  PubMed  Google Scholar 

  273. Johnsen AR, Jacobsen OS, Gudmundsson L, Albers CN (2016) Chloroform emissions from arctic and subarctic ecosystems in Greenland and Northern Scandinavia. Biogeochemistry 130:53

    Article  CAS  Google Scholar 

  274. Albers CN, Jacobsen OS, Flores EMM, Johnsen AR (2017) Arctic and subarctic natural soils emit chloroform and brominated analogues by alkaline hydrolysis of trihaloacetyl compounds. Environ Sci Technol 51:6131

    Article  CAS  PubMed  Google Scholar 

  275. Boyce SD, Hornig JF (1983) Reaction processes effecting the analysis of chloroform by direct aqueous injection gas chromatography. Water Res 17:685

    Article  CAS  Google Scholar 

  276. Breider F, Albers CN, Hunkeler D (2013) Assessing the role of trichloroacetyl-containing compounds in the natural formation of chloroform using stable carbon isotopes analysis. Chemosphere 90:441

    Article  CAS  PubMed  Google Scholar 

  277. Lim Y-K, Phang S-M, Sturges WT, Malin G, Rahman NBA (2018) Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture. J Appl Phycol 30:341

    Article  CAS  Google Scholar 

  278. Orlikowska A, Stolle C, Pollehne F, Jürgens K, Schulz-Bull DE (2015) Dynamics of halocarbons in coastal surface waters during short term mesocosm experiments. Environ Chem 12:515

    Article  CAS  Google Scholar 

  279. Bahlmann E, Stolle C, Weinberg I, Seifert R, Schulz-Bull DE, Michaelis W (2015) Isotopic composition of polyhalomethanes from marine macrophytes—systematic effects of the halogen substituents on isotopic composition. Environ Chem 12:504

    Article  CAS  Google Scholar 

  280. Hellén H, Hakola H, Pystynen K-H, Rinne J, Haapanala S (2006) C2–C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 3:167

    Article  Google Scholar 

  281. Forczek ST, Laturnus F, Doležalová J, Holík J, Wimmer Z (2015) Emission of climate relevant volatile organochlorines by plants occurring in temperate forests. Plant Soil Environ 61:103

    Article  CAS  Google Scholar 

  282. Rhew RC, Teh YA, Abel T, Atwood A, Mazéas O (2008) Chloroform emissions from the Alaskan Arctic tundra. Geophys Res Lett 35:L21811

    Article  Google Scholar 

  283. Rhew RC, Miller BR, Weiss RF (2008) Chloroform, carbon tetrachloride and methyl chloroform fluxes in Southern California ecosystems. Atmos Environ 42:7135

    Article  CAS  Google Scholar 

  284. Weissflog L, Elansky N, Putz E, Krueger G, Lange CA, Lisitzina L, Pfennigsdorff A (2004) Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part II: salt lakes as novel sources of natural chlorohydrocarbons. Atmos Environ 38:4197

    Article  CAS  Google Scholar 

  285. Breider F, Albers CN (2015) Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: a critical review. Chemosphere 119:145

    Article  CAS  PubMed  Google Scholar 

  286. Evans MV, Sumner AJ, Daly RA, Luek JL, Plata DL, Wrighton KC, Mouser PJ (2019) Hydraulically fractured natural-gas well microbial communities contain genomic halogenation and dehalogenation potential. Environ Sci Technol Lett 6:585

    Article  CAS  Google Scholar 

  287. Khalil MAK, Rasmussen RA (1999) Atmospheric chloroform. Atmos Environ 33:1151

    Article  CAS  Google Scholar 

  288. Xiao X, Prinn RG, Fraser PJ, Weiss RF, Simmonds PG, O’Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Golombek A, Porter LW, Butler JH, Elkins JW, Dutton GS, Hall BD, Steele LP, Wang RHJ, Cunnold DM (2010) Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmos Chem Phys 10:10421

    Article  CAS  Google Scholar 

  289. Movafeghi A, Djozan DJ, Razeghi JA, Baheri T (2010) Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Nat Prod Res 24:703

    Google Scholar 

  290. Tulipani S, Schwark L, Holman AI, Bush RT, Grice K (2017) 1-Chloro-n-alkanes: potential mangrove and saltmarsh vegetation biomarkers. Org Geochem 107:54

    Article  CAS  Google Scholar 

  291. Zhang Z, Metzger P, Sachs JP (2013) Unprecedented long chain 1-chloroalkenes and 1-chloroalkanes in the Holocene sediments of Lake El Junco. Galápagos Islands. Org Geochem 57:1

    Article  CAS  Google Scholar 

  292. Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eigenbrode JL, Summons RE, Brunner AE, Buch A, Szopa C, Archer PD Jr, Franz HB, Atreya SK, Brinkerhoff WB, Cabane M, Coll P, Conrad PG, Des Marais DJ, Dworkin JP, Fairén AG, François P, Grotzinger JP, Kashyap S, ten Kate IL, Leshin LA, Malespin CA, Martin MG, Martin-Torres FJ, McAdam AC, Ming DW, Navarro-González R, Pavlov AA, Prats BD, Squyres SW, Steele A, Stern JC, Sumners DY, Sutter B, Zorzano M-P, MSL Science Team (2015) Organic molecules in the sheepbed mudstone, Gale Crater, Mars. J Geophys Res: Planets 120:495

    Google Scholar 

  293. Butler JH (2000) Better budgets for methyl halides? Nature 403:260

    Article  CAS  PubMed  Google Scholar 

  294. Singh ON, Fabian P (1999) Reactive bromine compounds. In: Fabian P, Singh ON (eds) Reactive halogen compounds in the atmosphere. The handbook of environmental chemistry, vol 4, part E. Springer-Verlag, Berlin Heidelberg, p 1

    Google Scholar 

  295. Hu L, Yvon-Lewis S, Liu Y, Bianchi TS (2012) The ocean in near equilibrium with atmospheric methyl bromide. Global Biogeochem Cycl 26:GB3016

    Google Scholar 

  296. Sa’undsdóttir S, Matrai PA (1998) Biological production of methyl bromide by cultures of marine phytoplankton. Limnol Oceanogr 43:81

    Article  Google Scholar 

  297. Moore RM, Webb M (1996) The relationship between methyl bromide and chlorophyll α in high latitude ocean waters. Geophys Res Lett 23:2951

    Article  CAS  Google Scholar 

  298. Méndez-Díaz JD, Shimabuku KK, Ma J, Enumah ZO, Pignatello JJ, Mitch WA, Dodd MC (2014) Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ Sci Technol 48:7418

    Article  PubMed  Google Scholar 

  299. Wishkerman A, Gebhardt S, McRoberts CW, Hamilton JTG, Williams J, Keppler F (2008) Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ Sci Technol 42:6837

    Article  CAS  PubMed  Google Scholar 

  300. Carpenter LJ, Liss, PS, Penkett SA (2003) Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans. J Geophys Res 108:ACH1-1

    Google Scholar 

  301. Liu Y, Yvon-Lewis SA, Hu L, Salisbury JE, O’Hern JE (2011) CHBr3, CH2Br2, and CHClBr2 in U.S. coastal waters during the Gulf of Mexico and east coast Carbon Cruise. J Geophys Res 116:C10004

    Google Scholar 

  302. Hughes C, Johnson M, Utting R, Turner S, Malin G, Clarke A, Liss PS (2013) Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic Peninsula. Mar Chem 151:35

    Article  CAS  Google Scholar 

  303. Liu Y, Yvon-Lewis SA, Thornton DCO, Campbell L, Bianchi TS (2013) Spatial distribution of brominated very short-lived substances in the eastern Pacific. J Geophys Res Oceans 118:2318

    Article  CAS  Google Scholar 

  304. Hepach H, Quack B, Ziska F, Fuhlbrügge S, Atlas EL, Krüger K, Peeken I, Wallace DWR (2014) Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic. Atmos Chem Phys 14:1255

    Article  Google Scholar 

  305. Hepach H, Quack B, Tegtmeier S, Engel A, Bracher A, Fuhlbrügge S, Galgani L, Atlas EL, Lampel J, Frieβ U, Krüger K (2016) Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source. Atmos Chem Phys 16:12219

    Google Scholar 

  306. Feng L, Palmer PI, Butler R, Andrews SJ, Atlas EL, Carpenter LJ, Donets V, Harris NRP, Salawitch RJ, Pan LL, Schauffler SM (2018) Surface fluxes of bromoform and dibromomethane over the tropical western Pacific inferred from airborne in situ measurements. Atmos Chem Phys 18:14787

    Article  CAS  Google Scholar 

  307. Liu Y, Yvon-Lewis SA, Thornton DCO, Butler JH, Bianchi TS, Campbell L, Hu L, Smith RW (2013) Spatial and temporal distributions of bromoform and dibromomethane in the Atlantic Ocean and their relationship with photosynthetic biomass. J Geophys Res: Oceans 118:3950

    Article  CAS  Google Scholar 

  308. Leedham EC, Hughes C, Keng FSL, Phang S-M, Malin G, Sturges WT (2013) Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae. Biogeosciences 10:3615

    Article  Google Scholar 

  309. Elvidge ECL, Phang S-M, Sturges WT, Malin G (2015) The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae. Biogeosciences 12:387

    Article  Google Scholar 

  310. Mithoo-Singh PK, Keng FS-L, Phang S-M, Elvidge ECL, Sturges WT, Malin G, Rahman NA (2017) Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH. PeerJ 5:e2918

    Article  PubMed  PubMed Central  Google Scholar 

  311. Lim Y-K, Keng FS-L, Phang S-M, Sturges WT, Malin G, Rahman NA (2019) Effect of irradiance on the emission of short-lived halocarbons from three common tropical marine microalgae. PeerJ 7:e6758

    Article  PubMed  PubMed Central  Google Scholar 

  312. Tegtmeier S, Ziska F, Pisso I, Quack B, Velders GJM, Yang X, Krüger K (2015) Oceanic bromoform emissions weighted by their ozone depletion potential. Atmos Chem Phys 15:13647

    Article  CAS  Google Scholar 

  313. Carpenter LJ (2003) Iodine in the marine boundary layer. Chem Rev 103:4953

    Article  CAS  PubMed  Google Scholar 

  314. Moore RM, Tokarczyk R (1992) Chloro-iodomethane in N. Atlantic waters: a potentially significant source of atmospheric iodine. Geophys Res Lett 19:1779

    Google Scholar 

  315. Campos MLAM, Nightingale PD, Jickells TD (1996) A comparison of methyl iodide emissions from seawater and wet depositional fluxes of iodine over the southern North Sea. Tellus 48B:106

    Article  CAS  Google Scholar 

  316. Tegtmeier S, Krüger K, Quack B, Atlas E, Blake DR, Boenisch H, Engel A, Hepach H, Hossaini R, Navarro MA, Raimund S, Sala S, Shi Q, Ziska F (2013) The contribution of oceanic methyl iodide to stratospheric iodine. Atmos Chem Phys 13:11869

    Article  Google Scholar 

  317. Manley SL, de la Cuesta JL (1997) Methyl iodide production from marine phytoplankton cultures. Limnol Oceanogr 42:142

    Article  CAS  Google Scholar 

  318. Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Allard S, Gallard H (2013) Abiotic formation of methyl iodide on synthetic birnessite: a mechanistic study. Sci Total Environ 463–464:169

    Article  PubMed  Google Scholar 

  320. Keppler F, Borchers R, Elsner P, Fahimi I, Pracht J, Schöler HF (2003) Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere 52:477

    Article  CAS  PubMed  Google Scholar 

  321. Amachi S, Kasahara M, Hanada S, Kamagata Y, Shinoyama H, Fujii T, Muramatsu Y (2003) Microbial participation in iodine volatilization from soils. Environ Sci Technol 37:3885

    Article  CAS  PubMed  Google Scholar 

  322. Sive BC, Varner RK, Mao H, Blake DR, Wingenter OW, Talbot R (2007) A large terrestrial source of methyl iodide. Geophys Res Lett 34:L17808

    Article  Google Scholar 

  323. Martino M, Mills GP, Woeltjen J, Liss PS (2009) A new source of volatile organoiodine compounds in surface seawater. Geophys Res Lett 36:L01609

    Article  Google Scholar 

  324. Jones CE, Carpenter LJ (2005) Solar photolysis of CH2I2, CH2ICI, and CH2IBr in water, saltwater, and seawater. Environ Sci Technol 39:6130

    Article  CAS  PubMed  Google Scholar 

  325. Christof O, Seifert R, Michaelis W (2002) Volatile halogenated organic compounds distribution in a coastal salt marsh in Northern Germany. Goldschmidt Conf Abstr: A141

    Google Scholar 

  326. Anke T, Kupka J, Schramm G, Steglich W (1980) Antibiotics from basidiomycetes. X. Scorodonin, a new antibacterial and antifungal metabolite from Marasmius scorodonius (Fr.) Fr. J Antibiot 33:463

    Google Scholar 

  327. Zhang Y, Wu Y (2010) An elimination approach to the synthesis of (+)-scorodonin. Chin J Chem 28:1635

    Article  CAS  Google Scholar 

  328. Jian Y-J, Wu Y (2010) Synthesis of the structure proposed for the natural allenic antibiotic scorodonin. Org Biomol Chem 8:1905

    Article  CAS  PubMed  Google Scholar 

  329. Wu G, Yao Y, Li G, Zhang X, Qian H, Ma S (2022) Enantioselective allenation of terminal alkynes catalyzed by copper halides of mixed oxidation states and its application to the total synthesis of scorodonin. Angew Chem Int Ed 61:e202112427

    CAS  Google Scholar 

  330. Wang S, Chen R-Y, Yu S-S, Yu D-Q (2003) Uvamalols D-G: novel polyoxygenated seco-cyclohexenes from the roots of Uvaria macrophylla. J Asian Nat Prod Res 5:17

    Article  CAS  PubMed  Google Scholar 

  331. Macabeo APG, Letada AG, Budde S, Faderl C, Dahse H-M, Franzblau SG, Alejandro GJD, Pierens GK, Garson MJ (2017) Antitubercular and cytotoxic chlorinated seco-cyclohexenes from Uvaria alba. J Nat Prod 80:3319

    Article  CAS  PubMed  Google Scholar 

  332. Schock TB, Huncik K, Beauchesne KR, Villareal TA, Moeller PDR (2011) Identification of trichotoxin, a novel chlorinated compound associated with the bloom forming cyanobacterium, Trichodesmium thiebautii. Environ Sci Technol 45:7503

    Article  CAS  PubMed  Google Scholar 

  333. El-Gendy MMA, Hawas UW, Jaspars M (2008) Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J Antibiot 61:379

    Google Scholar 

  334. Tang X-X, Liu S-Z, Yan X, Tang B-W, Fang M-J, Wang X-M, Wu Z, Qiu Y-K (2019) Two new cytotoxic compounds from a deep-sea Penicillium citreonigrum XT20-134. Mar Drugs 17:509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Citron CA, Rabe P, Dickschat JS (2012) The scent of bacteria: headspace analysis for the discovery of natural products. J Nat Prod 75:1765

    Article  CAS  PubMed  Google Scholar 

  336. Chen W, Weisburger JH, Flala ES, Carmella SG, Chen D, Spratt TE, Hecht SS (1995) Unexpected mutagen in fish. Nature 374:599

    Article  CAS  PubMed  Google Scholar 

  337. Vanelslander B, Paul C, Grueneberg J, Prince EK, Gillard J, Sabbe K, Pohnert G, Vyverman W (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc Natl Acad Sci USA 109:2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Prithiviraj B, Vikram A, Kushalappa AC, Yaylayan V (2004) Volatile metabolite profiling for the discrimination of onion bulbs infected by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii. Eur J Plant Pathol 110:371

    Google Scholar 

  339. Wang J, Han N, Wang Y, Wang Y, Liu Z, Wang Y, Yin J (2014) Three alkaloids from Reineckia carnea herba and their antitussive and expectorant activities. Nat Prod Res 28:1306

    Article  CAS  PubMed  Google Scholar 

  340. Rosy BA, Rosakutty PJ (2012) GC-MS analysis of methanol wild plant and callus extracts from three Cissus species, family Vitaceae. J Chem Pharm Res 4:3420

    CAS  Google Scholar 

  341. Shaala LA, Youssef DTA (2020) Pseudoceratonic acid and moloka’iamine derivatives from the Red Sea Verongiid sponge Pseudoceratina arabica. Mar Drugs 18:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Sattler T, Sörgel M, Wittmer J, Bourtsoukidis E, Krause T, Atlas E, Benk S, Bleicher S, Kamilli K, Ofner J, Kopetzky R, Held A, Palm W-U, Williams J, Zetzsch C, Schöler H-F (2019) Natural formation of chloro- and bromoacetone in Salt Lakes of Western Australia. Atmosphere 10:663

    Article  CAS  Google Scholar 

  343. Scott BF, Mactavish D, Spencer C, Strachan WMJ, Muir DCG (2000) Haloacetic acids in Canadian lake waters and precipitation. Environ Sci Technol 34:4266

    Article  CAS  Google Scholar 

  344. Berg M, Müller SR, Mühlemann J, Wiedmer A, Schwarzenbach RP (2000) Concentrations and mass fluxes of chloroacetic acids and trifluoroacetic acid in rain and natural waters in Switzerland. Environ Sci Technol 34:2675

    Article  CAS  Google Scholar 

  345. Scott BF, Spencer C, Marvin CH, Mactavish DC, Muir DCG (2002) Distribution of haloacetic acids in the water columns of the Laurentian Great Lakes and Lake Malawi. Environ Sci Technol 36:1893

    Article  CAS  PubMed  Google Scholar 

  346. Weissflog L, Pfennigsdorff A, Martinez-Pastur G, Puliafito E, Figueroa D, Elansky N, Nikonov V, Putz E, Krüger G, Kellner K (2001) Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part I. Its formation, uptake and geographical distribution. Atmos Environ 35:4511

    Google Scholar 

  347. Albers CN, Hansen PE, Jacobsen OS (2010) Trichloromethyl compounds—natural background concentrations and fates within and below coniferous forests. Sci Total Environ 408:6223

    Article  CAS  PubMed  Google Scholar 

  348. Heal MR, Dickey CA, Heal KV, Stidson RT, Matucha M, Cape JN (2010) The production and degradation of trichloroacetic acid in soil: results from in situ soil column experiments. Chemosphere 79:401

    Article  CAS  PubMed  Google Scholar 

  349. Albers CN, Hansen PE, Jacobsen OS (2010) Methodological problems in determining TCAA in soils—the discovery of novel natural trichloroacetyl containing compounds and their interference with a common method for determining TCAA in soil and vegetation. J Environ Monit 12:672

    Article  CAS  PubMed  Google Scholar 

  350. Matucha M, Gryndler M, Forczek ST, Uhlířová H, Fuksová K, Schröder P (2003) Chloroacetic acids in environmental processes. Environ Chem Lett 1:127

    Article  CAS  Google Scholar 

  351. Von Sydow LM, Nielsen AT, Grimvall AB, Borén HB (2000) Chloro- and bromoacetates in natural archives of firn from Antarctica. Environ Sci Technol 34:239

    Article  Google Scholar 

  352. Yoshino T, Jaseem V (2018) Fluorine solubility in bridgmanite: a potential fluorine reservoir in the Earth’s mantle. Earth Planet Sci Lett 504:106

    Article  CAS  Google Scholar 

  353. Teuscher F, Lin W, Wray V, Edrada R, Padmakumar K, Proksch P, Ebel R (2006) Two new cyclopentanoids from the endophytic fungus Aspergillus sydowii associated with the marine alga Acanthophora spicifera. Nat Prod Commun 1:927

    CAS  Google Scholar 

  354. Song Y-P, Miao F-P, Fang S-T, Yin X-L, Ji N-Y (2018) Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma assperellum cf44-2. Mar Drugs 16:266

    Article  PubMed  PubMed Central  Google Scholar 

  355. Qiu P, Ding L, Su D, He S (2018) A new cyclopentenone derivative from the sponge-associated fungus Hypocrea koningii. Chem Nat Comp 54:631

    Article  CAS  Google Scholar 

  356. Ferreira ELF, Williams DE, Ióca LP, Morais-Urano RP, Santos MFC, Patrick BO, Elias LM, Lira SP, Ferreira AG, Passarini MRZ, Sette LD, Andersen RJ, Berlinck RGS (2015) Structure and biogenesis of roussoellatide, a dichlorinated polyketide from the marine-derived fungus Roussoella sp. DLM33. Org Lett 17:5152

    Google Scholar 

  357. Elsebai MF, Ghabbour HA, Legrave N, Fontaine-Vive F, Wehiri M (2018) New bioactive chlorinated cyclopentene derivatives from the marine-derived fungus Phoma sp. Med Chem Res 27:1885

    Article  CAS  Google Scholar 

  358. Honmura Y, Uesugi S, Maeda H, Tanaka K, Nehira T, Kimura K, Okazaki M, Hashimoto M (2016) Isolation, absolute structures, and biological properties of cyclohelminthols I-IV from Helminthosporium velutinum yone96. Tetrahedron 72:1400

    Article  CAS  Google Scholar 

  359. Inose K, Tanaka K, Koshino H, Hashimoto M (2019) Cyclopericodiol and new chlorinated melleins isolated from Periconia macrospinosa KT3863. Tetrahedron 75:130470

    Article  CAS  Google Scholar 

  360. Matsumoto T, Hosoya T, Tomoda H, Shiro M, Shigemori H (2011) Palmaenones A and B, two new antimicrobial chlorinated cyclopentenones from discomycete Lachnum palmae. Chem Pharm Bull 59:1559

    Article  CAS  Google Scholar 

  361. Li X, Zhang D, Lee U, Li X, Cheng J, Zhu W, Jung JH, Choi HD, Son BW (2007) Bromomyrothenone B and botrytinone, cyclopentenone derivatives from a marine isolate of the fungus Botrytis. J Nat Prod 70:307

    Article  CAS  PubMed  Google Scholar 

  362. Greff S, Zubia M, Genta-Jouve G, Massi L, Perez T, Thomas OP (2014) Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J Nat Prod 77:1150

    Article  CAS  PubMed  Google Scholar 

  363. Tran TD, Pham NB, Quinn RJ (2016) Unique polybrominated hydrocarbons from the Australian endemic red alga Ptilonia australasica. J Nat Prod 79:570

    Article  CAS  PubMed  Google Scholar 

  364. Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N, Sihanonta P, Chaichit N (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp.. J Nat Prod 70:1620

    Article  CAS  PubMed  Google Scholar 

  365. Zhang P-L, Han Y, Zhang L-T, Wang X-L, Shen T, Ren D, Lou H, Wang X-N (2017) Botrysphones A-C and botrysphins A–F, triketides and diterpenoids from the fungus Botrysphaeria laricina. J Nat Prod 80:1791

    Article  CAS  PubMed  Google Scholar 

  366. Evidente A, Maddau L, Scanu B, Andolfi A, Masi M, Motta A, Tuzi A (2011) Sphaeropsidones, phytotoxic dimedone methyl ethers produced by Diplodia cupressi: a structure–activity relationship study. J Nat Prod 74:757

    Article  CAS  PubMed  Google Scholar 

  367. Auranwiwat C, Wongsomboon P, Thaima T, Rattanajak R, Kamchonwongpaisan S, Willis AC, Laphookhieo S, Pyne SG, Limtharakul T (2019) Polyoxygenated cyclohexenes and their chlorinated derivatives from the leaves of Uvaria cherrevensis. J Nat Prod 82:101

    Article  CAS  PubMed  Google Scholar 

  368. Maeda G, van der Wal J, Gupta AK, Munissi JJE, Orthaber A, Sunnerhagen P, Nyandoro SS, Erdélyi M (2020) Oxygenated cyclohexene derivatives and other constituents from the roots of Monathotaxis trichocarpa. J Nat Prod 83:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Nyandoro SS, Munissi JJE, Gruhonjic A, Duffy S, Pan F, Puttreddy R, Holleran JP, Fitzpatrick PA, Pelletier J, Avery VM, Rissanen K, Erdélyi M (2017) Polyoxygenated cyclohexenes and other constituents of Cleistochlamys kirkii leaves. J Nat Prod 80:114

    Article  CAS  PubMed  Google Scholar 

  370. Ali T, Inagaki M, Chai H, Wieboldt T, Rapplye C, Rakotondraibe LH (2017) Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the liverwort Trichocolea tomentella. J Nat Prod 80:1397

    Article  CAS  PubMed  Google Scholar 

  371. Piovano M, Garbarino J, Tomassini L, Nicoletti M (2009) Cyclohexanones from Mimulus glabratus and M. luteus. Nat Prod Commun 4:1637

    Google Scholar 

  372. Okanya PW, Mohr KI, Gerth K, Steinmetz H, Huch V, Jansen R, Müller R (2012) Hyaladione, an S-methyl cyclohexadiene-dione from Hyalangium minutum. J Nat Prod 75:768

    Article  CAS  PubMed  Google Scholar 

  373. Yamada T, Iritani M, Ohishi H, Tanaka K, Minoura K, Doi M, Numata A (2007) Pericosines, antitumour metabolites from the sea hare-derived fungus Periconia byssoides. Structures and biological activities. Org Biomol Chem 5:3979

    Google Scholar 

  374. Usami Y, Mizuki K, Ichikawa H, Arimoto M (2008) Determination of the absolute configuration of the cytotoxic natural product pericosine D. Tetrahedron: Asymmetry 19:1461

    Google Scholar 

  375. Usami Y, Mizuki K (2011) Stereostructure reassignment and determination of the absolute configuration of pericosine Do by a synthetic approach. J Nat Prod 74:877

    Article  CAS  PubMed  Google Scholar 

  376. Mizuki K, Iwahashi K, Murata N, Ikeda M, Nakai Y, Yoneyama H, Harusawa S, Usami Y (2014) Synthesis of marine natural product (–)-pericosine E. Org Lett 16:3760

    Article  CAS  PubMed  Google Scholar 

  377. Kong F, Zhao C, Hao J, Wang C, Wang W, Huang X, Zhu W (2015) New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Adv 5:68852

    Google Scholar 

  378. Nenkep VN, Yun K, Li Y, Choi HD, Kang JS, Son BW (2010) New production of haloquinones, bromochlorogentisylquinones A and B, by a halide salt from a marine isolate of the fungus Phoma herbarum. J Antibiot 63:199

    Article  CAS  Google Scholar 

  379. Zhang X, Shu C, Li Q, Lian X-Y, Zhang Z (2019) Novel cyclohexene and benzamide derivatives from marine-associated Streptomyces sp. ZZ502. Nat Prod Res 33:2151

    Google Scholar 

  380. Suciati FJA, Lambert LK, Pierens GK, Bernhardt PV, Garson MJ (2013) Secondary metabolites of the sponge-derived fungus Acremonium persicinum. J Nat Prod 76:1432

    Article  CAS  PubMed  Google Scholar 

  381. Kim S-H, Shin Y, Lee S-H, Oh K-B, Lee SK, Shin J, Oh D-C (2015) Salternamides A–D from a halophilic Streptomyces sp. actinobacterium. J Nat Prod 78:836

    Google Scholar 

  382. Bach D-H, Kim S-H, Hong J-Y, Park HJ, Oh D-C, Lee SK (2015) Salternamide A suppresses hypoxia-induced accumulation of HIF-1α and induces apoptosis in human colorectal cancer cells. Mar Drugs 13:6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Yi X-X, Chen Y, Xie W-P, Xu M-B, Chen Y-N, Gao C-H, Huang R-M (2014) Four new jacaranone analogs from the fruits of a Beibu Gulf mangrove Avicennia marina. Mar Drugs 12:2515

    Article  PubMed  PubMed Central  Google Scholar 

  384. Bunyapaiboonsri T, Yoiprommarat S, Intereya K, Rachtawee P, Hywel-Jones NL, Isaka M (2009) Isariotins E and F, spirocyclic and bicyclic hemiacetals from the entomopathogenic fungus Isaria tenuipes BCC 12625. J Nat Prod 72:756

    Article  CAS  PubMed  Google Scholar 

  385. Cha JY, Huang Y, Pettus TRR (2009) Total synthesis of TK-57-164A, isariotin F, and their putative progenitor isariotin E. Angew Chem Int Ed 48:9519

    Article  CAS  Google Scholar 

  386. Zhao Y, Liu D, Proksch P, Zhou D, Lin W (2018) Truncateols O-V, further isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with antiviral activities. Phytochemistry 155:61

    Article  CAS  PubMed  Google Scholar 

  387. Liu D-H, Sun Y-Z, Kurtán T, Mándi A, Tang H, Li J, Su L, Zhuang C-L, Liu Z-Y, Zhang W (2019) Osteoclastogenesis regulation metabolites from the coral-associated fungus Pseudallescheria boydii TW-1024-3. J Nat Prod 82:1274

    Article  CAS  PubMed  Google Scholar 

  388. Li D, Chen L, Zhu T, Kurtán T, Mándi A, Zhao Z, Li J, Gu Q (2011) Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 67:7913

    Article  CAS  Google Scholar 

  389. Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315

    Article  CAS  Google Scholar 

  390. Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755

    Article  CAS  PubMed  Google Scholar 

  391. Winter JM, Cascio D, Dietrich D, Sato M, Watanabe K, Sawaya MR, Vederas JC, Tang Y (2015) Biochemical and structural basis for controlling chemical modularity in fungal polyketide biosynthesis. J Am Chem Soc 137:9885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Pavesi C, Flon V, Mann S, Leleu S, Prado S, Franck X (2021) Biosynthesis of azaphilones: a review. Nat Prod Rep 38:1058

    Article  CAS  PubMed  Google Scholar 

  393. Williams K, Greco C, Bailey AM, Willis CL (2021) Core steps to the azaphilone family of fungal natural products. ChemBioChem 22:3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Winter JM, Sato M, Sugimoto S, Chiou G, Garg NK, Tang Y, Watanabe K (2012) Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in Chaetomium globosum reveal dual functions of an iterative highly-reducing polyketide synthase. J Am Chem Soc 134:17900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Sato M, Winter JM, Kishimoto S, Noguchi H, Tang Y, Watanabe K (2016) Combinatorial generation of chemical diversity by redox enzymes in chaetoviridin biosynthesis. Org Lett 18:1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Makrerougras M, Coffinier R, Oger S, Chevalier A, Sabot C, Franck X (2017) Total synthesis and structural revision of chaetoviridins A. Org Lett 19:4146

    Article  CAS  PubMed  Google Scholar 

  397. Kingsland SR, Barrow RA (2009) Identification of chaetoviridin E from a cultured microfungus, Chaetomium sp. and structural reassignment of chaetoviridins B and D. Aust J Chem 62:269

    Google Scholar 

  398. Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625

    Google Scholar 

  399. Zhang Q, Li H-Q, Zong S-C, Gao J-M, Zhang A-L (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev Med Chem 12:127

    Article  PubMed  Google Scholar 

  400. Chen G-D, Li Y-J, Gao H, Chen Y, Li X-X, Li J, Guo L-D, Cen Y-Z, Yao X-S (2012) New azaphilones and chlorinated phenolic glycosides from Chaetomium elatum with caspase-3 inhibitory activity. Planta Med 78:1683

    Article  CAS  PubMed  Google Scholar 

  401. Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P (2008) Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron 64:9636

    Google Scholar 

  402. Borges WS, Mancilla G, Guimarães DO, Durán-Patrón R, Collado IG, Pupo MT (2011) Azaphilones from the endophyte Chaetomium globosum. J Nat Prod 74:1182

    Article  CAS  PubMed  Google Scholar 

  403. Borges WS, Mancilla G, Guimarães DO, Durán-Patrón R, Collado IG, Pupo MT (2011) Correction to azaphilones from the endophyte Chaetomium globosum. J Nat Prod 74:2028

    Article  CAS  Google Scholar 

  404. McMullin DR, Sumarah MW, Blackwell BA, Miller JD (2013) New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett 54:568

    Article  CAS  Google Scholar 

  405. Youn UJ, Sripisut T, Park E-J, Kondratyuk TP, Fatima N, Simmons CJ, Wall MM, Sun D, Pezzuto JM, Chang LC (2015) Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg Med Chem Lett 25:4719

    Article  CAS  PubMed  Google Scholar 

  406. Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, Zhang G, Peng J, Gu Q, Zhu T, Li D (2019) New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar Drugs 17:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Wang W, Yang J, Liao Y-Y, Cheng G, Chen J, Cheng X-D, Qin J-J, Shao Z (2020) Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J Nat Prod 83:1157

    Article  CAS  PubMed  Google Scholar 

  408. Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, Gao M, Shao Z, Chen J, Li F (2018) Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar Drugs 16:61

    Google Scholar 

  409. Zhang X-Y, Tan X-M, Yu M, Yang J, Sun B-D, Qin J-C, Guo L-P, Ding G (2021) Bioactive metabolites from the desert plant-associated endophytic fungus Chaetomium globosum (Chaetomiaceae). Phytochemistry 185:112701

    Article  CAS  PubMed  Google Scholar 

  410. Yamada T, Doi M, Shigeta H, Muroga Y, Hosoe S, Numata A, Tanaka R (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192

    Article  CAS  Google Scholar 

  411. Yasuhide M, Yamada T, Numata A, Tanaka R (2008) Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J Antibiot 61:615

    Article  CAS  Google Scholar 

  412. Qin J-C, Zhang Y-M, Gao J-M, Bai M-S, Yang S-X, Laatsch H, Zhang A-L (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19:1572

    Article  CAS  PubMed  Google Scholar 

  413. Yamada T, Yasuhide M, Shigeta H, Numata A, Tanaka R (2009) Absolute stereostructures of chaetomugilins G and H produced by a marine-fish-derived Chaetomium species. J Antibiot 62:353

    Article  CAS  Google Scholar 

  414. Muroga Y, Yamada T, Numata A, Tanaka R (2009) Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65:7580

    CAS  Google Scholar 

  415. Yamada T, Muroga Y, Tanaka R (2009) New azaphilones, seco-chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar Drugs 7:249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Muroga Y, Yamada T, Numata A, Tanaka R (2010) 11- and 4′-Epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv Chim Acta 93:542

    Article  CAS  Google Scholar 

  417. Yamada T, Muroga Y, Jinno M, Kajimoto T, Usami Y, Numata A, Tanaka R (2011) New class azaphilone produced by a marine fish-derived Chaetomium globosum. The stereochemistry and biological activities. Bioorg Med Chem 19:4106

    Google Scholar 

  418. Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R (2012) Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J Antibiot 65:413

    Article  CAS  Google Scholar 

  419. Li X, Tian Y, Yang S, Zhang Y, Qin J (2013) Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1. Bioorg Med Chem Lett 23:2945

    Article  CAS  PubMed  Google Scholar 

  420. Zu W-Y, Tang J-W, Hu K, Zhou Y-F, Gou L-L, Su X-Z, Lei X, Sun H-D, Puno P-T (2021) Chaetolactam A, an azaphilone derivative from the endophytic fungus Chaetomium sp. g1. J Org Chem 86:475

    Google Scholar 

  421. Chen C, Wang J, Zhu H, Wang J, Xue Y, Wei G, Guo Y, Tan D, Zhang J, Yin C, Zhang Y (2016) Chaephilones A and B, two new azaphilone derivatives isolated from Chaetomium globosum. Chem Biodivers 13:422

    Article  CAS  Google Scholar 

  422. Gao W, Chai C, Li X-N, Sun W, Li F, Chen C, Wang J, Zhu H, Wang Y, Hu Z, Zhang Y (2020) Two anti-inflammatory chlorinated azaphilones from Chaetomium globosum TW1-1 cultured with 1-methyl-l-tryptophan and structure revision of chaephilone C. Tetrahedron Lett 61:151516

    Article  CAS  Google Scholar 

  423. Zhou S, Wang M, Zhao H, Huang Y, Lin Y, Tan G, Chen S (2016) Penicilazaphilone C, a new antineoplastic and antibacterial azaphilone from the marine fungus Penicillium sclerotiorum. Arch Pharm Res 39:1621

    Article  CAS  PubMed  Google Scholar 

  424. Wang C-Y, Hao J-D, Ning X-Y, Wu J-S, Zhao D-L, Kong C-J, Shao C-L, Wang C-Y (2018) Penicilazaphilones D and E: two new azaphilones from a sponge-derived strain of the fungus Penicillium sclerotiorum. RSC Adv 8:4348

    Article  CAS  Google Scholar 

  425. Tang J-L, Zhou Z-Y, Yang T, Yao C, Wu L-W, Li G-Y (2019) Azaphilone alkaloids with anti-inflammatory activity from fungus Penicillium sclerotiorum cib-411. J Agric Food Chem 67:2175

    Article  CAS  PubMed  Google Scholar 

  426. Jia Q, Du Y, Wang C, Wang Y, Zhu T, Zhu W (2019) Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum OUCMDZ-3839. Mar Drugs 17:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Liu Z, Qiu P, Liu H, Li J, Shao C, Yan T, Cao W, She Z (2019) Identification of anti-inflammatory polyketides from the coral-derived fungus Penicillium sclerotiorum: in vitro approaches and molecular-modeling. Bioorg Chem 88:102973

    Article  CAS  PubMed  Google Scholar 

  428. Zhang L, Long Y, Lei X, Xu J, Huang Z, She Z, Lin Y, Li J, Liu L (2016) Azaphilones isolated from an alga-derived fungus Penicillium sp. ZJ-27. Phytochem Lett 18:180

    Google Scholar 

  429. Kim SM, Son S, Kim JW, Jeon ES, Ko S-K, Ryoo I-J, Shin K-S, Hirota H, Takahashi S, Osada H, Jang J-H, Ahn JS (2015) Penidioxolanes A and B, 1,3-dioxolane containing azaphilone derivatives from marine-derived Penicillium sp. KCB12C078. Nat Prod Sci 21:231

    Google Scholar 

  430. Hemtasin C, Kanokmedhakul S, Moosophon P, Soytong K, Kanokmedhakul K (2016) Bioactive azaphilones from the fungus Penicillium multicolor CM01. Phytochem Lett 16:56

    Article  CAS  Google Scholar 

  431. Son S, Ko S-K, Kim JW, Lee JK, Jang M, Ryoo I-J, Hwang GJ, Kwon MC, Shin K-S, Futamura Y, Hong Y-S, Oh H, Kim BY, Ueki M, Takahashi S, Osada H, Jang J-H, Ahn JS (2016) Structures and biological activities of azaphilones produced by Penicillium sp. KCB11A109 from a ginseng field. Phytochemistry 122:154

    Google Scholar 

  432. Chen M, Shen N-X, Chen Z-Q, Zhang F-M, Chen Y (2017) Penicilones A-D, anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod 80:1081

    Article  CAS  PubMed  Google Scholar 

  433. Chen M, Zheng Y-Y, Chen Z-Q, Shen N-X, Shen L, Zhang F-M, Zhou X-J, Wang C-Y (2019) NaBr-Induced production of brominated azaphilones and related tricyclic polyketides by the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod 82:368

    Article  CAS  PubMed  Google Scholar 

  434. Frank M, Hartmann R, Plenker M, Mándi A, Kurtán T, Özkaya FC, Müller WEG, Kassack MU, Hamacher A, Lin W, Liu Z, Proksch P (2019) Brominated azaphilones from the sponge-associated fungus Penicillium canescens strain 4.14.6a. J Nat Prod 82:2159

    Google Scholar 

  435. Bang S, Baek JY, Kim GJ, Kim J, Kim S, Deyrup ST, Choi H, Kang KS, Shim SH (2021) Azaphilones from an endophytic Penicillium sp. prevent neuronal cell death via inhibition of MAPKs and reduction of Bax/Bcl-2 ratio. J Nat Prod 84:2226

    Google Scholar 

  436. Jansen N, Ohlendorf B, Erhard A, Bruhn T, Bringmann G, Imhoff JF (2013) Helicusin E, isochromophilone X and isochromophilone XI: new chloroazaphilones produced by the fungus Bartalinia robillardoides strain LF550. Mar Drugs 11:800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Zang L-Y, Wei W, Wang T, Guo Y, Tan R-X, Ge H-M (2012) Isochromophilones from an endophytic fungus Diaporthe sp. Nat Prod Bioprospect 2:117

    Article  CAS  PubMed Central  Google Scholar 

  438. Luo X, Lin X, Tao H, Wang J, Li J, Yang B, Zhou X, Liu Y (2018) Isochromophilones A–F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J Nat Prod 81:934

    Google Scholar 

  439. Guo Q, Dong L, Zang X, Gu Z, He X, Yao L, Cao L, Qiu J, Guan X (2015) A new azaphilone from the entomopathogenic fungus Hypocrella sp. Nat Prod Res 29:2000

    Article  CAS  PubMed  Google Scholar 

  440. Gu B-B, Wu Y, Tang J, Jiao W, Li L, Sun F, Wang S-P, Yang F, Lin H-W (2018) Azaphilone and isocoumarin derivatives from the sponge-derived fungus Eupenicillium sp. 6A-9. Tetrahedron Lett 59:3345

    Google Scholar 

  441. Cao F, Meng Z-H, Mu X, Yue Y-F, Zhu H-J (2019) Absolute configuration of bioactive azaphilones from the marine-derived fungus Pleosporales sp. CF09-1. J Nat Prod 82:386

    Google Scholar 

  442. El-Kashef DH, Youssel FS, Hartmann R, Knedel T-O, Janiak C, Lin W, Reimche I, Teusch N, Liu Z, Proksch P (2020) Azaphilones from the Red Sea fungus Aspergillus falconensis. Mar Drugs 18:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Chen S, Liu Z, Chen Y, Tan H, Liu H, Zhang W (2021) Tersaphilones A-E, cytotoxic chlorinated azaphilones from the deep-sea-derived fungus Phomopsis tersa FS441. Tetrahedron 78:131806

    Article  CAS  Google Scholar 

  444. Cikoš A-M, Jurin M, Čož-Rakovac R, Jokić S, Jerković I (2019) Update on monoterpenes from red macroalgae: isolation, analysis, and bioactivity. Mar Drugs 17:537

    Article  PubMed  PubMed Central  Google Scholar 

  445. Mann MGA, Mkwananzi HB, Antunes EM, Whibley CE, Hendricks DT, Bolton JJ, Beukes DR (2007) Halogenated monoterpene aldehydes from the South African marine alga Plocamium corallorhiza. J Nat Prod 70:596

    Article  CAS  PubMed  Google Scholar 

  446. Afolayan AF, Mann MGA, Lategan CA, Smith PJ, Bolton JJ, Beukes DR (2009) Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry 70:597

    Article  CAS  PubMed  Google Scholar 

  447. Antunes EM, Afolayan AF, Chiwakata MT, Fakee J, Knott MG, Whibley CE, Hendricks DT, Bolton JJ, Beukes DR (2011) Identification and in vitro anti-esophageal cancer activity of a series of halogenated monoterpenes isolated from the South African seaweeds Plocamium suhrii and Plocamium cornutum. Phytochemistry 72:769

    Article  CAS  PubMed  Google Scholar 

  448. Vasconcelos MA, Ferreira WJ, Pereira RC, Cavalcanti DN, Teixeira VL (2010) Chemical constituents from the red alga Plocamium brasiliense (Greville) M. Howe and W.R. Taylor. Biochem Syst Ecol 38:119

    Google Scholar 

  449. Timmers MA, Dias DA, Urban S (2012) Application of HPLC-NMR in the identification of plocamenone and isoplocamenone from the marine red alga Plocamium angustum. Mar Drugs 10:2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Bucher C, Deans RM, Burns NZ (2015) Highly selective synthesis of halomon, plocamenone, and isoplocamenone. J Am Chem Soc 137:12784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Kutateladze AG, Reddy DS (2017) High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to DFT-computed 13C NMR chemical shifts and spin–spin coupling constants. J Org Chem 82:3368

    Article  CAS  PubMed  Google Scholar 

  452. Vogel CV, Pietraszkiewicz H, Sabry OM, Gerwick WH, Valeriote FA, Vanderwal CD (2014) Enantioselective divergent syntheses of several polyhalogenated Plocamium monoterpenes and evaluation of their selectivity for solid tumors. Angew Chem Int Ed 53:12205

    Article  CAS  Google Scholar 

  453. Hu DX, Seidl FJ, Bucher C, Burns NZ (2015) Catalytic chemo-, regio-, and enantioselective bromochlorination of allylic alcohols. J Am Chem Soc 137:3795

    Article  CAS  PubMed  Google Scholar 

  454. Cheng J, Li Y-H, Huang J, Yang Z (2021) Total syntheses of vicinal dichloride monoterpenes enabled by aza-Belluš–Claisen rearrangement. Org Lett 23:8465

    Article  CAS  PubMed  Google Scholar 

  455. Motti CA, Thomas-Hall P. Hagiwara KA, Simmons CJ, Willis R, Wright AD (2014) Accelerated identification of halogenated monoterpenes from Australian specimens of the red algae Plocamium hamatum and Plocamium costatum. J Nat Prod 77:1193

    Google Scholar 

  456. Sabry OMM, Goeger DE, Valeriote FA, Gerwick WH (2017) Cytotoxic halogenated monoterpenes from Plocamium cartilagineum. Nat Prod Res 31:261

    Article  CAS  PubMed  Google Scholar 

  457. Shilling AJ, von Salm JL, Sanchez AR, Kee Y, Amsler CD, McClintock JB, Baker BJ (2019) Anverenes B-E, new polyhalogenated monoterpenes from the Antarctic red alga Plocamium cartilagineum. Mar Drugs 17:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Vetter W, Rosenfelder N, Kraan S, Hiebl J (2008) Structure and origin of the natural halogenated monoterpene MHC-1 and its concentrations in marine mammals and fish. Chemosphere 73:7

    Article  CAS  PubMed  Google Scholar 

  459. Covaci A, Losada S, Roosens L, Vetter W, Santos FJ, Neels H, Storelli A, Storelli MM (2008) Anthropogenic and naturally occurring organobrominated compounds in two deep-sea fish species from the Mediterranean Sea. Environ Sci Technol 42:8654

    Article  CAS  PubMed  Google Scholar 

  460. Vetter W, Haase-Aschoff P, Rosenfelder N, Komarova T, Mueller JF (2009) Determination of halogenated natural products in passive samplers deployed along the Great Barrier Reef, Queensland/Australia. Environ Sci Technol 43:6131

    Article  CAS  PubMed  Google Scholar 

  461. Rosenfelder N, Vetter W (2012) Stable carbon isotope composition (δ13C values) of the halogenated monoterpene MHC-1 as found in fish and seaweed from different marine regions. J Environ Monit 14:845

    Article  CAS  PubMed  Google Scholar 

  462. Hauler C, Rimkus G, Risacher C, Knölker H-J, Vetter W (2014) Concentrations of halogenated natural products versus PCB 153 in bivalves from the North and Baltic Seas. Sci Total Environ 490:994

    Article  CAS  PubMed  Google Scholar 

  463. Wu Q, Bouwman H, Uren RC, van der Lingen CD, Vetter W (2019) Halogenated natural products and anthropogenic persistent organic pollutants in chokka squid (Loligo reynaudii) from three sites along the South Atlantic and Indian Ocean coasts of South Africa. Environ Pollut 255:113282

    Article  CAS  PubMed  Google Scholar 

  464. Wu Q, Krauß S, Vetter W (2020) Occurrence and fate studies (sunlight exposure and stable carbon isotope analysis) of the halogenated natural product MHC-1 and its producer Plocamium cartilagineum. Sci Total Environ 736:139680

    Article  CAS  PubMed  Google Scholar 

  465. Wu Q, Schlag S, Uren R, van der Lingen CD, Bouwman H, Vetter W (2020) Polyhalogenated compounds (halogenated natural products and POPs) in sardine (Sardinops sagax) from the South Atlantic and Indian Oceans. J Agric Food Chem 68:6084

    Article  CAS  PubMed  Google Scholar 

  466. Cariou R, Méndez-Fernandez P, Hutinet S, Guitton Y, Caurant F, Bruno LB, Spitz J, Vetter W, Dervilly G (2021) Nontargeted LC/ESI-HRMS detection of polyhalogenated compounds in marine mammals stranded on French Atlantic coasts. ACS EST Water 1:309

    Article  CAS  Google Scholar 

  467. Wu Q, Munschy C, Aminot Y, Bodin N, Vetter W (2021) High levels of halogenated natural products in large pelagic fish from the Western Indian Ocean. Environ Sci Pollut Res 28:55252

    Article  CAS  Google Scholar 

  468. Wu Q, Müller M, Hammerschick T, Mitschang W, Kuhlenkamp R, Vetter W (2021) Fast isolation of the environmentally relevant halogenated natural product MHC-1 by means of countercurrent chromatography. Chemosphere 284:131310

    Article  CAS  PubMed  Google Scholar 

  469. Bracegirdle J, Sohail Z, Fairhurst MJ, Gerth ML, Zuccarello GC, Hashmi MA, Keyzers RA (2019) Costatone C—a new halogenated monoterpene from the New Zealand red alga Plocamium angustum. Mar Drugs 17:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Chen J-J, Li W-X, Gao K, Jin X-J, Yao X-J (2012) Absolute structures of monoterpenoids with a δ-lactone-containing skeleton from Ligularia hodgsonii. J Nat Prod 75:1184

    Article  CAS  PubMed  Google Scholar 

  471. Aguinaldo AM, Abe F, Yamauchi T, Padolina WG (1995) Germacranolides of Mikania cordata. Phytochemistry 38:1441

    Article  CAS  Google Scholar 

  472. Khan SB, Riaz N, Afza N, Malik A, Azhar-ul-Haq AZ, Lodhi MA, Choudhary MI (2004) Urease inhibiting guaianolides from Amberboa ramosa. Polish J Chem 78:2075

    CAS  Google Scholar 

  473. Chen X, Zhan Z-J, Yue J-M (2006) Sesquiterpenoids from Vernonia cinerea. Nat Prod Res 20:125

    Article  CAS  PubMed  Google Scholar 

  474. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G (2006) Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem Pharm Bull 54:1187

    Article  CAS  Google Scholar 

  475. Boudjerda A, Zater H, Benayache S, Chalchat J-C, González-Platas J, León F, Brouard I, Bermejo J, Benayache F (2008) A new guaianolide and other constituents from Achillea ligustica. Biochem Syst Ecol 36:461

    Article  CAS  Google Scholar 

  476. Hegazy M-EF, Mohamed AE-HH, El-Sayed MA, Ohta S (2008) A new chlorine-containing sesquiterpene lactone from Achillea ligustica. Z Naturforsch 63b:105

    Google Scholar 

  477. Huang Z-S, Pei Y-H, Liu C-M, Lin S, Tang J, Huang D-S, Song T-F, Lu L-H, Gao Y-P, Zhang W-D (2010) Highly oxygenated guaianolides from Artemisia dubia. Planta Med 76:1710

    Article  CAS  PubMed  Google Scholar 

  478. Liu S, Zhao Y, Herring C, Janiak C, Müller WEG, Akoné SH, Liu Z, Proksch P (2019) Sesquiterpenoids from the endophytic fungus Rhinocladiella similis. J Nat Prod 82:1055

    Article  CAS  PubMed  Google Scholar 

  479. Yamada K, Ojika M, Kigoshi H (2007) Ptaquiloside, the major toxin of bracken, and related terpene glycosides: chemistry, biology and ecology. Nat Prod Rep 24:798

    Article  CAS  PubMed  Google Scholar 

  480. Jensen PH, Jacobsen OS, Hansen HCB, Juhler RK (2008) Quantification of ptaquiloside and pterosin B in soil and groundwater using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem 56:9848

    Article  CAS  PubMed  Google Scholar 

  481. Mohammad RH, Nur-e-Alam M, Lahmann M, Parveen I, Tizzard GJ, Coles SJ, Fowler M, Drake AF, Heyes D, Thoss V (2016) Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.) (Kuhn) rhizome. Phytochemistry 128:82

    Google Scholar 

  482. Kang H-S, Ji S-A, Park S-H, Kim J-P (2017) Lepistatins A-C, chlorinated sesquiterpenes from the cultured basidiomycete Lepista sordida. Phytochemistry 143:111

    Article  CAS  PubMed  Google Scholar 

  483. Shi H-M, Long B-S, Cui X-M, Min Z-D (2005) A new bisabolane sesquiterpenoid from Euphorbia chrysocoma. J Asian Nat Prod Res 7:857

    Article  CAS  PubMed  Google Scholar 

  484. Shi S-Y, Zhao Y, Zhang Y-P, Huang K-L (2008) Furanoeremophilanes from Ligularia atroviolacea. Fitoterapia 79:476

    Article  CAS  PubMed  Google Scholar 

  485. Zhao J, Wu H, Huang KX, Shi SY, Peng H, Sun XF, Chen LR, Zheng QX, Zhang QJ, Hao XJ, Stöckigt J, Li XK, Zhao Y, Qu J (2008) One chloro-furoeremophilanoid and two new natural dimers from Ligularia atroviolacea. Chin Chem Lett 19:1319

    Article  CAS  Google Scholar 

  486. Wang X, Sun L, Huang K, Shi S, Zhang L, Xu J, Peng H, Sun X, Wang L, Wu X, Zhao Y, Li X, Stöckigt J, Qu J (2009) Phytochemical investigation and cytotoxic evaluation of the components of the medicinal plant Ligularia atroviolacea. Chem Biodivers 6:1053

    Article  CAS  Google Scholar 

  487. Onuki H, Yamazaki M, Nakamura A, Hanai R, Kuroda C, Gong X, Shen Y, Hirota H (2008) Chemical constituents and diversity of Ligularia lankongensis in Yunnan Province of China. J Nat Prod 71:520

    Article  CAS  PubMed  Google Scholar 

  488. Gan L-S, Zheng Y-L, Mo J-X, Liu X, Li X-H, Zhou C-X (2009) Sesquiterpene lactones from the root tubers of Lindera aggregata. J Nat Prod 72:1497

    Article  CAS  PubMed  Google Scholar 

  489. Wang Q, Chen T-H, Bastow KF, Morris-Natschke SL, Lee K-H, Chen D-F (2013) Songaricalarins A-E, cytotoxic oplopane sesquiterpenes from Ligularia songarica. J Nat Prod 76:305

    Article  CAS  PubMed  Google Scholar 

  490. Chen P, Qu L, Wang P-P, Xiang L (2013) Two halogenated sesquiterpenoids from the fruits of Alpinia oxyphylla. Helv Chim Acta 96:1163

    Article  CAS  Google Scholar 

  491. Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q (2011) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72:1436

    Google Scholar 

  492. Daengrot C, Rukachaisirikul V, Tansakul C, Thongpachang T, Phongpaichit S, Bowornwiriyapan K, Sakayaroj J (2015) Eremophilane sesquiterpenes and diphenyl thioesters from the soil fungus Penicillium copticola PSU-RSPG138. J Nat Prod 78:615

    Article  CAS  PubMed  Google Scholar 

  493. Yang H-X, Ai H-L, Feng T, Wang W-X, Wu B, Zheng Y-S, Sun H, He J, Li Z-H, Liu J-K (2018) Trichothecrotocins A-C, antiphytopathogenic agents from potato endophytic fungus Trichothecium crotocinigenum. Org Lett 20:8069

    Article  CAS  PubMed  Google Scholar 

  494. Hao Z-Y, Ni G, Liang D, Liu Y-F, Zhang C-L, Wang Y, Zhang Q-J, Chen R-Y, Yu D-Q (2021) A new brominated norsesquiterpene glycoside from the rhizomes of Acorus tatarinowii Schott. Nat Prod Commun 16:1

    Google Scholar 

  495. Wen J, Shi H, Xu Z, Chang H, Jia C, Zan K, Jiang Y, Tu P (2010) Dimeric guaianolides and sesquiterpenoids from Artemisia anomala. J Nat Prod 73:67

    Article  CAS  PubMed  Google Scholar 

  496. Monde K, Taniguchi T, Miuri N, Vairappan CS, Suzuki M (2006) Absolute configurations of brominated sesquiterpenes determined by vibrational circular dichroism. Chirality 18:335

    Article  CAS  PubMed  Google Scholar 

  497. Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute configurations of endoperoxides determined by vibrational circular dichroism (VCD). Tetrahedron Lett 47:4389

    Article  CAS  Google Scholar 

  498. Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490

    Article  CAS  PubMed  Google Scholar 

  499. Sung P-J, Chuang L-F, Kuo J, Fan T-Y, Hu W-P (2007) Rumphellatin A, the first chloride-containing caryophyllane-type norsesquiterpenoid from Rumphella antipathies. Tetrahedron Lett 48:3987

    Article  CAS  Google Scholar 

  500. Sung P-J, Chuang L-F, Hu W-P (2007) Rumphellatins B and C, two new caryophyllane-type hemiketal norsesquiterpenoids from the Formosan gorgonian coral Rumphella antipathies. Bull Chem Soc Jpn 80:2395

    Article  CAS  Google Scholar 

  501. Sung P-J, Su Y-D, Hwang T-L, Chuang L-F, Chen J-J, Li J-J, Fang L-S, Wang W-H (2008) Rumphellatin D, a novel chlorinated caryophyllane from Gorgonian coral Rumphella antipathies. Chem Lett 37:1244

    Article  CAS  Google Scholar 

  502. Su H, Yuan Z-H, Li J, Guo S-J, Deng L-P, Han L-J, Zhu X-B, Shi D-Y (2009) Sesquiterpenes from the marine red alga Laurencia saitoi. Helv Chim Acta 92:1291

    Article  CAS  Google Scholar 

  503. Su H, Shi D-Y, Li J, Guo S-J, Li L-L, Yuan Z-H, Zhu X-B (2009) Sesquiterpenes from Laurencia similis. Molecules 14:1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Ioannou E, Nappo M, Avila C, Vagias C, Roussis V (2009) Metabolites from the sea hare Aplysia fasciata. J Nat Prod 72:1716

    Article  CAS  PubMed  Google Scholar 

  505. Bogdanov A, Papu A, Kehraus S, Cruesemann M, Wägele H, König GM (2020) Metabolome of the Phyllidiella pustulosa species complex (Nudibranchia, hHeterobranchia, Gastropoda) reveals rare dichloroimidic sesquiterpene derivatives from a phylogenetically distinct and undescribed clade. J Nat Prod 83:2785

    Article  CAS  PubMed  Google Scholar 

  506. Vansteelandt M, Blanchet E, Egorov M, Petit F, Toupet L, Bondon A, Montaeu F, Le Bizec B, Thomas OP, Pouchus YF, Le Bot R, Grovel O (2013) Ligerin, an antiproliferative chlorinated sesquiterpenoid from a marine-derived Penicillium strain. J Nat Prod 76:297

    Article  CAS  PubMed  Google Scholar 

  507. Makhanu DS, Yokoyama M, Miono T, Maesato T, Maedomari M, Wisespongpand P, Kuniyoshi M (2006) New sesquiterpenes from the Okinawan red alga Laurencia luzonensis. Bull Fac Sci Univ Ryukyus 81:115

    CAS  Google Scholar 

  508. Ji N-Y, Li X-M, Zhang Y, Wang B-G (2007) Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red alga Laurencia okamurai and their chemotaxonomic significance. Biochem Syst Ecol 35:627

    Article  CAS  Google Scholar 

  509. Liang Y, Li XM, Cui CM, Li CS, Wang BG (2009) A new rearranged chamigrane sesquiterpene from Laurencia okamurai. Chin Chem Lett 20:190

    Article  CAS  Google Scholar 

  510. Li X-D, Ding W, Miao F-P, Ji N-Y (2012) Halogenated chamigrane sesquiterpenes from Laurencia okamurae. Magn Reson Chem 50:174

    Article  CAS  PubMed  Google Scholar 

  511. Li X-D, Miao F-P, Li K, Ji N-Y (2012) Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai. Fitoterapia 83:518

    Article  CAS  PubMed  Google Scholar 

  512. Liang Y, Li X-M, Cui C-M, Li C-S, Sun H, Wang B-G (2012) Sesquiterpene and acetogenin derivatives from the marine red alga Laurencia okamurai. Mar Drugs 10:2817

    Article  PubMed  PubMed Central  Google Scholar 

  513. Shubina LK, Fedorov SN, Kalinovskiy AI, Dmitrenok AS, Jin JO, Song MG, Kwak JY, Stonik VA (2007) Four new chamigrane sesquiterpenoids from the opistobranch mollusk Aplysia dactylomela. Russ Chem Bull Int Ed 56:2109

    Article  CAS  Google Scholar 

  514. Diaz-Marrero A-R, de la Rosa JM, Brito I, Darias J, Cueto M (2012) Dactylomelatriol, a biogenetically intriguing omphalane-derived marine sesquiterpene. J Nat Prod 75:115

    Article  CAS  PubMed  Google Scholar 

  515. Hegazy M-EF, Moustfa AY, Mohamed AE-HH, Alhammady MA, Elbehairi SEI, Ohta S, Paré PW (2014) New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera. Tetrahedron Lett 55:1711

    Article  CAS  Google Scholar 

  516. Ji N-Y, Li X-M, Li K, Gloer JB, Wang B-G (2009) Halogenated sesquiterpenes and non-halogenated linear C15-acetogenins from the marine red alga Laurencia composita and their chemotaxonomic significance. Biochem Syst Ecol 36:938

    Google Scholar 

  517. Ji N-Y, Li X-M, Wang B-G (2010) Sesquiterpenes and other metabolites from the marine red alga Laurencia composita (Rhodomelaceae). Helv Chim Acta 93:2281

    Article  CAS  Google Scholar 

  518. Li X-D, Miao F-P, Yin X-L, Liu J-L, Ji N-Y (2012) Sesquiterpenes from the marine red alga Laurencia composita. Fitoterapia 83:1191

    Article  CAS  PubMed  Google Scholar 

  519. Li X-D, Miao F-P, Liang X-R, Wang B-G, Ji N-Y (2013) Two halosesquiterpenes from Laurencia composita. RSC Adv 3:1953

    Article  CAS  Google Scholar 

  520. Yu X-Q, Jiang C-S, Zhang Y, Sun P, Kurtán T, Mándi A, Li X-L, Yao L-G, Liu A-H, Wang B, Guo Y-W, Mao S-C (2017) Compositacins A-K: bioactive chamigrane-type halosesquiterpenoids from the red alga Laurencia composita Yamada. Phytochemistry 136:81

    Article  CAS  PubMed  Google Scholar 

  521. Díaz-Marrero AR, Brito I, de la Rosa JM, D'Croz L, Fabelo O, Ruiz-Pérez C, Darias J, Cueto M (2009) Novel lactone chamigrene-derived metabolites from Laurencia majuscula. Eur J Org Chem:1407

    Google Scholar 

  522. Ji N-Y, Li X-M, Li K, Wang B-G (2009) Halogenated sesquiterpenes from the marine red alga Laurencia saitoi (Rhodomelaceae). Helv Chim Acta 92:1873

    Article  CAS  Google Scholar 

  523. Dias DA, Urban S (2011) Phytochemical studies of the Southern Australian marine alga, Laurencia elata. Phytochemistry 72:2081

    Article  CAS  PubMed  Google Scholar 

  524. da Silva Machado FL, Ventura TLB, de Souza Gestinari LM, Cassano V, Resende JALC, Kaiser CR, Lasunskaia EB, Muzitano MF, Soares AR (2014) Sesquiterpenes from the Brazilian red alga Laurencia dendroidea. J. Agardh. Moleules 19:3181

    Article  PubMed  Google Scholar 

  525. Chen J-Y, Huang C-Y, Lin Y-S, Hwang T-L, Wang W-L, Chiou S-F, Sheu J-H (2016) Halogenated sesquiterpenoids from the red alga Laurencia tristicha collected in Taiwan. J Nat Prod 79:2315

    Article  CAS  PubMed  Google Scholar 

  526. Nuzzo G, Gomes BA, Amodeo P, Matthews-Cascon H, Cutignano A, Costa-Lotufo LV, Monteiro FAC, Pessoa ODL, Fontana A (2017) Isolation of chamigrene sesquiterpenes and absolute configuration of isoobtusadiene from the brittle star Ophionereis reticulata. J Nat Prod 80:3049

    Article  CAS  PubMed  Google Scholar 

  527. Ji N-Y, Wen W, Li X-M, Xue Q-Z, Xiao H-L, Wang B-G (2009) Brominated selinane sesquiterpenes from the marine brown alga Dictyopteris divaricata. Mar Drugs 7:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  528. Lane AL, Mular L, Drenkard EJ, Shearer TL, Engel S, Fredericq S, Fairchild CR, Prudhomme J, Le Roch K, Haye ME, Aalbersberg W, Kubanek J (2010) Ecological leads for natural product discovery: novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron 66:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  529. Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11:1399

    Google Scholar 

  530. Ji N-Y, Li X-M, Ding L-P, Wang B-G (2016) Halogenated eudesmane derivatives and other terpenes from the marine red alga Laurencia pinnata and their chemotaxonomic significance. Biochem Syst Ecol 64:1

    Article  CAS  Google Scholar 

  531. Ngokpol S, Suwakulsiri W, Sureram S, Lirdprapamongkol K, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2015) Drimane sesquiterpene-conjugated amino acids from a marine isolate of the fungus Talaromyces minioluteus (Penicillium minioluteum). Mar Drugs 13:3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  532. Kamada T, Phan C-S, Vairappan CS (2019) New anti-bacterial halogenated tricyclic sesquiterpenes from Bornean Laurencia majuscula (Harvey) Lucas. Nat Prod Res 33:464

    Article  CAS  PubMed  Google Scholar 

  533. Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V (2010) Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J Nat Prod 73:27

    Article  CAS  PubMed  Google Scholar 

  534. Díaz-Marrero AR, Brito I, de la Rosa JM, Darias J, Cueto M (2008) Gomerones A-C, halogenated sesquiterpenoids with a novel carbon skeleton from Laurencia majuscula. Tetrahedron 64:10821

    Article  Google Scholar 

  535. Huwyler N, Carreira EM (2012) Total synthesis and stereochemical revision of the chlorinated sesquiterpene (±)-gomerone C. Angew Chem Int Ed 51:13066

    Article  CAS  Google Scholar 

  536. Crimmins MT, Hughes CO (2012) Total synthesis of the proposed structure of aldingenin B. Org Lett 14:2168

    Article  CAS  PubMed  Google Scholar 

  537. Takahashi S, Yasuda M, Nakamura T, Hatano K, Matsuoka K, Koshino H (2014) Synthesis and structural revision of a brominated sesquiterpenoid, aldingenin C. J Org Chem 79:9373

    Article  CAS  PubMed  Google Scholar 

  538. Mukhina OA, Koshino H, Crimmins MT, Kutateladze AG (2015) Computationally driven reassignment of the structures of aldingenins A and B. Tetrahedron Lett 56:4900

    Article  CAS  Google Scholar 

  539. Sun J, Shi D, Ma M, Li S, Wang S, Han L, Yang Y, Fan X, Shi J, He L (2005) Sesquiterpenes from the red alga Laurencia tristicha. J Nat Prod 68:915

    Article  CAS  PubMed  Google Scholar 

  540. Sun J, Shi D-Y, Li S, Wang S-J, Han L-J, Fan X, Yang Y-C, Shi J-G (2007) Chemical constituents of the red alga Laurencia tristicha. J Asian Nat Prod Res 9:725

    Article  CAS  PubMed  Google Scholar 

  541. Ji NY, Li XM, Li K, Ding L-P, Wang B-G (2008) Laurane-derived sesquiterpenes from the marine red alga Laurencia tristicha (Rhodomelaceae). Nat Prod Res 22:715

    Article  CAS  PubMed  Google Scholar 

  542. Yu X-Q, He W-F, Liu D-Q, Feng M-T, Fang Y, Wang B, Feng L-H, Guo Y-W, Mao S-C (2014) A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 103:162

    Article  CAS  PubMed  Google Scholar 

  543. Li X-L, Kurtán T, Hu J-C, Mándi A, Li J, Li X-W, Guo Y-W (2017) Structural and stereochemical studies of laurokamurols A-C, uncommon bis-sesquiterpenoids from the Chinese red alga Laurencia okamurai Yamada. J Agric Food Chem 65:1550

    Article  CAS  PubMed  Google Scholar 

  544. Yang X-X, Su Y-Z, Tan J, Cai C-E, He P-M, Jia R (2018) A new dimeric sesquiterpene and other related derivatives from the marine red alga Laurencia okamurai. Biochem Syst Ecol 79:57

    Article  CAS  Google Scholar 

  545. Srikrishna A, Beeraiah B, Babu RR (2008) Enantioselective total synthesis and assignment of the absolute configuration of (+)-laurokamurene B. Tetrahedron: Asymmetry 19:624

    Google Scholar 

  546. Kladi M, Vagias C, Papazafiri P, Furnari G, Serio D, Roussis V (2007) New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron 63:7606

    Article  CAS  Google Scholar 

  547. Dias DA, White JM, Urban S (2009) Laurencia filiformis: phytochemical profiling by conventional and HPLC-NMR approaches. Nat Prod Commun 4:157

    CAS  PubMed  Google Scholar 

  548. Su S, Sun W-S, Wang B, Cheng W, Liang H, Zhao Y-Y, Zhang Q-Y, Wu J (2010) A novel brominated cuparene-derived sesquiterpene ether from the red alga Laurencia sp. J Asian Nat Prod Res 12:916

    Article  CAS  PubMed  Google Scholar 

  549. Bawakid NO, Alarif WM, Alorfi HS, Al-Footy KO, Alburae NA, Ghandourah MA, Al-Lihaibi SS, Abdul-Hameed ZH (2017) Antimicrobial sesquiterpenoids from Laurencia obtusa Lamouroux. Open Chem 15:219

    Article  CAS  Google Scholar 

  550. Rengasamy KRR, Slavětínská LP, Kulkarni MG, Stirk WA, Van Staden J (2017) Cuparane sesquiterpenes from Laurencia natalensis Kylin as inhibitors of α-glucosidase, dipeptidyl peptidase IV and xanthine oxidase. Algal Res 25:178

    Article  Google Scholar 

  551. Singh AJ, Dattelbaum JD, Field JJ, Smart Z, Woolly EF, Barber JM, Heathcott R, Miller JH, Northcote PT (2013) Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation structure elucidation and antifungal activity. Org Biomol Chem 11:8041

    Article  CAS  PubMed  Google Scholar 

  552. Dattelbaum JD, Singh AJ, Field JJ, Miller JH, Northcote PT (2015) The nitrogenous hamigerans: unusual amino acid-derivatized aromatic diterpenoid metabolites from the New Zealand marine sponge Hamigera tarangaensis. J Org Chem 80:304

    Article  CAS  PubMed  Google Scholar 

  553. Woolly EF, Singh AJ, Russell ER, Miller JH, Northcote PT (2018) Hamigerans R and S: nitrogenous diterpenoids from the New Zealand marine sponge Hamigera tarangaensis. J Nat Prod 81:387

    Article  CAS  PubMed  Google Scholar 

  554. Núñez-Pons L, Carbone M, Vázquez J, Gavagnin M, Avila C (2013) Lipophilic defenses from alcyonium soft corals of Antarctica. J Chem Ecol 39:675

    Article  PubMed  Google Scholar 

  555. Prawat H, Mahidol C, Kaweetripob W, Wittayalai S, Ruchirawat S (2012) Iodo-sesquiterpene hydroquinone and brominated indole alkaloids from the Thai sponge Smenospongia sp. Tetrahedron 68:6881

    Article  CAS  Google Scholar 

  556. Wu Q, Gao Y, Zhang M-M, Sheng L, Li J, Li X-W, Wang H, Guo Y-W (2019) New sesquiterpenoids from the South China Sea soft corals Clavularia viridis and Lemnalia flava. Beilstein J Org Chem 15:695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. Dembitsky VM, Tolstikov AG, Tolstikov GA (2002) Natural halogenated diterpenoids. Chem Sustain Dev 10:253

    Google Scholar 

  558. Fang WS, Fang QC, Liang XT, Lu Y, Wu N, Zheng QT (1997) Taxuchin B, a new chlorine-containing taxoid. Chin Chem Lett 8:231

    CAS  Google Scholar 

  559. Li S-H, Zhang H-J, Niu X-M, Yao P, Sun H-D, Fong HHS (2003) Novel taxoids from the Chinese yew Taxus yunnanensis. Tetrahedron 59:37

    Article  CAS  Google Scholar 

  560. Sato K, Inaba Y, Park H-S, Akiyama T, Koyama T, Fukaya H, Aoyagi Y, Takeya K (2009) Cytotoxic bisnor- and norditerpene dilactones having 7α,8α-epoxy-9,11-enolide substructure from Podocarpus macrophyllus D. Don. Chem Pharm Bull 57:668

    Article  CAS  Google Scholar 

  561. Guo P, Li Y, Xu J, Guo Y, Jin D-Q, Gao J, Hou W, Zhang T (2011) neo-Clerodane diterpenes from Ajuga ciliata Bunge and their neuroprotective activities. Fitoterapia 82:1123

    Article  CAS  PubMed  Google Scholar 

  562. Sun Z, Li Y, Jin D, Guo P, Song H, Xu J, Guo Y, Zhang L (2012) neo-Clerodane diterpenes from Ajuga decumbens and their inhibitory activities on LPS-induced NO production. Fitoterapia 83:1409

    Article  CAS  PubMed  Google Scholar 

  563. Dong B, Yang X, Liu W, An L, Zhang X, Tuerhong M, Du Q, Wang C, Abudukeremu M, Xu J, Lee D, Shuai L, Lall N, Guo Y (2020) Anti-inflammatory neo-clerodane diterpenoids from Ajuga pantantha. J Nat Prod 83:894

    Article  CAS  PubMed  Google Scholar 

  564. Mu Z-Q, Gao H, Huang Z-Y, Feng X-L, Yao X-S (2012) Puberunine and puberudine, two new C18-diterpenoid alkaloids from Aconitum barbatum var. puberulum. Org Lett 14:2758

    Google Scholar 

  565. Li Y, Zhu Y-X, Zhang Z-X, Liu Y-L, Liu Y, Qu J, Ma S-G, Wang X-J, Yu S-S (2018) Diterpenoids from the fruits of Rhododendron molle, potent analgesics for acute pain. Tetrahedron 74:693

    Article  CAS  Google Scholar 

  566. Zhou SZ, Yao S, Tang C, Ke C, Li L, Lin G, Ye Y (2014) Diterpenoids from the flowers of Rhododendron molle. J Nat Prod 77:1185

    Article  CAS  PubMed  Google Scholar 

  567. Allard P-M, Martin M-T, Dau M-ETH, Leyssen P, Guéritte F, Litaudon M (2012) Trigocherrin A, the first natural chlorinated daphnane diterpene orthoester from Trigonostemon cherrieri. Org Lett 14:342

    Article  CAS  PubMed  Google Scholar 

  568. Allard P-M, Leyssen P, Martin M-T, Bourjot M, Dumontet V, Eydoux C, Guillemot J-C, Canard B, Poullain C, Guéritte F, Litaudon M (2012) Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry 84:160

    Article  CAS  PubMed  Google Scholar 

  569. Sato K, Sugawara K, Takeuchi H, Park H-S, Akiyama T, Koyama T, Fukaya H, Aoyagi Y, Takeya K (2009) New cytotoxic nor- and bisnorditerpene dilactones, makilactones A-D, from Podocarpus macrophyllus D. Don. Heterocycles 78:1453

    Article  CAS  Google Scholar 

  570. Kladi M, Ntountaniotis D, Zervou M, Vagias C, Ioannou E, Roussis V (2014) Glandulaurencianols A-C, brominated diterpenes from the red alga, Laurencia glandulifera and the sea hare, Aplysia punctata. Tetrahedron Lett 55:2835

    Article  CAS  Google Scholar 

  571. Petraki A, Ioannou E, Papazafiri P, Roussis V (2015) Dactylomelane diterpenes from the sea hare Aplysia depilans. J Nat Prod 78:462

    Article  CAS  PubMed  Google Scholar 

  572. Wu Q, Chen W-T, Li S-W, Ye J-Y, Huan X-J, Gavagnin M, Yao L-G, Wang H, Miao Z-H, Li X-W, Guo Y-W (2019) Cytotoxic nitrogenous terpenoids from two South China Sea nudibranchs Phyllidiella pustulosa, Phyllidia coelestis, and their sponge-prey Acanthella cavernosa. Mar Drugs 17:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  573. Maschek JA, Mevers E, Diyabalanage T, Chen L, Ren Y, McClintock JB, Amsler CD, Wu J, Baker BJ (2012) Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells. Tetrahedron 68:9095

    Article  CAS  Google Scholar 

  574. Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2007) Crystal structure and absolute stereochemistry of neoirietetraol. Anal Sci 23:x103

    CAS  Google Scholar 

  575. Ji NY, Li XM, Cui CM, Wang BG (2007) Two new brominated diterpenes from Laurencia decumbens. Chin Chem Lett 18:957

    Article  CAS  Google Scholar 

  576. Ji N-Y, Li X-M, Cui C-M, Wang B-G (2007) Terpenes and polybromoindoles from the marine red alga Laurencia decumbens (Rhodomelaceae). Helv Chim Acta 90:1731

    Article  CAS  Google Scholar 

  577. Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, Matsuura H, Kaneko K, Ishii T, Suzuki M, Yoshimura E, Nogata Y, Okino T (2017) New marine antifouling compounds from the red alga Laurencia sp. Mar Drugs 15:267

    Article  PubMed  PubMed Central  Google Scholar 

  578. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z (2010) Antibacterial activities of a new brominated diterpene from Borneon Laurencia spp. Mar Drugs 8:1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  579. Dziwornu GA, Caira MR, de la Mare J-A, Edkins AL, Bolton JJ, Beukes DR, Sunassee SN (2017) Isolation, characterization and antiproliferative activity of new metabolites from the South African endemic red algal species Laurencia alfredensis. Molecules 22:513

    Article  PubMed  PubMed Central  Google Scholar 

  580. Shaaban M, Abou-El-Wafa GSE, Golz C, Laatsch H (2021) New haloterpenes from the marine red alga Laurencia papillosa: structure elucidation and biological activity. Mar Drugs 19:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Smyrniotopoulos V, Quesada A, Vagias C, Moreau D, Roussakis C, Roussis V (2008) Cytotoxic bromoditerpenes from the red alga Sphaerococcus coronopifolius. Tetrahedron 64:5184

    Article  CAS  Google Scholar 

  582. Smyrniotopoulos V, Vagias C, Rahman MM, Gibbons S, Roussis V (2008) Brominated diterpenes with antibacterial activity from the red alga Sphaerococcus coronopifolius. J Nat Prod 71:1386

    Article  CAS  PubMed  Google Scholar 

  583. Smyrniotopoulos V, Vagias C, Rahman MM, Gibbons S, Roussis V (2010) Structure and antibacterial activity of brominated diterpenes from the red alga Sphaerococcus coronopifolius. Chem Biodivers 7:186

    Article  CAS  PubMed  Google Scholar 

  584. Smyrniotopoulos V, Vagias C, Rahman MM, Gibbons S, Roussis V (2010) Ioniols I and II, tetracyclic diterpenes with antibacterial activity, from Sphaerococcus coronopifolius. Chem Biodivers 7:666

    Article  CAS  PubMed  Google Scholar 

  585. Smyrniotopoulos V, Vagias C, Bruyère C, Lamoral-Theys D, Kiss R, Roussis V (2010) Structure and in vitro antitumor activity evaluation of brominated diterpenes from the red alga Sphaerococcus coronopifolius. Bioorg Med Chem 18:1321

    Article  CAS  PubMed  Google Scholar 

  586. Smyrniotopoulos V, Kiss R, Mathieu V, Vagias C, Roussis V (2015) Diterpenes with unprecedented skeletons from the red alga Sphaerococcus coronopifolius. Eur J Org Chem, 2848

    Google Scholar 

  587. Smyrniotopoulos V, de Andrade Tomaz AC, de Souza MFV, da Cunha EVL, Kiss R, Mathieu V, Ioannou E, Roussis V (2020) Halogenated diterpenes with in vitro antitumor activity from the red alga Sphaerococcus coronopifolius. Mar Drugs 18:29

    Article  CAS  Google Scholar 

  588. Rodrigues D, Alves C, Horta A, Pinteus S, Silva J, Culioli G, Thomas OP, Pedrosa R (2015) Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar Drugs 13:713

    Article  PubMed  PubMed Central  Google Scholar 

  589. Lane AL, Stout EP, Hay ME, Prusak AC, Hardcastle K, Fairchild CR, Franzblau SG, Le Roch K, Prudhomme J, Aalbersberg W, Kubanek J (2007) Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J Org Chem 72:7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  590. Lane AL, Stout EP, Lin A-S, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Hay ME, Aalbersberg W, Kubanek J (2009) Antimalarial bromophycolides J-Q from the Fijian red alga Callophycus serratus. J Org Chem 74:2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  591. Teasdale ME, Shearer TL, Engel S, Alexander TS, Fairchild CR, Prudhomme J, Torres M, Le Roch K, Aalbersberg W, Hay ME, Kubanek J (2012) Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. J Org Chem 77:8000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  592. Lavoie S, Brumley D, Alexander TS, Jasmin C, Carranza FA, Nelson K, Quave CL, Kubanek J (2017) Iodinated meroditerpenes from a red alga Callophycus sp. J Org Chem 82:4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  593. Woolner VH, Gordon RMA, Miller JH, Lein M, Northcote PT, Keyzers RA (2018) Halogenated meroditerpenoids from a South Pacific collection of the red alga Callophycus serratus. J Nat Prod 81:2446

    Article  CAS  PubMed  Google Scholar 

  594. Kim JY, Alamsjah MA, Hamada A, Fujita Y, Ishibashi F (2006) Algicidal diterpenes from the brown alga Dictyota dichotoma. Biosci Biotechnol Biochem 70:2571

    Article  CAS  PubMed  Google Scholar 

  595. Kolesnikova SA, Lyakhova EG, Kalinovsky AI, Dmitrenok PS, Dyshlovoy SA, Stonik VA (2009) Diterpenoid hydroperoxides from the Far-Eastern brown alga Dictyota dichotoma. Aust J Chem 62:1185

    Article  CAS  Google Scholar 

  596. Chen J, Li H, Zhao Z, Xia X, Li B, Zhang J, Yan X (2018) Diterpenes from the marine algae of the genus Dictyota. Mar Drugs 16:159

    Article  PubMed  PubMed Central  Google Scholar 

  597. Reddy P, Urban S (2009) Meroditerpenoids from the southern Australian marine brown alga Sargassum fallax. Phytochemistry 70:250

    Article  CAS  PubMed  Google Scholar 

  598. Areche C, San-Martín A, Rovirosa J, Soto-Delgado J, Contreras R (2009) An unusual halogenated meroditerpenoid from Stypopodium flabelliforme: studies by NMR spectroscopic and computational methods. Phytochemistry 70:1315

    Article  CAS  PubMed  Google Scholar 

  599. Bugni TS, Singh MP, Chen L, Arias DA, Harper MK, Greenstein M, Maiese WM, Concepción GP, Mangalindan GC, Ireland CM (2004) Kalihinols from two Acanthella cavernosa sponges: inhibitors of bacterial folate biosynthesis. Tetrahedron 60:6981

    Article  CAS  Google Scholar 

  600. Sun J-Z, Chen K-S, Yao L, Liu H-L, Guo Y-W (2009) A new kalihinol diterpene from the Hainan sponge Acanthella sp. Arch Pharm Res 32:1581

    Article  CAS  PubMed  Google Scholar 

  601. Xu Y, Li N, Jiao W-H, Wang R-P, Peng Y, Qi S-H, Song S-J, Chen W-S, Lin H-W (2012) Antifouling and cytotoxic constituents from the South China sea sponge Acanthella cavernosa. Tetrahedron 68:2876

    Article  CAS  Google Scholar 

  602. Xu Y, Lang J-H, Jiao W-H, Wang R-P, Peng Y, Song S-J, Zhang B-H, Lin H-W (2012) Formamido-diterpenes from the South China sea sponge Acanthella cavernosa. Mar Drugs 10:1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  603. Rudi A, Benayahu Y, Kashman Y (2007) Negombins A-I, new chlorinated polyfunctional diterpenoids from the marine sponge Negombata species. Org Lett 9:2337

    Article  CAS  PubMed  Google Scholar 

  604. Costantino V, Fattorusso E, Mangoni A, Perinu C, Cirino G, De Gruttola L, Roviezzo F (2009) Tedanol: a potent anti-inflammatory ent-pimarane diterpene from the Caribbean sponge Tedania ignis. Bioorg Med Chem 17:7542

    Article  CAS  PubMed  Google Scholar 

  605. Kubota T, Iwai T, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J (2012) Agelasines O-U, new diterpene alkaloids with a 9-N-methyladenine unit from a marine sponge Agelas sp. Tetrahedron 68:9738

    Article  CAS  Google Scholar 

  606. Machida K, Matsumoto T, Fusetani N, Nakao Y (2017) Dolabellol A, a new halogenated diterpene isolated from the opisthobranch Dolabella auricularia. Chem Lett 46:1676

    Article  CAS  Google Scholar 

  607. Kontiza I, Stavri M, Zloh M, Vagias C, Gibbons S, Roussis V (2008) New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa. Tetrahedron 64:1696

    Article  CAS  Google Scholar 

  608. Zhang Y, Adnani N, Braun DR, Ellis GA, Barns KJ, Parker-Nance S, Guzei IA, Bugni TS (2016) Micromonohalimanes A and B: antibacterial halimane-type diterpenoids from a marine Micromonospora species. J Nat Prod 79:2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  609. Meng L-H, Li X-M, Zhang F-Z, Wang Y-N, Wang B-G (2020) Talascortenes A-G, highly oxygenated diterpenoid acids from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. J Nat Prod 83:2528

    Article  CAS  PubMed  Google Scholar 

  610. Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556

    Article  CAS  PubMed  Google Scholar 

  611. Afiyatullov SS, Kalinovsky AI, Antonov AS (2011) New virescenosides from the marine-derived fungus Acremonium striatisporum. Nat Prod Commun 6:1063

    CAS  PubMed  Google Scholar 

  612. Kong F-D, Ma Q-Y, Huang S-Z, Wang P, Wang J-F, Zhou L-M, Yuan J-Z, Dai H-F, Zhao Y-X (2017) Chrodrimanins K–N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J Nat Prod 80:1039

    Google Scholar 

  613. Kong F-D, Zhang R-S, Ma Q-Y, Xie Q-Y, Wang P, Chen P-W, Zhou L-M, Dai H-F, Luo D-Q, Zhao Y-X (2017) Chrodrimanins O–S from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. Fitoterapia 122:1

    Google Scholar 

  614. Rodríguez AD (1995) The natural products chemistry of West Indian gorgonian octocorals. Tetrahedron 51:4571

    Article  PubMed  PubMed Central  Google Scholar 

  615. Sung P-J, Sheu J-H, Wang W-H, Fang L-S, Chung H-M, Pai C-H, Su Y-D, Tsai W-T, Chen B-Y, Lin M-R, Li G-Y (2008) Survey of briarane-type diterpenoids—Part III. Heterocycles 75:2627

    Article  CAS  Google Scholar 

  616. Sung P-J, Su J-H, Wang W-H, Sheu J-H, Fang L-S, Wu Y-C, Chen Y-H, Chung H-M, Su Y-D, Chang Y-C (2011) Survey of briarane-type diterpenoids—Part IV. Heterocycles 83:1241

    Article  CAS  Google Scholar 

  617. Berrue F, Kerr RG (2009) Diterpenes from gorgonian corals. Nat Prod Rep 26:681

    Article  CAS  PubMed  Google Scholar 

  618. Welford AJ, Collins I (2011) The 2,11-cyclized cembranoids: cladiellins asbestinins and briarellins (period 1998–2010). J Nat Prod 74:2318

    Article  CAS  PubMed  Google Scholar 

  619. Sheu J-H, Chen Y-H, Chen Y-H, Su Y-D, Chang Y-C, Su J-H, Weng C-F, Lee C-H, Fang L-S, Wang W-H, Wen Z-H, Wu Y-C, Sung P-J (2014) Briarane diterpenoids isolated from gorgonian corals between 2011 and 2013. Mar Drugs 12:2164

    Article  PubMed  PubMed Central  Google Scholar 

  620. Su Y-D, Su J-H, Hwang T-L, Wen Z-H, Sheu J-H, Wu Y-C, Sung P-J (2017) Briarane diterpenoids isolated from octocorals between 2014 and 2016. Mar Drugs 15:44

    Article  PubMed  PubMed Central  Google Scholar 

  621. Lei H (2016) Diterpenoids of gorgonian corals: chemistry and bioactivity. Chem Biodivers 13:345

    Article  CAS  Google Scholar 

  622. Rodríguez AD, Li Y, Dhasmana H, Barnes CL (1993) New marine cembrane diterpenoids isolated from the Caribbean gorgonian Eunicea mammosa. J Nat Prod 56:1101

    Article  Google Scholar 

  623. Su Y-M, Fan T-Y, Sung P-J (2007) 11,20-Epoxybriaranes from the gorgonian coral Ellisella robusta (Ellisellidae). Nat Prod Res 21:1085

    Article  CAS  PubMed  Google Scholar 

  624. Sung P-J, Tsai W-T, Chiang MY, Su Y-M, Kuo J (2007) Robustolides A-C, three new briarane-type diterpenoids from the female gorgonian coral Ellisella robusta (Ellisellidae). Tetrahedron 63:7582

    Article  CAS  Google Scholar 

  625. Sung P-J, Chiang MY, Tsai W-T, Su J-H, Su Y-M, Wu Y-C (2007) Chlorinated briarane-type diterpenoids from the gorgonian coral Ellisella robusta (Ellisellidae). Tetrahedron 63:12860

    Article  CAS  Google Scholar 

  626. Sung P-J, Tsai W-T, Lin M-R, Su Y-D, Pai C-H, Chung H-M, Su J-H, Chiang MY (2008) Robustolides H and I, chlorinated briaranes from the gorgonian Ellisella robusta (Ellisellidae). Chem Lett 37:88

    Article  CAS  Google Scholar 

  627. Chang Y-C, Hwang T-L, Huang S-K, Huang L-W, Lin M-R, Sung P-J (2010) 12-epi-Fragilide G, a new briarane-type diterpenoid from the gorgonian coral Ellisella robusta. Heterocycles 81:991

    Article  CAS  Google Scholar 

  628. Sung P-J, Chen Y-P, Su Y-M, Hwang T-L, Hu W-P, Fan T-Y, Wang W-H (2007) Fragilide B: a novel briarane-type diterpenoid with a s-cis diene moiety. Bull Chem Soc Jpn 80:1205

    Article  CAS  Google Scholar 

  629. Shen Y-C, Chen Y-H, Hwang T-L, Guh J-H, Khalil AT (2007) Four new briarane diterpenoids from the gorgonian coral Junceella fragilis. Helv Chim Acta 90:1391

    Article  CAS  Google Scholar 

  630. Liaw C-C, Shen Y-C, Lin Y-S, Hwang T-L, Kuo Y-H, Khalil AT (2008) Frajunolides E-K, briarane diterpenes from Junceella fragilis. J Nat Prod 71:1551

    Article  CAS  PubMed  Google Scholar 

  631. Sung P-J, Pai C-H, Su Y-D, Hwang T-L, Kuo F-W, Fan T-Y, Li J-J (2008) New 8-hydroxybriarane diterpenoids from the gorgonians Junceella juncea and Junceella fragilis (Ellisellidae). Tetrahedron 64:4224

    Article  CAS  Google Scholar 

  632. Sung P-J, Lin M-R, Su Y-D, Chiang MY, Hu W-P, Su J-H, Cheng M-C, Hwang T-L, Sheu J-H (2008) New briaranes from the octocorals Briareum excavatum (Briareidae) and Junceella fragilis (Ellisellidae). Tetrahedron 64:2596

    Article  CAS  Google Scholar 

  633. Sung P-J, Li G-Y, Chen Y-P, Huang I-C, Chen B-Y, Wang S-H, Huang S-K (2009) Fragilide E, a novel chlorinated 20-acetoxybriarane from the gorgonian coral Junceella fragilis. Chem Lett 38:454

    Article  CAS  Google Scholar 

  634. Sung P-J, Wang S-H, Chiang MY, Su Y-D, Chang Y-C, Hu W-P, Tai C-Y, Liu C-Y (2009) Discovery of new chlorinated briaranes from Junceella fragilis. Bull Chem Soc Jpn 82:1426

    Article  CAS  Google Scholar 

  635. Sung P-J, Wang S-H, Chang Y-C, Chen Y-H, Lin M-R, Huang I-C, Chen J-J, Li J-J, Kung T-H, Fang L-S, Wang W-H, Weng C-F (2010) New briarane-related diterpenoids from the sea whip gorgonian coral Junceella fraglis (Ellisellidae). Bull Chem Soc Jpn 83:1074

    Article  CAS  Google Scholar 

  636. Wang S-H, Chang Y-C, Chiang MY, Chen Y-H, Hwang T-L, Weng C-F, Sung P-J (2010) Chlorinated briarane diterpenoids from the sea whip gorgonian corals Junceella fragilis and Ellisella robusta (Ellisellidae). Chem Pharm Bull 58:928

    Article  CAS  Google Scholar 

  637. Qi SH, Zhang S, Qian PY, Xu HH (2009) Antifeedant and antifouling briaranes from the South China Sea gorgonian Junceella juncea. Chem Nat Comp 45:49

    Article  CAS  Google Scholar 

  638. Wang S-S, Chen Y-H, Chang J-Y, Hwang T-L, Chen C-H, Khalil AT, Shen Y-C (2009) Juncenolides H-K, new briarane diterpenoids from Junceella juncea. Helv Chim Acta 92:2092

    Article  CAS  Google Scholar 

  639. Chang J-Y, Liaw C-C, Fazary AE, Hwang T-L, Shen Y-C (2012) New briarane diterpenoids from the gorgonian coral Junceella juncea. Mar Drugs 10:1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  640. Liaw C-C, Kuo Y-H, Lin Y-S, Hwang T-L, Shen Y-C (2011) Frajunolides L-O, four new 8-hydroxybriarane diterpenoids from the gorgonian Junceella fragilis. Mar Drugs 9:1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  641. Lei H, Sun J-F, Han Z, Zhou X-F, Yang B, Liu Y (2014) Fragilisinins A-L, new briarane-type diterpenoids from gorgonian Junceella fragilis. RSC Adv 4:5261

    Article  CAS  Google Scholar 

  642. Zhou W, Li J, E H-C, Liu B-S, Tang H, Gerwick WH, Hua H-M, Zhang W (2014) Briarane diterpenes from the South China Sea gorgonian coral, Junceella gemmacea. Mar Drugs 12:589

    Google Scholar 

  643. Cheng W, Ji M, Li X, Ren J, Yin F, van Ofwegen L, Yu S, Chen X, Lin W (2017) Fragilolides A-Q, norditerpenoid and briarane diterpenoids from the gorgonian coral Junceella fragilis. Tetrahedron 73:2518

    Article  CAS  Google Scholar 

  644. Cheng W, Li X, Yin F, van Ofwegen L, Lin W (2017) Halogenated briarane diterpenes with acetyl migration from the gorgonian coral Junceella fragilis. Chem Biodivers 14:e1700053

    Article  Google Scholar 

  645. Zheng L-G, Chang Y-C, Hu C-C, Wen Z-H, Wu Y-C, Sung P-J (2018) Fragilides K and L, new briaranes from the gorgonian coral Junceella fragilis. Molecules 23:1510

    Article  PubMed  PubMed Central  Google Scholar 

  646. Zheng L-G, Chang Y-C, Chen J-J, Wen Z-H, Hwang T-L, Sung P-J (2018) (+)-12-epi-Fragilide G, a new chlorinated briarane from the sea whip gorgonian coral Junceella fragilis. Heterocycles 96:1601

    Article  CAS  Google Scholar 

  647. Chang Y-C, Hwang T-L, Huang S-K, Huang L-W, Lin M-R, Sung P-J (2010) 12-epi-Fragilide G, a new briarane-type diterpenoid from the gorgonian coral Ellisella robusta. Heterocycles 81:9091

    Google Scholar 

  648. Lin C-C, Su J-H, Chen W-F, Wen Z-H, Peng B-R, Huang L-C, Hwang T-L, Sung P-J (2019) New 11,20-epoxybriaranes from the gorgonian coral Junceella fragilis (Ellisellidae). Molecules 24:2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  649. Su T-P, Yuan C-H, Jhu Y-M, Peng B-R, Wen Z-H, Wu Y-J, Wu T-Y, Liu H-W, Sung P-J (2019) Fragilides U-W: new 11,20-epoxybriaranes from the sea whip gorgonian coral Junceella fragilis. Mar Drugs 17:706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  650. Lin C-C, Chen W-F, Lee G-H, Wen Z-H, Fang L-S, Kuo Y-H, Lee C-Y, Sung P-J (2019) Fragilides M-O, new triacetoxybriaranes from the gorgonian coral Junceella fragilis (Ellisellidae). Heterocycles 98:984

    Article  CAS  Google Scholar 

  651. Chen Y-Y, Fang L-S, Chen Y-H, Peng B-R, Su T-P, Huynh T-H, Lin F-Y, Hu C-C, Lin N-C, Wen Z-H, Chen J-J, Lee C-Y, Wang J-W, Sung P-J (2019) New 8-hydroxybriaranes from the gorgonian coral Junceella fragilis (Ellisellidae). Mar Drugs 17:534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  652. Chung H-M, Wang Y-C, Tseng C-C, Chen N-F, Wen Z-H, Fang L-S, Hwang T-L, Wu Y-C, Sung P-J (2018) Natural product chemistry of gorgonian corals of genus Junceella—Part III. Mar Drugs 16:339

    Article  PubMed  PubMed Central  Google Scholar 

  653. Su J-H, Sung P-J, Kuo Y-H, Hsu C-H, Sheu J-H (2007) Briarenolides A-C, briarane diterpenoids from the gorgonian coral Briareum sp. Tetrahedron 63:8282

    Article  CAS  Google Scholar 

  654. Hwang T-L, Lin M-R, Tsai W-T, Yeh H-C, Hu W-P, Sheu J-H, Sung P-J (2008) New polyoxygenated briaranes from octocorals Briareum excavatum and Ellisella robusta. Bull Chem Soc Jpn 81:1638

    Article  CAS  Google Scholar 

  655. Sung P-J, Lin M-R, Chiang MY (2009) The structure and absolute stereochemistry of briaexcavatin U, a new chlorinated briarane from a cultured octocoral Briareum excavatum. Chem Lett 38:154

    Article  CAS  Google Scholar 

  656. Sung P-J, Li G-Y, Su Y-D, Lin M-R, Chang Y-C, Kung T-H, Lin C-S, Chen Y-H, Su J-H, Lu M-C, Kuo J, Weng C-F, Hwang T-L (2010) Excavatoids O and P, new 12-hydroxybriaranes from the octocoral Briareum excavatum. Mar Drugs 8:2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  657. Liaw C-C, Lin Y-C, Lin Y-S, Chen C-H, Hwang T-L, Shen Y-C (2013) Four new briarane diterpenoids from Taiwanese gorgonian Junceella fragilis. Mar Drugs 11:2042

    Article  PubMed  PubMed Central  Google Scholar 

  658. Liaw C-C, Cheng Y-B, Lin Y-S, Kuo Y-H, Hwang T-L, Shen Y-C (2014) New briarane diterpenoids from Taiwanese soft coral Briareum violacea. Mar Drugs 12:4677

    Article  PubMed  PubMed Central  Google Scholar 

  659. Su Y-D, Cheng C-H, Chen W-F, Chang Y-C, Chen Y-H, Hwang T-L, Wen Z-H, Wang W-H, Fang L-S, Chen J-J, Wu Y-C, Sheu J-H, Sung P-J (2014) Briarenolide J, the first 12-chlorobriarane diterpenoid from an octocoral Briareum sp. (Briareidae). Tetrahedron Lett 55:6065

    Google Scholar 

  660. Su Y-D, Wu T-Y, Wen Z-H, Su C-C, Chen Y-H, Chang Y-C, Wu Y-C, Sheu J-H, Sung P-J (2015) Briarenolides U–Y, new anti-inflammatory briarane diterpenoids from an octocoral Briareum sp. (Briareidae). Mar Drugs 13:7138

    Google Scholar 

  661. Su Y-D, Wen Z-H, Wu Y-C, Fang L-S, Chen Y-H, Chang Y-C, Sheu J-H, Sung P-J (2016) Briarenolides M-T, new briarane diterpenoids from a Formosan octocoral Briareum sp. Tetrahedron 72:944

    Article  CAS  Google Scholar 

  662. Su Y-D, Sung C-S, Wen Z-H, Chen Y-H, Chang Y-C, Chen J-J, Fang L-S, Wu Y-C, Sheu J-H, Sung P-J (2016) New 9-hydroxybriarane diterpenoids from a gorgonian coral Briareum sp. (Briareidae). Int J Mol Sci 17:79

    Google Scholar 

  663. Chen N-F, Su Y-D, Hwang T-L, Liao Z-J, Tsui K-H, Wen Z-H, Wu Y-C, Sung P-J (2017) Briarenols C-E, new polyoxygenated briaranes from the octocoral Briareum excavatum. Molecules 22:475

    Article  PubMed  PubMed Central  Google Scholar 

  664. Zhang Y-L, Chiang C-C, Lee Y-T, Wen Z-H, Wu Y-C, Wu Y-J, Hwang T-L, Wu T-Y, Chang C-Y, Sung P-J (2020) Briarenols Q-T: briaranes from a cultured octocoral Briareum stechei (Kükenthal, 1908). Mar Drugs 18:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  665. Chen Y-Y, Zhang Y-L, Lee G-H, Tsou LK, Zhang MM, Hsieh H-P, Chen J-J, Ko C-Y, Wen Z-H, Sung P-J (2021) Briarenols W-Z: chlorine-containing polyoxygenated briaranes from octocoral Briareum stechei (Kükenthal, 1908). Mar Drugs 19:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  666. Sun J-F, Huang H, Chai X-Y, Yang X-W, Meng L, Huang C-G, Zhou X-F, Yang B, Hu J, Chen X-Q, Lei H, Wang L, Liu Y (2011) Dichotellides A-E, five new iodine-containing briarane type diterpenoids from Dichotella gemmacea. Tetrahedron 67:1245

    Article  CAS  Google Scholar 

  667. Sun J-F, Han Z, Zhou X-F, Yang B, Lin X, Liu J, Peng Y, Yang X-W, Liu Y (2013) Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea. Tetrahedron 69:871

    Article  CAS  Google Scholar 

  668. Li C, La M-P, Li L, Li X-B, Tang H, Liu B-S, Krohn K, Sun P, Yi Y-H, Zhang W (2011) Bioactive 11,20-epoxy-3,5(16)-diene briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. J Nat Prod 74:1658

    Article  CAS  PubMed  Google Scholar 

  669. Li C, La M-P, Sun P, Kurtan T, Mandi A, Tang H, Liu B-S, Yi Y-H, Li L, Zhang W (2011) Bioactive (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar Drugs 9:1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  670. Li C, La M-P, Tang H, Pan W-H, Sun P, Krohn K, Yi Y-H, Li L, Zhang W (2012) Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg Med Chem Lett 22:4368

    Article  CAS  PubMed  Google Scholar 

  671. Li C, Jiang M, La M-P, Li T-J, Tang H, Sun P, Liu B-S, Yi Y-H, Liu Z, Zhang W (2013) Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China Sea gorgonian Dichotella gemmacea. Mar Drugs 11:1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. La M-P, Li J, Li C, Tang H, Liu B-S, Sun P, Zhuang C-L, Li T-J, Zhang W (2014) Briarane diterpenoids from the Gorgonian Dichotella gemmacea. Mar Drugs 12:6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  673. Jia R, Guo Y-W, Chen P, Yang Y-M, Mollo E, Gavagnin M, Cimino G (2007) Biscembranoids and their probable biogenetic precursor from the Hainan soft coral Sarcophyton tortuosum. J Nat Prod 70:1158

    Article  CAS  PubMed  Google Scholar 

  674. Huang H-C, Chao C-H, Kuo Y-H, Sheu J-H (2009) Crassocolides G-M, cembranoids from the Formosan soft coral Sarcophyton crassocaule. Chem Biodivers 6:1232

    Article  CAS  PubMed  Google Scholar 

  675. Elkhateeb A, El-Beih AA, Gamal-Eldeen AM, Alhammady MA, Ohta S, Paré PW, Hegazy M-EF (2014) New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Mar Drugs 12:1977

    Article  PubMed  PubMed Central  Google Scholar 

  676. Yang J, Zhang S, Qia S, Pan J, Qiu Y, Tao S, Yin H, Li Q (2007) Briarane-type diterpenoids from the China gorgonian coral Subergorgia reticulata. Biochem Syst Ecol 35:770

    Article  CAS  Google Scholar 

  677. Ito H, Iwasaki J, Sato Y, Aoyagi M, Iguchi K, Yamori T (2007) Marine diterpenoids with a briarane skeleton from the Okinawan soft coral Pachyclavularia violacea. Chem Pharm Bull 55:1671

    Article  CAS  Google Scholar 

  678. Kate AS, Richard K, Ramanathan B, Kerr RG (2010) A halogenated pseudopterane diterpene from the Bahamian octocoral Pseudopterogorgia acerosa. Can J Chem 88:318

    Article  CAS  Google Scholar 

  679. Lai D, Li Y, Xu M, Deng Z, van Ofwegen L, Qian P, Proksch P, Lin W (2011) Sinulariols A-S, 19-oxygenated cembranoids from the Chinese soft coral Sinularia rigida. Tetrahedron 67:6018

    Article  CAS  Google Scholar 

  680. Fattorusso E, Luciano P, Putra MY, Taglialatela-Scafati O, Ianaro A, Panza E, Bavestrello G, Cerrano C (2011) Chloroscabrolides, chlorinated norcembranoids from the Indonesian soft coral Sinularia sp. Tetrahedron 67:7983

    Article  CAS  Google Scholar 

  681. Kao C-Y, Su J-H, Lu M-C, Hwang T-L, Wang W-H, Chen J-J, Sheu J-H, Kuo Y-H, Weng C-F, Fang L-S, Wen Z-H, Sung P-J (2011) Lobocrassins A-E: new cembrane-type diterpenoids from the soft coral Lobophytum crassum. Mar Drugs 9:1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  682. Hsu F-J, Chen B-W, Wen Z-H, Huang C-Y, Dai C-F, Su J-H, Wu Y-C, Sheu J-H (2011) Klymollins A-H, bioactive eunicellin-based diterpenoids from the Formosan soft coral Klyxum molle. J Nat Prod 74:2467

    Article  CAS  PubMed  Google Scholar 

  683. Lin M-C, Chen B-W, Huang C-Y, Dai C-F, Hwang T-L, Sheu J-H (2013) Eunicellin-based diterpenoids from the Formosan soft coral Klyxum molle with inhibitory activity on superoxide generation and elastase release by neutrophils. J Nat Prod 76:1661

    Article  CAS  PubMed  Google Scholar 

  684. Nguyen HP, Zhang D, Lee U, Kang JS, Choi HD, Son BW (2007) Dehydroxychlorofusarielin B, an antibacterial polyoxygenated decalin derivative from the marine-derived fungus Aspergillus sp. J Nat Prod 70:1188

    Article  CAS  PubMed  Google Scholar 

  685. Gai Y, Zhao LL, Hu CQ, Zhang HP (2007) Fusarielin E, a new antifungal antibiotic from Fusarium sp. Chin Chem Lett 18:954

    Article  CAS  Google Scholar 

  686. Lee Y, Wang W, Kim H, Giri AG, Won DH, Hahn D, Baek KR, Lee J, Yang I, Choi H, Nam S-J, Kang H (2014) Phorbaketals L-N, cytotoxic sesterterpenoids isolated from the marine sponge of the genus Phorbas. Bioorg Med Chem Lett 24:4095

    Article  CAS  PubMed  Google Scholar 

  687. Manzo E, Gavagnin M, Bifulco G, Cimino P, Di Micco S, Ciavatta ML, Guo YW, Cimino G (2007) Aplysiols A and B, squalene-derived polyethers from the mantle of the sea hare Aplysia dactylomela. Tetrahedron 63:9970

    Article  CAS  Google Scholar 

  688. Matsuo Y, Suzuki M, Masuda M, Iwai T, Morimoto Y (2008) Squalene-derived triterpene polyethers from the red alga Laurencia omaezakiana. Helv Chim Acta 91:1261

    Article  CAS  Google Scholar 

  689. Ji N-Y, Li X-M, Xie H, Ding J, Li K, Ding L-P, Wang B-G (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (Rhodomelaceae). Helv Chim Acta 91:1940

    Article  CAS  Google Scholar 

  690. Vera B, Rodríguez AD, Avilés E, Ishikawa Y (2009) Aplysqualenols A and B: squalene-derived polyethers with antitumoral and antiviral activity from the Caribbean sea slug Aplysia dactylomela. Eur J Org Chem, 5327

    Google Scholar 

  691. Vera B, Rodríguez AD, La Clair JJ (2011) Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew Chem Int Ed 50:8134

    Article  CAS  Google Scholar 

  692. Cen-Pacheco F, Nordström L, Souto ML, Martín MN, Fernández JJ, Daranas AH (2010) Studies on polyethers produced by red algae. Mar Drugs 8:1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  693. Ola ARB, Babey A-M, Motti C, Bowden BF (2010) Aplysiols C-E, brominated triterpene polyethers from the marine alga Chondria armata and a revision of the structure of aplysiol B. Aust J Chem 63:907

    Article  CAS  Google Scholar 

  694. Cen-Pacheco F, Mollinedo F, Villa-Pulgarín JA, Norte M, Fernández JJ, Daranas AH (2012) Saiyacenols A and B: the key to solve the controversy about the configuration of aplysiols. Tetrahedron 68:7275

    Article  CAS  Google Scholar 

  695. Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ (2011) Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem 46:3302

    Article  CAS  PubMed  Google Scholar 

  696. Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Martín MN, Fernández JJ, Daranas AH (2011) New polyether triterpenoids from Laurencia viridis and their biological evaluation. Mar Drugs 9:2220

    Article  Google Scholar 

  697. Cen-Pacheco F, Santiago-Benítez AJ, Garcia C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids from Laurencia viridis: combined spectroscopic-computational analysis and antifouling potential. J Nat Prod 78:712

    Article  CAS  PubMed  Google Scholar 

  698. Cen-Pacheco F, Santiago-Benítez AJ, Tsui KY, Tantillo DJ, Fernández JJ, Daranas AH (2021) Structure and computational basis for backbone rearrangement in marine oxasqualenoids. J Org Chem 86:2437

    Article  CAS  PubMed  Google Scholar 

  699. Morimoto Y, Yata H, Nishikawa Y (2007) Assignment of the absolute configuration of the marine pentacyclic polyether (+)-enshuol by total synthesis. Angew Chem Int Ed 46:6481

    Article  CAS  Google Scholar 

  700. Morimoto Y, Okita T, Takaishi M, Tanaka T (2007) Total synthesis and determination of the absolute configuration of (+)-intricatetraol. Angew Chem Int Ed 46:1132

    Article  CAS  Google Scholar 

  701. Hoshino A, Nakai H, Morino M, Nishikawa K, Kodama T, Nishikibe K, Morimoto Y (2017) Total synthesis of the cytotoxic marine triterpenoid isodehydrothyrsiferol reveals partial enantiodivergency in the thyrsiferol family of natural products. Angew Chem Int Ed 56:3064

    Article  CAS  Google Scholar 

  702. Tanuwidjaja J, Ng S-S, Jamison TF (2009) Total synthesis of ent-dioxepandehydrothyrsiferol via a bromonium-initiated epoxide-opening cascade. J Am Chem Soc 131:12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  703. Chen L-X, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28:705

    Article  CAS  PubMed  Google Scholar 

  704. Dembitsky VM, Gloriozova TA, Poroikov VV (2017) Chlorinated plant steroids and their biological activities. Int J Curr Res Biosci Plant Biol 4:70

    Article  CAS  Google Scholar 

  705. Nicotra VE, Ramacciotti NS, Gil RR, Oberti JC, Feresin GE, Guerrero CA, Baggio RF, Garland MT, Burton G (2006) Phytotoxic withanolides from Jaborosa rotacea. J Nat Prod 69:783

    Article  CAS  PubMed  Google Scholar 

  706. Hsieh P-W, Huang Z-Y, Chen J-H, Chang F-R, Wu C-C, Yang Y-L, Chiang MY, Yen M-H, Chen S-L, Yen H-F, Lübken T, Hung W-C, Wu Y-C (2007) Cytotoxic withanolides from Tubocapsicum anomalum. J Nat Prod 70:747

    Article  CAS  PubMed  Google Scholar 

  707. Nicotra VE, Gil RR, Oberti JC, Burton G (2007) Withanolides with phytotoxic activity from Jaborosa caulescens var. caulescens and J. caulescens var. bipinnatifida. J Nat Prod 70:808

    Google Scholar 

  708. Pramanick S, Roy A, Ghosh S, Majumder HK, Mukhopadhyay S (2008) Withanolide Z, a new chlorinated withanolide from Withania somnifera. Planta Med 74:1745

    Article  CAS  PubMed  Google Scholar 

  709. Li Y-Z, Pan Y-M, Huang X-Y, Wang H-S (2008) Withanolides from Physalis alkekengi var. francheti. Helv Chim Acta 91:2284

    Google Scholar 

  710. García ME, Pagola S, Navarro-Vázquez A, Phillips DD, Gayathri C, Krakauer H, Stephens PW, Nicotra VE, Gil RR (2009) Stereochemistry determination by powder X-ray diffraction analysis and NMR spectroscopy residual dipolar couplings. Angew Chem Int Ed 48:5670

    Article  Google Scholar 

  711. Choudhary MI, Hussain S, Yousuf S, Dar A, Mudassar, Atta-ur-Rahman (2010) Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71:2205

    Article  CAS  PubMed  Google Scholar 

  712. Xu Y-X, Xiang Z-B, Jin Y-S, Shen Y, Chen H-S (2010) Two new triterpenoids from the roots of Actinidia chinensis. Fitoterapia 81:920

    Article  CAS  PubMed  Google Scholar 

  713. Maia AIV, Braz-Filho R, Silveira ER, de Simone CA, Pessoa ODL (2012) Further withaphysalin derivatives from Acnistus arborescens. Helv Chim Acta 95:1387

    Article  CAS  Google Scholar 

  714. Quang TH, Ngan NTT, Minh CV, Kiem PV, Yen PH, Tai BH, Nhiem NX, Thao NP, Anh HLT, Luyen BTT, Yang SY, Kim YH (2012) Plantagiolides I and J, two new withanolide glucosides from Tacca plantaginea with nuclear factor-kappaB inhibitory and peroxisome proliferator-activated receptor transactivational activities. Chem Pharm Bull 60:1494

    Article  CAS  Google Scholar 

  715. Batista PHJ, de Lima KSB, Pinto FCL, Tavares JL, Uchoa DEA, Costa-Lotufo LV, Rocha DD, Silveira ER, Bezerra AME, Canuto KM, Pessoa ODL (2016) Withanolides from leaves of cultivated Acnistus arborescens. Phytochemistry 130:321

    Article  CAS  PubMed  Google Scholar 

  716. Yan C, Zhang Y-D, Wang X-H, Geng S-D, Wang T-Y, Sun M, Liang W, Zhang W-Q, Zhang X-D, Luo H (2016) Tirucallane-type triterpenoids from the fruits of Phellodendron chinense Schneid and their cytotoxic activities. Fitoterapia 113:132

    Article  CAS  PubMed  Google Scholar 

  717. Torres FR, Pérez-Castorena AL, Arredondo L, Toscano RA, Nieto-Camacho A, Martínez M, Maldonado E (2019) Labdanes, withanolides, and other constituents from Physalis nicandroides. J Nat Prod 82:2489

    Article  CAS  PubMed  Google Scholar 

  718. Xu G-B, Xu Y-M, Wijeratne EMK, Ranjbar F, Liu MX, Gunatilaka AAL (2021) Cytotoxic physalins from aeroponically grown Physalis acutifolia. J Nat Prod 84:187

    Article  CAS  PubMed  Google Scholar 

  719. Choudhary MI, Yousuf S, Samreen SSAA, Ahmed S, Atta-ur-Rahman (2006) Biotransformation of physalin H and leishmanicidal activity of its transformed products. Chem Pharm Bull 54:927

    Article  CAS  Google Scholar 

  720. Men R-Z, Li N, Ding W-J, Hu Z-J, Ma Z-J, Cheng L (2014) Unprecedent aminophysalin from Physalis angulata. Steroids 88:60

    Article  CAS  PubMed  Google Scholar 

  721. Basso AV, González SL, Barboza GE, Careaga VP, Calvo JC, Sacca PA, Nicotra VE (2017) Phytochemical study of the genus Salpichroa (Solanaceae), chemotaxonomic considerations, and biological evaluation in prostate and breast cancer cells. Chem Biodivers 14:e1700118

    Article  Google Scholar 

  722. Machin RP, Veleiro AS, Nicotra VE, Oberti JC, Padrón JM (2010) Antiproliferative activity of withanolides against human breast cancer cell lines. J Nat Prod 73:966

    Article  CAS  PubMed  Google Scholar 

  723. Zhukova NV, Gloriozova TA, Poroikov VV, Dembitsky VM (2017) Halogenated (Cl, Br and I) marine steroids and their biological activities: A brief review. Pharma Innov J 6:456

    CAS  Google Scholar 

  724. Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Burtseva YV, Krasokhin VB, Stonik VA (2008) Topsentiasterol sulfates with novel iodinated and chlorinated side chains from the marine sponge Topsentia sp. Tetrahedron Lett 49:7191

    Article  CAS  Google Scholar 

  725. Teta R, Della Sala G, Renga B, Mangoni A, Fiorucci S, Costantino V (2012) Chalinulasterol, a chlorinated steroid disulfate from the Caribbean sponge Chalinula molitba. Evaluation of its role as PXR receptor modulator. Mar Drugs 10:1383

    Google Scholar 

  726. Tabakmakher KM, Makarieva TN, Denisenko VA, Popov RS, Dmitrenok PS, Dyshlovoy SA, Grebnev BB, Bokemeyer C, von Amsberg G, Cuong NX (2019) New trisulfated steroids from the Vietnamese marine sponge Halichondria vansoesti and their PSA expression and glucose uptake inhibitory activities. Mar Drugs 17:445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Lyakhova EG, Kolesnikova SA, Kalinovsky AI, Dmitrenok PS, Nam NH, Stonik VA (2015) Further study on Penares sp. from Vietnamese waters: minor lanostane and nor-lanostane triterpenes. Steroids 96:37

    Google Scholar 

  728. Dai J, Yoshida WY, Kelly M, Williams P (2016) Pregnane-10,2-carbolactones from a Hawaiian marine sponge in the genus Myrmekioderman. J Nat Prod 79:1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  729. He H, Bertin MJ, Wu S, Wahome PG, Beauchesne KR, Youngs RO, Zimba PV, Moeller PDR, Sauri J, Carter GT (2018) Cyanobufalins: cardioactive toxins from cyanobacterial blooms. J Nat Prod 81:2576

    Article  CAS  PubMed  Google Scholar 

  730. Tartakoff SS, Vanderwal CD (2014) A synthesis of the ABC tricyclic core of the clionastatins serves to corroborate their proposed structures. Org Lett 16:1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  731. Gao S, Wang Q, Chen C (2009) Synthesis and structure revision of nakiterpiosin. J Am Chem Soc 131:1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  732. Gao S, Wang Q, Huang LJ-S, Lum L, Chen C (2010) Chemical and biological studies of nakiterpiosin and nakiterpiosinone. J Am Chem Soc 132:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  733. Gao S, Wang Q, Wang G, Lomenick B, Liu J, Fan C-W, Deng L-W, Huang J, Lum L, Chen C (2012) The chemistry and biology of nakiterpiosin—C-nor-D-homosteroids. Synlett 23:2298

    Article  CAS  Google Scholar 

  734. Wanke T, Philippus AC, Zatelli GA, Vieira LFO, Lhullier C, Falkenberg M (2015) C15 acetogenins from the Laurencia complex: 50 years of research—an overview. Rev Brasil Farmacog 25:569

    Article  CAS  Google Scholar 

  735. Kladi M, Vagias C, Stavri M, Rahman MM, Gibbons S, Roussis V (2008) C15 acetogenins with antistaphylococcal activity from the red alga Laurencia glandulifera. Phytochem Lett 1:31

    Article  CAS  Google Scholar 

  736. Kladi M, Vagias C, Papazafiri P, Brogi S, Tafi A, Roussis V (2009) Tetrahydrofuran acetogenins from Laurencia glandulifera. J Nat Prod 72:190

    Article  CAS  PubMed  Google Scholar 

  737. Gutiérrez-Cepeda A, Fernández JJ, Gil LV, López-Rodríguez M, Norte M, Souto ML (2011) Nonterpenoid C15 acetogenins from Laurencia marilzae. J Nat Prod 74:441

    Article  PubMed  Google Scholar 

  738. Ayyad S-EN, Al-Footy KO, Alarif WM, Sobahi TR, Bassaif SA, Makki MS, Asiri AM, Al Halawani AY, Badria AF, Badria FAA (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59:1294

    Article  CAS  Google Scholar 

  739. Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  740. Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC–PDA–HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: dereplication and tracing of natural products. Phytochemistry 108:208

    Article  CAS  PubMed  Google Scholar 

  741. Gutiérrez-Cepeda A, Daranas AH, Fernández JJ, Norte M, Souto ML (2014) Stereochemical determination of five-membered cyclic ether acetogenins using a spin-spin coupling constant approach and DFT calculations. Mar Drugs 12:4031

    Article  PubMed  PubMed Central  Google Scholar 

  742. Gutiérrez-Cepeda A, Fernández JJ, Norte M, López-Rodríguez M, Brito I, Muller CD, Souto ML (2016) Additional insights into the obtusallene family: components of Laurencia marilzae. J Nat Prod 79:1184

    Article  PubMed  Google Scholar 

  743. Bawakid NO, Alarif WM, Ismail AI, El-Hefnawy ME, Al-Footy KO, Al-Lihaibi SS (2017) Bio-active maneonenes and isomaneonene from the red alga Laurencia obtusa. Phytochemistry 143:180

    Article  CAS  PubMed  Google Scholar 

  744. Bawakid NO, Alarif WM, Alburae NA, Alorfi HS, Al-Footy KO, Al-Lihaibi SS, Ghandourah MA (2017) Isolaurenidificin and bromlaurenidificin, two new C15-acetogenins from the red alga Laurencia obtusa. Molecules 22:807

    Article  PubMed  PubMed Central  Google Scholar 

  745. Liu X, Li XM, Li CS, Ji NY, Wang BG (2010) Laurenidificin, a new brominated C15-acetogenin from the marine red alga Laurencia nidifica. Chin Chem Lett 21:1213

    Article  CAS  Google Scholar 

  746. Yoshikawa Y, Yamakawa M, Kobayashi T, Murai K, Arisawa M, Sumimoto M, Fujioka H (2017) First asymmetric total synthesis and insight into the structure of laurenidificin. Eur J Org Chem: 2715

    Google Scholar 

  747. Esselin H, Sutour S, Liberal J, Cruz MT, Salgueiro L, Siegler B, Freuze I, Castola V, Paoli M, Bighelli A, Tomi F (2017) Chemical composition of Laurencia obtusa extract and isolation of a new C15-acetogenin. Molecules 22:779

    Article  PubMed  PubMed Central  Google Scholar 

  748. Ji N-Y, Li X-M, Li K, Wang B-G (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15-acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499

    Article  CAS  PubMed  Google Scholar 

  749. Ji N-Y, Li X-M, Li K, Wang B-G (2010) Laurendecumallenes A-B and laurendecumenynes A–B, halogenated nonterpenoid C15-acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 73:1192

    Article  CAS  Google Scholar 

  750. Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K, Abe T, Matsuda F, Suzuki M, Okino T (2014) Omaezallene from red alga Laurencia sp.: structure elucidation, total synthesis, and antifouling activity. Angew Chem Int Ed 53:3909

    Google Scholar 

  751. Gutiérrez-Cepeda A, Fernández JJ, Norte M, Souto ML (2011) New bicyclotridecane C15 nonterpenoid bromoallenes from Laurencia marilzae. Org Lett 13:2690

    Article  PubMed  Google Scholar 

  752. Braddock DC (2006) A hypothesis concerning the biosynthesis of the obtusallene family of marine natural products via electrophilic bromination. Org Lett 8:6055

    Article  CAS  PubMed  Google Scholar 

  753. Clarke J, Bonney KJ, Yaqoob M, Solanki S, Rzepa HS, White AJP, Millan DS, Braddock DC (2016) Epimeric face-selective oxidations and diastereodivergent transannular oxonium ion formation fragmentations: computational modeling and total syntheses of 12-epoxyobtusallene IV, 12-epoxyobtusallene II, obtusallene X, marilzabicycloallene C, and marilzabicycloallene D. J Org Chem 81:9539

    Article  CAS  PubMed  Google Scholar 

  754. Esselin H, Tomi F, Bighelli A, Sutour S (2018) New metabolites isolated from a Laurencia obtusa population collected in Corsica. Molecules 23:720

    Article  PubMed  PubMed Central  Google Scholar 

  755. Sutour S, Therrien B, von Reuss SH, Tomi F (2018) Halogenated C15 acetogenin analogues of obtusallene III from a Laurenciella sp. collected in Corsica. J Nat Prod 81:279

    Google Scholar 

  756. Morales-Amador A, de Vera CR, Márquez-Fernández O, Daranas AH, Padrón JM, Fernández JJ, Souto ML, Norte M (2018) Pinnatifidenyne-derived ethynyl oxirane acetogenins from Laurencia viridis. Mar Drugs 16:5

    Article  Google Scholar 

  757. Kamada T, Phan C-S, Vairappan CS (2019) Nangallenes A and B, halogenated nonterpenoid C15-acetogenins from the Bornean red alga Laurencia nangii. J Asian Nat Prod Res 31:241

    Article  Google Scholar 

  758. Perdikaris S, Mangoni A, Grauso L, Papazafiri P, Roussis V, Ioannou E (2019) Vagiallene, a rearranged C15 acetogenin from Laurencia obtusa. Org Lett 21:3183

    Article  CAS  PubMed  Google Scholar 

  759. Koutsaviti A, Daskalaki MG, Agusti S, Kampranis SC, Tsatsanis C, Duarte CM, Roussis V, Ioannou E (2019) Thuwalallenes A–E and thuwalenynes A–C: new C15 acetogenins with anti-inflammatory activity from a Saudi Arabian Red Sea Laurencia sp. Mar Drugs 17:644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  760. Alarif WM, Al-Lihaibi SS, Bawakid NO, Abdel-Lateff A, Al-Malky HS (2019) Rare acetogenins with anti-inflammatory effect from the red alga Laurencia obtusa. Molecules 24:476

    Article  PubMed  PubMed Central  Google Scholar 

  761. Ghandourah MA, Alarif WM, Bawakid NO (2019) New bioactive C15 acetogenins from the red alga Laurencia obtusa. Pharmacog Mag 15:199

    Article  CAS  Google Scholar 

  762. Ishii T, Miyagi M, Shinjo Y, Minamida Y, Matsuura H, Abe T, Kikuchi N, Suzuki M (2020) Two new brominated C15-acetogenins from the red alga Laurencia japonensis. Nat Prod Res 34:2787

    Article  CAS  PubMed  Google Scholar 

  763. Gallardo AB, Cueto M, Díaz-Marrero AR, de la Rosa JM, Fajardo V, San-Martín A, Darias J (2018) A set of biogenetically interesting polyhalogenated acetogenins from Ptilonia magellanica. Phytochemistry 145:111

    Article  CAS  PubMed  Google Scholar 

  764. Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M (2010) Laurefurenynes A-F, new cyclic ether acetogenins from a marine red alga, Laurencia sp.. Tetrahedron 66:2855

    Article  CAS  Google Scholar 

  765. Chan HSS, Thompson AL, Christensen KE, Burton JW (2020) Forwards and backwards—synthesis of Laurencia natural products using a biomimetic and retrobiomimetic strategy incorporating structural reassignment of laurefurenynes C-F. Chem Sci 11:11592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  766. Shin I, Lee D, Kim H (2016) Substrate-controlled asymmetric total synthesis and structure revision of (–)-bisezakyne A. Org Lett 18:4420

    Article  CAS  PubMed  Google Scholar 

  767. Wang J, Pagenkopf BL (2007) First total synthesis and structural reassignment of (–)-aplysiallene. Org Lett 9:3703

    Article  CAS  PubMed  Google Scholar 

  768. Sheldrake HM, Jamieson C, Burton JW (2006) The changing faces of halogenated marine natural products: total synthesis of the reported structures of elatenyne and an enyne from Laurencia majuscula. Angew Chem Int Ed 45:7199

    Article  CAS  Google Scholar 

  769. Sheldrake HM, Jamieson C, Pascu SI, Burton JW (2009) Synthesis of the originally proposed structures of elatenyne and an enyne from Laurencia majuscula. Org Biomol Chem 7:238

    Article  CAS  PubMed  Google Scholar 

  770. Smith SG, Paton RS, Burton JW, Goodman JM (2008) Stereostructure assignment of flexible five-membered rings by GIAO 13C NMR calculations: prediction of the stereochemistry of elatenyne. J Org Chem 73:4053

    Article  CAS  PubMed  Google Scholar 

  771. Brkljača R, Urban S (2013) Relative configuration of the marine natural product elatenyne using NMR spectroscopic and chemical derivatization methodologies. Nat Prod Commun 8:729

    Google Scholar 

  772. Dyson BS, Burton JW, Sohn T, Kim B, Bae H, Kim D (2012) Total synthesis and structure confirmation of elatenyne: success of computational methods for NMR prediction with highly flexible diastereomers. J Am Chem Soc 134:11781

    Article  CAS  PubMed  Google Scholar 

  773. Urban S, Brkljača R, Hoshino M, Lee S, Fujita M (2016) Determination of the absolute configuration of the pseudo-symmetric natural product elatenyne by the crystalline sponge method. Angew Chem Int Ed 55:2678

    Article  CAS  Google Scholar 

  774. Jeong W, Kim MJ, Kim H, Kim S, Kim D, Shin KJ (2010) Substrate-controlled asymmetric total synthesis and structure revision of (+)-itomanallene A. Angew Chem Int Ed 49:752

    Article  CAS  Google Scholar 

  775. Braddock DC, Rzepa HS (2008) Structural reassignment of obtusallenes V, VI, and VII by GIAO-Based density functional prediction. J Nat Prod 71:728

    Article  CAS  PubMed  Google Scholar 

  776. Braddock DC, Millan DS, Pérez-Fuertes Y, Pouwer RH, Sheppard RN, Solanki S, White AJP (2009) Bromonium ion induced transannular oxonium ion formation–fragmentation in model obtusallene systems and structural reassignment of obtusallenes V-VII. J Org Chem 74:1835

    Article  CAS  PubMed  Google Scholar 

  777. Denmark SE, Yang S-M (2004) Total synthesis of (+)-brasilenyne. Application of an intramolecular silicon-assisted cross-coupling reaction. J Am Chem Soc 126:12432

    Google Scholar 

  778. Lim C, Ahn J, Sim J, Yun H, Hur J, An H, Jang J, Lee S, Suh Y-G (2018) Total synthesis of (+)-brasilenyne via concise construction of an oxonane framework containing a 1,3-cis, cis-diene. Chem Commun 54:467

    Article  CAS  Google Scholar 

  779. Park J, Kim B, Kim H, Kim S, Kim D (2007) Substrate-controlled asymmetric total synthesis of (+)-microcladallene B with a bromination strategy based on a nucleophile-assisting leaving group. Angew Chem Int Ed 46:4726

    Article  Google Scholar 

  780. Lee H, Kim KW, Park J, Kim H, Kim S, Kim D, Hu X, Yang W, Hong J (2008) A general strategy for construction of both 2,6-cis- and 2,6-trans-disubstituted tetrahydropyrans: substrate-controlled asymmetric total synthesis of (+)-scanlonenyne. Angew Chem Int Ed 47:4200

    Article  CAS  Google Scholar 

  781. Kim B, Lee M, Kim MJ, Lee H, Kim S, Kim D, Koh M, Park SB, Shin KJ (2008) Biomimetic asymmetric total synthesis of (–)-laurefucin via an organoselenium-mediated intramolecular hydroxyetherification. J Am Chem Soc 130:16807

    Article  CAS  PubMed  Google Scholar 

  782. Snyder SA, Brucks AP, Treitler DS, Moga I (2012) Concise synthetic approaches for the Laurencia family: formal total syntheses of (±)-laurefucin and (±)-E- and (±)-Z-pinnatifidenyne. J Am Chem Soc 134:17714

    Article  CAS  PubMed  Google Scholar 

  783. Sohn T, Kim B, Kim D, Paton RS (2018) Asymmetric total synthesis and structure confirmation of (+)-(3E)-isolaurefucin methyl ether. Heterocycles 97:179

    Article  CAS  Google Scholar 

  784. Kim H, Lee H, Lee D, Kim S, Kim D (2007) Asymmetric total syntheses of (+)-3-(Z)-laurentin and (+)-3-(Z)-isolaureatin by “lone pair–lone pair interaction-controlled” isomerization. J Am Chem Soc 129:2269

    Article  CAS  PubMed  Google Scholar 

  785. Lanier ML, Park H, Mukherjee P, Timmerman JC, Ribeiro AA, Widenhoefer RA, Hong J (2017) Formal synthesis of (+)-laurencin by gold(I)-catalyzed intramolecular dehydrative alkoxylation. Chem Eur J 23:7180

    Article  CAS  PubMed  Google Scholar 

  786. Werness JB, Tang W (2011) Stereoselective total synthesis of (–)-kumausallene. Org Lett 13:3664

    Article  CAS  PubMed  Google Scholar 

  787. Kim HS, Kim T, Ahn J, Yun H, Lim C, Jang J, Sim J, An H, Surh Y-J, Lee J, Suh Y-G (2018) Asymmetric total synthesis of (+)-(3E)-pinnatifidenyne via abnormally regioselective Pd(0)-catalyzed endocyclization. J Org Chem 83:1997

    Article  CAS  PubMed  Google Scholar 

  788. Sabot C, Bérard D, Canesi S (2008) Expeditious total syntheses of natural allenic products via aromatic ring umpolung. Org Lett 10:4629

    Article  CAS  PubMed  Google Scholar 

  789. Kim B, Sohn T, Kim S, Kim D, Lee J (2011) Concise substrate-controlled asymmetric total synthesis of (+)-3-(Z)-dihydrorhodophytin. Heterocycles 82:1113

    Article  CAS  Google Scholar 

  790. Kim MJ, Sohn T, Kim D, Paton RS (2012) Concise substrate-controlled asymmetric total syntheses of dioxabicyclic marine natural products with 2,10-dioxabicyclo[7.3.0]dodecene and 2,9-dioxabicyclo[6.3.0]undecene skeletons. J Am Chem Soc 134:20178

    Google Scholar 

  791. Rodriguez-López J, Ortega N, Martin VS, Martin T (2014) β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (–)-isolaurepinnacin and (+)-rogioloxepane A. Chem Commun 50: 3685

    Google Scholar 

  792. Kim G, Sohn T, Kim D, Paton RS (2014) Asymmetric total synthesis of (+)-bermudenynol, a C15 Laurencia metabolite with a vinyl chloride containing oxocene skeleton, through intramolecular amide enolate alkylation. Angew Chem Int Ed 53:272

    Article  CAS  Google Scholar 

  793. Yamakawa M, Kurachi T, Yoshikawa Y, Arisawa M, Okino Y, Suzuki K, Fujioka H (2015) Stereoselective construction of 2,7-disubstituted fused-bis tetrahydrofuran skeletons: biomimetic-type synthesis and biological evaluation of (±)- and (–)-aplysiallene and their derivatives. J Org Chem 80:10261

    Article  CAS  PubMed  Google Scholar 

  794. Ahn J, Lim C, Yun H, Kim HS, Kwon S, Lee J, Lee S, An H, Park H, Suh Y-G (2017) Asymmetric total synthesis of (+)-intricenyne via an endocyclization route to oxocane skeleton. Org Lett 19:6642

    Article  CAS  PubMed  Google Scholar 

  795. Jang H, Kwak SY, Lee D, Alegre-Requena JV, Kim H, Paton RS, Kim D (2021) Asymmetric total synthesis and determination of the absolute configuration of (+)-srilankenyne via sequence-sensitive halogenations guided by conformational analysis. Org Lett 23:1321

    Article  CAS  PubMed  Google Scholar 

  796. Taylor CA, Zhang Y-A, Snyder SA (2020) The enantioselective total synthesis of laurendecumallene B. Chem Sci 11:3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  797. Yoshimura F, Okada T, Tanino K (2019) Asymmetric total synthesis of laurallene. Org Lett 21:559

    Article  CAS  PubMed  Google Scholar 

  798. Senapati S, Das S, Ramana CV (2018) Total synthesis of notoryne. J Org Chem 83:12863

    Article  CAS  PubMed  Google Scholar 

  799. Shepherd ED, Dyson BS, Hak WE, Nguyen QNN, Lee M, Kim MJ, Sohn T, Kim D, Burton JW, Paton RS (2019) Structure determination of a chloroenyne from Laurencia majuscula using computational methods and total synthesis. J Org Chem 84:4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  800. Takamura H, Katsube T, Okamoto K, Kadota I (2017) Total synthesis of two possible diastereomers of natural 6-chlorotetrahydrofuran acetogenin and its stereostructural elucidation. Chem Eur J 23:17191

    Article  CAS  PubMed  Google Scholar 

  801. Kim B, Sohn T, Kim D, Paton RS (2018) Asymmetric total syntheses and structure confirmation of chlorofucins and bromofucins. Chem Eur J 24:2634

    Article  CAS  PubMed  Google Scholar 

  802. Dinda B, Chowdhury DR, Mohanta BC (2009) Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, Part 3. Chem Pharm Bull 57:765

    Google Scholar 

  803. Dinda B, Debnath S, Banik R (2011) Naturally occurring iridoids and secoiridoids. An updated review, Part 4. Chem Pharm Bull 59:803

    Google Scholar 

  804. Yang X-P, Li E-W, Zhang Q, Yuan C-S, Jia Z-J (2006) Five new iridoids from Patrinia rupestris. Chem Biodivers 3:762

    Article  CAS  PubMed  Google Scholar 

  805. Teng J, Zhang FG, Zhang YW, Takaishi Y, Duan HQ (2008) A new iridoid glycoside from Veronica sibirica. Chin Chem Lett 19:450

    Article  CAS  Google Scholar 

  806. Jensen SR, Gotfredsen CH, Grayer RJ (2008) Unusual iridoid glycosides in Veronica sects. Hebe and Labiatoides. Biochem Syst Ecol 36:207

    Article  CAS  Google Scholar 

  807. Taskova RM, Gotfredsen CH, Jensen SR (2006) Chemotaxonomy of Veroniceae and its allies in the Plantaginaceae. Phytochemistry 67:286

    Article  CAS  PubMed  Google Scholar 

  808. Kanemoto M, Matsunami K, Otsuka H, Shinzato T, Ishigaki C, Takeda Y (2008) Chlorine-containing iridoid and iridoid glucoside, and other glucosides from leaves of Myoporum bontioides. Phytochemistry 69:2517

    Article  CAS  PubMed  Google Scholar 

  809. Wang R, Xiao D, Bian Y-H, Zhang X-Y, Li B-J, Ding L-S, Peng S-L (2008) Minor iridoids from the roots of Valeriana wallichii. J Nat Prod 71:1254

    Article  CAS  PubMed  Google Scholar 

  810. Wang P-C, Hu J-M, Ran X-H, Chen Z-Q, Jiang H-Z, Liu Y-Q, Zhou J, Zhao Y-X (2009) Iridoids and sesquiterpenoids from the roots of Valeriana officinalis. J Nat Prod 72:1682

    Article  CAS  PubMed  Google Scholar 

  811. Lin S, Shen Y-H, Zhang Z-X, Li H-L, Shan L, Liu R-H, Xu X-K, Zhang W-D (2010) Revision of the structures of 1,5-dihydroxy-3,8-epoxyvalechlorine, volvaltrate B, and valeriotetrate C from Valeriana jatamansi and V. officinalis. J Nat Prod 73:1723

    Google Scholar 

  812. Jensen SR, Gotfredsen CH, Harput US, Saracoglu I (2010) Chlorinated iridoid glucosides from Veronica longifolia and their antioxidant activity. J Nat Prod 73:1593

    Article  CAS  PubMed  Google Scholar 

  813. Xu J, Zhao P, Guo Y, Xie C, Jin D-Q, Ma Y, Hou W, Zhang T (2011) Iridoids from the roots of Valeriana jatamansi and their neuroprotective effects. Fitoterapia 82:1133

    Article  CAS  PubMed  Google Scholar 

  814. Xu J, Guo P, Guo Y, Fang L, Li Y, Sun Z, Gui L (2012) Iridoids from the roots of Valeriana jatamansi and their biological activities. Nat Prod Res 26:1996

    Article  CAS  PubMed  Google Scholar 

  815. Lin S, Zhang Z-X, Chen T, Ye J, Dai W-X, Shan L, Su J, Shen Y-H, Li H-L, Liu R-H, Xu X, Wang H, Zhang W (2013) Characterization of chlorinated valepotriates from Valeriana jatamansi. Phytochemistry 85:185

    Article  CAS  PubMed  Google Scholar 

  816. Wang R-J, Chen H-M, Yang F, Deng Y, AO H, Xie X-F, Li H-X, Zhang H, Cao Z-X, Zhu L-X, Chen Y, Peng C, Tan Y-Z (2017) Iridoids from the roots of Valeriana jatamansi Jones. Phytochemistry 141:156

    Google Scholar 

  817. Li X-H, Li X-H, Yao Q, Lu L-H, Li Y-B, Wu D-S, Fu D-H, Mei S-X, Cui T, Wang J-K, Zhu Z-Y (2017) Phlolosides A-F, iridoids from Phlomis likiangensis with a carbonate ester substituent. Tetrahedron Lett 58:3112

    Article  CAS  Google Scholar 

  818. Lee DH, Shin J-S, Kang S-Y, Lee S-B, Lee JS, Ryu SM, Lee KT, Lee D, Jang DS (2018) Iridoids from the roots of Patrinia scabra and their inhibitory potential on LPS-induced nitric oxide production. J Nat Prod 81:1468

    Article  CAS  PubMed  Google Scholar 

  819. Li H, Yang S-Q, Wang H, Tian J, Gao W-Y (2010) Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum. Phytochemistry 71:1690

    Article  CAS  PubMed  Google Scholar 

  820. Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138

    Article  CAS  PubMed  Google Scholar 

  821. Carbone M, Núñez-Pons L, Castelluccio F, Avila C, Gavagnin M (2009) Illudalane sesquiterpenoids of the alcyopterosin series from the Antarctic marine soft coral Alcyonium grandis. J Nat Prod 72:1357

    Article  CAS  PubMed  Google Scholar 

  822. Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochim Biophys Acta 1211:243

    Article  CAS  PubMed  Google Scholar 

  823. Zhou Z-F, Menna M, Cai Y-S, Guo Y-W (2015) Polyacetylenes of marine origin: chemistry and bioactivity. Chem Rev 115:1543

    Article  CAS  PubMed  Google Scholar 

  824. Barrow RA, Capon RJ (1994) Carduusynes (A-E): acetylenic acids from a Great Australian Bight marine sponge Phakellia carduus. Aust J Chem 47:1901

    Article  CAS  Google Scholar 

  825. Lerch ML, Harper MK, Faulkner DJ (2003) Brominated polyacetylenes from the Philippines sponge Diplastrella sp. J Nat Prod 66:667

    Article  CAS  PubMed  Google Scholar 

  826. Gung BW, Gibeau C, Jones A (2004) First total synthesis of the brominated polyacetylenes (+)-diplyne A and D: proof of absolute configuration. Tetrahedron: Asymmetry 15:3973

    Google Scholar 

  827. Gung BW, Gibeau C, Jones A (2005) Total synthesis of two novel brominated acetylenic diols (+)-diplyne C and E: stereoselective construction of the (E)-1-bromo-1-alkene. Tetrahedron: Asymmetry 16:3107

    Google Scholar 

  828. de Jesus RP, Faulkner DJ (2003) Chlorinated acetylenes from the San Diego sponge Haliclona lunisimilis. J Nat Prod 66:671

    Article  PubMed  Google Scholar 

  829. Aratake S, Trianto A, Hanif N, de Voogd NJ, Tanaka J (2009) A new polyunsaturated brominated fatty acid from a Haliclona sponge. Mar Drugs 7:523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  830. Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Ayyad S-EN, Badria FA (2013) A new cytotoxic brominated acetylenic hydrocarbon from the marine sponge Haliclona sp. with a selective effect against human breast cancer. Z Naturforsch 68c:70

    Google Scholar 

  831. Zhao C, Gu Q, Xu W-G, Xing G-S, Jin D-J, Xu R, Li H, Duan H-Q, Zhou J, Tang S-A (2015) Three new polyunsaturated lipids from a Guangxi marine sponge Haliclona sp. J Asian Nat Prod Res 17:114

    Article  CAS  PubMed  Google Scholar 

  832. Taniguchi M, Uchio Y, Yasumoto K, Kumusi T, Ooi T (2008) Brominated unsaturated fatty acids from marine sponge collected in Papua New Guinea. Chem Pharm Bull 56:378

    Article  CAS  Google Scholar 

  833. Morinaka BI, Skepper CK, Molinski TF (2007) Ene-yne tetrahydrofurans from the sponge Xestospongia muta. Exploiting a weak CD effect for assignment of configuration. Org Lett 9:1975

    Google Scholar 

  834. Liu D, Xu J, Jiang W, Deng Z, de Voogd NJ, Proksch P, Lin W (2011) Xestospongienols A-L, brominated acetylenic acids from the Chinese marine sponge Xestospongia testudinaria. Helv Chim Acta 94:1600

    Article  CAS  Google Scholar 

  835. Jiang W, Liu D, Deng Z, de Voogd NJ, Proksch P, Lin W (2011) Brominated polyunsaturated lipids and their stereochemistry from the Chinese marine sponge Xestospongia testudinaria. Tetrahedron 67:58

    Article  CAS  Google Scholar 

  836. Zhou X, Lu Y, Lin X, Yang B, Yang X, Liu Y (2011) Brominated aliphatic hydrocarbons and sterols from the sponge Xestospongia testudinaria with their bioactivities. Chem Phys Lipids 164:703

    Article  CAS  PubMed  Google Scholar 

  837. Akiyama T, Takada K, Oikawa T, Matsuura N, Ise Y, Okada S, Matsunaga S (2013) Stimulators of adipogenesis from the marine sponge Xestospongia testudinaria. Tetrahedron 69:6560

    Article  CAS  Google Scholar 

  838. Liang L-F, Wang T, Cai Y-S, He W-F, Sun P, Li Y-F, Huang Q, Taglialatela-Scafati O, Wang H-Y, Guo Y-W (2014) Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. Eur J Med Chem 79:290

    Article  CAS  PubMed  Google Scholar 

  839. He W-F, Liang L-F, Cai Y-S, Gao L-X, Li Y-F, Li J, Liu H-L, Guo Y-W (2015) Brominated polyunsaturated lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia testudinaria. J Asian Nat Prod Res 17:861

    Article  CAS  PubMed  Google Scholar 

  840. Yang M, Liang L-F, Wang T, Wang H-Y, Liu H-L, Guo Y-W (2017) Further brominated polyacetylenes with pancreatic lipase inhibitory activity from Chinese marine sponge Xestospongia testudinaria. J Asian Nat Prod Res 19:732

    Article  CAS  PubMed  Google Scholar 

  841. Yang M, Liang L-F, Yao L-G, Liu H-L, Guo Y-W (2019) A new brominated polyacetylene from Chinese marine sponge Xestospongia testudinaria. J Asian Nat Prod Res 21:573

    Article  CAS  PubMed  Google Scholar 

  842. Gong J-X, He W-F, Liu H-L, Jiang C-S, Wang T, Wang H-Y, Guo Y-W (2016) Synthesis and evaluation of pancreatic lipase inhibitory effects halogenated polyunsaturated lipids from marine natural products: methyl xestospongoate and analogs. Helv Chim Acta 99:78

    Article  CAS  Google Scholar 

  843. Gong J-X, Wang H-Y, Yao L-G, Li X-W, Guo Y-W (2016) First total synthesis of the marine natural brominated polyunsaturated lipid xestospongenyne as a potent pancreatic lipase inhibitory agent. Synlett 27:391

    CAS  Google Scholar 

  844. El-Gamal AA, Al-Massarani SM, Shaala LA, Alahdald AM, Al-Said MS, Ashour AE, Kumar A, Abdel-Kader MS, Abdel-Mageed WM, Youssef DTA (2016) Cytotoxic compounds from the Saudi Red Sea sponge Xestospongia testudinaria. Mar Drugs 14:82

    Article  PubMed  PubMed Central  Google Scholar 

  845. Ayyad S-EN, Katoua DF, Alarif WM, Sobahi TR, Aly MM, Shaala LA, Ghandourah MA (2015) Two new polyacetylene derivatives from the Red Sea sponge Xestospongia sp. Z Naturforsch 70c:297

    Google Scholar 

  846. Angawi RF, Calcinai B, Cerrano C, Dien HA, Fattorusso E, Scala F, Taglialatela-Scafati O (2009) Dehydroconicasterol and aurantoic acid, a chlorinated polyene derivative, from the Indonesian sponge Theonella swinhoei. J Nat Prod 72:2195

    Article  CAS  PubMed  Google Scholar 

  847. Angawi RF, Bavestrello G, Calcinai B, Dien HA, Donnarumma G, Tufano MA, Paoletti I, Grimaldi E, Chianese G, Fattorusso E, Taglialatela-Scafati O (2011) Aurantoside J: a new tetramic acid glycoside from Theonella swinhoei. Insights into the antifungal potential of aurantosides. Mar Drugs 9:2809

    Google Scholar 

  848. Aoki N, Yamamoto K, Ogawa T, Ohta E, Ikeuchi T, Kamemura K, Ikegami S, Ohta S (2013) Bromotheoynic acid, a brominated acetylenic acid from the marine sponge Theonella swinhoei. Nat Prod Res 27:117

    Article  CAS  PubMed  Google Scholar 

  849. Skepper CK, Molinski TF (2008) Long-chain 2H-azirines with heterogeneous terminal halogenation from the marine sponge Dysidea fragilis. J Org Chem 73:2592

    Article  CAS  PubMed  Google Scholar 

  850. Trianto A, de Voodg NJ, Tanaka J (2014) Two new compounds from an Indonesian sponge Dysidea sp. J Asian Nat Prod Res 16:163

    Article  PubMed  Google Scholar 

  851. Keffer JL, Plaza A, Bewley CA (2009) Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Org Lett 11:1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  852. Cheruku P, Keffer JL, Dogo-Isonagie C, Bewley CA (2010) Motualevic acids and analogs: synthesis and antimicrobial structure-activity relationships. Bioorg Med Chem Lett 20:4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  853. Sudhakar G, Kadam VD, Reddy VVN (2010) Total synthesis of motualevic acids A-E. Tetrahedron Lett 51:1124

    Article  CAS  Google Scholar 

  854. Kadam VD, Sudhakar G (2015) Total synthesis of motualevic acids A-F, (E) and (Z)-antazirines. Tetrahedron 71:1058

    Article  CAS  Google Scholar 

  855. Ando H, Ueoka R, Okada S, Fujita T, Iwashita T, Imai T, Yokoyama T, Matsumoto Y, van Soest RWM, Matsunaga S (2010) Penasins A-E, long-chain cytotoxic sphingoid bases, from a marine sponge Penares sp. J Nat Prod 73:1947

    Article  CAS  PubMed  Google Scholar 

  856. Zhang H, Conte MM, Capon RJ (2010) Franklinolides A-C from an Australian marine sponge complex: phosphodiesters strongly enhance polyketide cytotoxicity. Angew Chem Int Ed 49:9904

    Article  CAS  Google Scholar 

  857. Ko J, Morinaka BI, Molinski TF (2011) Faulknerynes A–C from a Bahamian sponge Diplastrella sp.: stereoassignment by critical application of two exciton coupled CD methods. J Org Chem 76:894

    Google Scholar 

  858. Morinaka BI, Molinski TF (2011) Mollenyne A, a long-chain chlorodibromohydrin amide from the sponge Spirastrella mollis. Org Lett 13:6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  859. Wang X, Duggan BM, Molinski TF (2015) Mollenynes B–E from the marine sponge Spirastrella mollis. Band-selective heteronuclear single quantum coherence for discrimination of bromo–chloro regioisomerism in natural products. J Am Chem Soc 137:12343

    Google Scholar 

  860. Chianese G, Fattorusso E, Scala F, Teta R, Calcinai B, Bavestrello G, Dien HA, Kaiser M, Tasdemir D, Taglialatela-Scafati O (2012) Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin. Org Biomol Chem 10:7197

    Article  CAS  PubMed  Google Scholar 

  861. Kumar R, Subramani R, Feussner K-D, Aalbersberg W (2012) Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar Drugs 10:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  862. Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A, Costantino V (2013) Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar Drugs 11:4451

    Google Scholar 

  863. Caso A, Laurenzana I, Lamorte D, Trino S, Esposito G, Piccialli V, Costantino V (2018) Smenamide A analogues. Synthesis and biological activity on multiple myeloma cells. Mar Drugs 16:206

    Google Scholar 

  864. Martín MJ, Coello L, Fernández R, Reyes F, Rodríguez A, Murcia C, Garranzo M, Mateo C, Sánchez-Sancho F, Bueno S, de Eguilior C, Francesch A, Munt S, Cuevas C (2013) Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc 135:10164

    Article  PubMed  Google Scholar 

  865. Hwang BS, Lee K, Yang C, Jeong EJ, Rho J-R (2013) Characterization and anti-inflammatory effects of iodinated acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicus. J Nat Prod 76:2355

    Article  CAS  PubMed  Google Scholar 

  866. Kim H, Chin J, Choi H, Baek K, Lee T-G, Park SE, Wang W, Hahn D, Yang I, Lee J, Mun B, Ekins M, Nam S-J, Kang H (2013) Phosphoiodyns A and B, unique phosphorus-containing iodinated polyacetylenes from a Korean sponge Placospongia sp. Org Lett 15:100

    Article  CAS  PubMed  Google Scholar 

  867. Kim H, Chin J, Choi H, Baek K, Lee T-G, Park SE Wang W, Hahn D, Yang I, Lee J, Mun B, Ekins M, Nam S-J, Kang H (2013) Phosphoiodyns A and B, unique phosphorus-containing iodinated polyacetylenes from a Korean sponge Placospongia sp. Org Lett 15:5614

    Google Scholar 

  868. Kim H, Kim K-J, Yeon J-T, Kim SH, Won DH, Choi H, Nam S-J, Son Y-J, Kang H (2014) Placotylene A, an inhibitor of the receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation, from a Korean sponge Placospongia sp. Mar Drugs 12:2054

    Article  PubMed  PubMed Central  Google Scholar 

  869. Galler DJ, Parker KA (2015) Five easy pieces. The total synthesis of phosphoiodyn A (and placotylene A). Org Lett 17:5544

    Google Scholar 

  870. Esposito G, Teta R, Miceli R, Ceccarelli LS, Della Sala G, Camerlingo R, Irollo E, Mangoni A, Pirozzi G, Costantino V (2015) Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the Caribbean sponge, Smenospongia aurea. Mar Drugs 13:444

    Article  PubMed  PubMed Central  Google Scholar 

  871. Ma X, Chen Y, Chen S, Xu Z, Ye T (2017) Total syntheses of smenothiazoles A and B. Org Biomol Chem 15:7196

    Article  CAS  PubMed  Google Scholar 

  872. Esposito G, Della Sala G, Teta R, Caso A, Bourguet-Kondracki M-L, Pawlik JR, Mangoni A, Costantino V (2016) Chlorinated thiazole-containing polyketide-peptides from the Caribbean sponge Smenospongia conulosa: structure elucidation on microgram scale. Eur J Org Chem:2871

    Google Scholar 

  873. Teta R, Della Sala G, Esposito G, Via CW, Mazzoccoli C, Piccoli C, Bertin MJ, Costantino V, Mangoni A (2019) A joint molecular networking study of a Smenospongia sponge and a cyanobacterial bloom revealed new antiproliferative chlorinated polyketides. Org Chem Front 6:1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  874. Via CW, Glukhov E, Costa S, Zimba PV, Moeller PDR, Gerwick WH, Bertin MJ (2018) The metabolome of a cyanobacterial bloom visualized by MS/MS-based molecular networking reveals new neurotoxic smenamide analogs (C, D, and E). Front Chem 6:316

    Article  PubMed  PubMed Central  Google Scholar 

  875. Caso A, Esposito G, Della Sala G, Pawlik JR, Teta R, Mangoni A, Costantino V (2019) Fast detection of two smenamide family members using molecular networking. Mar Drugs 17:618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  876. Kotoku N, Ishida R, Matsumoto H, Arai M, Toda K, Setiawan A, Muraoka O, Kobayashi M (2017) Biakamides A-D, unique polyketides from a marine sponge, act as selective growth inhibitors of tumor cells adapted to nutrient starvation. J Org Chem 82:1705

    Article  CAS  PubMed  Google Scholar 

  877. Kaweetripob W, Mahidol C, Wongbundit S, Tuntiwachwuttikul P, Ruchirawat S, Prawat H (2018) Sesterterpenes and phenolic alkenes from the Thai sponge Hyrtios erectus. Tetrahedron 74:316

    Article  CAS  Google Scholar 

  878. Gerwick L, Boudreau P, Choi H, Mascuch S, Villa FA, Balunas MJ, Malloy KL, Teasdale ME, Rowley DC, Gerwick WH (2013) Interkingdom signaling by structurally related cyanobacterial and algal secondary metabolites. Phytochem Rev 12:459

    Article  CAS  Google Scholar 

  879. Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171

    Google Scholar 

  880. Jiménez JI, Vansach T, Yoshida WY, Sakamoto B, Pörzgen P, Horgen FD (2009) Halogenated fatty acid amides and cyclic depsipeptides from an eastern Caribbean collection of the cyanobacterium Lyngbya majuscula. J Nat Prod 72:1573

    Article  PubMed  PubMed Central  Google Scholar 

  881. Kwan JC, Teplitski M, Gunasekera SP, Paul VJ, Luesch H (2010) Isolation and biological evaluation of 8-epi-malyngamide C from the Floridian marine cyanobacterium Lyngbya majuscula. J Nat Prod 73:463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  882. Gross H, McPhail KL, Goeger DE, Valeriote FA, Gerwick WH (2010) Two cytotoxic stereoisomers of malyngamide C, 8-epi-malyngamide C and 8-O-acetyl-8-epi-malyngamide C, from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 71:1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  883. Malloy KL, Villa FA, Engene N, Matainaho T, Gerwick L, Gerwick WH (2011) Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a Papua New Guinea marine cyanobacterium. J Nat Prod 74:95

    Article  CAS  PubMed  Google Scholar 

  884. Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ (2011) Malyngamide 3 and cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J Nat Prod 74:871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  885. Shaala LA, Youssef DTA, McPhail KL, Elbandy M (2013) Malyngamide 4, a new lipopeptide from the Red Sea marine cyanobacterium Moorea producens (formerly Lyngbya majuscula). Phytochem Lett 6:183

    Article  CAS  Google Scholar 

  886. Chang TT, More SV, Lu I-H, Hsu J-C, Chen T-J, Jen YC, Lu C-K, Li W-S (2011) Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 46:3810

    Article  CAS  PubMed  Google Scholar 

  887. Han B, Reinscheid UM, Gerwick WH, Gross H (2011) The structure elucidation of isomalyngamide K from the marine cyanobacterium Lyngbya majuscula by experimental and DFT computational methods. J Mol Struct 989:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  888. Sabry OM, Goeger DE, Gerwick WH (2017) Biologically active new metabolites from a Florida collection of Moorea producens. Nat Prod Res 31:555

    Article  CAS  PubMed  Google Scholar 

  889. Jiang W, Zhou W, Othman R, Uchida H, Watanabe R, Suzuki T, Sakamoto B, Nagai H (2018) A new malyngamide from the marine cyanobacterium Moorea producens. Nat Prod Res 32:97

    Article  CAS  PubMed  Google Scholar 

  890. Sueyoshi K, Yamano A, Ozaki K, Sumimoto S, Iwasaki A, Suenaga K, Teruya T (2017) Three new malyngamides from the marine cyanobacterium Moorea producens. Mar Drugs 15:367

    Article  PubMed  PubMed Central  Google Scholar 

  891. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78:1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  892. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T (2017) Columbamides D and E: chlorinated fatty acid amides from the marine cyanobacterium Moorea bouillonii collected in Malaysia. Org Lett 19:4231

    Article  CAS  PubMed  Google Scholar 

  893. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, Morikawa M, Olino T (2020) Biosurfactants from marine cyanobacteria collected in Sabah, Malaysia. J Nat Prod 83:1925

    Article  CAS  PubMed  Google Scholar 

  894. Williamson RT, Singh IP, Gerwick WH (2004) Taveuniamides: new chlorinated toxins from a mixed assemblage of marine cyanobacteria. Tetrahedron 60:7025

    Article  CAS  Google Scholar 

  895. Bertin MJ, Zimba PV, He H, Moeller PDR (2016) Structure revision of trichotoxin, a chlorinated polyketide isolated from a Trichodesmium thiebautii bloom. Tetrahedron Lett 57:5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  896. Bertin MJ, Wahome PG, Zimba PV, He H, Moeller PDR (2017) Trichophycin A, a cytotoxic linear polyketide isolated from a Trichodesmium thiebautii bloom. Mar Drugs 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  897. Belisle RS, Via CW, Schock TB, Villareal TA, Zimba PV, Beauchesne KR, Moeller PDR, Bertin MJ (2017) Trichothiazole A, a dichlorinated polyketide containing an embedded thiazole isolated from Trichodesmium blooms. Tetrahedron Lett 58:4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  898. Bertin MJ, Saurí J, Liu Y, Via CW, Roduit AF, Williamson RT (2018) Trichophycins B-F, chlorovinylidene-containing polyketides isolated from a cyanobacterial bloom. J Org Chem 83:13256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  899. McManus KM, Kirk RD, Via CW, Lotti JS, Roduit AF, Teta R, Scarpato S, Mangoni A, Bertin MJ (2020) Isolation of isotrichophycin C and trichophycins G-I from a collection of Trichodesmium thiebautii. J Nat Prod 83:2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  900. Malloy KL, Suyama TL, Engene N, Debonsi H, Cao Z, Matainaho T, Spadafora C, Murray TF, Gerwick WH (2012) Credneramides A and B: neuromodulatory phenethylamine and isopentylamine derivatives of a vinyl chloride-containing fatty acid from cf. Trichodesmium sp. nov. J Nat Prod 75:60

    Article  CAS  PubMed  Google Scholar 

  901. Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K, Pineda LM, Gerwick L, Spadafora C, Kyle DE, Gerwick WH (2012) Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 14:3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  902. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH (2012) Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  903. Mascuch SJ, Boudreau PD, Carland TM, Pierce NT, Olson J, Hensler ME, Choi H, Campanale J, Hamdoun A, Nizet V, Gerwick WH, Gaasterland T, Gerwick L (2018) Marine natural product honaucin A attenuates inflammation by activating the Nrf2-ARE pathway. J Nat Prod 81:506

    Article  CAS  PubMed  Google Scholar 

  904. Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Korobeynikov A, Sherman DH, Murray TF, Gerwick L, Dorrestein PC, Gerwick WH (2015) Expanding the described metabolome of the marine cyanobacterium Moorea producens JHB through orthogonal natural products workflows. PLoS One 10:e0133297

    Article  PubMed  PubMed Central  Google Scholar 

  905. Nunnery JK, Engene N, Byrum T, Cao Z, Jabba SV, Pereira AR, Matainaho T, Murray TF, Gerwick WH (2012) Biosynthetically intriguing chlorinated lipophilic metabolites from geographically distant tropical marine cyanobacteria. J Org Chem 77:4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  906. Montaser R, Paul VJ, Luesch H (2013) Modular strategies for structure and function employed by marine cyanobacteria: characterization and synthesis of pitinoic acids. Org Lett 15:4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  907. Leão PN, Nakamura H, Costa M, Pereira AR, Martins R, Vasconcelos V, Gerwick WH, Balskus EP (2015) Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria. Angew Chem Int Ed 54:11063

    Article  Google Scholar 

  908. Cai W, Matthews JH, Paul VJ, Luesch H (2016) Pitiamides A and B, multifunctional fatty acid amides from marine cyanobacteria. Planta Med 82:897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  909. Naman CB, Almaliti J, Armstrong L, Caro-Díaz EJ, Pierce ML, Glukhov E, Fenner A, Spadafora C, Debonsi HM, Dorrestein PC, Murray TF, Gerwick WH (2017) Discovery and synthesis of caracolamide A, an ion channel modulating dichlorovinylidene containing phenethylamide from a Panamanian marine cyanobacterium cf. Symploca species. J Nat Prod 80:2328

    Article  CAS  PubMed  Google Scholar 

  910. Sueyoshi K, Yamada M, Yamano A, Ozaki K, Sumimoto S, Iwasaki A, Suenaga K, Teruya T (2018) Ypaoamides B and C, linear lipopeptides from an Okeania sp. marine cyanobacterium. J Nat Prod 81:1103

    Google Scholar 

  911. Moosmann P, Ueoka R, Gugger M, Piel J (2018) Aranazoles: extensively chlorinated nonribosomal peptide–polyketide hybrids from the cyanobacterium Fischerella sp. PCC 9339. Org Lett 20:5238

    Google Scholar 

  912. Moss NA, Seiler G, Leão TF, Castro-Falcón G, Gerwick L, Hughes CC, Gerwick WH (2019) Nature’s combinatorial biosynthesis produces vatiamides A-F. Angew Chem Int Ed 58:9027

    Article  CAS  Google Scholar 

  913. Gutiérrez-del-Rio I, de Fraissinette NB, Castelo-Branco R, Oliveira F, Morais J, Redondo-Blanco S, Villar CJ, Iglesias MJ, Soengas R, Cepas V, Cubillos YL, Sampietro G, Rodolfi L, Lombó F, González SMS, Ortiz FL, Vasconcelos V, Reis MA (2020) Chlorosphaerolactylates A–D: natural lactylates of chlorinated fatty acids isolated from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. J Nat Prod 83:1885

    Google Scholar 

  914. Abt K, Castelo-Branco R, Leão PN (2021) Biosynthesis of chlorinated lactylates in Sphaerospermopsis sp. LEGE 00249. J Nat Prod 84:278

    Google Scholar 

  915. Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN (2021) Discovery of cyanobacterial natural products containing fatty acid residues. Angew Chem Int Ed 60:10064

    Article  CAS  Google Scholar 

  916. Van Wagoner RM, Deeds JR, Tatters AO, Place AR, Tomas CR, Wright JLC (2010) Structure and relative potency of several karlotoxins from Karlodinium veneficum. J Nat Prod 73:1360

    Article  PubMed  PubMed Central  Google Scholar 

  917. Waters AL, Oh J, Place AR, Hamann MT (2015) Stereochemical studies of the karlotoxin class using NMR spectroscopy and DP4 chemical-shift analysis: insights into their mechanism of action. Angew Chem Int Ed 54:15705

    Article  CAS  Google Scholar 

  918. Cai P, He S, Zhou C, Place AR, Haq S, Ding L, Chen H, Jiang Y, Guo C, Xu Y, Zhang J, Yan X (2016) Two new karlotoxins found in Karlodinium veneficum (strain GM2) from the East China Sea. Harmful Algae 58:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  919. Peng J, Place AR, Yoshida W, Anklin C, Hamann MT (2010) Structure and absolute configuration of karlotoxin-2, an ichthyotoxin from the marine dinoflagellate Karlodinium veneficum. J Am Chem Soc 132:3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  920. Furukawa H, Kiyota H, Yamada T, Yaosaka M, Takeuchi R, Watanabe T, Kuwahara S (2007) Stereochemistry of enacyloxins. Part 4. Complete structural and configurational assignment of the enacyloxin family, a series of antibiotics from Frateuria sp. W-315. Chem Biodivers 4:1601

    Google Scholar 

  921. Masschelein J, Sydor PK, Hobson C, Howe R, Jones C, Roberts DM, Yap ZL, Parkhill J, Mahenthiralingam E, Challis GL (2019) A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nature Chem 11:906

    Article  CAS  Google Scholar 

  922. Kosol S, Gallo A, Griffiths D, Valentic TR, Masschelein J, Jenner M, de los Santos ELC, Manzi L, Sydor PK, Rea D, Zhou S, Fülöp V, Oldham NJ, Tsai S-C, Challis GL, Lewandowski JR (2019) Structural basis for chain release from the enacyloxin polyketide synthase. Nature Chem 11:913

    Google Scholar 

  923. Liu X, Biswas S, Berg MG, Antapli CM, Xie F, Wang Q, Tang M-C, Tang G-L, Zhang L, Dreyfuss G, Cheng Y-Q (2013) Genomics-guided discovery of thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod 76:685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  924. Nicolaou KC, Rhoades D, Kumar SM (2018) Total syntheses of thailanstatins A–C, spliceostatin D, and analogues thereof. Stereodivergent synthesis of tetrasubstituted dihydro- and tetrahydropyrans and design, synthesis, biological evaluation, and discovery of potent antitumor agents. J Am Chem Soc 140:8303

    Google Scholar 

  925. Amagata T, Tanaka M, Yamada T, Minoura K, Numata A (2008) Gymnastatins and dankastatins, growth inhibitory metabolites of a Gymnascella species from a Halichondria sponge. J Nat Prod 71:340

    Article  CAS  PubMed  Google Scholar 

  926. Murayama K, Tanabe T, Ishikawa Y, Nakamura K, Nishiyama S (2009) A synthetic study on gymnastatins F and Q: the tandem Michael and aldol reaction approach. Tetrahedron Lett 50:3191

    Article  CAS  Google Scholar 

  927. Amagata T, Takigawa K, Minoura K, Numata A (2010) Gymnastatins I-K, cancer cell growth inhibitors from a sponge-derived Gymnascella dankaliensis. Heterocycles 81:897

    Article  CAS  Google Scholar 

  928. Bunyapaiboonsri T, Yoiprommarat S, Srisanoh U, Choowong W, Tasanathai K, Hywel-Jones NL, Luangsa-ard JJ, Isaka M (2011) Isariotins G-J from cultures of the Lepidoptera pathogenic fungus Isaria tenuipes. Phytochem Lett 4:283

    Article  CAS  Google Scholar 

  929. Amagata T, Tanaka M, Yamada T, Chen Y-P, Minoura K, Numata A (2013) Additional cytotoxic substances isolated from the sponge-derived Gymnascella dankaliensis. Tetrahedron Lett 54:5960

    Article  CAS  Google Scholar 

  930. Xie J, Li J, Yang Y-H, Chen Y-H, Zhao P-J (2014) Two new ambuic acid analogs from Pestalotiopsis sp. cr013. Phytochem Lett 10:291

    Google Scholar 

  931. Wu Q, Wu C, Long H, Chen R, Liu D, Proksch P, Guo P, Lin W (2015) Varioxiranols A-G and 19-O-methyl-22-methoxypre-shamixanthone, PKS and hybrid PKS-derived metabolites from a sponge-associated Emericella variecolor fungus. J Nat Prod 78:2461

    Article  CAS  PubMed  Google Scholar 

  932. He X, Zhang Z, Chen Y, Che Q, Zhu T, Gu Q, Li D (2015) Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor. J Nat Prod 78:2841

    Article  CAS  PubMed  Google Scholar 

  933. Sobolevskaya MP, Leshchenko EV, Hoai TPT, Denisenko VA, Dyshlovoy SA, Kirichuk NN, Khudyakova YV, Kim NY, Berdyshev DV, Pislyagin EA, Kuzmich AS, Gerasimenko AV, Popov RS, von Amsberg G, Antonov AS, Afiyatullov SS (2016) Pallidopenillines: polyketides from the alga-derived fungus Penicillium thomii Maire KMM 4675. J Nat Prod 79:3031

    Article  CAS  PubMed  Google Scholar 

  934. Lee M-S, Wang S-W, Wang G-J, Pang K-L, Lee C-K, Kuo Y-H, Cha H-J, Lin R-K, Lee T-H (2016) Angiogenesis inhibitors and anti-inflammatory agents from Phoma sp. NTOU4195. J Nat Prod 79:2983

    Google Scholar 

  935. Smetanina OF, Yurchenko AN, Ivanets EV, Kalinovsky AI, Khudyakova YV, Dyshlovoy SA, von Amsberg G, Yurchenko EA, Afiyatullov SS (2017) Unique prostate cancer-toxic polyketides from marine sediment-derived fungus Isaria felina. J Antibiot 70:856

    Article  CAS  Google Scholar 

  936. Kobayashi H, Ohashi J, Fujita T, Iwashita T, Nakao Y, Matsunaga S, Fusetani N (2007) Complete structure elucidation of shishididemniols, complex lipids with tyramine-derived tether and two serinol units, from a marine tunicate of the family Didemnidae. J Org Chem 72:1218

    Article  CAS  PubMed  Google Scholar 

  937. Kobayashi H, Miyata Y, Okada K, Fujita T, Iwashita T, Nakao Y, Fusetani N, Matsunaga S (2007) The structures of three new shishididemniols from a tunicate of the family Didemnidae. Tetrahedron 63:6748

    Article  CAS  Google Scholar 

  938. Bedke DK, Vanderwal CD (2011) Chlorosulfolipids: structure, synthesis, and biological relevance. Nat Prod Rep 28:15

    Article  CAS  PubMed  Google Scholar 

  939. Darsow KH, Lange HA, Resch M, Walter C, Buchholz R (2007) Analysis of a chlorosulfolipid from Ochromonas danica by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2188

    Article  CAS  PubMed  Google Scholar 

  940. Kawahara T, Kumaki Y, Kamada T, Ishii T, Okino T (2009) Absolute configuration of chlorosulfolipids from the chrysophyta Ochromonas danica. J Org Chem 74:6016

    Article  CAS  PubMed  Google Scholar 

  941. Chao C-H, Huang H-C, Wang G-H, Wen Z-H, Wang W-H, Chen I-M, Sheu J-H (2010) Chlorosulfolipids and the corresponding alcohols from the octocoral Dendronephthya griffini. Chem Pharm Bull 58:944

    Article  CAS  Google Scholar 

  942. Nilewski C, Carreira EM (2012) Recent advances in the total synthesis of chlorosulfolipids. Eur J Org Chem: 1685

    Google Scholar 

  943. Chung W-J, Vanderwal CD (2014) Approaches to the chemical synthesis of the chlorosulfolipids. Acc Chem Res 47:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  944. Umezawa T, Matsuda F (2014) Recent progress toward synthesis of chlorosulfolipids: total synthesis and methodology. Tetrahedron Lett 55:3003

    Article  CAS  Google Scholar 

  945. Pereira AR, Byrum T, Shibuya GM, Vanderwal CD, Gerwick WH (2010) Structure revision and absolute configuration of malhamensilipin A from the freshwater chrysophyte Poterioochromonas malhamensis. J Nat Prod 73:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  946. Yoshimitsu T, Fukumoto N, Nakatani R, Kojima N, Tanaka T (2010) Asymmetric total synthesis of (+)-hexachlorosulfolipid, a cytotoxin isolated from Adriatic mussels. J Org Chem 75:5425

    Article  CAS  PubMed  Google Scholar 

  947. Umezawa T, Shibata M, Kaneko K, Okino T, Matsuda F (2011) Asymmetric total synthesis of danicalipin A and evaluation of biological activity. Org Lett 13:904

    Article  CAS  PubMed  Google Scholar 

  948. Chung W, Carlson JS, Vanderwal CD (2014) General approach to the synthesis of the chlorosulfolipids danicalipin A, mytilipin A, and malhamensilipin A in enantioenriched form. J Org Chem 79:2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  949. Landry ML, Hu DX, McKenna GM, Burns NZ (2016) Catalytic enantioselective dihalogenation and the selective synthesis of (–)-deschloromytilipin A and (–)-danicalipin A. J Am Chem Soc 138:5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  950. Boshkow J, Fischer S, Bailey AM, Wolfrum S, Carreira EM (2017) Stereochemistry and biological activity of chlorinated lipids: a study of danicalipin A and selected diastereomers. Chem Sci 8:6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  951. Bailey AM, Wolfrum S, Carreira EM (2016) Biological investigations of (+)-danicalipin A enabled through synthesis. Angew Chem Int Ed 55:639

    Article  CAS  Google Scholar 

  952. Chung W, Carlson JS, Bedke DK, Vanderwal CD (2013) A synthesis of the chlorosulfolipid mytilipin A via a longest linear sequence of seven steps. Angew Chem Int Ed 52:10052

    Article  CAS  Google Scholar 

  953. Nilewski C, Deprez NR, Fessard TC, Li DB, Geisser RW, Carreira EM (2011) Synthesis of undecachlorosulfolipid A: re-evaluation of the nominal structure. Angew Chem Int Ed 50:7940

    Article  CAS  Google Scholar 

  954. White AR, Duggan BM, Tsai S-C, Vanderwal CD (2016) The alga Ochromonas danica produces bromosulfolipids. Org Lett 18:1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  955. Boshkow J, Scattolin T, Schoenebeck F, Carreira EM (2018) [1,3]-Sigmatropic shift of an allylic chloride. Helv Chim Acta 101:e1800148

    Article  Google Scholar 

  956. Bedke DK, Vanderwal CD (2009) Chlorine lends a helping hand. Nature 457:548

    Article  CAS  PubMed  Google Scholar 

  957. Peterson PE, Bopp RJ, Chevli DM, Curran EL, Dillard DE, Kamat RJ (1967) Solvents of low nucleophilicity. IX. Inductive and participation effects in carbonium ion reactions in acetic, formic, and trifluoroacetic acid. J Am Chem Soc 89:5902

    Google Scholar 

  958. Peterson PE, Clifford PR, Slama FJ (1970) Reactions of tetramethylenehalonium ions. J Am Chem Soc 92:2840

    Article  CAS  Google Scholar 

  959. Chen J, Fu X-G, Zhou L, Zhang J-T, Qi X-L, Cao X-P (2009) A convergent route for the total synthesis of malyngamides O, P, Q, and R. J Org Chem 74:4149

    Article  CAS  PubMed  Google Scholar 

  960. Chen J, Shi Z-F, Zhou L, Xie A-L, Cao X-P (2010) Total synthesis of malyngamide M and isomalyngamide M. Tetrahedron 66:3499

    Article  CAS  Google Scholar 

  961. Zhang J-T, Qi X-L, Chen J, Li B-S, Zhou Y-B, Cao X-P (2011) Total synthesis of malyngamides K, L, and 5″-epi-C and absolute configuration of malyngamide L. J Org Chem 76:3946

    Article  CAS  PubMed  Google Scholar 

  962. Erver F, Hilt G (2012) Cobalt- versus ruthenium-catalyzed Alder–ene reaction for the synthesis of credneramide A and B. J Org Chem 77:5215

    Article  CAS  PubMed  Google Scholar 

  963. Petermichl M, Loscher S, Schobert R (2016) Total synthesis of aurantoside G, an N-β-glycosylated 3-oligoenoyltetramic acid from Theonella swinhoei. Angew Chem Int Ed 55:10122

    Article  CAS  Google Scholar 

  964. Chen R, Li L, Lin N, Zhou R, Hua Y, Deng H, Zhang Y (2018) Asymmetric total synthesis of (+)-majusculoic acid via a dimerization–dedimerization strategy and absolute configuration assignment. Org Lett 20:1477

    Article  CAS  PubMed  Google Scholar 

  965. Peacock DE, Williams BD, Christensen PE (2007) ‘Total fluorine’ analysis of seed of Australian Gastrolobium spp. showing temporal, spatial and morphological variation. J Fluorine Chem 128:631

    Google Scholar 

  966. Onega M, McGlinchey RP, Deng H, Hamilton JTG, O’Hagan D (2007) The identification of (3R,4S)-5-fluoro-5-deoxy-d-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya. Bioorg Chem 35:375

    Article  CAS  PubMed  Google Scholar 

  967. Deng H, Cross SM, McGlinchey RP, Hamilton JTG, O’Hagan D (2008) In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase. Chem Biol 15:1268

    Article  CAS  PubMed  Google Scholar 

  968. Donnelly C, Murphy CD (2009) Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotechnol Lett 31:245

    Article  CAS  PubMed  Google Scholar 

  969. Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MCY (2010) Structural and biochemical studies of a fluoroacetyl-CoA-specific thioesterase reveal a molecular basis for fluorine selectivity. Biochemistry 49:9269

    Article  CAS  PubMed  Google Scholar 

  970. Eustáquio AS, O’Hagan D, Moore BS (2010) Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide. J Nat Prod 73:378

    Article  PubMed  PubMed Central  Google Scholar 

  971. Li X-G, Domarkas J, O’Hagan D (2010) Fluorinase mediated chemoenzymatic synthesis of [18F]-fluoroacetate. Chem Commun 46:7819

    Article  CAS  Google Scholar 

  972. Li X-G, Dall’Angelo S, Schweiger LF, Zanda M, O’Hagan D (2012) [18F]-5-Fluoro-5-deoxyribose, an efficient peptide bioconjugation ligand for positron emission tomography (PET) imaging. Chem Commun 48:5247

    Google Scholar 

  973. Wadoux RDP, Lin X, Keddie NS, O’Hagan D (2013) Chiral fluoroacetic acid: synthesis of (R)- and (S)-[2H1]-fluoroacetate in high enantiopurity. Tetrahedron: Asymmetry 24:719

    Google Scholar 

  974. Huang S, Ma L, Tong MH, Yu Y, O’Hagan D, Deng H (2014) Fluoroacetate biosynthesis from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674. Org Biomol Chem 12:4828

    Article  CAS  PubMed  Google Scholar 

  975. Ma L, Li Y, Meng L, Deng H, Li Y, Zhang Q, Diao A (2016) Biological fluorination from the sea: discovery of a SAM-dependent nucleophilic fluorinating enzyme from the marine-derived bacterium Streptomyces xinghaiensis NRRL B24674. RSC Adv 6:27047

    Article  CAS  Google Scholar 

  976. Ma L, Bartholome A, Tong MH, Qin Z, Yu Y, Shepherd T, Kyeremeh K, Deng H, O’Hagan D (2015) Identification of a fluorometabolite from Streptomyces sp. MA37: (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. Chem Sci 6:1414

    Google Scholar 

  977. Nielsen OJ, Scott BF, Spencer C, Wallington TJ, Ball JC (2001) Trifluoroacetic acid in ancient freshwater. Atmos Environ 35:2799

    Article  CAS  Google Scholar 

  978. Nielsen OJ (2002) Trifluoroacetic acid—what are the new findings? Dansk Kemi 83:28

    CAS  Google Scholar 

  979. Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, Müller U, Storck FR, Fleig M, Lange FT, Brunsch A, Brauch H-J (2017) Small, mobile, persistent: trifluoroacetate in the water cycle—overlooked sources, pathways, and consquences for drinking water supply. Water Res 126:460

    Article  CAS  PubMed  Google Scholar 

  980. Joudan S, De Silva AO, Young CJ (2021) Insufficient evidence for the existence of natural trifluoroacetic acid. Environ Sci Processes Impacts 23:1641

    Article  CAS  Google Scholar 

  981. Slaughter JC (1999) The naturally occurring furanones: formation and function from pheromone to food. Biol Rev 74:259

    Article  Google Scholar 

  982. de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. In: Fusetani N, Clare AS (eds) Progress in molecular and subcellular biology, subseries marine molecular biotechnology, antifouling compounds. Springer, Berlin, Heidelberg, p 55

    Google Scholar 

  983. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731

    Article  CAS  PubMed  Google Scholar 

  984. Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett Appl Microbiol 34:293

    Article  CAS  PubMed  Google Scholar 

  985. Han Y, Hou S, Simon KA, Ren D, Luk Y-Y (2008) Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorg Med Chem Lett 18:1006

    Article  CAS  PubMed  Google Scholar 

  986. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic sgnalling. J Bacteriol 178:6618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  987. Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  988. Thorson MK, Van Wagoner RM, Harper MK, Ireland CM, Majtan T, Kraus JP, Barrios AM (2015) Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg Med Chem Lett 25:1064

    Article  CAS  PubMed  Google Scholar 

  989. Zang T, Lee BWK, Cannon LM, Ritter KA, Dai S, Ren D, Wood TK, Zhou ZS (2009) A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 19:6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  990. Bjarnsholt T, Givskov M (2008) Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep 10:22

    Article  PubMed  Google Scholar 

  991. Wang W, Kim H, Nam S-J, Rho BJ, Kang H (2012) Antibacterial butenolides from the Korean tunicate Pseudodistoma antinboja. J Nat Prod 75:2049

    Article  CAS  PubMed  Google Scholar 

  992. Wang W, Kim H, Patil RS, Giri AG, Won DH, Hahn D, Sung Y, Lee J, Choi H, Nam S-J, Kang H (2017) Cadiolides J-M, antibacterial polyphenyl butenolides from the Korean tunicate Pseudodistoma antinboja. Bioorg Med Chem Lett 27:574

    Article  CAS  PubMed  Google Scholar 

  993. Won TH, Jeon J, Kim S-H, Lee S-H, Rho BJ, Oh D-C, Oh K-B, Shin J (2012) Brominated aromatic furanones and related esters from the ascidian Synoicum sp. J Nat Prod 75:2055

    Article  CAS  PubMed  Google Scholar 

  994. Ahn C-H, Won TH, Kim H, Shin J, Oh K-B (2013) Inhibition of Candida albicans isocitrate lyase activity by cadiolides and synoilides from the ascidian Synoicum sp. Bioorg Med Chem Lett 23:4099

    Article  CAS  PubMed  Google Scholar 

  995. Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, McPhail KL (2012) Antimicrobial rubrolides from a South African species of Synoicum tunicate. J Nat Prod 75:1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  996. Smitha D, Kumar MMK, Ramana H, Rao DV (2014) Rubrolide R: a new furanone metabolite from the Ascidian Synoicum of the Indian Ocean. Nat Prod Res 28:12

    Article  CAS  PubMed  Google Scholar 

  997. Chang Y-C, Lu C-K, Chiang Y-R, Wang G-J, Ju Y-M, Kuo Y-H, Lee T-H (2014) Diterpene glycosides and polyketides from Xylotumulus gibbisporus. J Nat Prod 77:751

    Article  CAS  PubMed  Google Scholar 

  998. Gallardo AB, Díaz-Marrero AR, de la Rosa JM, D’Croz L, Perdomo G, Cózar-Castellano I, Darias J, Cueto M (2018) Chloro-furanocembranolides from Leptogorgia sp. improve pancreatic beta-cell proliferation. Mar Drugs 16:49

    Google Scholar 

  999. Jennings LK, Robertson LP, Rudolph KE, Munn AL, Carroll AR (2019) Anti-prion butenolides and diphenylpropanones from the Australian ascidian Polycarpa procera. J Nat Prod 82:2620

    Article  CAS  PubMed  Google Scholar 

  1000. Bae J Cho E, Park JS, Won TH, Seo S-Y, Oh D-C, Oh K-B, Shin J (2020) Isocadiolides A–H: polybrominated aromatics from a Synoicum sp. ascidian. J Nat Prod 83:429

    Google Scholar 

  1001. Bracegirdle J, Stevenson LJ, Page MJ, Owen JG, Keyzers RA (2020) Targeted isolation of rubrolides from the New Zealand marine tunicate Synoicum kuranui. Mar Drugs 18:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1002. Bracegirdle J, Stevenson LJ, Sharrock AV, Page MJ, Vorster JA, Owen JG, Ackerley DF, Keyzers RA (2021) Hydrated rubrolides from the New Zealand tunicate Synoicum kuranui. J Nat Prod 84:544

    Article  CAS  PubMed  Google Scholar 

  1003. Haval KP, Argade NP (2007) Synthesis of natural fimbrolides. Synthesis:2198

    Google Scholar 

  1004. Boukouvalas J, McCann LC (2010) Synthesis of the human aldose reductase inhibitor rubrolide L. Tetrahedron Lett 51:4636

    Article  CAS  Google Scholar 

  1005. Tale NP, Shelke AV, Tiwari GB, Thorat PB, Karade NN (2012) New concise and efficient synthesis of rubrolides C and E via intramolecular Wittig reaction. Helv Chim Acta 95:852

    Article  CAS  Google Scholar 

  1006. Karak M, Acosta JAM, Barbosa LCA, Boukouvalas J (2016) Late-stage bromination enables the synthesis of rubrolides B, I, K, and O. Eur J Org Chem 3780

    Google Scholar 

  1007. Kutty SK, Barraud N, Pham A, Iskander G, Rice SA, Black DStC, Kumar N (2013) Design, synthesis, and evaluation of fimbrolide–nitric oxide donor hybrids as antimicrobial agents. J Med Chem 56:9517

    Google Scholar 

  1008. Nasrin S, Ganji S, Kakirde KS, Jacob MR, Wang M, Ravu RR, Cobine PA, Khan IA, Wu C-C, Mead DA, Li X-C, Liles MR (2018) Chloramphenicol derivatives with antibacterial activity identified by functional metagenomics. J Nat Prod 81:1321

    Article  CAS  PubMed  Google Scholar 

  1009. Aouiche A, Sabaou N, Meklat A, Zitouni A, Bijani C, Mathieu F, Lebrihi A (2012) Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil. World J Microbiol Biotechnol 28:943

    Google Scholar 

  1010. Berendsen BJA, Zuidema T, de Jong J, Stolker LAAM, Nielen MWF (2011) Discrimination of eight chloramphenicol isomers by liquid chromatography tandem mass spectrometry in order to investigate the natural occurrence of chloramphenicol. Anal Chim Acta 700:78

    Article  CAS  PubMed  Google Scholar 

  1011. Berendsen BJA, Essers ML, Stolker LAAM, Nielen MWF (2011) Quantitative trace analysis of eight chloramphenicol isomers in urine by chiral liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1218:7331

    Article  CAS  PubMed  Google Scholar 

  1012. Hanekamp JC, Bast A (2015) Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol 39:213

    Article  CAS  PubMed  Google Scholar 

  1013. Sadar MD, Williams DE, Mawji NR, Patrick BO, Wikanta T, Chasanah E, Irianto HE, Van Soest R, Andersen RJ (2008) Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Org Lett 10:4947

    Google Scholar 

  1014. Kapojos MM, Abdjul DB, Yamazaki H, Ohshiro T, Rotinsulu H, Wewengkang DS, Sumilat DA, Tomoda H, Namikoshi M, Uchida R (2018) Callyspongiamides A and B, sterol O-acyltransferase inhibitors, from the Indonesian marine sponge Callyspongia sp. Bioorg Med Chem Lett 28:1911

    Article  CAS  PubMed  Google Scholar 

  1015. Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M, Nett M (2015) Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur J Org Chem: 3057

    Google Scholar 

  1016. Manam RR, Macherla VR, Tsueng G, Dring CW, Weiss J, Neuteboom STC, Lam KS, Potts BC (2009) Antiprotealide is a natural product. J Nat Prod 72:295

    Article  CAS  PubMed  Google Scholar 

  1017. Gulder TAM, Moore BS (2010) Salinosporamide natural products: potent 20S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed 49:9346

    Article  CAS  Google Scholar 

  1018. Kim EJ, Lee JH, Choi H, Pereira AR, Ban YH, Yoo YJ, Kim E, Park JW, Sherman DH, Gerwick WH, Yoon YJ (2012) Heterologous production of 4-O-demethylbarbamide, a marine cyanobacterial natural product. Org Lett 14:5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1019. Seyedsayamdost MR, Chandler JR, Blodgett JAV, Lima PS, Duerkop BA, Oinuma K-I, Greenberg EP, Clardy J (2010) Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org Lett 12:716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1020. Won TH, Kim C-K, Lee S-H, Rho BJ, Lee SK, Oh D-C, Oh K-B, Shin J (2015) Amino acid-derived metabolies from the ascidian Aplidium sp. Mar Drugs 13:3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1021. Motohashi K, Takagi M, Shin-ya K (2010) Tetrapeptides possessing a unique skeleton, JBIR-34 and JBIR-35, isolated from a sponge-derived actinomycete, Streptomyces sp. Sp080513GE-23. J Nat Prod 73:226

    Google Scholar 

  1022. Izumikawa M, Kawahara T, Kagaya N, Yamamura H, Hayakawa M, Takagi M, Yoshida M, Doi T, Shin-ya K (2015) Pyrrolidine-containing peptides, JBIR-126, -148 and -149, from Streptomyces sp. NBRC 111228. Tetrahedron Lett 56:5333

    Google Scholar 

  1023. Brandi L, Lazzarini A, Cavaletti L, Abbondi M, Corti E, Ciciliato I, Gastaldo L, Marazzi A, Feroggio M, Fabbretti A, Maio A, Colombo L, Donadio S, Marinelli F, Losi D, Gualerzi CO, Selva E (2006) Novel tetrapeptide inhibitors of bacterial protein synthesis produced by a Streptomyces sp. Biochemistry 45:3692

    Article  CAS  PubMed  Google Scholar 

  1024. Brumley DA, Gunasekera SP, Chen Q-Y, Paul VJ, Luesch H (2020) Discovery, total synthesis, and SAR of anaenamides A and B: anticancer cyanobacterial depsipeptides with a chlorinated pharmacophore. Org Lett 22:4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1025. Hedner E, Sjögren M, Hodzic S, Andersson R, Göransson U, Jonsson PR, Bohlin L (2008) Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J Nat Prod 71:330

    Article  CAS  PubMed  Google Scholar 

  1026. Ersmark K, Del Valle JR, Hanessian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed 47:1202

    Article  CAS  Google Scholar 

  1027. Raveh A, Carmeli S (2009) Two novel biological active modified peptides from the cyanobacterium Microcystis sp. Phytochem Lett 2:10

    Article  CAS  Google Scholar 

  1028. Gesner-Apter S, Carmeli S (2009) Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa. J Nat Prod 72:1429

    Article  CAS  PubMed  Google Scholar 

  1029. Gesner-Apter S, Carmeli S (2008) Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron 64:6628

    Article  CAS  Google Scholar 

  1030. Elkobi-Peer S, Faigenbaum R, Carmeli S (2012) Bromine- and chlorine-containing aeruginosins from Microcystis aeruginosa bloom material collected in Kibbutz Geva, Israel. J Nat Prod 75:2144

    Article  CAS  PubMed  Google Scholar 

  1031. Elkobi-Peer S, Singh RK, Mohapatra TM, Tiwari SP, Carmeli S (2013) Aeruginosins from a Microcystis sp. bloom material collected in Varanasi, India. J Nat Prod 76:1187

    Google Scholar 

  1032. Vegman M, Carmeli S (2014) Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 70:6817

    Google Scholar 

  1033. Fontanillo M, Köhn M (2018) Microcystins: synthesis and structure-activity relationship studies toward PP1 and PP2A. Bioorg Med Chem 26:1118

    Article  CAS  PubMed  Google Scholar 

  1034. Lodin-Friedman A, Carmeli S (2018) Microginins from a Microcystis sp. bloom material collected from the Kishon Reservoir, Israel. Mar Drugs 16:78

    Google Scholar 

  1035. Petitbois JG, Casalme LO, Lopez JAV, Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Yoshimura E, Nogata Y, Umezawa T, Matsuda F, Okino T (2017) Serinolamides and lyngbyabellins from an Okeania sp. cyanobacterium collected from the Red Sea. J Nat Prod 80:2708

    Google Scholar 

  1036. Teruya T, Sasaki H, Fukazawa H, Suenaga K (2009) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11:5062

    Google Scholar 

  1037. Gao X, Liu Y, Kwong S, Xu Z, Ye T (2010) Total synthesis and stereochemical reassignment of bisebromoamide. Org Lett 12:3018

    Article  CAS  PubMed  Google Scholar 

  1038. Sasaki H, Teruya T, Fukazawa H, Suenaga K (2011) Revised structure and structure–activity relationship of bisebromoamide and structure of norbisebromoamide from the marine cyanobacterium Lyngbya sp. Tetrahedron 67:990

    Article  CAS  Google Scholar 

  1039. Li JL, Xiao B, Park M, Yoo ES, Shin S, Hong J, Chung HY, Kim HS, Jung JH (2012) PPAR-γ agonistic metabolites from the ascidian Herdmania momus. J Nat Prod 75:2082

    Article  CAS  PubMed  Google Scholar 

  1040. Feng Y, Carroll AR, Pass DM, Archbold JK, Avery VM, Quinn RJ (2008) Polydiscamides B-D from a marine sponge Ircinia sp. as potent human sensory neuron-specific G protein coupled receptor agonists. J Nat Prod 71:8

    Google Scholar 

  1041. Kishimoto S, Nishimura S, Hattori A, Tsujimoto M, Hatano M, Igarashi M, Kakeya H (2014) Chlorocatechelins A and B from Streptomyces sp.: new siderophores containing chlorinated catecholate groups and an acylguanidine structure. Org Lett 16:6108

    Google Scholar 

  1042. Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641

    Article  CAS  PubMed  Google Scholar 

  1043. Orfali RS, Aly AH, Ebrahim W, Abdel-Aziz MS, Müller WEG, Lin W, Daletos G, Proksch P (2015) Pretrichodermamide C and N-methylpretrichodermamide B, two new cytotoxic epidithiodiketopiperazines from hyper saline lake derived Penicillium sp. Phytochem Lett 11:168

    Article  CAS  Google Scholar 

  1044. Liu Y, Li X-M, Meng L-H, Jiang W-L, Xu G-M, Huang C-G, Wang B-G (2015) Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J Nat Prod 78:1294

    Article  CAS  PubMed  Google Scholar 

  1045. Yamazaki H, Takahashi O, Murakami K, Namikoshi M (2015) Induced production of a new unprecedented epitrithiodiketopiperazine, chlorotrithiobrevamide, by a culture of the marine-derived Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Lett 56:6262

    Google Scholar 

  1046. Yamazaki H, Rotinsulu H, Narita R, Takahashi R, Namikoshi M (2015) Induced production of halogenated epidithiodiketopiperazines by a marine-derived Trichoderma cf. brevicompactum with sodium halides. J Nat Prod 78:2319

    Google Scholar 

  1047. Zhu M, Zhang X, Feng H, Dai J, Li J, Che Q, Gu Q, Zhu T, Li D (2017) Penicisulfuranols A-F, alkaloids from the mangrove endophytic fungus Penicillium janthinellum HDN13-309. J Nat Prod 80:71

    Article  CAS  PubMed  Google Scholar 

  1048. Shi J, Zeng YJ, Zhang B, Shao FL, Chen YC, Xu X, Sun Y, Xu Q, Tan RX, Ge HM (2019) Comparative genome mining and heterologous expression of an orphan NRPS gene cluster direct the production of ashimides. Chem Sci 10:3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1049. Harizani M, Katsini E, Georgantea P, Roussis V, Ioannou E (2020) New chlorinated 2,5-diketopiperazines from marine-derived bacteria isolated from sediments of the Eastern Mediterranean Sea. Molecules 25:1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1050. Yang Z, Zhu M, Li D, Zeng R, Han B (2017) N-Me-trichodermamide B isolated from Penicillium janthinellum, with antioxidant properties through Nrf2-mediated signaling pathway. Bioorg Med Chem 25:6614

    Article  CAS  PubMed  Google Scholar 

  1051. Jans PE, Mfuh AM, Arman HD, Shaffer CV, Larionov OV, Mooberry SL (2017) Cytotoxicity and mechanism of action of the marine-derived fungal metabolite trichodermamide B and synthetic analogues. J Nat Prod 80:676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1052. Gorges J, Panter F, Kjaerulff L, Hoffmann T, Kazmaier U, Müller R (2018) Structure, total synthesis, and biosynthesis of chloromyxamides: Myxobacterial tetrapeptides featuring an uncommon 6-chloromethyl-5-methoxypipecolic acid building block. Angew Chem Int Ed 57:14270

    Article  CAS  Google Scholar 

  1053. Rubio BK, Parrish SM, Yoshida W, Schupp PJ, Schils T, Williams PG (2010) Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett 51:6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1054. Wang X, Lv C, Liu J, Tang L, Feng J, Tang S, Wang Z, Liu Y, Meng Y, Ye T, Xu Z (2014) Total synthesis of the proposed structure for itralamide B. Synlett 25:1014

    Article  CAS  Google Scholar 

  1055. Wang X, Lv C, Feng J, Tang L, Wang Z, Liu Y, Meng Y, Ye T, Xu Z (2015) Studies toward the total synthesis of itralamide B and biological evaluation of its structural analogs. Mar Drugs 13:2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1056. Lifshits M, Zafrir-Ilan E, Raveh A, Carmeli S (2011) Protease inhibitors from three fishpond water blooms of Microcystis spp. Tetrahedron 67:4017

    Article  CAS  Google Scholar 

  1057. Strangman WK, Wright JLC (2016) Microginins 680, 646, and 612—new chlorinated Ahoa-containing peptides from a strain of cultured Microcystis aeruginosa. Tetrahedron Lett 57:1801

    Article  CAS  Google Scholar 

  1058. Sueyoshi K, Kudo T, Yamano A, Sumimoto S, Iwasaki A, Suenaga K, Teruya T (2017) Odobromoamide, a terminal alkynyl bromide-containing cyclodepsipeptide from the marine cyanobacterium Okeania sp. Bull Chem Soc Jpn 90:436

    Article  CAS  Google Scholar 

  1059. Gala F, D’Auria MV, De Marino S, Zollo F, Smith CD, Copper JE, Zampella A (2007) New jaspamide derivatives with antimicrofilament activity from the sponge Jaspis splendans. Tetrahedron 63:5212

    Article  CAS  Google Scholar 

  1060. Gala F, D’Auria MV, De Marino S, Sepe V, Zollo F, Smith CD, Copper JE, Zampella A (2008) Jaspamides H-L, new actin-targeting depsipeptides from the sponge Jaspis splendans. Tetrahedron 64:7127

    Article  CAS  Google Scholar 

  1061. Gala F, D’Auria MV, De Marino S, Sepe V, Zollo F, Smith CD, Keller SN, Zampella A (2009) Jaspamides M-P: new tryptophan modified jaspamide derivatives from the sponge Jaspis splendans. Tetrahedron 65:51

    Article  CAS  Google Scholar 

  1062. Ebada SS, Wray V, de Voogd NJ, Deng Z, Lin W, Proksch P (2009) Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar Drugs 7:435

    Article  CAS  Google Scholar 

  1063. Watts KR, Morinaka BI, Amagata T, Robinson SJ, Tenney K, Bray WM, Gassner NC, Lokey RS, Media J, Valeriote FA, Crews P (2011) Biostructural features of additional jasplakinolide (jaspamide) analogues. J Nat Prod 74:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1064. Robinson SJ, Morinaka BI, Amagata T, Tenney K, Bray WM, Gassner NC, Lokey RS, Crews P (2010) New structures and bioactivity properties of jasplakinolide (jaspamide) analogues from marine sponges. J Med Chem 53:1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1065. Ebada SS, Müller WEG, Lin W, Proksch P (2019) New acyclic cytotoxic jasplakinolide derivative from the marine sponge Jaspis splendens. Mar Drugs 17:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1066. Rubio BK, Robinson SJ, Avalos CE, Valeriote FA, de Voogd NJ, Crews P (2008) Revisiting the sponge sources, stereostructure, and biological activity of cyclocinamide A. J Nat Prod 71:1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1067. Garcia JM, Curzon SS, Watts KR, Konopelski JP (2012) Total synthesis of nominal (11S)- and (11R)-cyclocinamide A. Org Lett 14:2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1068. Curzon SS, Garcia JM, Konopelski JP (2015) Total synthesis of nominal cyclocinamide B and investigation into the identity of the cyclocinamides. Tetrahedron Lett 56:2991

    Article  CAS  PubMed  Google Scholar 

  1069. Cooper JK, Li K, Aubé J, Coppage DA, Konopelski JP (2018) Application of the DP4 probability method to flexible cyclic peptides with multiple independent stereocenters: the true structure of cyclocinamide A. Org Lett 20:4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1070. Fernández R, Bayu A, Hadi TA, Bueno S, Pérez M, Cuevas C, Putra MY (2020) Unique polyhalogenated peptides from the marine sponge Ircinia sp. Mar Drugs 18:396

    Article  PubMed  PubMed Central  Google Scholar 

  1071. Pérez-Bonilla M, Oves-Costales D, González I, de la Cruz M, Martín J, Vicente F, Genilloud O, Reyes F (2020) Krisynomycins, imipenem potentiators against methicillin-resistant Staphylococcus aureus, produced by Streptomyces canus. J Nat Prod 83:2597

    Article  PubMed  Google Scholar 

  1072. Therien AG, Huber JL, Wilson KE, Beaulieu P, Caron A, Claveau D, Deschamps K, Donald RGK, Galgoci AM, Gallant M, Gu X, Kevin NJ, Lafleur J, Leavitt PS, Lebeau-Jacob C, Lee SS, Lin MM, Michels AA, Ogawa AM, Painter RE, Parish CA, Park Y-W, Benton-Perdomo L, Petcu M, Phillips JW, Powles MA, Skorey KI, Tam J, Tan CM, Young K, Wong S, Waddell ST, Miesel L (2012) Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob Agents Chemother 56:4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1073. Speitling M, Smetanina OF, Kuznetsova TA, Laatsch H (2007) Bromoalterochromides A and A′, unprecedented chromopeptides from a marine Pseudoalteromonas maricaloris strain KMM 636. J Antibiot 60:36

    Article  CAS  Google Scholar 

  1074. Robinson SJ, Tenney K, Yee DF, Martinez L, Media JE, Valeriote FA, van Soest RWM, Crews P (2007) Probing the bioactive constituents from chemotypes of the sponge Psammocinia aff. bulbosa. J Nat Prod 70:1002

    Google Scholar 

  1075. Plaza A, Keffer JL, Lloyd JR, Colin PL, Bewley CA (2010) Paltolides A-C, anabaenopeptin-type peptides from the Palau sponge Theonella swinhoei. J Nat Prod 73:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1076. Mizutani K, Hirasawa Y, Sugita-Konishi Y, Mochizuki N, Morita H (2008) Structural and conformational analysis of hydroxycyclochlorotine and cyclochlorotine, chlorinated cyclic peptides from Penicillium islandicum. J Nat Prod 71:1297

    Article  CAS  PubMed  Google Scholar 

  1077. Plaza A, Bewley CA (2006) Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 71:6898

    Article  CAS  PubMed  Google Scholar 

  1078. Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins: cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J Org Chem 72:323

    Article  CAS  PubMed  Google Scholar 

  1079. Shaaban KA, Shaaban M, Facey P, Fotso S, Frauendorf H, Helmke E, Maier A, Fiebig HH, Laatsch H (2008) Electrospray ionization mass spectra of piperazimycins A and B and γ-butyrolactones from a marine-derived Streptomyces sp. J Antibiot 61:736

    Article  CAS  Google Scholar 

  1080. Guo Z, Shen L, Ji Z, Zhang J, Huang L, Wu W (2009) NW-GO1, a novel cyclic hexadepsipeptide antibiotic, produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities. J Antibiot 62:201

    Google Scholar 

  1081. Guo Z, Ji Z, Zhang J, Deng J, Shen L, Liu W, Wu W (2010) NW-GO1, a novel cyclic hexapeptide antibiotic, produced by Streptomyces alboflavus 313: II. Structural elucidation. J Antibiot 63:231

    Article  CAS  Google Scholar 

  1082. Guo Z, Ji Z, Zhang J, Deng J, Shen L, Liu W, Wu W (2010) NW-GO1, a novel cyclic hexapeptide antibiotic, produced by Streptomyces alboflavus 313: II. Structural elucidation. J Antibiot 63:733

    Article  CAS  Google Scholar 

  1083. Guo Z, Shen L, Zhang J, Xin H, Liu W, Ji Z, Wu W (2011) NW-G03, a related cyclic hexapeptide compound of NW-G01, produced by Streptomyces alboflavus 313. J Antibiot 64:789

    Article  CAS  Google Scholar 

  1084. Ji Z, Wei S, Fan L, Wu W (2012) Three novel cyclic hexapeptides from Streptomyces alboflavus 313 and their antibacterial activity. Eur J Med Chem 50:296

    Article  CAS  PubMed  Google Scholar 

  1085. Ji Z, Qiao G, Wei S, Fan L, Wu W (2012) Isolation and characterization of two novel antibacterial cyclic hexapeptides from Streptomyces alboflavus 313. Chem Biodivers 9:1567

    Article  CAS  PubMed  Google Scholar 

  1086. Wei S, Fan L, Wu W, Ji Z (2012) Two piperazic acid-containing cyclic hexapeptides from Streptomyces alboflavus 313. Amino Acids 43:2191

    Article  CAS  PubMed  Google Scholar 

  1087. Ji Z, Xu N, Gang Q, Wei S (2013) Identification of pyrroloindoline-containing cyclic hexapeptides in the metabolites of Streptomyces alboflavus 313 by HPLC-DAD-ESI-MS/MS. J Antibiot 66:265

    Article  CAS  Google Scholar 

  1088. Li W, Gan J, Ma D (2009) Total synthesis of piperazimycin A: a cytotoxic cyclic hexadepsipeptide. Angew Chem Int Ed 48:8891

    Article  CAS  Google Scholar 

  1089. Yu S-M, Hong W-X, Wu Y, Zhong C-L, Yao Z-J (2010) Total synthesis of chloptosin, a potent apoptosis-inducing cyclopeptide. Org Lett 12:1124

    Article  CAS  PubMed  Google Scholar 

  1090. Oelke AJ, Antonietti F, Bertone L, Cranwell PB, France DJ, Goss RJM, Hofmann T, Knauer S, Moss SJ, Skelton PC, Turner RM, Wuitschik G, Ley SV (2011) Total synthesis of chloptosin: a dimeric cyclohexapeptide. Chem Eur J 17:4183

    Article  CAS  PubMed  Google Scholar 

  1091. Salvador LA, Biggs JS, Paul VJ, Luesch H (2011) Veraguamides A–G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J Nat Prod 74:917

    Google Scholar 

  1092. Mevers E, Liu W-T, Engene N, Mohimani H, Byrum T, Pevzner PA, Dorrestein PC, Spadafora C, Gerwick WH (2011) Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J Nat Prod 74:928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1093. Wang D, Jia X, Zhang A (2012) Total synthesis of the proposed structure of cyclic hexadepsipeptide veraguamide A. Org Biomol Chem 10:7027

    Article  CAS  PubMed  Google Scholar 

  1094. Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA (2007) Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J Nat Prod 70:1753

    Article  CAS  PubMed  Google Scholar 

  1095. Lu Z, Van Wagoner RM, Harper MK, Baker HL, Hooper JNA, Bewley CA, Ireland CM (2011) Mirabamides E-H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J Nat Prod 74:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1096. Ojika M, Inukai Y, Kito Y, Hirata M, Iizuka T, Fudou R (2008) Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem Asian J 3:126

    Article  CAS  PubMed  Google Scholar 

  1097. Karmann L, Schultz K, Herrmann J, Müller R, Kazmaier U (2015) Total syntheses and biological evaluation of miuraenamides. Angew Chem Int Ed 54:4502

    Article  CAS  Google Scholar 

  1098. Durow AC, Butts C, Willis CL (2009) Stereochemical assignments of the chlorinated residues in victorin C. Synthesis:2954

    Google Scholar 

  1099. Morita H, Takeya K (2010) Bioactive cyclic peptides from higher plants. Heterocycles 80:739

    Article  CAS  Google Scholar 

  1100. Xu H-M, Zeng G-Z, Zhou W-B, He W-J, Tan N-H (2013) Astins K-P, six new chlorinated cyclopentapeptides from Aster tataricus. Tetrahedron 69:7964

    Article  CAS  Google Scholar 

  1101. Schafhauser T, Jahn L, Kirchner N, Kulik A, Flor L, Lang A, Caradec T, Fewer DP, Sivonen K, van Berkel WJH, Jacques P, Weber T, Gross H, van Pée K-H, Wohlleben W, Ludwig-Müller J (2019) Antitumor astins originate from the fungal endophyte Cyanodermella asteris living with the medicinal plant Aster tataricus. Proc Natl Acad Sci USA 116:26909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1102. Lin Z, Flores M, Forteza I, Henriksen NM, Concepcion GP, Rosenberg G, Haygood MG, Olivera BM, Light AR, Cheatham TE III, Schmidt EW (2012) Totopotensamides, polyketide–cyclic peptide hybrids from a mollusk-associated bacterium Streptomyces sp. J Nat Prod 75:644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1103. Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, Zhang C (2017) Genome mining and activation of a silent PKS/NRPS gene cluster direct the production of totopotensamides. Org Lett 19:5697

    Article  CAS  PubMed  Google Scholar 

  1104. Schloß S, Hackl T, Herz C, Lamy E, Koch M, Rohn S, Maul R (2017) Detection of a toxic methylated derivative of phomopsin A produced by the legume-infesting fungus Diaporthe toxica. J Nat Prod 80:1930

    Article  PubMed  Google Scholar 

  1105. Matthew S, Ross C, Paul VJ, Luesch H (2008) Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron 64:4081

    Article  CAS  Google Scholar 

  1106. Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71:1625

    Article  CAS  PubMed  Google Scholar 

  1107. Kwan JC, Taori K, Paul VJ, Luesch H (2009) Lyngbyastatins 8–10, elastase inhibitors with cyclic depsipeptide scaffolds isolated from the marine cyanobacterium Lyngbya semiplena. Mar Drugs 7:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1108. Kunze B, Böhlendorf B, Reichenbach H, Höfle G (2008) Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J Antibiot 61:18

    Article  CAS  Google Scholar 

  1109. Choi H, Oh SK, Yih W, Chin J, Kang H, Rho J-R (2008) Cyanopeptoline CB071: a cyclic depsipeptide isolated from the freshwater cyanobacterium Aphanocapsa sp. Chem Pharm Bull 56:1191

    Article  CAS  Google Scholar 

  1110. Dardić D, Lauro G, Bifulco G, Laboudie P, Sakhaii P, Bauer A, Vilcinskas A, Hammann PE, Plaza A (2017) Svetamycins A-G, unusual piperazic acid-containing peptides from Streptomyces sp. J Org Chem 82:6032

    Article  PubMed  Google Scholar 

  1111. Sorres J, Martin M-T, Petek S, Levaique H, Cresteil T, Ramos S, Thoison O, Debitus C, Al-Mourabit A (2012) Pipestelides A-C: cyclodepsipeptides from the Pacific marine sponge Pipestela candelabra. J Nat Prod 75:759

    Article  CAS  PubMed  Google Scholar 

  1112. Ankisetty S, Khan SI, Avula B, Gochfeld D, Khan IA, Slattery M (2013) Chlorinated didemnins from the tunicate Trididemnum solidum. Mar Drugs 11:4478

    Article  PubMed  PubMed Central  Google Scholar 

  1113. Hoffmann T, Müller S, Nadmid S, Garcia R, Müller R (2013) Microsclerodermins from terrestrial myxobacteria: an intriguing biosynthesis likely connected to a sponge symbiont. J Am Chem Soc 135:16904

    Article  CAS  PubMed  Google Scholar 

  1114. Laird DW, LaBarbera DV, Feng X, Bugni TS, Harper MK, Ireland CM (2007) Halogenated cyclic peptides isolated from the sponge Corticium sp. J Nat Prod 70:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1115. Castiglione F, Marazzi A, Meli M, Colombo G (2005) Structure elucidation and 3D solution conformation of the antibiotic enduracidin determined by NMR spectroscopy and molecular dynamics. Magn Reson Chem 43:603

    Article  CAS  PubMed  Google Scholar 

  1116. McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W (2002) Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66:261

    Article  CAS  PubMed  Google Scholar 

  1117. Yin X, Chen Y, Zhang L, Wang Y, Zabriskie TM (2010) Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungicidicus. J Nat Prod 73:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1118. Linington RG, Edwards DJ, Shuman CF, McPhail KL, Matainaho T, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71:22

    Article  CAS  PubMed  Google Scholar 

  1119. Kang H-S, Krunic A, Shen Q, Swanson SM, Orjala J (2011) Minutissamides A-D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J Nat Prod 74:1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1120. Bui T-H, Wray V, Nimtz M, Fossen T, Preisitsch M, Schröder G, Wende K, Heiden SE, Mundt S (2014) Balticidins A-D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. J Nat Prod 77:1287

    Article  CAS  PubMed  Google Scholar 

  1121. Bui T-H, Wray V, Nimtz M, Fossen T, Preisitsch M, Schröder G, Wende K, Heiden SE, Mundt S (2015) Correction to balticidins A-D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. J Nat Prod 78:345

    Article  CAS  PubMed  Google Scholar 

  1122. Gallegos DA, Saurí J, Cohen RD, Wan X, Videau P, Vallota-Eastman AO, Shaala LA, Youssef DTA, Williamson RT, Martin GE, Philmus B, Sikora AE, Ishmael JE, McPhail KL (2018) Jizanpeptins, cyanobacterial protease inhibitors from a Symploca sp. cyanobacterium collected in the Red Sea. J Nat Prod 81:1417

    Google Scholar 

  1123. Keller L, Canuto KM, Liu C, Suzuki BM, Almaliti J, Sikandar A, Naman CB, Glukhov E, Luo D, Duggan BM, Luesch H, Koehnke J, O’Donoghue AJ, Gerwick WH (2020) Tutuilamides A-C: vinyl-chloride-containing cyclodepsipeptides from marine cyanobacteria with potent elastase inhibitory properties. ACS Chem Biol 15:751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1124. Matthew S, Ratnayake R, Becerro MA, Ritson-Williams R, Paul VJ, Luesch H (2010) Intramolecular modulation of serine protease inhibitor activity in a marine cyanobacterium with antifeedant properties. Mar Drugs 8:1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1125. Bitzer J, Streibel M, Langer H-J, Grond S (2009) First Y-type actinomycins from Streptomyces with divergent structure-activity relationships for antibacterial and cytotoxic properties. Org Biomol Chem 7:444

    Article  CAS  PubMed  Google Scholar 

  1126. Son S, Hong Y-S, Jang M, Heo KT, Lee B, Jang J-P, Kim J-W, Ryoo I-J, Kim W-G, Ko SK, Kim BY, Jang J-H, Ahn JS (2017) Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces species. J Nat Prod 80:3025

    Article  CAS  PubMed  Google Scholar 

  1127. Shin Y-H, Bae S, Sim J, Hur J, Jo S-I, Shin J, Suh Y-G, Oh K-B, Oh D-C (2017) Nicrophorusamides A and B, antibacterial chlorinated cyclic peptides from a gut bacterium of the carrion beetle Nicrophorus concolor. J Nat Prod 80:2962

    Article  CAS  PubMed  Google Scholar 

  1128. Bae M, Chung B, Oh K-B, Shin J, Oh D-C (2015) Hormaomycins B and C: new antibiotic cyclic depsipeptides from a marine mudflat-derived Streptomyces sp. Mar Drugs 13:5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1129. Wu G, Nielson JR, Peterson RT, Winter JM (2017) Bonnevillamides, linear heptapeptides isolated from a Great Salt Lake-derived Streptomyces sp. Mar Drugs 15:195

    Article  PubMed  PubMed Central  Google Scholar 

  1130. Al-Awadhi FH, Salvador LA, Law BK, Paul VJ, Luesch H (2017) Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer. Mar Drugs 15:290

    Article  PubMed  PubMed Central  Google Scholar 

  1131. Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, Klemke-Jahn C, Bauer A, Penarier G, Debussche L, Brönstrup M (2015) Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties. Angew Chem Int Ed 54:10145

    Article  CAS  Google Scholar 

  1132. Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P Jr, Aust T, Buntin K, Estoppey D, Liechty B, Mapa F, Memmert K, Miller H, Pan X, Riedl R, Thibaut C, Thomas J, Wagner T, Weber E, Xie X, Schmitt EK, Hoepfner D (2015) Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chem Int Ed 54:10149

    Article  CAS  Google Scholar 

  1133. Liao L, Zhou J, Xu Z, Ye T (2016) Concise total synthesis of nannocystin A. Angew Chem Int Ed 55:13263

    Article  CAS  Google Scholar 

  1134. Yang Z, Xu X, Yang C-H, Tian Y, Chen X, Lian L, Pan W, Su X, Zhang W, Chen Y (2016) Total synthesis of nannocystin A. Org Lett 18:5768

    Article  CAS  PubMed  Google Scholar 

  1135. Liu Q, Hu P, He Y (2017) Asymmetric total synthesis of nannocystin A. J Org Chem 82:9217

    Article  CAS  PubMed  Google Scholar 

  1136. Poock C, Kalesse M (2017) Total synthesis of nannocystin Ax. Org Lett 19:4536

    Article  CAS  PubMed  Google Scholar 

  1137. Meng Z, Souillart L, Monks B, Huwyler N, Herrmann J, Müller R, Fürstner A (2018) A “motif-oriented” total synthesis of nannocystin Ax. Preparation and biological assessment of analogues. J Org Chem 83:6977

    Google Scholar 

  1138. Tian Y, Ding Y, Xu X, Bai Y, Tang Y, Hao X, Zhang W, Chen Y (2018) Total synthesis and biological evaluation of nannocystin analogues modified at the polyketide phenyl moiety. Tetrahedron Lett 59:3206

    Article  CAS  Google Scholar 

  1139. Fernández R, Martín MJ, Rodríguez-Acebes R, Reyes F, Francesch A, Cuevas C (2008) Diazonamides C-E, new cytotoxic metabolites from the ascidian Diazona sp. Tetrahedron Lett 49:2283

    Article  Google Scholar 

  1140. Lachia M, Moody CJ (2008) The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product. Nat Prod Rep 25:227

    Article  CAS  PubMed  Google Scholar 

  1141. David N, Pasceri R, Kitson RRA, Pradal A, Moody CJ (2016) Formal total synthesis of diazonamide A by indole oxidative rearrangement. Chem Eur J 22:10867

    Article  CAS  PubMed  Google Scholar 

  1142. Youssef DTA, Shaala LA, Mohamed GA, Badr JM, Bamanie FH, Ibrahim SRM (2014) Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar Drugs 12:1911

    Article  PubMed  PubMed Central  Google Scholar 

  1143. Fukuhara K, Takada K, Watanabe R, Suzuki T, Okada S, Matsunaga S (2018) Colony-wise analysis of a Theonella swinhoei marine sponge with a yellow interior permitted the isolation of theonellamide I. J Nat Prod 81:2595

    Article  CAS  PubMed  Google Scholar 

  1144. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, Dorrestein PC, Moore BS (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA 111:1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1145. Reynolds KA, Luhavaya H, Li J, Dahesh S, Nizet V, Yamanaka K, Moore BS (2018) Isolation and structure elucidation of lipopeptide antibiotic taromycin B from the activated taromycin biosynthetic gene cluster. J Antibiot 71:333

    Article  CAS  Google Scholar 

  1146. Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H, Zhang L, Zhang W, Zhang C (2017) Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 8:1607

    Article  CAS  PubMed  Google Scholar 

  1147. Yu H-L, Jiang S-H, Bu X-L, Wang J-H, Weng J-Y, Yang X-M, He K-Y, Zhang Z-G, Ao P, Xu J, Xu M-J (2017) Structural diversity of anti-pancreatic cancer capsimycins identified in mangrove-derived Streptomyces xiamenensis 318 and post-modification via a novel cytochrome P450 monnoxygenase. Sci Rep 7:40689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1148. Zhou Y-M, Ju G-L, Xiao L, Zhang X-F, Du F-Y (2018) Cyclodepsipeptides and sesquiterpenes from marine-derived fungus Trichothecium roseum and their biological functions. Mar Drugs 16:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1149. Kawahara T, Itoh M, Izumikawa M, Hashimoto J, Sakata N, Tsuchida T, Shin-ya K (2015) MBJ-0086 and MGJ-0087, new bicyclic depsipeptides, from Sphaerisporangium sp. 33226. J Antibiot 68:67

    Google Scholar 

  1150. Neupane RP, Parrish SM, Newpane JB, Yoshida WY, Yip MLR, Turkson J, Harper MK, Head JD, Williams PG (2019) Cytotoxic sesquiterpenoid quinones and quinols, and an 11-membered heterocycle, kauamide, from the Hawaiian marine sponge Dactylospongia elegans. Mar Drugs 17:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1151. Hahn D, Kim H, Yang I, Chin J, Hwang H, Won DH, Lee B, Nam S-J, Ekins M, Choi H, Kang H (2016) The halicylindramides, farnesoid X receptor antagonizing depsipeptides from a Petrosia sp. marine sponge collected in Korea. J Nat Prod 79:499

    Google Scholar 

  1152. Yamazaki Y, Someno T, Igarashi M, Kinoshita N, Hatano M, Kawada M, Momose I, Nomoto A (2015) Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot 68:279

    Google Scholar 

  1153. Tajima H, Wakimoto T, Takada K, Ise Y, Abe I (2014) Revised structure of cyclolithistide A, a cyclic depsipeptide from the marine sponge Discodermia japonica. J Nat Prod 77:154

    Article  CAS  PubMed  Google Scholar 

  1154. Shabahara S, Matsubara T, Takahashi K, Ishihara J, Hatakeyama S (2011) Total synthesis of NW-G01, a cyclic hexapeptide antibiotic, and 34-epi-NW-G01. Org Lett 13:4700

    Article  Google Scholar 

  1155. Gu Z, Zakarian A (2010) Concise total synthesis of sintokamides A, B, and E by a unified, protecting-group-free strategy. Angew Chem Int Ed 49:9702

    Article  CAS  Google Scholar 

  1156. Jin Y, Liu Y, Wang Z, Kwong S, Xu Z, Ye T (2010) Total synthesis of sintokamide C. Org Lett 12:1100

    Article  CAS  PubMed  Google Scholar 

  1157. Miley GP, Rote JC, Silverman RB, Kelleher NL, Thomson RJ (2018) Total synthesis of tambromycin enabled by indole C-H functionalization. Org Lett 20:2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1158. Li W, Yu S, Jin M, Xia H, Ma D (2011) Total synthesis and cytotoxicity of bisebromoamide and its analogues. Tetrahedron Lett 52:2124

    Article  CAS  Google Scholar 

  1159. Santhakumar G, Payne RJ (2014) Total synthesis of polydiscamides B, C, and D via a convergent native chemical ligation–oxidation strategy. Org Lett 16:4500

    Article  CAS  PubMed  Google Scholar 

  1160. Kishimoto S, Nishimura S, Hatano M, Igarashi M, Kakeya H (2015) Total synthesis and antimicrobial activity of chlorocatechelin A. J Org Chem 80:6076

    Article  CAS  PubMed  Google Scholar 

  1161. Abe H, Yamazaki Y, Sakashita C, Momose I, Watanabe T, Shibasaki M (2016) Synthesis of androprostamine A and resormycin. Chem Pharm Bull 64:982

    Article  CAS  Google Scholar 

  1162. Wan X, Joullié MM (2008) Enantioselective total syntheses of trichodermamides A and B. J Am Chem Soc 130:17236

    Article  CAS  PubMed  Google Scholar 

  1163. Lu C-D, Zakarian A (2008) Total synthesis of (±)-trichodermamide B and of a putative biosynthetic precursor to aspergillazine A using an Oxaza-Cope rearrangement. Angew Chem Int Ed 47:6829

    Article  CAS  Google Scholar 

  1164. Mfuh AM, Zhang Y, Stephens DE, Vo AXT, Arman HD, Larionov OV (2015) Concise total synthesis of trichodermamides A, B, and C enabled by an efficient construction of the 1,2-oxazadecaline core. J Am Chem Soc 137:8050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1165. Seo H, Lim D (2009) Total synthesis of halicylindramide A. J Org Chem 74:906

    Article  CAS  PubMed  Google Scholar 

  1166. Ardá A, Soengas RG, Nieto MI, Jiménez C, Rodríguez J (2008) Total synthesis of (–)-dysithiazolamide. Org Lett 10:2175

    Article  PubMed  Google Scholar 

  1167. Beaumont S, Ilardi EA, Monroe LR, Zakarian A (2010) Valence tautomerism in titanium enolates: catalytic radical haloalkylation and application in the total synthesis of neodysidenin. J Am Chem Soc 132:1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1168. Owusu-Ansah E, Durow AC, Harding JR, Jordan AC, O’Connell SJ, Willis CL (2011) Synthesis of dysideaproline E using organocatalysis. Org Biomol Chem 9:265

    Article  CAS  PubMed  Google Scholar 

  1169. Ilardi EA, Zakarian A (2011) Efficient total synthesis of dysidenin, dysidin, and barbamide. Chem Asian J 6:2260

    Article  CAS  PubMed  Google Scholar 

  1170. Pirovani RV, Brito GA, Barcelos RC, Pilli RA (2015) Enantioselective total synthesis of (+)-lyngbyabellin M. Mar Drugs 13:3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1171. Qui H-B, Chen X-Y, Li Q, Qian W-J, Yu S-M, Tang G-L, Yao Z-J (2014) Unified flexible total synthesis of chlorofusin and artificial click mimics as antagonists against p53-HDM2 interactions. Tetrahedron Lett 55:6055

    Article  Google Scholar 

  1172. Dailler D, Danoun G, Ourri B, Baudoin O (2015) Diverent synthesis of aeruginosins based on a C(sp3)–H activation strategy. Chem Eur J 21:9370

    Article  PubMed  Google Scholar 

  1173. Dailler D, Danoun G, Baudoin O (2015) A general and scalable synthesis of aeruginosin marine natural products based on two strategic C(sp3)–H activation reactions. Angew Chem Int Ed 54:4919

    Article  CAS  Google Scholar 

  1174. Fong HKH, Brunel JM, Longeon A, Bourguet-Kondracki M-L, Barker D, Copp BR (2017) Synthesis and biological evaluation of the ascidian blood-pigment halocyamine A. Org Biomol Chem 15:6194

    Article  CAS  PubMed  Google Scholar 

  1175. Pinto A, Conti P, Tamborini L, De Micheli C (2009) A novel simplified synthesis of acivicin. Tetrahedron: Asymmetry 20:508

    Google Scholar 

  1176. Vaswani RG, Chamberlin AR (2008) Stereocontrolled total synthesis of (–)-kaitocephalin. J Org Chem 73:1661

    Article  CAS  PubMed  Google Scholar 

  1177. Hamada M, Shinada T, Ohfune Y (2009) Efficient total synthesis of (–)-kaitocephalin. Org Lett 11:4664

    Article  CAS  PubMed  Google Scholar 

  1178. Yu S, Zhu S, Pan X, Yang J, Ma D (2011) Reinvestigation on total synthesis of kaitocephalin and its isomers. Tetrahedron 67:1673

    Article  CAS  Google Scholar 

  1179. Takahashi K, Yamaguchi D, Ishihara J, Hatakeyama S (2012) Total synthesis of (–)-kaitocephalin based on a Rh-catalyzed C-H amination. Org Lett 14:1644

    Article  CAS  PubMed  Google Scholar 

  1180. Lee W, Youn J-H, Kang SH (2013) Total synthesis of (–)-kaitocephalin. Chem Commun 49:5231

    Article  CAS  Google Scholar 

  1181. Garner P, Weerasinghe L, Van Houten I, Hu J (2014) A concise [C+NC+CC] coupling-enabled synthesis of kaitocephalin. Chem Commun 50:4908

    Article  CAS  Google Scholar 

  1182. Junk L, Kazmaier U (2018) Total synthesis of keramamides A and L from a common precursor by late-stage indole synthesis and configurational revision. Angew Chem Int Ed 57:11432

    Article  CAS  Google Scholar 

  1183. Weiss C, Sammet B, Sewald N (2013) Recent approaches for the synthesis of modified cryptophycins. Nat Prod Rep 30:924

    Article  CAS  PubMed  Google Scholar 

  1184. Kennedy JP, Brogan JT, Lindsley CW (2008) Progress toward the synthesis of piperazimycin A: exploration of the synthesis of γ-hydroxy and γ-chloropiperazic acids. Tetrahedron Lett 49:4116

    Article  CAS  Google Scholar 

  1185. Bittner S, Scherzer R, Harlev E (2007) The five bromotryptophans. Amino Acids 33:19

    Article  CAS  PubMed  Google Scholar 

  1186. Craik DJ, Adams DJ (2007) Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2:457

    Article  CAS  PubMed  Google Scholar 

  1187. Han TS, Teichert RW, Olivera BM, Bulaj G (2008) Conus venoms—a rich source of peptide-based therapeutics. Curr Pharm Design 14:2462

    Article  CAS  Google Scholar 

  1188. Daly NL, Craik DJ (2009) Structural studies of conotoxins. Life 61:144

    CAS  PubMed  Google Scholar 

  1189. Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2014) Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114:5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1190. Nguyen B, Le Caer J-P, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J (2014) Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 12:3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1191. Halai R, Craik DJ (2009) Conotoxins: natural product drug leads. Nat Prod Rep 26:526

    Article  CAS  PubMed  Google Scholar 

  1192. Bingham J-P, Mitsunaga E, Bergeron ZL (2010) Drugs from slugs—past, present and future perspectives of ω-conotoxin research. Chem-Biol Interact 183:1

    Article  CAS  PubMed  Google Scholar 

  1193. Vetter I, Lewis RJ (2012) Therapeutic potential of cone snail venom peptides (conopeptides). Curr Topics Med Chem 12:1546

    Article  CAS  Google Scholar 

  1194. Lewis RJ, Dutertre S, Vetter I, Christie MJ (2012) Conus venum peptide pharmacology. Pharmacol Rev 64:259

    Article  CAS  PubMed  Google Scholar 

  1195. Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed 49:6545

    Article  CAS  Google Scholar 

  1196. Jin A-H, Daly NL, Nevin ST, Wang C-IA, Dutertre S, Lewis RJ, Adams DJ, Craik DJ, Alewood PF (2008) Molecular engineering of conotoxins: the importance of loop size to α-conotoxin structure and function. J Med Chem 51:5575

    Article  CAS  PubMed  Google Scholar 

  1197. Walewska A, Zhang M-M, Skalicky JJ, Yoshikami D, Olivera BM, Bulaj G (2009) Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins. Angew Chem Int Ed 48:2221

    Article  CAS  Google Scholar 

  1198. Yu R, Kompella SN, Adams DJ, Craik DJ, Kaas Q (2013) Determination of the α-conotoxin Vc1.1 binding site on the α9α10 nicotinic acetylcholine receptor. J Med Chem 56:3557

    Google Scholar 

  1199. Luo S, Zhangsun D, Zhu X, Wu Y, Hu Y, Christensen S, Harvey PJ, Akcan M, Craik DJ, McIntosh JM (2013) Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3α4 nicotinic acetylcholine receptors. J Med Chem 56:9655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1200. Dutertre S, Jin A-H, Alewood PF, Lewis RJ (2014) Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon 91:135

    Article  CAS  PubMed  Google Scholar 

  1201. Dutt M, Dutertre S, Jin A-H, Lavergne V, Alewood PF, Lewis RJ (2019) Venomics reveals venom complexity of the piscivorous cone snail, Conus tulipa. Mar Drugs 17:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1202. Rice RD, Halstead BW (1968) Report of fatal cone shell sting by Conus geographus Linnaeus. Toxicon 5:223

    Article  CAS  PubMed  Google Scholar 

  1203. Clench WJ, Kondo Y (1943) The poison cone shell. Amer J Trop Med 23:105

    Article  Google Scholar 

  1204. Muth OH (1968) Tansy ragwort (Senecio jacobaea), a potential menace to livestock. J Amer Vet Med Assoc 153:310

    CAS  Google Scholar 

  1205. Daly JW (2003) Ernest Guenther award in chemistry of natural products. Amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 46:445

    Google Scholar 

  1206. Garraffo HM, Spande TF, Williams M (2009) Epibatidine: from frog alkaloid to analgesic clinical candidates. A testimonial to "True Grit"! Heterocycles 79:207

    Google Scholar 

  1207. Fitch RW, Spande TF, Garraffo HM, Yeh HJC, Daly JW (2010) Phantasmidine: an epibatidine congener from the Ecuadorian poison frog Epipedobates anthonyi. J Nat Prod 73:331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1208. Zhou Q, Snider BB (2011) Synthesis of phantasmidine. Org Lett 13:526

    Article  CAS  PubMed  Google Scholar 

  1209. Zhou Q, Snider BB (2014) Mosher’s amide-based assignment of the absolute configuration of phantasmidine. Heterocycles 88:779

    Article  CAS  Google Scholar 

  1210. Fitch RW, Snider BB, Zhou Q, Foxman BM, Pandya AA, Yakel JL, Olson TT, Al-Muhtasib N, Xiao Y, Welch KD, Panter KE (2018) Absolute configuration and pharmacology of the poison frog alkaloid phantasmidine. J Nat Prod 81:1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1211. Choi H, Engene N, Byrum T, Hwang S, Oh D-C, Gerwick WH (2019) Dragocins A-D, structurally intriguing cytotoxic metabolites from a Panamanian marine cyanobacterium. Org Lett 21:266

    Article  CAS  PubMed  Google Scholar 

  1212. Ibrahim SRM, Mohamed GA, Moharram AM, Youssef DTA (2015) Aegyptolidines A and B: new pyrrolidine alkaloids from the fungus Aspergillus aegyptiacus. Phytochem Lett 12:90

    Article  CAS  Google Scholar 

  1213. Jiang Y-J, Li J-Q, Zhang H-J, Ding W-J, Ma Z-J (2018) Cyclizidine-type alkaloids from Streptomyces sp. HNA39. J Nat Prod 81:394

    Google Scholar 

  1214. Al-Khdhairawi AAQ, Krishnan P, Mai C-W, Chung FF-L, Leong C-O, Yong K-T, Chong K-W, Low Y-Y, Kam T-S, Lim K-H (2017) A bis-benzopyrroloisoquinoline alkaloid incorporating a cyclobutane core and a chlorophenanthroindolizidine alkaloid with cytotoxic activity from Ficus fistulosa var. tengerensis. J Nat Prod 80:2734

    Google Scholar 

  1215. Xu S, Yoshimura H, Maru N, Ohno O, Arimoto H, Uemura D (2011) Pinnarine, another member of the halichlorine family. Isolation and preparation from pinnaic acid. J Nat Prod 74:1323

    Google Scholar 

  1216. Christie HS, Heathcock CH (2004) Total synthesis of (±)-halichlorine, (±)-pinnaic acid, and (±)-tauropinnaic acid. Proc Natl Acad Sci USA 101:12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1217. Wu H, Zhang H, Zhao G (2007) An enantioselective total synthesis of pinnaic acid. Tetrahedron 63:6454

    Article  CAS  Google Scholar 

  1218. Xu S, Arimoto H, Uemura D (2007) Asymmetric total synthesis of pinnaic acid. Angew Chem Int Ed 46:5746

    Article  CAS  Google Scholar 

  1219. Liu D, Acharya HP, Yu M, Wang J, Yeh VSC, Kang S, Chiruta C, Jachak SM, Clive DLJ (2009) Total synthesis of the marine alkaloid halichlorine: development and use of a general route to chiral piperidines. J Org Chem 74:7417

    Article  CAS  PubMed  Google Scholar 

  1220. Xu S, Unabara D, Uemura D, Arimoto H (2014) Enantioselective total synthesis of pinnaic acid and halichlorine. Chem Asian J 9:367

    Article  CAS  PubMed  Google Scholar 

  1221. Nukoolkarn VS, Saen-oon S, Rungrotmongkol T, Hannongbua S, Ingkaninan K, Suwanborirux K (2008) Petrosamine, a potent anticholinesterase pyridoacridine alkaloid from a Thai marine sponge Petrosia n. sp. Bioorg Med Chem 16:6560

    Google Scholar 

  1222. Hsu Y-M, Chang F-R, Lo I-W, Lai K-H, El-Shazly M, Wu T-Y, Du Y-C, Hwang T-L, Cheng Y-B, Wu Y-C (2016) Zoanthamine-type alkaloids from the zoanthid Zoanthus kuroshio collected in Taiwan and their effects on inflammation. J Nat Prod 79:2674

    Article  CAS  PubMed  Google Scholar 

  1223. Wang W-X, Lei X, Yang Y-L, Li Z-H, Ai H-L, Li J, Feng T, Liu J-K (2019) Xylarichalasin A, a halogenated hexacyclic cytochalasan from the fungus Xylaria cf. curta. Org Lett 21:6957

    Google Scholar 

  1224. Yu B-W, Chen J-Y, Zhou T-X, Cheng K-F, Qin G-W (2002) Nitrotyrasacutuminine from Menispermum dauricum. Nat Prod Lett 16:155

    Article  PubMed  Google Scholar 

  1225. Cheng P, Ma Y, Yao S, Zhang Q, Wang E, Yan M, Zhang X, Zhang F, Chen J (2007) Two new alkaloids and active anti-hepatitis B virus constituents from Hypserpa nitida. Bioorg Med Chem Lett 17:5316

    Article  CAS  PubMed  Google Scholar 

  1226. Kato A, Yasui M, Yano N, Kawata Y, Moriki K, Adachi I, Hollinshead J, Nash RJ (2009) Alkaloids inhibiting l-histidine decarboxylase from Sinomenium acutum. Phytochem Lett 2:77

    Article  CAS  Google Scholar 

  1227. Sugimoto Y, Matsui M, Babiker HAA (2007) Conversion of dechlorodauricumine into chlorinated alkaloids in Menispermum dauricum root culture. Phytochemistry 68:493

    Article  CAS  PubMed  Google Scholar 

  1228. Hori R, Sugimoto G, Matsui M, Yamauchi Y, Takikawa H, Sugimoto Y (2009) Conversion of dechlorodauricumine into miharumine by a cell-free preparation from cultured roots of Menispermum dauricum. Biosci Biotechnol Biochem 73:440

    Article  CAS  PubMed  Google Scholar 

  1229. Li F, Tartakoff SS, Castle SL (2009) Enantioselective total synthesis of (–)-acutumine. J Org Chem 74:9082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1230. King SM, Calandra NA, Herzon SB (2013) Total syntheses of (–)-acutumine and (–)-dechloroacutumine. Angew Chem Int Ed 52:3642

    Article  CAS  Google Scholar 

  1231. Beniddir MA, Martin M-T, Tran Huu Dau M-E, Rasoanaivo P, Gueritte F, Litaudon M (2013) Bisindole alkaloid artifacts from Gonioma malagasy. Tetrahedron Lett 54:2115

    Article  CAS  Google Scholar 

  1232. Shi Y, Liu Y, Ma S, Li L, Qu J, Li Y, Yu S (2014) Four new minor alkaloids from the seeds of Strychnos nux-vomica. Tetrahedron Lett 55:6538

    Article  CAS  Google Scholar 

  1233. Esposito G, Bourguet-Kondracki M-L, Mai LH, Longeon A, Teta R, Meijer L, Van Soest R, Mangoni A, Costantino V (2016) Chloromethylhalicyclamine B, a marine-derived protein kinase CK1δ/ε inhibitor. J Nat Prod 79:2953

    Article  CAS  PubMed  Google Scholar 

  1234. Nodwell M, Pereira A, Riffell JL, Zimmerman C, Patrick BO, Roberge M, Andersen RJ (2009) Synthetic approaches to the microtubule-stabilizing sponge alkaloid ceratamine A and desbromo analogues. J Org Chem 74:995

    Article  CAS  PubMed  Google Scholar 

  1235. Coleman RS, Campbell EL, Carper DJ (2009) A direct and efficient total synthesis of the tubulin-binding agents ceratamine A and B: use of IBX for a remarkable heterocycle dehydrogenation. Org Lett 11:2133

    Article  CAS  PubMed  Google Scholar 

  1236. Armstrong A, Bhonoah Y, Shanahan SE (2007) Aza-Prins-Pinacol approach to 7-azabicyclo[2.2.1]heptanes: syntheses of (±)-epibatidine and (±)-epiboxidine. J Org Chem 72:8019

    Google Scholar 

  1237. Boyd DR, Sharma ND, Kaik M, McIntyre PBA, Stevenson PJ, Allen CCR (2012) Chemoenzymatic formal synthesis of (–)- and (+)-epibatidine. Org Biomol Chem 10:2774

    Article  CAS  PubMed  Google Scholar 

  1238. Carroll FI (2009) Epibatidine analogs synthesized for characterization of nicotinic pharmacophores—a review. Heterocycles 79:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1239. Tempone AG, Pieper P, Borborema SET, Thevenard F, Lago JHG, Croft SL, Anderson EA (2021) Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Nat Prod Rep 38:2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1240. Young IS, Thornton PD, Thompson A (2010) Synthesis of natural products containing the pyrrolic ring. Nat Prod Rep 27:1801

    Article  CAS  PubMed  Google Scholar 

  1241. Clark BR, Capon RJ, Lacey E, Tennant S, Gill JH (2006) Polyenylpyrroles and polyenylfurans from an Australian isolate of the soil ascomycete Gymnoascus reessii. Org Lett 8:701

    Article  CAS  PubMed  Google Scholar 

  1242. Clark BR, Lacey E, Gill JH, Capon RJ (2007) The effect of halide salts on the production of Gymnoascus reessii polyenylpyrroles. J Nat Prod 70:665

    Article  CAS  PubMed  Google Scholar 

  1243. Clark BR, Murphy CD (2009) Biosynthesis of pyrrolylpolyenes in Auxarthron umbrinum. Org Biomol Chem 7:111

    Article  CAS  PubMed  Google Scholar 

  1244. Clark BR, O’Connor S, Fox D, Leroy J, Murphy CD (2011) Production of anticancer polyenes through precursor-directed biosynthesis. Org Biomol Chem 9:6306

    Article  CAS  PubMed  Google Scholar 

  1245. Aiello A, Fattorusso E, Giordano A, Menna M, Müller WEG, Perović-Ottstadt S, Schröder HC (2007) Damipipecolin and damituricin, novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella damicornis. Bioorg Med Chem 15:5877

    Article  CAS  PubMed  Google Scholar 

  1246. Hassan W, Elkhayat ES, Edrada RA, Ebel R, Proksch P (2007) New bromopyrrole alkaloids from the marine sponges Axinella damicornis and Stylissa flabelliformis. Nat Prod Commun 2:1149

    CAS  Google Scholar 

  1247. Piña IC, White KN, Cabrera G, Rivero E, Crews P (2007) Bromopyrrole carboxamide biosynthetic products from the Caribbean sponge Agelas dispar. J Nat Prod 70:613

    Article  PubMed  Google Scholar 

  1248. Kuramoto M, Miyake N, Ishimaru Y, Ono N, Uno H (2008) Cylindradines A and B: novel bromopyrrole alkaloids from the marine sponge Axinella cylindratus. Org Lett 10:5465

    Article  CAS  PubMed  Google Scholar 

  1249. Iwata M, Kanoh K, Imaoka T, Nagasawa K (2014) Total synthesis of (+)-cylindradine A. Chem Commun 50:6991

    Article  CAS  Google Scholar 

  1250. Iwata M, Kamijoh Y, Yamamoto E, Yamanaka M, Nagasawa K (2017) Total synthesis of pyrrole–imidazole alkaloids (+)-cylindradine B. Org Lett 19:420

    Article  CAS  PubMed  Google Scholar 

  1251. Tanaka N, Kusama T, Kashiwada Y, Kobayashi J (2016) Bromopyrrole alkaloids from Okinawan marine sponges Agelas spp. Chem Pharm Bull 64:691

    Article  CAS  Google Scholar 

  1252. Araki A, Tsuda M, Kubota T, Mikami Y, Fromont J, Kobayashi J (2007) Nagelamide J, a novel dimeric bromopyrrole alkaloid from a sponge Agelas species. Org Lett 9:2369

    Article  CAS  PubMed  Google Scholar 

  1253. Araki A, Kubota T, Tsuda M, Mikami Y, Fromont J, Kobayashi J (2008) Nagelamides K and L, dimeric bromopyrrole alkaloids from sponge Agelas species. Org Lett 10:2099

    Article  CAS  PubMed  Google Scholar 

  1254. Kubota T, Araki A, Ito J, Mikami Y, Fromont J, Kobayashi J (2008) Nagelamides M and N, new bromopyrrole alkaloids from sponge Agelas species. Tetrahedron 64:10810

    Article  CAS  Google Scholar 

  1255. Yasuda T, Araki A, Kubota T, Ito J, Mikami Y, Fromont J, Kobayashi J (2009) Bromopyrrole alkaloids from marine sponges of the genus Agelas. J Nat Prod 72:488

    Article  CAS  PubMed  Google Scholar 

  1256. Araki A, Kubota T, Aoyama K, Mikami Y, Fromont J, Kobayashi J (2009) Nagelamides Q and R, novel dimeric bromopyrrole alkaloids from sponges Agelas sp. Org Lett 11:1785

    Article  CAS  PubMed  Google Scholar 

  1257. Tanaka N, Kusama T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2013) Nagelamides U-W, bromopyrrole alkaloids from a marine sponge Agelas sp. Tetrahedron Lett 54:3794

    Article  CAS  Google Scholar 

  1258. Tanaka N, Kusama T, Takahashi-Nakaguichi A, Gonoi T, Fromont J, Kobayashi J (2013) Nagelamides X-Z, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org Lett 15:3262

    Article  CAS  PubMed  Google Scholar 

  1259. Iwai T, Kubota T, Fromont J, Kobayashi J (2014) Nagelamide I and 2,2′-didebromonagelamide B, new dimeric bromopyrrole-imidazole alkaloids from a marine sponge Agelas sp. Chem Pharm Bull 62:213

    Article  CAS  Google Scholar 

  1260. Appenzeller J, Tilvi S, Martin M-T, Gallard J-F, El-Bitar H, Dau ETH, Debitus C, Laurent D, Moriou C, Al-Mourabit A (2009) Benzosceptrins A and B with a unique benzocyclobutane skeleton and nagelamide S and T from Pacific sponges. Org Lett 11:4874

    Article  CAS  PubMed  Google Scholar 

  1261. Nakamura K, Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kobayashi J (2015) 2-Debromonagelamide U, 2-debromomukanadin G, and 2-debromonagelamide P from marine sponge Agelas sp. Heterocycles 90:425

    Article  CAS  Google Scholar 

  1262. Northrop BH, O’Malley DP, Zografos AL, Baran PS, Houk KN (2006) Mechanism of the vinylcyclobutane rearrangement of sceptrin to ageliferin and nagelamide E. Angew Chem Int Ed 45:4126

    Article  CAS  Google Scholar 

  1263. O’Malley DP, Li K, Maue M, Zografos AL, Baran PS (2007) Total synthesis of dimeric pyrrole-imidazole alkaloids: sceptrin, ageliferin, nagelamide E, oxysceptrin, nakamuric acid, and the axinellamine carbon skeleton. J Am Chem Soc 129:4762

    Article  CAS  PubMed  Google Scholar 

  1264. Kubota T, Araki A, Yasuda T, Tsuda M, Fromont J, Aoyama K, Mikami Y, Wälchli MR, Kobayashi J (2009) Benzosceptrin C, a new dimeric bromopyrrole alkaloid from sponge Agelas sp. Tetrahedron Lett 50:7268

    Article  CAS  Google Scholar 

  1265. Tilvi S, Moriou C, Martin M-T, Gallard J-F, Sorres J, Patel K, Petek S, Debitus C, Ermolenko L, Al-Mourabit A (2010) Agelastatin E, agelastatin F, and benzosceptrin C from the marine sponge Agelas dendromorpha. J Nat Prod 73:720

    Article  CAS  PubMed  Google Scholar 

  1266. Stout EP, Morinaka BI, Wang Y-G, Romo D, Molinski TF (2012) De novo synthesis of benzosceptrin C and nagelamide H from 7–15N-oroidin: implications for pyrrole-aminoimidazole alkaloid biosynthesis. J Nat Prod 75:527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1267. Muñoz J, Köck M (2016) Hybrid pyrrole-imidazole alkaloids from the sponge Agelas sceptrum. J Nat Prod 79:434

    Article  PubMed  Google Scholar 

  1268. Sun Y-T, Lin B, Li S-G, Liu M, Zhou Y-J, Xu Y, Hua H-M, Lin H-W (2017) New bromopyrrole alkaloids from the marine sponge Agelas sp. Tetrahedron 73:2786

    Article  CAS  Google Scholar 

  1269. Kwon O-S, Kim D, Kim H, Lee Y-J, Lee H-S, Sim CJ, Oh D-C, Lee SK, Oh K-B, Shin J (2018) Bromopyrrole alkaloids from the sponge Agelas kosrae. Mar Drugs 16:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1270. Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1271. Hughes CC, Kauffman CA, Jensen PR, Fenical W (2010) Structures, reactivities, and antibiotic properties of the marinopyrroles A-F. J Org Chem 75:3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1272. Cheng C, Pan L, Chen Y, Song H, Qin Y, Li R (2010) Total synthesis of (±)-marinopyrrole A and its library as potential antibiotic and anticancer agents. J Comb Chem 12:541

    Article  CAS  PubMed  Google Scholar 

  1273. Kanakis AA, Sarli V (2010) Total synthesis of (±)-marinopyrrole A via copper-mediated N-arylation. Org Lett 12:4872

    Article  CAS  PubMed  Google Scholar 

  1274. Nicolaou KC, Simmons NL, Chen JS, Haste NM, Nizet V (2011) Total synthesis and biological evaluation of marinopyrrole A and analogs. Tetrahedron Lett 52:2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1275. Cheng P, Clive DLJ, Fernandopulle S, Chen Z (2013) Racemic marinopyrrole B by total synthesis. Chem Commun 49:558

    Article  CAS  Google Scholar 

  1276. Stodulski M, Kohlhepp SV, Raabe G, Gulder T (2016) Exploration of the bis(thio)urea-catalyzed atropselective synthesis of marinopyrrole A. Eur J Org Chem, 2170

    Google Scholar 

  1277. Yamanaka K, Ryan KS, Gulder TAM, Hughes CC, Moore BS (2012) Flavoenzyme-catalyzed atropo-selective N, C-bipyrrole homocoupling in marinopyrrole biosynthesis. J Am Chem Soc 134:12434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1278. Clive DLJ, Cheng P (2013) The marinopyrroles. Tetrahedron 69:5067

    Article  CAS  Google Scholar 

  1279. Sultan MZ, Park K, Lee SY, Park JK, Varughese T, Moon S-S (2008) Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. J Antibiot 61:420

    Article  CAS  Google Scholar 

  1280. Vázquez AB, Bernès S, Ortíz A, Quintero L, Meza-León RL (2009) A contribution to the elucidation of the biosynthesis of 3-chloro-4-(3′-chloro-2′-nitrophenyl)-1H-pyrrole (pyrrolnitrin). Tetrahedron Lett 50:1539

    Article  Google Scholar 

  1281. Yang Y-L, Liao W-Y, Liu W-Y, Liaw C-C, Shen C-N, Huang Z-Y, Wu S-H (2009) Discovery of new natural products by intact-cell mass spectrometry and LC-SPE-NMR: malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chem Eur J 15:11573

    Article  CAS  PubMed  Google Scholar 

  1282. Hopp DC, Rhea J, Jacobsen D, Romari K, Smith C, Rabenstein J, Irigoyen M, Clarke M, Francis L, Luche M, Carr GJ, Mocek U (2009) Neopyrrolomycins with broad spectrum antibacterial activity. J Nat Prod 72:276

    Article  CAS  PubMed  Google Scholar 

  1283. Ebada SS, Edrada-Ebel R, de Voogd NJ, Wray V, Proksch P (2009) Dibromopyrrole alkaloids from the marine sponge Acanthostylotella sp. Nat Prod Commun 4:47

    CAS  PubMed  Google Scholar 

  1284. Guella G, Frassanito R, Mancini I, Sandron T, Modeo L, Verni F, Dini F, Petroni G (2010) Keronopsamides, a new class of pigments from marine ciliates. Eur J Org Chem, 427

    Google Scholar 

  1285. Kwon HC, Epsindola APDM, Park J-S, Prieto-Davó A, Rose M, Jensen PR, Fenical W (2010) Nitropyrrolins A-E, cytotoxic farnesyl-α-nitropyrroles from a marine-derived bacterium within the actinomycete family Streptomycetaceae. J Nat Prod 73:2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1286. Ding X-B, Brimble MA, Furkert DP (2016) Nitropyrrole natural products: isolation, biosynthesis and total synthesis. Org Biomol Chem 14:5390

    Article  CAS  PubMed  Google Scholar 

  1287. Ebada SS, Linh MH, Longeon A, de Voogd NJ, Durieu E, Meijer L, Bourguet-Kondracki M-L, Singab ANB, Müller WEG, Proksch P (2015) Dispacamide E and other bioactive bromopyrrole alkaloids from two Indonesian marine sponges of the genus Stylissa. Nat Prod Res 29:231

    Article  CAS  PubMed  Google Scholar 

  1288. Hertiani T, Edrada-Ebel R, Ortlepp S, van Soest RWM, de Voogd NJ, Wray V, Hentschel U, Kozytska S, Müller WEG, Proksch P (2010) From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg Med Chem 18:1297

    Article  CAS  PubMed  Google Scholar 

  1289. Fehér D, Barlow R, McAtee J, Hemscheidt TK (2010) Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J Nat Prod 73:1963

    Article  PubMed  PubMed Central  Google Scholar 

  1290. Patel K, Laville R, Martin M-T, Tilvi S, Moriou C, Gallard J-F, Ermolenko L, Debitus C, Al-Mourabit A (2010) Unprecedented stylissazoles A-C from Stylissa carteri: another dimension for marine pyrrole-2-aminoimidazole metabolite diversity. Angew Chem Int Ed 49:4775

    Article  CAS  Google Scholar 

  1291. Regalado EL, Laguna A, Mendiola J, Thomas OP, Nogueiras C (2011) Bromopyrrole alkaloids from the Caribbean sponge Agelas cerebrum. Quim Nova 34:289

    Article  CAS  Google Scholar 

  1292. Sauleau P, Retailleau P, Nogues S, Carletti I, Marcourt L, Raux R, Al Mourabit A, Debitus C (2011) Dihydrohymenialdisines, new pyrrole-2-aminoimidazole alkaloids from the marine sponge Cymbastela cantharella. Tetrahedron Lett 52:2676

    Article  CAS  Google Scholar 

  1293. Fouad MA, Debbab A, Wray V, Müller WEG, Proksch P (2012) New bioactive alkaloids from the marine sponge Stylissa sp. Tetrahedron 68:10176

    Article  CAS  Google Scholar 

  1294. Tebben J, Motti C, Tapiolas D, Thomas-Hall P, Harder T (2014) A coralline algal-associated bacterium, Pseudoalteromonas strain J010, yields five new korormicins and a bromopyrrole. Mar Drugs 12:2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1295. Alvarez-Mico X, Jensen PR, Fenical W, Hughes CC (2013) Chlorizidine, a cytotoxic 5H-pyrrolo[2,1-a]isoindol-5-one-containing alkaloid from a marine Streptomyces sp. Org Lett 15:988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1296. Nuzzo G, Ciavatta ML, Kiss R, Mathieu V, Leclercqz H, Manzo E, Villani G, Mollo E, Lefranc F, D’Souza L, Gavagnin M, Cimino G (2012) Chemistry of the nudibranch Aldisa andersoni: structure and biological activity of phorbazole metabolites. Mar Drugs 10:1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1297. Dufour C, Wink J, Kurz M, Kogler H, Olivan H, Sablé S, Heyse W, Gerlitz M, Toti L, Nußer A, Rey A, Couturier C, Bauer A, Brönstrup M (2012) Isolation and structural elucidation of armeniaspirols A-C: potent antibiotics against Gram-positive pathogens. Chem Eur J 18:16123

    Article  CAS  PubMed  Google Scholar 

  1298. Jansen R, Sood S, Huch V, Kunze B, Stadler M, Müller R (2014) Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. J Nat Prod 77:320

    Google Scholar 

  1299. Witte SNR, Hug JJ, Géraldy MNE, Müller R, Kalesse M (2017) Biosynthesis and total synthesis of pyrronazol B: a secondary metabolite from Nannocystis pusilla. Chem Eur J 23:15917

    Article  CAS  PubMed  Google Scholar 

  1300. Yang F, Hamann MT, Zou Y, Zhang M-Y, Gong X-B, Xiao J-R, Chen W-S, Lin H-W (2012) Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. J Nat Prod 75:774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1301. Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kashiwada Y, Kobayashi J (2014) Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org Lett 16:3916

    Article  CAS  PubMed  Google Scholar 

  1302. Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kashiwada Y, Kobayashi J (2014) Agelamadins C-E, bromopyrrole alkaloids comprising oroidin and 3-hydroxykynurenine from a marine sponge Agelas sp. Org Lett 16:5176

    Article  CAS  PubMed  Google Scholar 

  1303. Muñoz J, Moriou C, Gallard J-F, Marie PD, Al-Mourabit A (2012) Donnazoles A and B from Axinella donnani sponge: very close derivatives from the postulated intermediate ‘pre-axinellamine.’ Tetrahedron Lett 53:5828

    Article  Google Scholar 

  1304. Zhang H, Khalil Z, Conte MM, Plisson F, Capon RJ (2012) A search for kinase inhibitors and antibacterial agents: bromopyrrolo-2-aminoimidazoles from a deep-water Great Australian Bight sponge, Axinella sp. Tetrahedron Lett 53:3784

    Article  CAS  Google Scholar 

  1305. Plisson F, Prasad P, Xiao X, Piggott AM, Huang X, Khalil Z, Capon RJ (2014) Callyspongisines A-D: bromopyrrole alkaloids from an Australian marine sponge, Callyspongia sp. Org Biomol Chem 12:1579

    Article  CAS  PubMed  Google Scholar 

  1306. Patiño CLP, Muniain C, Knott ME, Puricelli L, Palermo JA (2014) Bromopyrrole alkaloids isolated from the Patagonian bryozoan Aspidostoma giganteum. J Nat Prod 77:1170

    Article  Google Scholar 

  1307. Kusama T, Tanaka N, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi J (2014) Bromopyrrole alkaloids from a marine sponge Agelas sp. Chem Pharm Bull 62:499

    Article  CAS  Google Scholar 

  1308. Kusama T, Tanaka N, Kashiwada Y, Kobayashi J (2015) Agelamadin F and tauroacidin E, bromopyrrole alkaloids from an Okinawan marine sponge Agelas sp. Tetrahedron Lett 56:4502

    Article  CAS  Google Scholar 

  1309. Cychon C, Lichte E, Köck M (2015) The marine sponge Agelas citrina as a source of the new pyrrole-imidazole alkaloids citrinamines A-D and N-methylagelongine. Beilstein J Org Chem 11:2029

    Article  PubMed  PubMed Central  Google Scholar 

  1310. Zhu Y, Wang Y, Gu B-B, Yang F, Jiao W-H, Hu G-H, Yu H-B, Han B-N, Zhang W, Shen Y, Lin H-W (2016) Antifungal bromopyrrole alkaloids from the South China Sea sponge Agelas sp. Tetrahedron 72:2964

    Article  CAS  Google Scholar 

  1311. Abdjul DB, Yamazaki H, Kanno S, Tomizawa A, Rotinsulu H, Wewengkang DS, Sumilat DA, Ukai K, Kapojos MM, Namikoshi M (2017) An anti-mycobacterial bisfunctionalized sphingolipid and new bromopyrrole alkaloid from the Indonesian marine sponge Agelas sp. J Nat Med 71:531

    Article  CAS  PubMed  Google Scholar 

  1312. Xu W-G, Xu J-J, Wang J, Xing G-S, Qiao W, Duan H-Q, Zhao C, Tang S-A (2017) Axinellin A and B: two new pyrrolactam alkaloids from Axinella sp. Chem Nat Compd 53:325

    Article  CAS  Google Scholar 

  1313. Sauleau P, Moriou C, Al Mourabit A (2017) Metabolomics approach to chemical diversity of the Mediterranean marine sponge Agelas oroides. Nat Prod Res 31:1625

    Article  CAS  PubMed  Google Scholar 

  1314. Woo S-Y, Win NN, Wong CP, Ito T, Hoshino S, Ngwe H, Aye AA, Han NM, Zhang H, Hayashi F, Abe I, Morita H (2018) Two new pyrrolo-2-aminoimidazoles from a Myanmarese marine sponge, Clathria prolifera. J Nat Med 72:803

    Article  CAS  PubMed  Google Scholar 

  1315. de Souza RTMP, Freire VF, Gubiani JR, Ferreira RO, Trivella DBB, Moraes FC, Paradas WC, Salgado LT, Pereira RC, Filho GMA, Ferreira AG, Williams DE, Andersen RJ, Molinski TF, Berlinck RGS (2018) Bromopyrrole alkaloid inhibitors of the proteasome isolated from a Dictyonella sp. marine sponge collected at the Amazon River mouth. J Nat Prod 81:2296

    Google Scholar 

  1316. Parra LLL, Bertonha AF, Severo IRM, Aguiar ACC, de Souza GE, Oliva G, Guido RVC, Grazzia N, Costa TB, Miguel DC, Gadelha FR, Ferreira AG, Hajdu E, Romo D, Berlinck RGS (2018) Isolation, derivative synthesis, and structure–activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J Nat Prod 81:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1317. Sun J, Wu J, An B, de Voogd NJ, Cheng W, Lin W (2018) Bromopyrrole alkaloids with the inhibitory effects against the biofilm formation of Gram negative bacteria. Mar Drugs 16:9

    Article  PubMed  PubMed Central  Google Scholar 

  1318. Katsuki A, Kato H, Ise Y, Losung F, Mangindaan REP, Tsukamoto S (2019) Agesamines A and B, new dibromopyrrole alkaloids from the sponge Agelas sp. Heterocycles 98:558

    Article  CAS  Google Scholar 

  1319. Li T, Li P-L, Luo X-C, Tang X-L, Li G-Q (2019) Three new dibromopyrrole alkaloids from the South China Sea sponge Agelas nemoechinata. Tetrahedron Lett 60:1996

    Article  CAS  Google Scholar 

  1320. Li T, Tang X, Luo X, Wang Q, Liu K, Zhang Y, de Voogd NJ, Yang J, Li P, Li G (2019) Agelanemoechine, a dimeric bromopyrrole alkaloid with a pro-angiogenic effect from the South China Sea sponge Agelas nemoechinata. Org Lett 21:9483

    Article  CAS  PubMed  Google Scholar 

  1321. Lee S, Tanaka N, Takahashi S, Tsuji D, Kim S-Y, Kojoma M, Itoh K, Kobayashi J, Kashiwada Y (2020) Agesasines A and B, bromopyrrole alkaloids from marine sponges Agelas spp. Mar Drugs 18:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1322. Kovalerchik D, Singh RP, Schlesinger P, Mahajni A, Shefer S, Fridman M, Ilan M, Carmeli S (2020) Bromopyrrole alkaloids of the sponge Agelas oroides collected near the Israeli Mediterranean coastline. J Nat Prod 83:374

    Article  CAS  PubMed  Google Scholar 

  1323. Miguel-Gordo M, Gegunde S, Jennings LK, Genta-Jouve G, Calabro K, Alfonso A, Botana LM, Thomas OP (2020) Futunamine, a pyrrole-imidazole alkaloid from the sponge Stylissa aff. carteri collected off the Futuna Islands. J Nat Prod 83:2299

    Google Scholar 

  1324. Lacerna NM II, Miller BW, Lim AL, Tun JO, Robes JMD, Cleofas MJB, Lin Z, Salvador-Reyes LA, Haygood MG, Schmidt EW, Concepcion GP (2019) Mindapyrroles A-C, pyoluteorin analogues from a shipworm-associated bacterium. J Nat Prod 82:1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1325. Mevers E, Sauri J, Helfrich EJN, Henke M, Barns KJ, Bugni TS, Andes D, Currie CR, Clardy J (2019) Pyonitrins A-D: chimeric natural products produced by Pseudomonas protegens. J Am Chem Soc 141:17098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1326. Shingare RD, Aniebok V, Lee H-W, MacMillan JB (2020) Synthesis and investigation of the abiotic formation of pyonitrins A-D. Org Lett 22:1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1327. Zhang F, Braun DR, Chanana S, Rajski SR, Bugni TS (2019) Phallusialides A–E, pyrrole-derived alkaloids discovered from a marine-derived Micromonospora sp. bacterium using MS-based metabolomics approaches. J Nat Prod 82:3432

    Google Scholar 

  1328. Tohyama S, Takahashi Y, Akamatsu Y (2010) Biosynthesis of amycolamicin: the biosynthetic origin of a branched α-aminoethyl moiety in the unusual sugar amycolose. J Antibiot 63:147

    Article  CAS  Google Scholar 

  1329. Sawa R, Takahashi Y, Hashizume H, Sasaki K, Ishizaki Y, Umekita M, Hatano M, Abe H, Watanabe T, Kinoshita N, Homma Y, Hayashi C, Inoue K, Ohba S, Masuda T, Arakawa M, Kobayashi Y, Hamada M, Igarashi M, Adachi H, Nishimura Y, Akamatsu Y (2012) Amycolamicin: a novel broad-spectrum antibiotic inhibiting bacterial topoisomerase. Chem Eur J 18:15772

    Article  CAS  PubMed  Google Scholar 

  1330. Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, Lee S, Skwish S, de la Cruz M, Martín J, Vicente F, Genilloud O, Lu J, Painter RE, Young K, Overbye K, Donald RGK, Singh SB (2011) Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 18:955

    Article  CAS  PubMed  Google Scholar 

  1331. Singh SB, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, de la Cruz M, Martín J, Vicente F, Genilloud O, Donald RGK, Phillips JW (2012) Kibdelomycin A, a congener of kibdelomycin, derivatives and their antibacterial activities. Bioorg Med Chem Lett 22:7127

    Article  CAS  PubMed  Google Scholar 

  1332. Yang S, Chen C, Chen J, Li C (2021) Total synthesis of the potent and broad-spectrum antibiotics amycolamicin and kibdelomycin. J Am Chem Soc 143:21258

    Article  CAS  PubMed  Google Scholar 

  1333. Meguro Y, Ito J, Nakagawa K, Kuwahara S (2022) Total synthesis of the broad-spectrum antibiotic amycolamicin. J Am Chem Soc 144:5253

    Article  CAS  PubMed  Google Scholar 

  1334. Singh SB (2016) Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase. Bioorg Med Chem 24:6291

    Article  CAS  PubMed  Google Scholar 

  1335. Mazzetti C, Ornaghi M, Gaspari E, Parapini S, Maffioli S, Sosio M, Donadio S (2012) Halogenated spirotetronates from Actinoallomurus. J Nat Prod 75:1044

    Article  CAS  PubMed  Google Scholar 

  1336. Vetter W (2012) Polyhalogenated alkaloids in environmental and food samples. In: The alkaloids, vol 71. Elsevier, p 211

    Google Scholar 

  1337. Pangallo K, Nelson RK, Teuten EL, Pedler BE, Reddy CM (2008) Expanding the range of halogenated 1′-methyl-1,2′-bipyrroles (MBPs) using GC/ECNI-MS and GC × GC/TOF-MS. Chemosphere 71:1557

    Article  CAS  PubMed  Google Scholar 

  1338. Unger MA, Harvey E, Vadas GG, Vecchione M (2008) Persistent pollutants in nine species of deep-sea cephalopods. Mar Pollut Bull 56:1498

    Article  CAS  PubMed  Google Scholar 

  1339. Haraguchi K, Hisamichi Y, Kotaki Y, Kato Y, Endo T (2009) Halogenated bipyrroles and methoxylated tetrabromodiphenyl ethers in tiger shark (Galeocerdo cuvier) from the southern coast of Japan. Environ Sci Technol 43:2288

    Article  CAS  PubMed  Google Scholar 

  1340. Haraguchi K, Hisamichi Y, Endo T (2009) Accumulation and mother-to-calf transfer of anthropogenic and natural organohalogens in killer whales (Orcinus orca) stranded on the Pacific coast of Japan. Sci Total Environ 407:2853

    Article  CAS  PubMed  Google Scholar 

  1341. Gaul S, Bendig P, Olbrich D, Rosenfelder N, Ruff P, Gaus C, Mueller JF, Vetter W (2011) Identification of the natural product 2,3,4,5-tetrabromo-1-methylpyrrole in Pacific biota, passive samplers and seagrass from Queensland, Australia. Mar Pollut Bull 62:2463

    Article  CAS  PubMed  Google Scholar 

  1342. Pena-Abaurrea M, Weijs L, Ramos L, Borghesi N, Corsolini S, Neels H, Blust R, Covaci A (2009) Anthropogenic and naturally-produced organobrominated compounds in bluefin tuna from the Mediterranean Sea. Chemosphere 76:1477

    Article  CAS  PubMed  Google Scholar 

  1343. Rosenfelder N, Lehnert K, Kaffarnik S, Torres JPM, Vianna M, Vetter W (2012) Thorough analysis of polyhalogenated compounds in ray liver samples off the coast of Rio de Janeiro, Brazil. Environ Sci Pollut Res 19:379

    Article  CAS  Google Scholar 

  1344. Bendig P, Rosenfelder N, Mueller JF, Vetter W (2012) Halogenated natural products (HNPs) in fish, sea cucumber and sediment from the Great Barrier Reef (Australia). Organohalogen Comp 74:915

    Google Scholar 

  1345. Hauler C, Martin R, Knölker H-J, Gaus C, Mueller JF, Vetter W (2013) Discovery and widespread occurrence of polyhalogenated 1,1′dimethyl-2,2′-bipyrroles (PDBPs) in marine biota. Environ Pollut 178:329

    Article  CAS  PubMed  Google Scholar 

  1346. Hauler C, Vetter W (2017) Synthesis, structure elucidation, and determination of polyhalogenarted N-methylpyrroles (PMPs) in blue mussels. Environ Sci Pollut Res 24:26029

    Article  CAS  Google Scholar 

  1347. Stapleton HM, Dodder NG, Kucklick JR, Reddy CM, Schantz MM, Becker PR, Gulland F, Porter BJ, Wise SA (2006) Determination of HBCD, PBDEs and MeO-BDEs in California sea lions (Zalophus californianus) stranded between 1993 and 2003. Mar Pollut Bull 52:522

    Article  CAS  PubMed  Google Scholar 

  1348. Mello FV, Kasper D, Alonso MB, Torres JPM (2020) Halogenated natural products in birds associated with the marine environment: a review. Sci Total Environ 717:137000

    Article  CAS  PubMed  Google Scholar 

  1349. Vetter W, Schlabach M, Kallenborn R (2002) Evidence for the presence of natural halogenated hydrocarbons in southern Norwegian and polar air. Fresenius Environ Bull 11:170

    CAS  Google Scholar 

  1350. Pangallo KC, Reddy CM (2009) Distribution patterns suggest biomagnification of halogenated 1′-methyl-1,2′-bipyrroles (MBPs). Environ Sci Technol 43:122

    Article  CAS  PubMed  Google Scholar 

  1351. Pangallo KC, Reddy CM (2010) Marine natural products, the halogenated 1′-methyl-1,2′-bipyrroles, biomagnify in a northwestern Atlantic food web. Environ Sci Technol 44:5741

    Article  CAS  PubMed  Google Scholar 

  1352. Pangallo KC, Reddy CM, Poyton M, Bolotin J, Hofstetter TB (2012) δ15N enrichment suggests possible source for halogenated 1′-methyl-1,2′-bipyrroles (MBPs). Environ Sci Technol 46:2064

    Article  CAS  PubMed  Google Scholar 

  1353. Kumar A, Borgen M, Aluwihare LI, Fenical W (2017) Ozone-activated halogenation of mono- and dimethylbipyrrole in seawater. Environ Sci Technol 51:589

    Article  CAS  PubMed  Google Scholar 

  1354. Gaul S, Vetter W (2008) Photolytic dehalogenation of the marine halogenated natural product Q1. Chemosphere 70:1721

    Article  CAS  PubMed  Google Scholar 

  1355. Gaul S, Vetter W (2009) Production of mixed halogenated congeners of the natural product heptachloro-1′-methyl-1,2′-bipyrrole (Q1) by photolysis in the presence of bromine. J Chromatogr A 1216:6433

    Article  CAS  PubMed  Google Scholar 

  1356. Gamal AE, Agarwal V, Rahman I, Moore BS (2016) Enzymatic reductive dehalogenation controls the biosynthesis of marine bacterial pyrroles. J Am Chem Soc 138:13167

    Article  PubMed  PubMed Central  Google Scholar 

  1357. Rosenfelder N, Ostrowicz P, Fu L, Gribble GW, Tittlemier SA, Frey W, Vetter W (2010) Enantioseparation and absolute configuration of the atropisomers of a naturally produced hexahalogenated 1,1′-dimethyl-2,2′-bipyrrole. J Chromatogr A 1217:2050

    Article  CAS  PubMed  Google Scholar 

  1358. Fu L, Gribble GW (2008) A short synthesis of the naturally occurring 2,3,3′,4,4′,5,5′-heptachloro- (“Q1”) and heptabromo-1′-methyl-1,2′-bipyrroles. Org Prep Proc Int 40:561

    Article  CAS  Google Scholar 

  1359. Martin R, Jäger A, Knölker H-J (2011) Transition metals in organic synthesis, Part 97: silver-catalyzed synthesis of hexahalogenated 2,2′-bipyrroles. Synlett:2795

    Google Scholar 

  1360. Kennedy JP, Brogan JT, Lindsley CW (2008) Total synthesis and biological evaluation of the marine bromopyrrole alkaloid dispyrin: elucidation of discrete molecular targets with therapeutic potential. J Nat Prod 71:1783

    Article  CAS  PubMed  Google Scholar 

  1361. Han S, Siegel DS, Morrison KC, Hergenrother PJ, Movassaghi M (2013) Synthesis and anticancer activity of all known (–)-agelastatin alkaloids. J Org Chem 78:11970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1362. Mahajan JP, Mhaske SB (2017) Synthesis of methyl-protected (±)-chlorizidine A. Org Lett 19:2774

    Article  CAS  PubMed  Google Scholar 

  1363. Mantovani SM, Moore BS (2013) Flavin-linked oxidase catalyzes pyrrolizine formation of dichloropyrrole-containing polyketide extender unit in chlorizidine A. J Am Chem Soc 135:18032

    Article  CAS  PubMed  Google Scholar 

  1364. Qiao Y, Yan J, Jia J, Xue J, Qu X, Hu Y, Deng Z, Bi H, Zhu D (2019) Characterization of the biosynthetic gene cluster for the antibiotic armeniaspirols in Streptomyces armeniacus. J Nat Prod 82:318

    Article  CAS  PubMed  Google Scholar 

  1365. van Rensburg M, Copp BR, Barker D (2018) Synthesis and absolute stereochemical reassignment of mukanadin F: a study of isomerization of bromopyrrole alkaloids with implications on marine natural product isolation. Eur J Org Chem:3065

    Google Scholar 

  1366. Bhandari MR, Sivappa R, Lovely CJ (2009) Total synthesis of the putative structure of nagelamide D. Org Lett 11:1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1367. Kikuchi H, Sekiya M, Katou Y, Ueda K, Kabeya T, Kurata S, Oshima Y (2009) Revised structure and synthesis of celastramycin A, a potent innate immune suppressor. Org Lett 11:1693

    Article  CAS  PubMed  Google Scholar 

  1368. Al-Mourabit A, Zancanella MA, Tilvi S, Romo D (2011) Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Nat Prod Rep 28:1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1369. Beniddir MA, Evanno L, Joseph D, Skiredj A, Poupon E (2016) Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers. Nat Prod Rep 33:820

    Article  CAS  PubMed  Google Scholar 

  1370. Seiple IB, Su S, Young IS, Lewis CA, Yamaguchi J, Baran PS (2010) Total synthesis of palau’amine. Angew Chem Int Ed 49:1095

    Article  CAS  Google Scholar 

  1371. Seiple IB, Su S, Young IS, Nakamura A, Yamaguchi J, Jørgensen L, Rodriguez RA, O’Malley DP, Gaich T, Köck M, Baran PS (2011) Enantioselective total syntheses of (–)-palau’amine, (–)-axinellamines, and (–)-massadines. J Am Chem Soc 133:14710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1372. Jessen HJ, Gademann K (2010) Total synthesis of the marine alkaloid palau’amine. Angew Chem Int Ed 49:2972

    Article  CAS  Google Scholar 

  1373. Grube A, Köck M (2007) Structural assignment of tetrabromostyloguanidine: does the relative configuration of the palau’amines need revision? Angew Chem Int Ed 46:2320

    Article  CAS  Google Scholar 

  1374. Buchanan MS, Carroll AR, Quinn RJ (2007) Revised structure of palau’amine. Tetrahedron Lett 48:4573

    Article  CAS  Google Scholar 

  1375. Köck M, Grube A, Seiple IB, Baran PS (2007) The pursuit of palau’amine. Angew Chem Int Ed 46:6586

    Article  Google Scholar 

  1376. Lanman BA, Overman LE, Paulini R, White NS (2007) On the structure of palau’amine: evidence for the revised relative configuration from chemical synthesis. J Am Chem Soc 129:12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1377. Lindel T, Jacquot DEN, Zöllinger M, Kinnel RB, McHugh S, Köck M (2010) Study on the absolute configuration of (–)-palau’amine. Tetrahedron Lett 51:6353

    Article  CAS  Google Scholar 

  1378. Reinscheid UM, Köck M, Cychon C, Schmidts V, Thiele CM, Griesinger C (2010) The absolute configuration of dibromopalau’amine. Eur J Org Chem:6900

    Google Scholar 

  1379. Su S, Rodriguez RA, Baran PS (2011) Scalable, stereocontrolled total syntheses of (±)-axinellamines A and B. J Am Chem Soc 133:13922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1380. Feldman KS, Nuriye AY, Li J (2011) Extending Pummerer reaction chemistry: studies in the palau’amine synthesis area. J Org Chem 76:5042

    Article  CAS  PubMed  Google Scholar 

  1381. Stout EP, Wang Y-G, Romo D, Molinski TF (2012) Pyrrole aminoimidazole alkaloid metabiosynthesis with marine sponges Agelas conifera and Stylissa caribica. Angew Chem Int Ed 51:4877

    Article  CAS  Google Scholar 

  1382. Wang X, Wang X, Tan X, Lu J, Cormier KW, Ma Z, Chen C (2012) A biomimetic route for construction of the [4+2] and [3+2] core skeletons of dimeric pyrrole-imidazole alkaloids and asymmetric synthesis of ageliferins. J Am Chem Soc 134:18834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1383. Köck M, Schmidt G, Seiple IB, Baran PS (2012) Configurational analysis of tetracyclic dimeric pyrrole-imidazole alkaloids using a floating chirality approach. J Nat Prod 75:127

    Article  PubMed  PubMed Central  Google Scholar 

  1384. Rodriguez RA, Steed DB, Kawamata Y, Su S, Smith PA, Steed TC, Romesberg FE, Baran PS (2014) Axinellamines as broad-spectrum antibacterial agents: scalable synthesis and biology. J Am Chem Soc 136:15403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1385. Ma Z, Wang X, Ma Y, Chen C (2016) Asymmetric synthesis of axinellamines A and B. Angew Chem Int Ed 55:4763

    Article  CAS  Google Scholar 

  1386. Grube A, Immel S, Baran PS, Köck M (2007) Massadine chloride: a biosynthetic precursor of massadine and stylissadine. Angew Chem Int Ed 46:6721

    Article  CAS  Google Scholar 

  1387. Su H, Yuan ZH, Li J, Guo SJ, Deng LP, Han LJ, Zhu XB, Shi DY (2009) Two new bromoindoles from red alga Laurencia similis. Chin Chem Lett 20:456

    Article  CAS  Google Scholar 

  1388. Woolner VH, Jones CM, Field JJ, Fadzilah NH, Munkacsi AB, Miller JH, Keyzers RA, Northcote PT (2016) Polyhalogenated indoles from the red alga Rhodophyllis membranacea: the first isolation of bromo-chloro-iodo secondary metabolites. J Nat Prod 79:463

    Article  CAS  PubMed  Google Scholar 

  1389. Bao B, Zhang P, Lee Y, Hong J, Lee C-O, Jung JH (2007) Monoindole alkaloids from a marine sponge Spongosorites sp. Mar Drugs 5:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1390. Li L, Deng Z, Fu H, Li J, Proksch P, Lin W (2003) Chemical constituents from the marine sponge Iotrochoto birotulata. Pharmazie 58:680

    CAS  PubMed  Google Scholar 

  1391. Santalova EA, Denisenko VA, Berdyshev DV, Aminin DL, Sanamyan KE (2008) 6-Bromo-5-hydroxyindolyl-3-glyoxylate from the Far Eastern ascidian Syncarpa oviformis. Nat Prod Commun 3:1617

    CAS  Google Scholar 

  1392. Wang R-P, Lin H-W, Li L-Z, Gao P-Y, Xu Y, Song S-J (2012) Monoindole alkaloids from a marine sponge Mycale fibrexilis. Biochem Syst Ecol 43:210

    Article  CAS  Google Scholar 

  1393. Longeon A, Copp BR, Quévrain E, Roué M, Kientz B, Cresteil T, Petek S, Debitus C, Bourguet-Kondracki M-L (2011) Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar Drugs 9:879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1394. Maltseva AL, Kotenko ON, Shabalin KA, Shavarda AL, Winson MK, Ostrovsky AN (2014) Novel brominated fungicidal alkaloid isolated from the marine bryozoan Chartella membranacea truncata (Smitt, 1868). Studi Trent Sci Nat 94:163

    Google Scholar 

  1395. Maltseva AL, Kotenko ON, Kutyumov VA, Matvienko DA, Shavarda AL, Winson MK, Ostrovsky AN (2017) Novel brominated metabolites from Bryozoa: a functional analysis. Nat Prod Res 31:1840

    Article  CAS  PubMed  Google Scholar 

  1396. Takahashi Y, Tanaka N, Kubota T, Ishiyama H, Shibazaki A, Gonoi T, Fromont J, Kobayashi J (2012) Heteroaromatic alkaloids, nakijinamines, from a sponge Suberites sp. Tetrahedron 68:8545

    Article  CAS  Google Scholar 

  1397. Takahashi Y, Kubota T, Shibazaki A, Gonoi T, Fromont J, Kobayashi J (2011) Nakijinamines C-E, new heteroaromatic alkaloids from the sponge Suberites species. Org Lett 13:3016

    Article  CAS  PubMed  Google Scholar 

  1398. Olsen EK, Hansen E, Moodie LWK, Isaksson J, Sepčić K, Cergolj M, Svenson J, Andersen JH (2016) Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org Biomol Chem 14:1629

    Article  CAS  PubMed  Google Scholar 

  1399. Lorig-Roach N, Hamkins-Indik F, Johnson TA, Tenney K, Valeriote FA, Crews P (2018) The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells. Tetrahedron 74:217

    Article  CAS  PubMed  Google Scholar 

  1400. dos Santos LAH, Clavico EEG, Parra LLL, Berlinck RGS, Ferreira AG, Paul VJ, Pereira RC (2017) Evaluation of chemical defense and chemical diversity in the exotic bryozoan Amathia verticillata. J Braz Chem Soc 28:435

    Google Scholar 

  1401. Wang D, Feng Y, Murtaza M, Wood S, Mellick G, Hooper JNA, Quinn RJ (2016) A grand challenge: unbiased phenotypic function of metabolites from Jaspis splendens against Parkinson’s disease. J Nat Prod 79:353

    Article  CAS  PubMed  Google Scholar 

  1402. Bagalagel AA, Bogari HA, Ahmed SA, Diri RM, Elhady SS (2018) New bromoindole alkaloid isolated from the marine sponge Hyrtios erectus. Heterocycles 96:749

    Article  CAS  Google Scholar 

  1403. Miguel-Gordon M, Gegunde S, Calabro K, Jennings LK, Alfonso A, Genta-Jouve G, Vacelet J, Botana LM, Thomas OP (2019) Bromotryptamine and bromotyramine derivatives from the tropical southwestern Pacific sponge Narrabeena nigra. Mar Drugs 17:319

    Article  Google Scholar 

  1404. Kleks G, Holland DC, Kennedy EK, Avery VM, Carroll AR (2020) Antiplasmodial alkaloids from the Australian bryozoan Amathia lamourouxi. J Nat Prod 83:3435

    Article  CAS  PubMed  Google Scholar 

  1405. Li C-S, Li X-M, Cui C-M, Wang B-G (2010) Brominated metabolites from the marine red alga Laurencia similis. Z Naturforsch 65b:87

    Google Scholar 

  1406. Fang H-Y, Chiou S-F, Uvarani C, Wen Z-H, Hsu C-H, Wu Y-C, Wang W-L, Liaw C-C, Sheu J-H (2014) Cytotoxic, anti-inflammatory, and antibacterial sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. Bull Chem Soc Jpn 87:1278

    Article  Google Scholar 

  1407. Steinmetz H, Mohr KI, Zander W, Jansen R, Gerth K, Müller R (2012) Indiacens A and B: prenyl indoles from the myxobacterium Sandaracinus amylolyticus. J Nat Prod 75:1803

    Article  CAS  PubMed  Google Scholar 

  1408. El-Hawary SS, Sayed AM, Mohammed R, Khanfar MA, Rateb ME, Mohammed TA, Hajjar D, Hassan HM, Gulder TAM, Abdelmohsen UR (2018) New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Front Chem 6:538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1409. da Silva AB, Pinto FCL, Silveira ER, Costa-Lotufo LV, Costa WS, Ayala AP, Canuto KM, Barros AB, Araújo AJ, Filho JDBM, Pessoa ODL (2019) 4-Hydroxy-pyran-2-one and 3-hydroxy-N-methyl-2-oxindole derivatives of Salinispora arenicola from Brazilian marine sediments. Fitoterapia 138:104357

    Article  PubMed  Google Scholar 

  1410. Ragini K, Piggott AM, Karuso P (2019) Bisindole alkaloids from a New Zealand deep-sea marine sponge Lamellomorpha strongylata. Mar Drugs 17:683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1411. Campos P-E, Pichon E, Moriou C, Clerc P, Trépos R, Frederich M, De Voogd N, Hellio C, Gauvin-Bialecki A, Al-Mourabit A (2019) New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar Drugs 17:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1412. Shaker KH, Göhl M, Müller T, Seifert K (2015) Indole alkaloids from the sea anemone Heteractis aurora and homarine from Octopus cyanea. Chem Biodivers 12:1746

    Article  CAS  Google Scholar 

  1413. Carroll AR, Wild SJ, Duffy S, Avery VM (2012) Kororamide A, a new tribrominated indole alkaloid from the Australian bryozoan Amathia tortuosa. Tetrahedron Lett 53:2873

    Article  CAS  Google Scholar 

  1414. Dashti Y, Vial M-L, Wood SA, Mellick GD, Roullier C, Quinn RJ (2015) Kororamide B, a brominated alkaloid from the bryozoan Amathia tortuosa and its effects on Parkinson’s disease cells. Tetrahedron 71:7879

    Article  CAS  Google Scholar 

  1415. Pénez N, Culioli G, Pérez T, Briand J-F, Thomas OP, Blache Y (2011) Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian Paramuricea clavata. J Nat Prod 74:2304

    Article  PubMed  Google Scholar 

  1416. Shen S, Liu D, Wei C, Proksch P, Lin W (2012) Purpuroines A-J, halogenated alkaloids from the sponge Iotrochota purpurea with antibiotic activity and regulation of tyrosine kinases. Bioorg Med Chem 20:6924

    Article  CAS  PubMed  Google Scholar 

  1417. Cachet N, Loffredo L, Vicente OO, Thomas OP (2013) Chemical diversity in the scleractinian coral Astroides calycularis. Phytochem Lett 6:205

    Article  CAS  Google Scholar 

  1418. Volk R-B, Girreser U, Al-Refai M, Laatsch H (2009) Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta. Nat Prod Res 23:607

    Article  CAS  PubMed  Google Scholar 

  1419. Shin HJ, Jeong HS, Lee H-S, Park S-K, Kim HM, Kwon HJ (2007) Isolation and structure determination of streptochlorin, an antiproliferative agent from a marine-derived Streptomyces sp. 04DH110. J Microbiol Biotechnol 17:1403

    Google Scholar 

  1420. Watanabe H, Amano S, Yoshida J, Takase Y, Miyadoh S, Sasaki T, Hatsu M, Takeuchi Y, Komada Y (1988) A new antibiotic SF2583A, 4-chloro-5-(3′-indolyl)oxazole, produced by Streptomyces. Meiji Seika Kenkyu Nenpo 27:55

    Google Scholar 

  1421. Capon RJ, Peng C, Dooms C (2008) Trachycladindoles A-G: cytotoxic heterocycles from an Australian marine sponge, Trachycladus laevispirulifer. Org Biomol Chem 6:2765

    Article  CAS  PubMed  Google Scholar 

  1422. Zaharenko AJ, Picolo G, Ferreira WA Jr, Murakami T, Kazuma K, Hashimoto M, Cury Y, de Freitas JC, Satake M, Konno K (2011) Bunodosine 391: an analgesic acylamino acid from the venom of the sea anemone Bunodosoma cangicum. J Nat Prod 74:378

    Article  CAS  PubMed  Google Scholar 

  1423. Hu J, Zhang W-D, Shen Y-H, Zhang C, Liu R-H, Xu X-K, Wang B (2007) Two novel alkaloids from Zanthoxylum nitidum. Helv Chim Acta 90:720

    Article  CAS  Google Scholar 

  1424. Wang W-L, Lu Z-Y, Tao H-W, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W-M (2007) Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. J Nat Prod 70:1558

    Article  CAS  PubMed  Google Scholar 

  1425. Řezanka T, Hanuš LO, Dembitsky VM, Sigler K (2008) Identification of the eight-membered heterocycles hicksoanes A–C from the gorgonian Subergorgia hicksoni. Eur J Org Chem: 1265

    Google Scholar 

  1426. Tapiolas DM, Bowden BF, Abou-Mansour E, Willis RH, Doyle JR, Muirhead AN, Liptrot C, Llewellyn LE, Wolff CWW, Wright AD, Motti CA (2009) Eusynstyelamides A, B, and C, nNOS inhibitors, from the ascidian Eusynstyela latericius. J Nat Prod 72:1115

    Article  CAS  PubMed  Google Scholar 

  1427. Swersey JC, Ireland CM, Cornell LM, Peterson RW (1994) Eusynstyelamide, a highly modified dimer peptide from the ascidian Eusynstyela misakiensis. J Nat Prod 57:842

    Article  CAS  PubMed  Google Scholar 

  1428. Tadesse M, Tabudravu JN, Jaspars M, Strøm MB, Hansen E, Andersen JH, Kristiansen PE, Haug T (2011) The antibacterial ent-eusynstyelamide B and eusynstyelamide D, E, and F from the Arctic bryozoan Tegella cf. spitzbergensis. J Nat Prod 74:837

    Google Scholar 

  1429. McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BCM (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732

    Article  CAS  PubMed  Google Scholar 

  1430. Dai J, Jiménez JI, Kelly M, Barnes S, Lorenzo P, Williams P (2008) Dictazolines A and B, bisspiroimidazolidinones from the marine sponge Smenospongia cerebriformis. J Nat Prod 71:1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1431. Dai J, Jiménez JI, Kelly M, Williams PG (2010) Dictazoles: potential vinyl cyclobutane biosynthetic precursors to the dictazolines. J Org Chem 75:2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1432. Iwagawa T, Miyazaki M, Yokogawa Y, Okamura H, Nakatani M, Doe M, Morimoto Y, Takemura K (2008) Aplysinopsin dimers from a stony coral, Tubastraea aurea. Heterocycles 75:2023

    Article  CAS  Google Scholar 

  1433. Carroll AR, Avery VM (2009) Leptoclinidamines A-C, indole alkaloids from the Australian ascidian Leptoclinides durus. J Nat Prod 72:696

    Article  CAS  PubMed  Google Scholar 

  1434. Zhang H, Conte MM, Khalil Z, Huang X-C, Capon RJ (2012) New dictyodendrins as BACE inhibitors from a Southern Australian marine sponge, Ianthella sp. RSC Adv 2:4209

    Article  CAS  Google Scholar 

  1435. Feng T, Li Y, Cai X-H, Gong X, Liu Y-P, Zhang R-T, Zhang X-Y, Tan Q-G, Luo X-D (2009) Monoterpenoid indole alkaloids from Alstonia yunnanensis. J Nat Prod 72:1836

    Article  CAS  PubMed  Google Scholar 

  1436. Mo S, Krunic A, Chlipala G, Orjala J (2009) Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella ambigua. J Nat Prod 72:894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1437. Mo S, Krunic A, Santarsiero BD, Franzblau SG, Orjala J (2010) Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry 71:2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1438. Wang G-C, Zhong X-Z, Zhang D-M, Wang Y, Zhang X-Q, Jiang R-W, Li Y-L, Wang J, Yao X-S, Ye W-C (2011) Two pairs of epimeric indole alkaloids from Catharanthus roseus. Planta Med 77:1739

    Article  CAS  PubMed  Google Scholar 

  1439. Rochfort SJ, Moore S, Craft C, Martin NH, Van Wagoner RM, Wright JLC (2009) Further studies on the chemistry of the Flustra alkaloids from the bryozoan Flustra foliacea. J Nat Prod 72:1773

    Article  CAS  PubMed  Google Scholar 

  1440. Morales-Ríos MS, Suárez-Castillo OR (2008) Synthesis of marine indole alkaloids from Flustra foliacea. Nat Prod Commun 3:629

    Google Scholar 

  1441. Kim J-S, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA (2007) Synthesis of desformylflustrabromine and its evaluation as an α4β2 and α7 nACh receptor modulator. Bioorg Med Chem Lett 17:4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1442. Isaji H, Nakazaki A, Isobe M, Nishikawa T (2011) Concise synthesis of deformylflustrabromine, a marine indole alkaloid, through a 2-propynyl dicobalt hexacarbonyl complex. Chem Lett 40:1079

    Article  CAS  Google Scholar 

  1443. Kawasaki T, Shinada M, Ohzono M, Ogawa A, Terashima R, Sakamoto M (2008) Total synthesis of (±)-flustramines A and C, (±)-flustramide A, and (–)- and (+)-debromoflustramines A. J Org Chem 73:5959

    Article  CAS  PubMed  Google Scholar 

  1444. Adla SK, Sasse F, Kelter G, Fiebig H-H, Lindel T (2013) Doubly prenylated tryptamines: cytotoxicity, antimicrobial activity and cyclisation to the marine natural product flustramine A. Org Biomol Chem 11:6119

    Article  CAS  PubMed  Google Scholar 

  1445. Hirano T, Iwakiri K, Miyamoto H, Nakazaki A, Kobayashi S (2009) Total synthesis of (–)-flustramine B via one-pot intramolecular Ullmann coupling and Claisen rearrangement. Heterocycles 79:805

    Article  CAS  Google Scholar 

  1446. Cordero-Rivera RE, Meléndez-Rodríguez M, Suárez-Castillo OR, Bautista-Hernández CI, Trejo-Carbajal N, Cruz-Borbolla J, Castelán-Duarte LE, Morales-Ríos MS, Joseph-Nathan P (2015) Formal synthesis of (–)-flustramine B and its absolute configuration assignment by vibrational circular dichroism exciton chirality. Tetrahedron: Asymmetry 26:710

    Google Scholar 

  1447. Rivera-Becerril E, Joseph-Nathan P, Pérez-Álvarez VM, Morales-Ríos MS (2008) Synthesis and biological evaluation of (–)- and (+)-debromoflustramine B and its analogues as selective butyrylcholinesterase inhibitors. J Med Chem 51:5271

    Article  CAS  PubMed  Google Scholar 

  1448. Liberio MS, Sooraj D, Williams ED, Feng Y, Davis RA (2011) Kingamide A, a new indole alkaloid from the ascidian Leptoclinides kingi. Tetrahedron Lett 52:6729

    Article  CAS  Google Scholar 

  1449. Hughes CC, MacMillan JB, Gaudêncio SP, Jensen PR, Fenical W (2009) The ammosamides: structures of cell cycle modulators from a marine-derived Streptomyces species. Angew Chem Int Ed 48:725

    Article  CAS  Google Scholar 

  1450. Hughes CC, MacMillan JB, Gaudêncio SP, Fenical W, La Clair JJ (2009) Ammosamides A and B target myosin. Angew Chem Int Ed 48:728

    Article  CAS  Google Scholar 

  1451. Hughes CC, Fenical W (2010) Total synthesis of the ammosamides. J Am Chem Soc 132:2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1452. Wu Q, Jiao X, Wang L, Xiao Q, Liu X, Xie P (2010) Short and straightforward total synthesis of ammosamide B. Tetrahedron Lett 51:4806

    Article  CAS  Google Scholar 

  1453. Reddy PVN, Banerjee B, Cushman M (2010) Efficient total synthesis of ammosamide B. Org Lett 12:3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1454. Takayama Y, Yamada T, Tatekabe S, Nagasawa K (2013) A tandem Friedel-Crafts based method for the construction of a tricyclic pyrroloquinoline skeleton and its application in the synthesis of ammosamide B. Chem Commun 49:6519

    Article  CAS  Google Scholar 

  1455. Yang S-W, Wang C-M, Tang K-X, Wang J-X, Sun L-P (2016) An efficient approach to the total synthesis of ammosamide B. Eur J Org Chem: 1050

    Google Scholar 

  1456. Zurwerra D, Wullschleger CW, Altmann K-H (2010) Treasures from the sea: discovery and total synthesis of ammosamides. Angew Chem Int Ed 49:6936

    Article  CAS  Google Scholar 

  1457. Reimer D, Hughes CC (2017) Thiol-based probe for electrophilic natural products reveals that most of the ammosamides are artifacts. J Nat Prod 80:126

    Article  CAS  PubMed  Google Scholar 

  1458. Genta-Jouve G, Francezon N, Puissant A, Auberger P, Vacelet J, Pérez T, Fontana A, Al Mourabit A, Thomas OP (2011) Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae. Magn Reson Chem 49:533

    Article  CAS  PubMed  Google Scholar 

  1459. Carbone M, Li Y, Irace C, Mollo E, Castelluccio F, Di Pascale A, Cimino G, Santamaria R, Guo Y-W, Gavagnin M (2011) Structure and cytotoxicity of phidianidines A and B: first finding of 1,2,4-oxadiazole system in a marine natural product. Org Lett 13:2516

    Article  CAS  PubMed  Google Scholar 

  1460. Labriere C, Elumalai V, Staffansson J, Cervin G, Le Norcy T, Denardou H, Réhel K, Moodie LWK, Hellio C, Pavia H, Hansen JH, Svenson J (2020) Phidianidine A and synthetic analogues as naturally inspired marine antifoulants. J Nat Prod 83:3413

    Article  CAS  PubMed  Google Scholar 

  1461. Liu J, Li H, Chen K-X, Zuo J-P, Guo Y-W, Tang W, Li X-W (2018) Design and synthesis of marine phidianidine derivatives as potential immunosuppressive agents. J Med Chem 61:11298

    Article  CAS  PubMed  Google Scholar 

  1462. Brogan JT, Stoops SL, Lindsley CW (2012) Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. ACS Chem Neurosci 3:658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1463. Finlayson R, Pearce AN, Page MJ, Kaiser M, Bourguet-Kondracki M-L, Harper JL, Webb VL, Copp BR (2011) Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian Didemnum sp. J Nat Prod 74:888

    Article  CAS  PubMed  Google Scholar 

  1464. Wei X, Henriksen NM, Skalicky JJ, Harper MK, Cheatham TE III, Ireland CM, Van Wagoner RM (2011) Araiosamines A-D: tris-bromoindole cyclic guanidine alkaloids from the marine sponge Clathria (Thalysias) araiosa. J Org Chem 76:5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1465. Tian M, Yan M, Baran PS (2016) 11-Step total synthesis of araiosamines. J Am Chem Soc 138:14234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1466. Li JL, Han SC, Yoo ES, Shin S, Hong J, Cui Z, Li H, Jung JH (2011) Anti-inflammatory amino acid derivatives from the ascidian Herdmania momus. J Nat Prod 74:1792

    Article  CAS  PubMed  Google Scholar 

  1467. Tsukamoto S, Kawabata T, Kato H, Greshock TJ, Hirota H, Ohta T, Williams RM (2009) Isolation of antipodal (–)-versicolamide B and notoamides L-N from a marine-derived Aspergillus sp. Org Lett 11:1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1468. Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H (2010) Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, Aspergillus sp.. J Nat Prod 73:1438

    Article  CAS  PubMed  Google Scholar 

  1469. Figueroa M, González MDC, Mata R (2008) Malbrancheamide B, a novel compound from the fungus Malbranchea aurantiaca. Nat Prod Res 22:709

    Article  CAS  PubMed  Google Scholar 

  1470. Ding Y, Greshock TJ, Miller KA, Sherman DH, Williams RM (2008) Premalbrancheamide: synthesis, isotopic labeling, biosynthetic incorporation, and detection in cultures of Malbranchea aurantiaca. Org Lett 10:4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1471. Figueroa M, González-Andrade M, Sosa-Peinado A, Madariaga-Mazón A, Del Río-Portilla F, Del Carmen GM, Mata R (2011) Fluorescence, circular dichroism, NMR, and docking studies of the interaction of the alkaloid malbrancheamide with calmodulin. J Enzyme Inhibit Med Chem 26:378

    Article  CAS  Google Scholar 

  1472. Watts KR, Loveridge ST, Tenney K, Media J, Valeriote FA, Crews P (2011) Utilizing DART mass spectrometry to pinpoint halogenated metabolites from a marine invertebrate-derived fungus. J Org Chem 76:6201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1473. Miller KA, Welch TR, Greshock TJ, Ding Y, Sherman DH, Williams RM (2008) Biomimetic total synthesis of malbrancheamide and malbrancheamide B. J Org Chem 73:3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1474. Miller KA, Figueroa M, Valente MWN, Greshock TJ, Mata R, Williams RM (2008) Calmodulin inhibitory activity of the malbrancheamides and various analogs. Bioorg Med Chem Lett 18:6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1475. Frebault F, Simpkins NS, Fenwick A (2009) Concise enantioselective synthesis of ent-malbrancheamide B. J Am Chem Soc 131:4214

    Article  CAS  PubMed  Google Scholar 

  1476. Miller KA, Williams RM (2009) Synthetic approaches to the bicyclo[2.2.2]diazaoctane ring system common to the paraherquamides, stephacidins and related prenylated indole alkaloids. Chem Soc Rev 38:3160

    Google Scholar 

  1477. Miller KA, Tsukamoto S, Williams RM (2009) Asymmetric total syntheses of (+)- and (–)-versicolamide B and biosynthetic implications. Nat Chem 1:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1478. Frebault FC, Simpkins NS (2010) A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 66:6585

    Article  CAS  Google Scholar 

  1479. Fraley AE, Garcia-Borràs M, Tripathi A, Khare D, Mercado-Marin EV, Tran H, Dan Q, Webb GP, Watts KR, Crews P, Sarpong R, Williams RM, Smith JL, Houk KN, Sherman DH (2017) Function and structure of MalA/MalA′, iterative halogenases for late-stage C-H functionalization of indole alkaloids. J Am Chem Soc 139:12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1480. Dan Q, Newmister SA, Klas KR, Fraley AE, McAfoos TJ, Somoza AD, Sunderhaus JD, Ye Y, Shende VV, Yu F, Sanders JN, Brown WC, Zhao L, Paton RS, Houk KN, Smith JL, Sherman DH, Williams RM (2019) Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase. Nature Chem 11:972

    Article  CAS  Google Scholar 

  1481. Harayama Y, Kita Y (2005) Pyrroloiminoquinone alkaloids: discorhabdins and makaluvamines. Curr Org Chem 9:1567

    Article  CAS  Google Scholar 

  1482. Wada Y, Harayama Y, Kamimura D, Yoshida M, Shibata T, Fujiwara K, Morimoto K, Fujioka H, Kita Y (2011) The synthetic and biological studies of discorhabdins and related compounds. Org Biomol Chem 9:4959

    Article  CAS  PubMed  Google Scholar 

  1483. Kalinski J-CJ, Krause RWM, Parker-Nance S, Waterworth SC, Dorrington RA (2021) Unlocking the diversity of pyrroloiminoquinones produced by latrunculid sponge species. Mar Drugs 19:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1484. El-Naggar M, Capon RJ (2009) Discorhabdins revisited: cytotoxic alkaloids from Southern Australian marine sponges of the genera Higginsia and Spongosorites. J Nat Prod 72:460

    Article  CAS  PubMed  Google Scholar 

  1485. El-Naggar M, Capon RJ (2009) Correction to discorabdins revisited: cytotoxic alkaloids from Southern Australian marine sponges of the genera Higginsia and Spongosorites. J Nat Prod 72:1368

    Article  CAS  Google Scholar 

  1486. Grkovic T, Copp BR (2009) New natural products in the discorhabdin A- and B-series from New Zealand-sourced Latrunculia spp. sponges. Tetrahedron 65:6335

    Google Scholar 

  1487. Na M, Ding Y, Wang B, Tekwani BL, Schinazi RF, Franzblau S, Kelly M, Stone R, Li X-C, Ferreira D, Hamann MT (2010) Anti-infective discorhabdins from a deep-water Alaskan sponge of the genus Latrunculia. J Nat Prod 73:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1488. Grdovic T, Pearce AN, Munro MHG, Blunt JW, Davies-Coleman MT, Copp BR (2010) Isolation and characterization of diastereomers of discorhabdins H and K and assignment of absolute configuration to discorhabdins D, N, Q, S, T, and U. J Nat Prod 73:1686

    Article  Google Scholar 

  1489. Lam CFC, Grkovic T, Pearce AN, Copp BR (2012) Investigation of the electrophilic reactivity of the cytotoxic marine alkaloid discorhabdin B. Org Biomol Chem 10:3092

    Article  CAS  PubMed  Google Scholar 

  1490. Botić T, Defant A, Zanini P, Žužek MC, Frangež R, Janussen D, Kersken D, Knez Ž, Mancini I, Sepčić K (2017) Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur J Med Chem 136:294

    Google Scholar 

  1491. Li F, Peifer C, Janussen D, Tasdemir D (2019) New discorhabdin alkaloids from the Antarctic deep-sea sponge Latrunculia biformis. Mar Drugs 17:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1492. Li F, Pandey P, Janussen D, Chittiboyina AG, Ferreira D, Tasdemir D (2020) Tridiscorhabdin and didiscorhabdin, the first discorhabdin oligomers linked with a direct C-N bridge from the sponge Latrunculia biformis collected from the deep sea in Antarctica. J Nat Prod 83:706

    Article  CAS  PubMed  Google Scholar 

  1493. Li F, Janussen D, Tasdemir D (2020) New discorhabdin B dimers with anticancer activity from the Antarctic deep-sea sponge Latrunculia biformis. Mar Drugs 18:107

    Article  PubMed  PubMed Central  Google Scholar 

  1494. Lam CFC, Cadelis MM, Copp BR (2020) Exploration of the electrophilic reactivity of the cytotoxic marine alkaloid discorhabdin C and subsequent discovery of a new dimeric C-1/N13-linked discorhabdin natural product. Mar Drugs 18:404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1495. Zou Y, Hamann MT (2013) Atkamine: a new pyrroloiminoquinone scaffold from the cold water Aleutian Islands Latrunculia sponge. Org Lett 15:1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1496. Zou Y, Wang X, Sims J, Wang B, Pandey P, Welsh CL, Stone RP, Avery MA, Doerksen RJ, Ferreira D, Anklin C, Valeriote FA, Kelly M, Hamann MT (2019) Computationally assisted discovery and assignment of a highly strained and PANC-1 selective alkaloid from Alaska’s Deep Ocean. J Am Chem Soc 141:4338

    Article  CAS  PubMed  Google Scholar 

  1497. Taufa T, Gordon RMA, Hashmi MA, Hira K, Miller JH, Lein M, Fromont J, Northcote PT, Keyzers RA (2019) Pyrroloquinoline derivatives from a Tongan specimen of the marine sponge Strongylodesma tongaensis. Tetrahedron Lett 60:1825

    Article  CAS  Google Scholar 

  1498. Kalinski J-CJ, Waterworth SC, Noundou XS, Jiwaji M, Parker-Nance S, Krause RWM, McPhail KL, Dorrington RA (2019) Molecular networking reveals two distinct chemotypes in pyrroloiminoquinone-producing Tsitsikamma favus sponges. Mar Drugs 17:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1499. Wada Y, Otani K, Endo N, Harayama Y, Kamimura D, Yoshida M, Fujioka H, Kita Y (2009) The first total synthesis of prianosin B. Tetrahedron 65:1059

    Article  CAS  Google Scholar 

  1500. Oshiyama T, Satoh T, Okano K, Tokuyama H (2012) Total synthesis of batzelline C and isobatzelline C. RSC Adv 2:5147

    Article  CAS  Google Scholar 

  1501. Oshiyama T, Satoh T, Okano K, Tokuyama H (2012) Total synthesis of makaluvamine A/D, damirone B, batzelline C, makaluvone, and isobatzelline C featuring one-pot benzyne-mediated cyclization–functionalization. Tetrahedron 68:9376

    Article  CAS  Google Scholar 

  1502. Yamashita Y, Poignant L, Sakata J, Tokuyama H (2020) Divergent total syntheses of isobatzellines A/B and batzelline A. Org Lett 22:6239

    Article  CAS  PubMed  Google Scholar 

  1503. Alonso E, Alvariño R, Leirós M, Tabudravu JN, Feussner K, Dam MA, Rateb ME, Jaspars M, Botana LM (2016) Evaluation of the antioxidant activity of the marine pyrroloiminoquinone makaluvamines. Mar Drugs 14:197

    Article  PubMed  PubMed Central  Google Scholar 

  1504. Wright AE, Killday KB, Chakrabarti D, Guzmán EA, Harmody D, McCarthy PJ, Pitts T, Pomponi SA, Reed JK, Roberts BF, Felix CR, Rohde KH (2017) Dragmacidin G, a bioactive bis-indole alkaloid from a deep-water sponge of the genus Spongosorites. Mar Drugs 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  1505. Hitora Y, Takada K, Ise Y, Okada S, Matsunaga S (2016) Dragmacidins G and H, bisindole alkaloids tethered by a guanidino ethylthiopyrazine moiety, from a Lipastrotethya sp. marine sponge. J Nat Prod 79:2973

    Google Scholar 

  1506. Cruz PG, Leal JFM, Duranas AH, Pérez M, Cuevas C (2018) On the mechanism of action of dragmacidins I and J, two new representatives of a new class of protein phosphatase 1 and 2A inhibitors. ACS Omega 3:3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1507. Mandal D, Yamaguchi AD, Yamaguchi J, Itami K (2011) Synthesis of dragmacidin D via direct C-H couplings. J Am Chem Soc 133:19660

    Article  CAS  PubMed  Google Scholar 

  1508. Jackson JJ, Kobayashi H, Steffens SD, Zakarian A (2015) 10-Step asymmetric total synthesis and stereochemical elucidation of (+)-dragmacidin D. Angew Chem Int Ed 54:9971

    Article  CAS  Google Scholar 

  1509. Zhang F, Wang B, Prasad P, Capon RJ, Jia Y (2015) Asymmetric total synthesis of (+)-dragmacidin D reveals unexpected stereocomplexity. Org Lett 17:1529

    Article  CAS  PubMed  Google Scholar 

  1510. Feldman KS, Ngernmeesri P (2012) Total synthesis of (±)-dragmacidin E; problems solved and lessons learned. Synlett 23:1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1511. Liu D-Q, Mao S-C, Yu X-Q, Feng L-H, Lai X-P (2012) Caulerchlorin, a novel chlorinated bisindole alkaloid with antifungal activity from the Chinese green alga Caulerpa racemosa. Heterocycles 85:661

    Article  CAS  Google Scholar 

  1512. Feng Y, Davis RA, Sykes ML, Avery VM, Quinn RJ (2012) Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge Iotrochota sp. Bioorg Med Chem Lett 22:4873

    Article  CAS  PubMed  Google Scholar 

  1513. Zhang W, Liu Z, Li S, Yang T, Zhang Q, Ma L, Tian X, Zhang H, Huang C, Zhang S, Ju J, Shen Y, Zhang C (2012) Spiroindimicins A-D: new bisindole alkaloids from a deep-sea-derived actinomycete. Org Lett 14:3364

    Article  CAS  PubMed  Google Scholar 

  1514. Di X, Rouger C, Hardardottir I, Freysdottir J, Molinski TF, Tasdemir D, Omarsdottir S (2018) 6-Bromoindole derivatives from the Icelandic marine sponge Geodia barretti: isolation and anti-inflammatory activity. Mar Drugs 16:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1515. Kelley EW, Norman SG, Scheerer JR (2017) Synthesis of monoalkylidene diketopiperazines and application to the synthesis of barettin. Org Biomol Chem 15:8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1516. Kim H, Krunic A, Lantvit D, Shen Q, Kroll DJ, Swanson SM, Orjala J (2012) Nitrile-containing fischerindoles from the cultured cyanobacterium Fischerella sp. Tetrahedron 68:3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1517. Brown LE, Konopelski JP (2008) Turning the corner: recent advances in the synthesis of the welwitindolinones. Org Prep Proc Int 40:411

    Article  CAS  Google Scholar 

  1518. Li JL, Kim EL, Wang H, Hong J, Shin S, Lee C-K, Jung JH (2013) Epimeric methylsulfinyladenosine derivatives from the marine ascidian Herdmania momus. Bioorg Med Chem Lett 23:4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1519. Rudolph KE, Liberio MS, Davis RA, Carroll AR (2013) Pteridine-, thymidine-, choline- and imidazole-derived alkaloids from the Australian ascidian, Leptoclinides durus. Org Biomol Chem 11:261

    Article  CAS  PubMed  Google Scholar 

  1520. Sun W-S, Su S, Zhu R-X, Tu G-Z, Cheng W, Liang H, Guo X-Y, Zhao Y-Y, Zhang Q-Y (2013) A pair of unprecedented spiro-trisindole enantiomers fused through a five-member ring from Laurencia similis. Tetrahedron Lett 54:3617

    Article  CAS  Google Scholar 

  1521. Shi L, Li L, Wang J, Huang B, Zeng K, Jin H, Zhang Q, Jia Y (2017) Total synthesis of natural spiro-trisindole enantiomers similisines A, B and their stereoisomers. Tetrahedron Lett 58:1934

    Article  CAS  Google Scholar 

  1522. Li M-C, Sun W-S, Cheng W, Liu D, Liang H, Zhang Q-Y, Lin W-H (2016) Four new minor brominated indole related alkaloids with antibacterial activities from Laurencia similis. Bioorg Med Chem Lett 26:3590

    Article  CAS  PubMed  Google Scholar 

  1523. Geng C-A, Liu X-K (2013) Five new indole alkaloids from the leaves of Rauvolfia yunnanensis. Fitoterapia 89:42

    Article  CAS  PubMed  Google Scholar 

  1524. Zeng J, Zhang D-B, Zhou P-P, Zhang Q-L, Zhao L, Chen J-J, Gao K (2017) Rauvomines A and B, two monoterpenoid indole alkaloids from Rauvolfia vomitoria. Org Lett 19:3998

    Article  CAS  PubMed  Google Scholar 

  1525. de Medeiros LS, da Silva JV, Abreu LM, Pfenning LH, Silva CL, Thomasi SS, Venâncio T, van Pée K-H, Nielsen KF, Rodrigues-Filho E (2015) Dichlorinated and brominated rugulovasines, ergot alkaloids produced by Talaromyces wortmannii. Molecules 20:17627

    Article  PubMed  PubMed Central  Google Scholar 

  1526. Fu P, Jamison M, La S, MacMillan JB (2014) Inducamides A-C, chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp. Org Lett 16:5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1527. Murcia C, Coello L, Fernández R, Martín MJ, Reyes F, Francesch A, Munt S, Cuevas C (2014) Tanjungides A and B: new antitumoral bromoindole derived compounds from Diazona cf. formosa. Isolation and total synthesis. Mar Drugs 12:1116

    Google Scholar 

  1528. Hahn D, Kim GJ, Choi H, Kang H (2015) A novel bromoindole alkaloid from a Korean colonial tunicate Didemnum sp. Nat Prod Sci 21:278

    Article  CAS  Google Scholar 

  1529. Liu H-B, Lauro G, O’Connor RD, Lohith K, Kelly M, Colin P, Bifulco G, Bewley CA (2017) Tulongicin, an antibacterial tri-indole alkaloid from a deep-water Topsentia sp. sponge. J Nat Prod 80:2556

    Google Scholar 

  1530. Kwon J, Lee H, Ko W, Kim D-C, Kim K-W, Kwon HC, Guo Y, Sohn JH, Yim JH, Kim Y-C, Oh H, Lee D (2017) Chemical constituents isolated from Antarctic marine-derived Aspergillus sp. SF-5976 and their anti-inflammatory effects in LPS-stimulated RAW 264.7 and BV2 cells. Tetrahedron 73:3905

    Google Scholar 

  1531. Hansen KØ, Isaksson J, Bayer A, Johansen JA, Andersen JH, Hansen E (2017) Securamine derivatives from the Arctic bryozoan Securiflustra securifrons. J Nat Prod 80:3276

    Article  CAS  PubMed  Google Scholar 

  1532. Guo C, Wang P, Lin X, Salendra L, Kong F, Liao S, Yang B, Zhou X, Wang J, Liu Y (2019) Phloroglucinol heterodimers and bis-indolyl alkaloids from the sponge-derived fungus Aspergillus sp. SCSIO 41018. Org Chem Front 6:3053

    Google Scholar 

  1533. Zhang P, Li X-M, Li X, Wang B-G (2015) New indole-diterpenoids from the algal-associated fungus Aspergillus nidulans. Phytochem Lett 12:182

    Article  CAS  Google Scholar 

  1534. Ivanets EV, Yurchenko AN, Smetanina OF, Rasin AB, Zhuravleva OI, Pivkin MV, Popov RS, von Amsberg G, Afiyatullov SS, Dyshlovoy SA (2018) Asperindoles A–D and a p-terphenyl derivative from the ascidian-derived fungus Aspergillus sp. KMM 4676. Mar Drugs 16:232

    Google Scholar 

  1535. Gao S-S, Li X-M, Williams K, Proksch P, Ji N-Y, Wang B-G (2016) Rhizovarins A-F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod 79:2066

    Article  CAS  PubMed  Google Scholar 

  1536. Zhou G, Sun C, Hou X, Che Q, Zhang G, Gu Q, Liu C, Zhu T, Li D (2021) Ascandinines A-D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152. J Org Chem 86:2431

    Article  CAS  PubMed  Google Scholar 

  1537. Hanssen KØ, Schuler B, Williams AJ, Demissie TB, Hansen E, Andersen JH, Svenson J, Blinov K, Repisky M, Mohn F, Meyer G, Svendsen J-S, Ruud K, Elyashberg M, Gross L, Jaspars M, Isaksson J (2012) A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. Angew Chem Int Ed 51:12238

    Article  CAS  Google Scholar 

  1538. Hansen KØ, Andersen JH, Bayer A, Pandey SK, Lorentzen M, Jørgensen KB, Sydnes MO, Guttormsen Y, Baumann M, Koch U, Klebl B, Eickhoff J, Haug BE, Isaksson J, Hansen EH (2019) Kinase chemodiversity from the Arctic: the breitfussins. J Med Chem 62:10167

    Article  CAS  PubMed  Google Scholar 

  1539. Pandey SK, Guttormsen Y, Haug BE, Hedberg C, Bayer A (2015) A concise total synthesis of breitfussin A and B. Org Lett 17:122

    Article  CAS  PubMed  Google Scholar 

  1540. Khan AH, Chen JS (2015) Synthesis of breitfussin B by late-stage bromination. Org Lett 17:3718

    Article  CAS  PubMed  Google Scholar 

  1541. Nabi AA, Liyu J, Lindsay AC, Sperry J (2018) C4–H alkoxylation of 6-bromoindole and its application to the synthesis of breitfussin B. Tetrahedron 74:1199

    Article  CAS  Google Scholar 

  1542. Yun K, Khong TT, Leutou AS, Kim G-D, Hong J, Lee C-H, Son BW (2016) Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus Chaetomium cristatum. Chem Pharm Bull 64:59

    Article  Google Scholar 

  1543. Ruiz-Sanchis P, Savina SA, Albericio F, Álvarez M (2011) Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole. Chem Eur J 17:1388

    Article  CAS  PubMed  Google Scholar 

  1544. Hirota-Takahata Y, Kobayshi H, Kizuka M, Ohyama T, Kitamura-Miyazaki M, Suzuki Y, Fujiwara M, Nakajima M, Ando O (2016) Studies on novel HIF activators, A-503451s. I. Producing organism, fermentation, isolation and structural elucidation. J Antibiot 69:747

    Google Scholar 

  1545. Park HB, Lam YC, Gaffney JP, Weaver JC, Krivoshik SR, Hamchand R, Pieribone V, Gruber DF, Crawford JM (2019) Bright green biofluorescence in sharks derives from bromo-kynurenine metabolism. iScience 19:1291

    Google Scholar 

  1546. El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, Mohammed TA, El-Mesery M, Muhsinah AB, Alsayari A, Wajant H, Anany MA, Abdelmohsen UR (2019) Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella. Mar Drugs 17:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1547. Sayed AM, Alhadrami HA, El-Hawary SS, Mohammed R, Hassan HM, Rateb ME, Abdelmohsen UR, Bakeer W (2020) Discovery of two brominated oxindole alkaloids as staphylococcal DNA gyrase and pyruvate kinase inhibitors via inverse virtual screening. Microorganisms 8:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1548. Jennings LK, Khan NMD, Kaur N, Rodrigues D, Morrow C, Boyd A, Thomas OP (2019) Brominated bisindole alkaloids from the Celtic Sea sponge Spongosorites calcicola. Molecules 24:3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1549. Park JS, Cho E, Hwang J-Y, Park SC, Chung B, Kwon O-S, Sim CJ, Oh D-C, Oh K-B, Shin J (2021) Bioactive bis(indole) alkaloids from a Spongosorites sp. sponge. Mar Drugs 19:3

    Google Scholar 

  1550. Khushi S, Nahar L, Salim AA, Capon RJ (2020) Trachycladindoles H-M: molecular networking guided exploration of a library of Southern Australian marine sponges. Aust J Chem 73:338

    Article  CAS  Google Scholar 

  1551. Maeyama Y, Nakashima Y, Kato H, Hitora Y, Maki K, Inada N, Murakami S, Inazumi T, Ise Y, Sugimoto Y, Ishikawa H, Tsukamoto S (2021) Amakusamine from a Psammocinia sp. sponge: Isolation, synthesis, and SAR study on the inhibition of RANKL-induced formation of multinuclear osteoclasts. J Nat Prod 84:2738

    Google Scholar 

  1552. Di X, Wang S, Oskarsson JT, Rouger C, Tasdemir D, Hardardottir I, Freysdottir J, Wang X, Molinski TF, Omarsdottir S (2020) Bromotryptamine and imidazole alkaloids with anti-inflammatory activity from the Bryozoan Flustra foliacea. J Nat Prod 83:2854

    Article  CAS  PubMed  Google Scholar 

  1553. Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, Kalinowski J, Luzhetskyy A (2017) New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci Rep 7:42382

    Google Scholar 

  1554. Blair LM, Sperry J (2016) Total syntheses of (±)-spiroindimicins B and C enabled by a late-stage Schöllkopf-Magnus-Barton-Zard (SMBZ) reaction. Chem Commun 52:800

    Article  CAS  Google Scholar 

  1555. Song Y, Yang J, Yu J, Li J, Yuan J, Wong N-K, Ju J (2020) Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities. J Antibiot 73:542

    Google Scholar 

  1556. Du Y-L, Ryan KS (2015) Expansion of bisindole biosynthetic pathways by combinatorial construction. ACS Synth Biol 4:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1557. Breinlinger S, Phillips TJ, Haram BN, Mareš J, Yerena JAM, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB (2021) Hunting the eagle killer: a cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371:1335

    Article  Google Scholar 

  1558. Adak S, Lukowski AL, Schäfer RJB, Moore BS (2022) From tryptophan to toxin: nature’s convergent biosynthetic strategy to aetokthonotoxin. J Am Chem Soc 144:2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1559. Lebar MD, Baker BJ (2010) Synthesis and structure reassessment of psammopemmin A. Aust J Chem 63:862

    Article  CAS  Google Scholar 

  1560. Sala S, Nealon GL, Sobolev AN, Fromont J, Gomez O, Flematti GR (2020) Structure reassignment of echinosulfone A and the echinosulfonic acids A-D supported by single-crystal X-ray diffraction and density functional theory analysis. J Nat Prod 83:105

    Article  CAS  PubMed  Google Scholar 

  1561. Holland DC, Kiefel MJ, Carroll AR (2020) Structure revisions of the sponge-derived dibrominated bis-indole alkaloids, echinosulfone A and the echinosulfonic acids A to D. J Org Chem 85:3490

    Article  CAS  PubMed  Google Scholar 

  1562. Neupane P, Salim AA, Capon RJ (2020) Structure revision of the rare sponge metabolite echinosulfone A, and biosynthetically related echinosulfonic acids A-D. Tetrahedron Lett 61:151651

    Article  CAS  Google Scholar 

  1563. Anantoju KK, Mohd BS, Maringanti TC (2017) An efficient and concise synthesis of indiacen A and indiacen B. Tetrahedron Lett 58:1499

    Article  CAS  Google Scholar 

  1564. Barykina OV, Snider BB (2010) Synthesis of (±)-eusynstyelamide A. Org Lett 12:2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1565. Skiredj A, Beniddir MA, Joseph D, Leblanc K, Bernadat G, Evanno L, Poupon E (2014) Spontaneous biomimetic formation of (±)-dictazole B under irradiation with artificial sunlight. Angew Chem Int Ed 53:6419

    Article  CAS  Google Scholar 

  1566. Scott LM, Sperry J (2016) Synthesis of inducamides A and B. J Nat Prod 79:519

    Article  CAS  PubMed  Google Scholar 

  1567. Zhang X, King-Smith E, Renata H (2018) Total synthesis of tambromycin by combining chemocatalytic and biocatalytic C-H functionalization. Angew Chem Int Ed 57:5037

    Article  CAS  Google Scholar 

  1568. Hussain MA, Khan FA (2019) Total synthesis of (±) aspidostomide B, C, regioisomeric N-methyl aspidostomide D and their derivatives. Tetrahedron Lett 60:151040

    Article  CAS  Google Scholar 

  1569. Zhang H, Hong L, Kang H, Wang R (2013) Construction of vicinal all-carbon quaternary stereocenters by catalytic asymmetric alkylation reaction of 3-bromooxindoles with 3-substituted indoles: total synthesis of (+)-perophoramidine. J Am Chem Soc 135:14098

    Article  CAS  PubMed  Google Scholar 

  1570. Fuchs JR, Funk RL (2004) Total synthesis of (±)-perophoramidine. J Am Chem Soc 126:5068

    Article  CAS  PubMed  Google Scholar 

  1571. Šíša M, Pla D, Altuna M, Francesch A, Cuevas C, Albericio F, Álvarez M (2009) Total synthesis and antiproliferative activity screening of (±)-aplicyanins A, B and E and related analogues. J Med Chem 52:6217

    Article  PubMed  Google Scholar 

  1572. Douki K, Ono H, Taniguchi T, Shimokawa J, Kitamura M, Fukuyama T (2016) Enantioselective total synthesis of (+)-hinckdentine A via a catalytic dearomatization approach. J Am Chem Soc 138:14578

    Article  CAS  PubMed  Google Scholar 

  1573. Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T (2009) First total synthesis of hinckdentine A. Org Lett 11:197

    Article  CAS  PubMed  Google Scholar 

  1574. Boyd EM, Sperry J (2015) Biomimetic synthesis of dendridine A. Org Lett 17:1344

    Article  CAS  PubMed  Google Scholar 

  1575. Parsons TB, Spencer N, Tsang CW, Grainger RS (2013) Total synthesis of kottamide E. Chem Commun 49:2296

    Article  CAS  Google Scholar 

  1576. Ma Y, Yakushijin K, Miyake F, Horne D (2009) A concise synthesis of indolic enamides: coscinamide A, coscinamide B, and igzamide. Tetrahedron Lett 50:4343

    Article  CAS  Google Scholar 

  1577. Sperry J (2011) Concise syntheses of 5,6-dibromotryptamine and 5,6-dibromo-N,N-dimethyltryptamine en route to the antibiotic alternatamide D. Tetrahedron Lett 52:4042

    Article  CAS  Google Scholar 

  1578. Ansari NH, Taylor MC, Söderberg BCG (2017) Syntheses of three naturally occurring polybrominated 3,3′-bi-1H-indoles. Tetrahedron Lett 58:1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1579. Walker SR, Czyz ML, Morris JC (2014) Concise syntheses of meridianins and meriolins using a catalytic domino amino-palladation reaction. Org Lett 16:708

    Article  CAS  PubMed  Google Scholar 

  1580. Gao D, Sand R, Fu H, Sharmin N, Gallin WJ, Hall DG (2013) Synthesis of the non-peptidic snail toxin 6-bromo-2-mercaptotryptamine dimer (BrMT)2, its lower and higher thio homologs and their ability to modulate potassium ion channels. Bioorg Med Chem Lett 23:5503

    Article  CAS  PubMed  Google Scholar 

  1581. Golantsov NE, Festa AA, Varlamov AV, Voskressensky LG (2017) Revision of the structure and total synthesis of topsentin C. Synthesis 49:2562

    Article  CAS  PubMed Central  Google Scholar 

  1582. Chandra A, Johnston JN (2011) Total synthesis of the chlorine-containing hapalindoles K, A, and G. Angew Chem Int Ed 50:7641

    Article  CAS  Google Scholar 

  1583. Hu L, Rawal VH (2021) Total synthesis of the chlorinated pentacyclic indole alkaloid (+)-ambiguine G. J Am Chem Soc 143:10872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1584. Wolk JL, Frimer AA (2010) A simple, safe and efficient synthesis of tyrian purple (6,6′-dibromoindigo). Molecules 15:5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1585. Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL (2008) Evolution of a synthetic strategy: total synthesis of (±)-welwitindolinone A isonitrile. J Am Chem Soc 130:2087

    Article  CAS  PubMed  Google Scholar 

  1586. Tian X, Huters AD, Douglas CJ, Garg NK (2009) Concise synthesis of the bicyclic scaffold of N-methylwelwitindolinone C isothiocyanate via an indolyne cyclization. Org Lett 11:2349

    Article  CAS  PubMed  Google Scholar 

  1587. Quasdorf KW, Huters AD, Lodewyk MW, Tantillo DJ, Garg NK (2012) Total synthesis of oxidized welwitindolinones and (–)-N-methylwelwitindolinone C isonitrile. J Am Chem Soc 134:1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1588. Huters AD, Quasdorf KW, Styduhar ED, Garg NK (2011) Total synthesis of (–)-N-methylwelwitindolinone C isothiocyanate. J Am Chem Soc 133:15797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1589. Bhat V, Allan KM, Rawal VH (2011) Total synthesis of N-methylwelwitindolinone D isonitrile. J Am Chem Soc 133:5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1590. Bhat V, Rawal VH (2011) Stereocontrolled synthesis of 20,21-dihydro N-methylwelwitindolinone B isothiocyanate. Chem Commun 47:9705

    Article  CAS  Google Scholar 

  1591. Allan KM, Kobayashi K, Rawal VH (2012) A unified route to the welwitindolinone alkaloids: total syntheses of (–)-N-methylwelwitindolinone C isothiocyanate, (–)-N-methylwelwitindolinone C isonitrile, and (–)-3-hydroxy-N-methylwelwitindolinone C isothiocyanate. J Am Chem Soc 134:1392

    Article  CAS  PubMed  Google Scholar 

  1592. Fu T, McElroy WT, Shamszad M, Martin SF (2012) Formal syntheses of naturally occurring welwitindolinones. Org Lett 14:3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1593. Huters AD, Styduhar ED, Garg NK (2012) Total syntheses of the elusive welwitindolinones with bicyclo[4.3.1] cores. Angew Chem Int Ed 51:3758

    Google Scholar 

  1594. Fu T, McElroy WT, Shamszad M, Heidebrecht RW Jr, Gulledge B, Martin SF (2013) Studies toward welwitindolinones: formal syntheses of N-methylwelwitindolinone C isothiocyanate and related natural products. Tetrahedron 69:5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1595. Weires NA, Styduhar ED, Baker EL, Garg NK (2014) Total synthesis of (–)-N-methylwelwitindolinone B isothiocyanate via a chlorinative oxabicycle ring-opening strategy. J Am Chem Soc 136:14710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1596. Komine K, Nomura Y, Ishihara J, Hatakeyama S (2015) Total synthesis of (–)-N-methylwelwitindolinone C isothiocyanate based on a Pd-catalyzed tandem enolate coupling strategy. Org Lett 17:3918

    Article  CAS  PubMed  Google Scholar 

  1597. Reyes JR, Xu J, Kobayashi K, Bhat V, Rawal VH (2017) Total synthesis of (–)-N-methylwelwitindolinone B isothiocyanate. Angew Chem Int Ed 56:9962

    Article  CAS  Google Scholar 

  1598. Baran PS, Ambhaikar NB, Guerrero CA, Hafensteiner BD, Lin DW, Richter JM (2006) Oxidative C–C bond formation in heterocyclic chemistry. ARKIVOC vii:310

    Google Scholar 

  1599. Richter JM, Whitefield BW, Maimone TJ, Lin DW, Castroviejo MP, Baran PS (2007) Scope and mechanism of direct indole and pyrrole couplings adjacent to carbonyl compounds: total synthesis of acremoauxin A and oxazinin 3. J Am Chem Soc 129:12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1600. Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS (2008) Enantiospecific total synthesis of the hapalindoles, fischerindoles, and welwitindolinones via a redox economic approach. J Am Chem Soc 130:17938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1601. Maimone TJ, Ishihara Y, Baran PS (2015) Scalable total syntheses of (–)-hapalindole U and (+)-ambiguine H. Tetrahedron 71:3652

    Article  CAS  PubMed  Google Scholar 

  1602. Sahu S, Das B, Maji MS (2018) Stereodivergent total synthesis of hapalindoles, fischerindoles, hapalonamide H, and ambiguine H alkaloids by developing a biomimetic, redox-neutral, cascade Prins-type cyclization. Org Lett 20:6485

    Article  CAS  PubMed  Google Scholar 

  1603. Hohlman RM, Sherman DH (2021) Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat Prod Rep 38:1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1604. Lee S-C, Williams GA, Brown GD (1999) Maculalactone L and three halogenated carbazole alkaloids from Kyrtuthrix maculans. Phytochemistry 52:537

    Article  CAS  Google Scholar 

  1605. Zhu L, Hites RA (2005) Identification of brominated carbazoles in sediment cores from Lake Michigan. Environ Sci Technol 39:9446

    Article  CAS  PubMed  Google Scholar 

  1606. Kuehl DW, Durhan E, Butterworth BC, Linn D (1984) Tetrachloro-9H-carbazole, a previously unrecognized contaminant in sediments of the Buffalo River. J Great Lakes Res 10:210

    Article  CAS  Google Scholar 

  1607. Tröbs L, Henkelmann B, Lenoir D, Reischl A, Schramm K-W (2011) Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil. Environ Sci Pollut Res 18:547

    Article  Google Scholar 

  1608. Mumbo J, Lenoir D, Henkelmann B, Schramm K-W (2013) Enzymatic synthesis of bromo- and chlorocarbazoles and elucidation of their structures by molecular modeling. Environ Sci Pollut Res 20:8996

    Article  CAS  Google Scholar 

  1609. Guo J, Chen D, Potter D, Rockne KJ, Sturchio NC, Giesy JP, Li A (2014) Polyhalogenated carbazoles in sediments of Lake Michigan: a new discovery. Environ Sci Technol 48:12807

    Article  CAS  PubMed  Google Scholar 

  1610. Parette R, McCrindle R, McMahon KS, Pena-Abaurrea M, Reiner E, Chittim B, Riddell N, Voss G, Dorman FL, Pearson WN (2015) Halogenated indigo dyes: a likely source of 1,3,6,8-tetrabromocarbazole and some other halogenated carbazoles in the environment. Chemosphere 127:18

    Article  CAS  PubMed  Google Scholar 

  1611. Parette R, McCrindle R, McMahon KS, Pena-Abaurrea M, Reiner E, Chittim B, Riddell N, Voss G, Dorman FL, Pearson WN, Robson M (2016) Response to the comment on “Halogenated indigo dyes: a likely source of 1,3,6,8-tetrabromocarbazole and some other halogenated carbazoles in the environment.” Chemosphere 150:414

    Article  CAS  PubMed  Google Scholar 

  1612. Peverly AA, Hites RA (2016) Comment on “Halogenated indigo dyes: a likely source of 1,3,6,8-tetrabromocarbazole and some other halogenated carbazoles in the environment.” Chemosphere 144:273

    Article  CAS  PubMed  Google Scholar 

  1613. Riddell N, Jin U-H, Safe S, Cheng Y, Chittim B, Konstantinov A, Parette R, Pena-Abaurrea M, Reiner EJ, Poirier D, Stefanac T, McAlees AJ, McCrindle R (2015) Characterization and biological potency of mono- to tetra-halogenated carbazoles. Environ Sci Technol 49:10658

    Article  CAS  PubMed  Google Scholar 

  1614. Peng H, Chen C, Cantin J, Saunders DMV, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones PD, Li A, Rockne KJ, Sturchio NC, Cai M, Giesy JP (2016) Untargeted screening and distribution of organo-iodine compounds in sediments from Lake Michigan and the Arctic Ocean. Environ Sci Technol 50:10097

    Article  CAS  PubMed  Google Scholar 

  1615. Yue S, Zhang T, Shen Q, Song Q, Ji C, Chen Y, Mao M, Kong Y, Chen D, Liu J, Sun Z, Zhao M (2020) Assessment of endocrine-disrupting effects of emerging polyhalogenated carbazoles (PHCZs): in vitro, in silico, and in vivo evidence. Environ Inte 140:105729

    Article  CAS  Google Scholar 

  1616. Britton R, de Oliveira JHHL, Andersen RJ, Berlinck RGS (2001) Granulatimide and 6-bromogranulatimide, minor alkaloids of the Brazilian ascidian Didemnum granulatum. J Nat Prod 64:254

    Article  CAS  PubMed  Google Scholar 

  1617. Lyakhova EG, Kolesnikova SA, Kalinovsky AI, Afiyatullov SS, Dyshlovoy SA, Krasokhin VB, Minh CV, Stonik VA (2012) Bromine-containing alkaloids from the marine sponge Penares sp. Tetrahedron Lett 53:6119

    Article  CAS  Google Scholar 

  1618. Zhang Q, Mándi A, Li S, Chen Y, Zhang W, Tian X, Zhang H, Li H, Zhang W, Zhang S, Ju J, Kurtán T, Zhang C (2012) N–N-Coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur J Org Chem, 5256

    Google Scholar 

  1619. Kim S-H, Ha T-K-Q, Oh WK, Shin J, Oh D-C (2016) Antiviral indolosesquiterpenoid xiamycins C-E from a halophilic actinomycete. J Nat Prod 79:51

    Article  CAS  PubMed  Google Scholar 

  1620. Sánchez C, Méndez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007

    Article  PubMed  Google Scholar 

  1621. Nakano H, Ōmura S (2009) Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot 62:17

    Article  CAS  Google Scholar 

  1622. Chambers GE, Sayan AE, Brown RCD (2021) The synthesis of biologically active indolocarbazole natural products. Nat Prod Rep 38:1794

    Article  CAS  PubMed  Google Scholar 

  1623. Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501

    Article  CAS  PubMed  Google Scholar 

  1624. Loosley BC, Andersen RJ, Dake GR (2013) Total synthesis of cladoniamide G. Org Lett 15:1152

    Article  CAS  PubMed  Google Scholar 

  1625. Ngernmeesri P, Soonkit S, Konkhum A, Kongkathip B (2014) Formal synthesis of (±)-cladoniamide G. Tetrahedron Lett 55:1621

    Article  CAS  Google Scholar 

  1626. Schütte J, Kilgenstein F, Fischer M, Koert U (2014) Unsymmetrical vic-tricarbonyl compounds for the total syntheses of cladoniamide G and cladoniamide F. Eur J Org Chem: 5302

    Google Scholar 

  1627. Kimura T, Kanagaki S, Matsui Y, Imoto M, Watanabe T, Shibasaki M (2012) Synthesis and assignment of the absolute configuration of indenotryptoline bisindole alkaloid BE-54017. Org Lett 14:4418

    Article  CAS  PubMed  Google Scholar 

  1628. Russell F, Harmody D, McCarthy PJ, Pomponi SA, Wright AE (2013) Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus. J Nat Prod 76:1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1629. Chang F-Y, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci USA 110:2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1630. Zhang W, Ma L, Li S, Liu Z, Chen Y, Zhang H, Zhang G, Zhang Q, Tian X, Yuan C, Zhang S, Zhang W, Zhang C (2014) Indimicins A–E, bisindole alkaloids from the deep-sea-derived Streptomyces sp. SCSIO 03032. J Nat Prod 77:1887

    Google Scholar 

  1631. Sigala I, Ganidis G, Thysiadis S, Zografos AL, Giannakouros T, Sarli V, Nikolakaki E (2017) Lynamicin D an antimicrobial natural product affects splicing by inducing the expression of SR protein kinase 1. Bioorg Med Chem 25:1622

    Article  CAS  PubMed  Google Scholar 

  1632. Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS (2015) Cytotoxic indolocarbazoles from Actinomadura melliaura ATCC 39691. J Nat Prod 78:1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1633. Yang CL, Zhang B, Xue WW, Li W, Xu ZF, Shi J, Shen Y, Jiao RH, Tan RX, Ge HM (2020) Discovery, biosynthesis, and heterologous production of loonamycin, a potent anticancer indolocarbazole alkaloid. Org Lett 22:4665

    Article  CAS  PubMed  Google Scholar 

  1634. Ankietty S, Kelly M, Slattery M (2007) Alkaloids from an undescribed thorectid sponge (Porifera: Dictyoceratida) from the Northern Marianas. Nat Prod Commun 2:1145

    CAS  Google Scholar 

  1635. Kuzmich AS, Fedorov SN, Shastina VV, Shubina LK, Radchenko OS, Balaneva NN, Zhidkov ME, Park J-I, Kwak JY, Stonik VA (2010) The anticancer activity of 3- and 10-bromofascaplysins is mediated by caspase-8, -9, -3-dependent apoptosis. Bioorg Med Chem 18:3834

    Article  CAS  PubMed  Google Scholar 

  1636. Wang W, Nam S-J, Lee B-C, Kang H (2008) β-Carboline alkaloids from a Korean tunicate Eudistoma sp. J Nat Prod 71:163

    Article  CAS  PubMed  Google Scholar 

  1637. Till M, Prinsep MR (2009) 5-Bromo-8-methoxy-1-methyl-β-carboline, an alkaloid from the New Zealand marine bryozoan Pterocella vesiculosa. J Nat Prod 72:796

    Article  CAS  PubMed  Google Scholar 

  1638. Takahashi Y, Ishiyama H, Kubota T, Kobayashi J (2010) Eudistomidin G, a new β-carboline alkaloid from the Okinawan marine tunicate Eudistoma glaucus and structure revision of eudistomidin B. Bioorg Med Chem Lett 20:4100

    Article  CAS  PubMed  Google Scholar 

  1639. Suzuki T, Kubota T, Kobayashi J (2011) Eudistomidins H-K, new β-carboline alkaloids from the Okinawan marine tunicate Eudistoma glaucus. Bioorg Med Chem Lett 21:4220

    Article  CAS  PubMed  Google Scholar 

  1640. Davis RA, Duffy S, Avery VM, Camp D, Hooper JNA, Quinn RJ (2010) (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett 51:583

    Article  CAS  Google Scholar 

  1641. Chan STS, Pearce AN, Page MJ, Kaiser M, Copp BR (2011) Antimalarial β-carbolines from the New Zealand ascidian Pseudodistoma opacum. J Nat Prod 74:1972

    Article  CAS  PubMed  Google Scholar 

  1642. Lu Z, Ding Y, Li X-C, Djigbenou DR, Grimberg BT, Ferreira D, Ireland CM, Van Wagoner RM (2011) 3-Bromohomofascaplysin A, a fascaplysin analogue from a Fijian Didemnum sp. ascidian. Bioorg Med Chem 19:6604

    Google Scholar 

  1643. Prinsep MR, Dumté M (2013) 7-Bromo-1-ethyl-β-carboline, an alkaloid from the New Zealand marine bryozoan Pterocella vesiculosa. Nat Prod Commun 8:693

    CAS  Google Scholar 

  1644. Du Y-L, Ding T, Patrick BO, Ryan KS (2013) Xenocladoniamide F, minimal indolotryptoline from the cladoniamide pathway. Tetrahedron Lett 54:5635

    Article  CAS  Google Scholar 

  1645. Wang J, Pearce AN, Chan STS, Taylor RB, Page MJ, Valentin A, Bourguet-Kondracki M-L, Dalton JP, Wiles S, Copp BR (2016) Biologically active acetylenic amino alcohol and N-hydroxylated 1,2,3,4-tetrahydro-β-carboline constituents of the New Zealand ascidian Pseudodistoma opacum. J Nat Prod 79:607

    Article  CAS  PubMed  Google Scholar 

  1646. Tadokoro Y, Nishikawa T, Ichimori T, Matsunaga S, Fujita MJ, Sakai R (2017) N-Methyl-β-carbolinium salts and an N-methylated 8-oxoisoguanine as acetylcholinesterase inhibitors from a solitary ascidian, Cnemidocarpa irene. ACS Omega 2:1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1647. Tabudravu JN, Pellissier L, Smith AJ, Subko K, Autréau C, Feussner K, Hardy D, Butler D, Kidd R, Milton EJ, Deng H, Ebel R, Salonna M, Gissi C, Montesanto F, Kelly SM, Milne BF, Cimpan G, Jaspars M (2019) LC-HRMS-Database screening metrics for rapid prioritization of samples to accelerate the discovery of structurally new natural products. J Nat Prod 82:211

    Article  CAS  PubMed  Google Scholar 

  1648. Pohl B, Luchterhandt T, Bracher F (2007) Total syntheses of the chlorinated β-carboline alkaloids bauerine A, B, and C. Synth Commun 37:1273

    Article  CAS  Google Scholar 

  1649. Lingam Y, Rao DM, Bhowmik DR, Islam A (2007) First total synthesis of bauerine C. Synth Commun 37:4313

    Article  CAS  Google Scholar 

  1650. Zhidkov ME, Baranova OV, Balaneva NN, Fedorov SN, Radchenko OS, Dubovitskii SV (2007) The first syntheses of 3-bromofascaplysin, 10-bromofascaplysin and 3,10-dibromofascaplysin—marine alkaloids from Fascaplysinopsis reticulata and Didemnum sp. by application of a simple and effective approach to the pyrido[1,2-a:3,4-b']diindole system. Tetrahedron Lett 48:7998

    Google Scholar 

  1651. Yamagishi H, Matsumoto K, Iwasaki K, Miyazaki T, Yokoshima S, Tokuyama H, Fukuyama T (2008) Synthesis of eudistomin C and E: improved preparation of the indole unit. Org Lett 10:2369

    Article  CAS  PubMed  Google Scholar 

  1652. Ishiyama H, Ohshita K, Abe T, Nakata H, Kobayashi J (2008) Synthesis of eudistomin D analogues and its effects on adenosine receptors. Bioorg Med Chem 16:3825

    Article  CAS  PubMed  Google Scholar 

  1653. Kennedy JP, Breininger ML, Lindsley CW (2009) Total synthesis of eudistomins Y1–Y6. Tetrahedron Lett 50:7067

    Article  Google Scholar 

  1654. Finlayson R, Brackovic A, Simon-Levert A, Banaigs B, O’Toole RF, Miller CH, Copp BR (2011) Establishment of the absolute configuration of the bioactive marine alkaloid eudistomin X by stereospecific synthesis. Tetrahedron Lett 52:837

    Article  CAS  Google Scholar 

  1655. Jin H, Zhang P, Bijian K, Ren S, Wan S, Alaoui-Jamali MA, Jiang T (2013) Total synthesis and biological activity of marine alkaloid eudistomins Y1–Y7 and their analogues. Mar Drugs 11:1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1656. Trieu TH, Dong J, Zhang Q, Zheng B, Meng T-Z, Lu X, Shi X-X (2013) Total syntheses of eudistomins Y1–Y7 by an efficient one-pot process of tandem benzylic oxidation and aromatization of 1-benzyl-3,4-dihydro-β-carbolines. Eur J Org Chem, 3271

    Google Scholar 

  1657. Bonazzi S, Barbaras D, Patiny L, Scopelliti R, Schneider P, Cole ST, Kaiser M, Brun R, Gademann K (2010) Antimalarial and antitubercular nostocarboline and eudistomin derivatives: synthesis, in vitro and in vivo biological evaluation. Bioorg Med Chem 18:1464

    Article  CAS  PubMed  Google Scholar 

  1658. Panarese JD, Waters SP (2013) Tandem iodine-mediated oxidations of tetrahydro-ß-carbolines: total synthesis of eudistomins Y1–Y7. Org Biomol Chem 11:3428

    Article  CAS  PubMed  Google Scholar 

  1659. Ito T, Kitajima M, Takayama H (2009) Asymmetric total synthesis of reported structure of eudistomidin B, an indole alkaloid isolated from a marine tunicate. Tetrahedron Lett 50:4506

    Article  CAS  Google Scholar 

  1660. Ishiyama H, Yoshizawa K, Kobayashi J (2012) Enantioselective total synthesis of eudistomidins G, H, and I. Tetrahedron 68:6186

    Article  CAS  Google Scholar 

  1661. Ibrahim SRM, Mohamed GA (2016) Marine pyridoacridine alkaloids: biosynthesis and biological activities. Chem Biodiversity 13:37

    Article  CAS  Google Scholar 

  1662. Li G-H, Yu Z-F, Li X, Wang X-B, Zheng L-J, Zhang K-Q (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4:1520

    Google Scholar 

  1663. Cao S, Al-Rehaily AJ, Brodie P, Wisse JH, Moniz E, Malone S, Kingston DGI (2008) Furoquinoline alkaloids of Ertela (Monnieria) trifolia (L.) Kuntze from the Suriname rainforest. Phytochemistry 69:553

    Google Scholar 

  1664. Boyd DR, Sharma ND, Loke PL, Malone JF, McRoberts WC, Hamilton JTG (2007) Synthesis, structure and stereochemistry of quinoline alkaloids from Choisya ternata. Org Biomol Chem 5:2983

    Article  CAS  PubMed  Google Scholar 

  1665. Kawada M, Momose I, Someno T, Tsujiuchi G, Ikeda D (2009) New atpenins, NBR123477 A and B, inhibit the growth of human prostate cancer cells. J Antibiot 62:243

    Article  CAS  Google Scholar 

  1666. Ohtawa M, Ogihara S, Sugiyama K, Shiomi K, Harigaya Y, Nagamitsu T, Ōmura S (2009) Enantioselective total synthesis of atpenin A5. J Antibiot 62:289

    Article  CAS  Google Scholar 

  1667. Ohtawa M, Sugiyama K, Hiura T, Izawa S, Shiomi K, Omura S, Nagamitsu T (2012) Stereoselective total synthesis of atpenins A4 and B, harzianopyridone, and NBRI23477 B. Chem Pharm Bull 60:898

    Article  CAS  Google Scholar 

  1668. Lee D, Kondo H, Kuwayama Y, Takahashi K, Arima S, Omur S, Ohtawa M, Nagamitsu T (2019) Total synthesis of 4-epi-atpenin A5 as a potent nematode complex II inhibitor. Tetrahedron 75:3178

    Article  CAS  Google Scholar 

  1669. Margiastuti P, Ogi T, Teruya T, Taira J, Suenaga K, Ueda K (2008) An unusual iodinated 5′-deoxyxyrofuranosyl nucleoside from an Okinawan ascidian, Diplosoma sp. Chem Lett 37:448

    Article  CAS  Google Scholar 

  1670. Maloney KN, MacMillan JB, Kauffman CA, Jensen PR, DiPasquale AG, Rheingold AL, Fenical W (2009) Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org Lett 11:5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1671. George IR, Lewis W, Moody CJ (2013) Synthesis of lodopyridone. Tetrahedron 69:8209

    Article  CAS  Google Scholar 

  1672. Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, Fiebig HH, Meiners M, Helmke E, Laatsch H (2009) Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 72:2120

    Article  CAS  PubMed  Google Scholar 

  1673. Sorek H, Rudi A, Goldberg I, Aknin M, Kashman Y (2009) Saldedines A and B, dibromo proaporphine alkaloids from a Madagascan tunicate. J Nat Prod 72:784

    Article  CAS  PubMed  Google Scholar 

  1674. Yin S, Boyle GM, Carroll AR, Kotiw M, Dearnaley J, Quinn RJ, Davis RA (2010) Caelestines A-D, brominated quinolinecarboxylic acids from the Australian ascidian Aplidium caelestis. J Nat Prod 73:1586

    Article  CAS  PubMed  Google Scholar 

  1675. Possner ST, Schroeder FC, Rapp HT, Sinnwell V, Franke S, Francke W (2017) 3,7-Isoquinoline quinones from the ascidian tunicate Ascidia virginea. Z Naturforsch 72c:259

    Google Scholar 

  1676. Davis RA, Carroll AR, Andrews KT, Boyle GM, Tran TL, Healy PC, Kalaitzis JA, Shivas RG (2010) Pestalactams A-C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8:1785

    Article  CAS  PubMed  Google Scholar 

  1677. Beattie KD, Ellwood N, Kumar R, Yang X, Healy PC, Choomuenwai V, Quinn RJ, Elliott AG, Huang JX, Chitty JL, Fraser JA, Cooper MA, Davis RA (2016) Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry 124:79

    Article  CAS  PubMed  Google Scholar 

  1678. Conda-Sheridan M, Marler L, Park E-J, Kondratyuk TP, Jermihov K, Mesecar AD, Pezzuto JM, Asolkar RN, Fenical W, Cushman M (2010) Potential chemopreventive agents based on the structure of the lead compound 2-bromo-1-hydroxyphenazine, isolated from Streptomyces species, strain CNS284. J Med Chem 53:8688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1679. Kondratyuk TP, Park E-J, Yu R, van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1680. Asolkar RN, Singh A, Jensen PR, Aalbersberg W, Carté BK, Feussner K-D, Subramani R, DiPasquale A, Rheingold AL, Fenical W (2017) Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 73:2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1681. Nakayama O, Shigematsu N, Katayama A, Takase S, Kiyoto S, Hashimoto M, Kohsaka M (1989) WS-9659 A and B, novel testosterone 5α-reductase inhibitors isolated from a Streptomyces. II. Structural elucidation of WS-9659 A and B. J Antibiot 42:1230

    Google Scholar 

  1682. Milanowski DJ, Oku N, Cartner LK, Bokesch HR, Williamson RT, Sauri J, Liu Y, Blinov KA, Ding Y, Li X-C, Ferreira D, Walker LA, Khan S, Davies-Coleman MT, Kelley JA, McMahon JB, Martin GE, Gustafson KR (2018) Unequivocal determination of calamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem Sci 9:307

    Article  CAS  PubMed  Google Scholar 

  1683. Tian X-R, Tang H-F, Li Y-S, Lin H-W, Zhang X-Y, Feng J-T, Zhang X (2014) Studies on the chemical constituents from marine bryozoan Cryptosula pallasiana. Rec Nat Prod 9:628

    Google Scholar 

  1684. AlTarabeen M, Aly AH, Hemphill CFP, Rasheed M, Wray V, Proksch P (2015) New nitrogenous compounds from a Red Sea sponge from the Gulf of Aqaba. Z Naturforsch 70:75

    Article  CAS  Google Scholar 

  1685. Pan E, Jamison M, Yousufuddin M, MacMillan JB (2012) Ammosamide D, an oxidatively ring opened ammosamide analog from a marine-derived Streptomyces variabilis. Org Lett 14:2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1686. Soares AR, Engene N, Gunasekera SP, Sneed JM, Paul VJ (2015) Carriebowlinol, an antimicrobial tetrahydroquinolinol from an assemblage of marine cyanobacteria containing a novel taxon. J Nat Prod 78:534

    Article  CAS  PubMed  Google Scholar 

  1687. Cheng C, Othman EM, Reimer A, Grüne M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR (2016) Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 57:2786

    Google Scholar 

  1688. Le TC, Yim C-Y, Park S, Katila N, Yang I, Song MC, Yoon YJ, Choi D-Y, Choi H, Nam S-J, Fenical W (2017) Lodopyridones B and C from a marine sediment-derived bacterium Saccharomonospora sp. Bioorg Med Chem Lett 27:3123

    Article  CAS  PubMed  Google Scholar 

  1689. Liu N, Song F, Shang F, Huang Y (2015) Mycemycins A-E, new dibenzoxazepinones isolated from two different streptomycetes. Mar Drugs 13:6247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1690. Song F, Liu N, Liu M, Chen Y, Huang Y (2018) Identification and characterization of mycemycin biosynthetic gene clusters in Streptomyces olivaceus FXJ8.012 and Streptomyces sp. FXJ1.235. Mar Drugs 16:98

    Google Scholar 

  1691. Zhang C, Yang Z, Qin X, Ma J, Sun C, Huang H, Li Q, Ju J (2018) Geonome mining for mycemycin: discovery and elucidation of related methylation and chlorination biosynthetic chemistries. Org Lett 20:7633

    Article  CAS  PubMed  Google Scholar 

  1692. Olivon F, Apel C, Retailleau P, Allard PM, Wolfender JL, Touboul D, Roussi F, Litaudon M, Desrat S (2018) Searching for original natural products by molecular networking: detection, isolation and total synthesis of chloroaustralasines. Org Chem Front 5:2171

    Article  CAS  Google Scholar 

  1693. Umetsu S, Kanda M, Imai I, Sakai R, Fujita MJ (2019) Questiomycins, algicidal compounds produced by the marine bacterium Alteromonas sp. D and their production cue. Molecules 24:4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1694. Neupane JB, Neupane RP, Luo Y, Yoshida WY, Sun R, Williams PG (2019) Characterization of leptazolines A–D, polar oxazolines from the cyanobacterium Leptolyngbya sp., reveals a glitch with the “Willoughby–Hoye” scripts for calculating NMR chemical shifts. Org Lett 21:8449

    Google Scholar 

  1695. Kochanowska-Karamyan AJ, Araujo HC, Zhang X, El-Alfy A, Carvalho P, Avery MA, Holmbo SD, Magolan J, Hamann MT (2020) Isolation and synthesis of veranamine, an antidepressant lead from the marine sponge Verongula rigida. J Nat Prod 83:1092

    Article  CAS  PubMed  Google Scholar 

  1696. Miyako K, Yasuno Y, Shinada T, Fujita MJ, Sakai R (2020) Diverse aromatic metabolites in the solitary tunicate Cnemidocarpa irene. J Nat Prod 83:3156

    Article  CAS  PubMed  Google Scholar 

  1697. Feng X, Bello D, Lowe PT, Clark J, O’Hagan D (2019) Two 3′-O-β-glucosylated nucleoside fluorometabolites related to nucleocidin in Streptomyces calvus. Chem Sci 10:9501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1698. Pan E, Oswald NW, Legako AG, Life JM, Posner BA, MacMillan JB (2013) Precursor-directed generation of amidine containing ammosamide analogs: ammosamides E-P. Chem Sci 4:482

    Article  CAS  PubMed  Google Scholar 

  1699. Wildmann J, Möhler H, Vetter W, Ranalder U, Schmidt K, Maurer R (1987) Diazepam and N-desmethyldiazepam are found in rat brain and adrenal and may be of plant origin. J Neural Transm 70:383

    Article  CAS  PubMed  Google Scholar 

  1700. Unseld E, Fischer C, Rothemund E, Klotz U (1990) Occurrence of ‘natural’ diazepam in human brain. Biochem Pharmacol 39:210

    Article  CAS  PubMed  Google Scholar 

  1701. Unseld E, Kirshna DR, Fischer C, Klotz U (1989) Detection of desmethyldiazepam and diazepam in brain of different species and plants. Biochem Pharmacol 38:2473

    Article  CAS  PubMed  Google Scholar 

  1702. Piva MA, Medina JH, de Blas AL, Peña C (1991) Formation of benzodiazepine-like molecules in rat brain. Biochem Biophys Res Commun 180:972

    Article  CAS  PubMed  Google Scholar 

  1703. De Blas AL (1993) Benzodiazepines and benzodiazepine-like molecules are present in brain. In: Izquierdo I, Medina JH (eds) Naturally occurring benzodiazepines. Ellis Horwood, Chichester, UK, p 1

    Google Scholar 

  1704. Medina JH, de Stein ML, Wolfman C, Wasowski C, De Blas A, Paladini AC (1993) In vivo formation of benzodiazepine-like molecules in mammalian brain. Biochem Biophys Res Commun 195:1111

    Article  CAS  PubMed  Google Scholar 

  1705. De Blas AL, Park D, Friedrich P (1987) Endogenous benzodiazepine-like molecules in the human, rat and bovine brains studied with a monoclonal antibody to benzodiazepines. Brain Res 413:275

    Article  PubMed  Google Scholar 

  1706. De Blas AL, Sotelo C (1987) Localization of benzodiazepine-like molecules in the rat brain. A light and electron microscopy immunocytochemistry study with an anti-benzodiazepine monoclonal antibody. Brain Res 413:285

    Google Scholar 

  1707. Basile AS, Pannell L, Jaouni T, Gammal SH, Fales HM, Jones EA, Skolnick P (1990) Brain concentrations of benzodiazepines are elevated in an animal model of hepatic encephalopathy. Proc Natl Acad Sci USA 87:5263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1708. Unseld E, Klotz U (1989) Benzodiazepines: are they of natural origin? Pharm Res 6:1

    Article  CAS  PubMed  Google Scholar 

  1709. Baraldi M, Avallone R, Corsi L, Venturini I, Baraldi C, Zeneroli ML (2009) Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metab Brain Dis 24:81

    Article  CAS  PubMed  Google Scholar 

  1710. Coppola A, Sucunza D, Burgos C, Vaquero JJ (2015) Isoquinoline synthesis by heterocyclization of tosylmethyl isocyanide derivatives: total synthesis of mansouramycin B. Org Lett 17:78

    Article  CAS  PubMed  Google Scholar 

  1711. Krautwald S, Nilewski C, Mori M, Shiomi K, Ōmura S, Carreira EM (2016) Bioisosteric exchange of Csp3-chloro and methyl substituents: synthesis and initial biological studies of atpenin A5 analogues. Angew Chem Int Ed 55:4049

    Article  CAS  Google Scholar 

  1712. Song Y, Ding H, Dou Y, Yang R, Sun Q, Xiao Q, Ju Y (2011) Efficient and practical synthesis of 5′-deoxytubercidin and its analogues via Vorbrüggen glycosylation. Synthesis:1442

    Google Scholar 

  1713. Naciuk FF, Milan JC, Andreão A, Miranda PCML (2013) Exploitation of a tuned oxidation with N-haloimides in the synthesis of caulibugulones A-D. J Org Chem 78:5026

    Article  CAS  PubMed  Google Scholar 

  1714. Peitsinis ZV, Melidou DA, Stefanakis JG, Evgenidou H, Koumbis AE (2014) A versatile total synthesis of trachycladines A and B and their analogues. Eur J Org Chem, 8160

    Google Scholar 

  1715. Huber SG, Wunderlich S, Scholer HF, Williams J (2010) Natural abiotic formation of furans in soil. Environ Sci Technol 44:5799

    Article  CAS  PubMed  Google Scholar 

  1716. Krause T, Tubbesing C, Benzing K, Schöler HF (2014) Model reactions and natural occurrence of furans from hypersaline environments. Biogeosciences 11:2871

    Article  CAS  Google Scholar 

  1717. Greve H, Meis S, Kassack MU, Kehraus S, Krick A, Wright AD, König GM (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y11 receptor. J Med Chem 50:5600

    Article  CAS  PubMed  Google Scholar 

  1718. Yan D-F, Lan W-J, Wang K-T, Huang L, Jiang C-W, Li H-J (2015) Two chlorinated benzofuran derivatives from the marine fungus Pseudallescheria boydii. Nat Prod Commun 10:621

    PubMed  Google Scholar 

  1719. Masi M, Cimmino A, Boari A, Tuzi A, Zonno MC, Baroncelli R, Vurro M, Evidente A (2017) Colletochlorins E and F, new phytotoxic tetrasubstituted pyran-2-one and dihydrobenzofuran, isolated from Colletotrichum higginsianum with potential herbicidal activity. J Agric Food Chem 65:1124

    Article  CAS  PubMed  Google Scholar 

  1720. Scopel M, Mothes B, Lerner CB, Henriques AT, Macedo AJ, Abraham W-R (2017) Arvoredol—an unusual chlorinated and biofilm inhibiting polyketide from a marine Penicillium sp. of the Brazilian coast. Phytochem Lett 20:73

    Google Scholar 

  1721. Chokpaiboon S, Unagul P, Nithithanasilp S, Komwijit S, Somyong W, Ratiarpakul T, Isaka M, Bunyapaiboonsri T (2018) Salicylaldehyde and dihydroisobenzofuran derivatives from the marine fungus Zopfiella marina. Nat Prod Res 32:149

    Article  CAS  PubMed  Google Scholar 

  1722. Zhang D, Yang X, Kang JS, Choi HD, Son BW (2008) Chlorohydroaspyrones A and B, antibacterial aspyrone derivatives from the marine-derived fungus Exophiala sp. J Nat Prod 71:1458

    Article  CAS  PubMed  Google Scholar 

  1723. Shintani A, Ohtsuki T, Yamamoto Y, Hakamatsuka T, Kawahara N, Goda Y, Ishibashi M (2009) Fuligoic acid, a new yellow pigment with a chlorinated polyene-pyrone acid structure isolated from the myxomycete Fuligo septica f. flava. Tetrahedron Lett 50:3189

    Google Scholar 

  1724. Shintani A, Toume K, Yamamoto Y, Ishibashi M (2010) Dehydrofuligoic acid, a new yellow pigment isolated from the myxomycete Fuligo septica f. flava. Heterocycles 82:839

    Google Scholar 

  1725. Nenkep V, Yun K, Zhang D, Choi HD, Kang JS, Son BW (2010) Induced production of bromomethylchlamydosporols A and B from the marine-derived fungus Fusarium tricinctum. J Nat Prod 73:2061

    Article  CAS  PubMed  Google Scholar 

  1726. Rukachaisirikul V, Kannai S, Klaiklay S, Phongpaichit S, Sakayaroj J (2013) Rare 2-phenylpyran-4-ones from the seagrass-derived fungi polyporales PSU-ES44 and PSU-ES83. Tetrahedron 69:6981

    Article  CAS  Google Scholar 

  1727. Wyche TP, Standiford M, Hou Y, Braun D, Johnson DA, Johnson JA, Bugni TS (2013) Activation of the nuclear factor E2-related factor 2 pathway by novel natural products halomadurones A-D and a synthetic analogue. Mar Drugs 11:5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1728. Liou J-R, Wu T-Y, Thang TD, Hwang T-L, Wu C-C, Cheng Y-B, Chiang MY, Lan Y-H, El-Shazly M, Wu S-L, Beerhues L, Yuan S-S, Hou M-F, Chen S-L, Chang F-R, Wu Y-C (2014) Bioactive 6S-styryllactone constituents of Polyalthia parviflora. J Nat Prod 77:2626

    Article  CAS  PubMed  Google Scholar 

  1729. Song R, Shi H, Zhu J, Wang H, Shen Y (2019) A single-component flavoenzyme catalyzed regioselective halogenation of pyrone in the biosynthesis of venemycins. ACS Chem Biol 14:2533

    Article  CAS  PubMed  Google Scholar 

  1730. Schäberle TF (2016) Biosynthesis of α-pyrones. Beilstein J Org Chem 12:571

    Article  PubMed  PubMed Central  Google Scholar 

  1731. Ramesh P, Reddy YN, Reddy TN, Srinivasu N (2017) First total synthesis of the highly potent antitumor lactones 8-chlorogoniodiol and parvistone A: exploiting a bioinspired late-stage epoxide ring-opening. Tetrahedron: Asymmetry 28:246

    Google Scholar 

  1732. Sharada A, Rao KLS, Yadav JS, Rao TP, Nagaiah K (2017) First stereoselective synthesis of (6R,7R,8S)-8-chlorogoniodiol. Synthesis 49:2483

    Article  CAS  Google Scholar 

  1733. Reddy KM, Shashidhar J, Ghosh S (2014) A concise approach for the synthesis of bitungolides: total syntheses of (–)-bitungolide B & E. Org Biomol Chem 12:4002

    Article  CAS  PubMed  Google Scholar 

  1734. Mantle PG (2000) Uptake of radiolabelled ochratoxin A from soil by coffee plants. Phytochemistry 53:377

    Article  CAS  PubMed  Google Scholar 

  1735. Romani S, Pinnavaia GG, Dalla Rosa M (2003) Influence of roasting levels on ochratoxin A content in coffee. J Agric Food Chem 51:5168

    Article  CAS  PubMed  Google Scholar 

  1736. Batista LR, Chalfoun SM, Prado G, Schwan RF, Wheals AE (2003) Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.). Int J Food Microbiol 85:293

    Google Scholar 

  1737. Napolitano A, Fogliano V, Tafuri A, Ritieni A (2007) Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J Agric Food Chem 55:10499

    Article  CAS  PubMed  Google Scholar 

  1738. Cramer B, Königs M, Humpf H-U (2008) Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting. J Agric Food Chem 56:5673

    Article  CAS  PubMed  Google Scholar 

  1739. Leong SL, Hocking AD, Varelis P, Giannikopoulos G, Scott ES (2006) Fate of ochratoxin A during vinification of Semillon and Shiraz grapes. J Agric Food Chem 54:6460

    Article  CAS  PubMed  Google Scholar 

  1740. Perrone G, Nicoletti I, Pascale M, De Rossi A, De Girolamo A, Visconti A (2007) Positive correlation between high levels of ochratoxin A and resveratrol-related compounds in red wines. J Agric Food Chem 55:6807

    Article  CAS  PubMed  Google Scholar 

  1741. Kurtbay HM, Bekçi Z, Merdivan M, Yurdakoç K (2008) Reduction of ochratoxin A levels in red wine by bentonite, modified bentonites, and chitosan. J Agric Food Chem 56:2541

    Article  CAS  PubMed  Google Scholar 

  1742. Hierro JMH, Garcia-Villanova RJ, Torrero PR, Fonseca IMT (2008) Aflatoxins and ochratoxin A in red paprika for retail sale in Spain: occurrence and evaluation of a simultaneous analytical method. J Agric Food Chem 56:751

    Article  Google Scholar 

  1743. El-Sayed YS, Khalil RH, Saad TT (2009) Acute toxicity of ochratoxin-A in marine water-reared sea bass (Dicentrarchus labrax L.). Chemosphere 75:878

    Google Scholar 

  1744. Sun XD, Su P, Shan H (2017) Mycotoxin contamination of rice in China. J Food Sci 82:573

    Article  CAS  PubMed  Google Scholar 

  1745. Gabriele B, Attya M, Fazio A, Di Donna L, Plastina P, Sindona G (2009) A new and expedient total synthesis of ochratoxin A and d5-ochratoxin A. Synthesis:1815

    Google Scholar 

  1746. Bouisseau A, Roland A, Reillon F, Schneider R, Cavelier F (2013) First synthesis of a stable isotope of ochratoxin A metabolite for a reliable detoxification monitoring. Org Lett 15:3888

    Article  CAS  PubMed  Google Scholar 

  1747. Cramer B, Harrer H, Nakamura K, Uemura D, Humpf H-U (2010) Total synthesis and cytotoxicity evaluation of all ochratoxin A stereoisomers. Bioorg Med Chem 18:343

    Article  CAS  PubMed  Google Scholar 

  1748. Li T, Jo E-J, Kim M-G (2012) A label-free fluorescence immunoassay system for the sensitive detection of the mycotoxin, ochratoxin A. Chem Commun 48:2304

    Article  CAS  Google Scholar 

  1749. Gan F, Zhou Y, Hou L, Qjan G, Chen X, Huang K (2017) Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. Chemosphere 182:630

    Article  CAS  PubMed  Google Scholar 

  1750. Hou L, Gan F, Zhou X, Zhou Y, Qian G, Liu Z, Huang K (2018) Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells. Chemosphere 199:718

    Article  CAS  PubMed  Google Scholar 

  1751. Lenz CA, Rychlik M (2013) Efficient synthesis of (R)-ochratoxin alpha, the key precursor to the mycotoxin ochratoxin A. Tetrahedron Lett 54:883

    Article  CAS  Google Scholar 

  1752. Xu X, He F, Zhang X, Bao J, Qi S (2013) New mycotoxins from marine-derived fungus Aspergillus sp. SCSGAF0093. Food Chem Toxicol 53:46

    Google Scholar 

  1753. Liu J-T, Wu W, Cao M-J, Yang F, Lin H-W (2018) Trienic α-pyrone and ochratoxin derivatives from a sponge-derived fungus Aspergillus ochraceopetaliformis. Nat Prod Res 32:1791

    Article  CAS  PubMed  Google Scholar 

  1754. Stadler M, Anke H, Sterner O (1995) Metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. III. Production of novel isocoumarin derivatives, isolation, and biological activities. J Antibiot 48:261

    Google Scholar 

  1755. Anderle C, Li S-M, Kammerer B, Gust B, Heide L (2007) New aminocoumarin antibiotics derived from 4-hydroxycinnamic acid are formed after heterologous expression of a modified clorobiocin biosynthetic gene cluster. J Antibiot 60:504

    Article  CAS  Google Scholar 

  1756. Kihampa C, Nkunya MHH, Joseph CC, Magesa SM, Hassanali A, Heydenreich M, Kleinpeter E (2009) Anti-mosquito and antimicrobial nor-halimanoids, isocoumarins and an anilinoid from Tessmannia densiflora. Phytochemistry 70:1233

    Article  CAS  PubMed  Google Scholar 

  1757. Matumoto T, Hosoya T, Shigemori H (2010) Palmariols A and B, two new chlorinated dibenzo-α-pyrones from discomycete Lachnum palmae. Heterocycles 81:1231

    Article  CAS  Google Scholar 

  1758. Tanabe Y, Matsumoto T, Hosoya T, Sato H, Shigemori H (2013) Palmaerins A-D, new chlorinated and brominated dihydroisocoumarins with antimicrobial and plant growth regulating activities from discomycete Lachnum palmae. Heterocycles 87:1481

    Article  CAS  Google Scholar 

  1759. Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M (2013) Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the basidiomycete Gymnopus sp. J Nat Prod 76:2141

    Article  CAS  PubMed  Google Scholar 

  1760. Hwang CH, Jaki BU, Klein LL, Lankin DC, McAlpine JB, Napolitano JG, Fryling NA, Franzblau SG, Cho SH, Stamets PE, Wang Y, Pauli GF (2013) Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. J Nat Prod 76:1916

    Article  CAS  PubMed  Google Scholar 

  1761. Lu C-H, Liu S-S, Wang J-Y, Wang M-Z, Shen Y-M (2014) Characterization of eight new secondary metabolites from the mutant strain G-444 of Tubercularia sp. TF 5. Helv Chim Acta 97:334

    Google Scholar 

  1762. Elsebai MF, Ghabbour HA (2016) Isocoumarin derivatives from the marine-derived fungus Phoma sp. 135. Tetrahedron Lett 57:354

    Google Scholar 

  1763. Zhao Y, Liu D, Proksch P, Yu S, Lin W (2016) Isocoumarin derivatives from the sponge-associated fungus Peyronellaea glomerata with antioxidant activities. Chem Biodivers 13:1186

    Article  CAS  PubMed  Google Scholar 

  1764. Darsih C, Prachyawarakorn V, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2015) Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv 5:70595

    Article  CAS  Google Scholar 

  1765. Tatsuta K, Furuyama A, Yano T, Suzuki Y, Ogura T, Hosokawa S (2008) The first total synthesis and structural determination of TMC-264. Tetrahedron Lett 49:4036

    Article  CAS  Google Scholar 

  1766. Niu S, Liu D, Shao Z, Huang J, Fan A, Lin W (2021) Chlorinated metabolites with antibacterial activities from a deep-sea-derived Spiromastix fungus. RSC Adv 11:29661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1767. Schmidt W, Schulze TM, Brasse G, Nagrodzka E, Maczka M, Zettel J, Jones PG, Grunenberg J, Hilker M, Trauer-Kizilelma U, Braun U, Schulz S (2015) Sigillin A, a unique polychlorinated arthropod deterrent from the snow flea Ceratophysella sigillata. Angew Chem Int Ed 54:7698

    Article  CAS  Google Scholar 

  1768. Yamaoka Y, Nakayama T, Kawai S, Takasu K (2020) Total synthesis of (–)-sigillin A: a polychlorinated and polyoxygenated natural product. Org Lett 22:7721

    Article  CAS  PubMed  Google Scholar 

  1769. Fang N, Casida JE (1999) Cubé resin insecticide: identification and biological activity of 29 rotenoid constituents. J Agric Food Chem 47:2130

    Article  CAS  PubMed  Google Scholar 

  1770. Ondeyka JG, Zink D, Basilio A, Vicente F, Bills G, Diez MT, Motyl M, Dezeny G, Byrne K, Singh SB (2007) Coniothyrione, a chlorocyclopentandienylbenzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J Nat Prod 70:668

    Article  CAS  PubMed  Google Scholar 

  1771. Andrianasolo EH, Haramaty L, Rosario-Passapera R, Bidle K, White E, Vetriani C, Falkowski P, Lutz R (2009) Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. J Nat Prod 72:1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1772. Andrianasolo EH, Haramaty L, Rosario-Passapera R, Vetriani C, Falkowski P, White E, Lutz R (2012) Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar Drugs 10:2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1773. Klaiklay S, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Buatong J, Sakayaroj J (2012) Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron 68:2299

    Google Scholar 

  1774. Liu S, Lu C, Huang J, Shen Y (2012) Three new compounds from the marine fungal strain Aspergillus sp. AF119. Rec Nat Prod 6:334

    Google Scholar 

  1775. Yang X-W, Huang M-Z, Jin Y-S, Sun L-N, Song Y, Chen H-S (2012) Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia 83:1169

    Article  CAS  PubMed  Google Scholar 

  1776. Wu B, Kwon SW, Hwang GS, Park JH (2012) Eight new 2-(2-phenylethyl)chromone (=2-(2-phenylethyl)-4H-1-benzopyran-4-one) derivatives from Aquilaria malaccensis agarwood. Helv Chim Acta 95:1657

    Article  CAS  Google Scholar 

  1777. Gao Y-H, Liu J-M, Lu H-X, Wei Z-X (2012) Two new 2-(2-phenylethyl)chromen-4-ones from Aquilaria sinensis (Lour.) Gilg. Helv Chim Acta 95:951

    Google Scholar 

  1778. Liao G, Mei W-L, Dong W, Li W, Wang P, Kong F-D, Gai C-J, Song X-Q, Dai H-F (2016) 2-(2-Phenylethyl)chromone derivatives in artificial agarwood from Aquilaria sinensis. Fitoterapia 110:38

    Article  CAS  PubMed  Google Scholar 

  1779. Huo H-X, Gu Y-F, Sun H, Zhang Y-F, Liu W-J, Zhu Z-X, Shi S-P, Song Y-L, Jin H-W, Zhao Y-F, Tu P-F, Li J (2017) Anti-inflammatory 2-(2-phenylethyl)chromone derivatives from Chinese agarwood. Fitoterapia 118:49

    Article  CAS  PubMed  Google Scholar 

  1780. Huo H-X, Gu Y-F, Zhu Z-X, Zhang Y-F, Chen X-N, Guan P-W, Shi S-P, Song Y-L, Zhao Y-F, Tu P-F, Li J (2019) LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood (Aquilaria sinensis). Phytochemistry 158:46

    Article  CAS  PubMed  Google Scholar 

  1781. Li J, Jiang Z, Li X, Hou Y, Liu F, Li N, Liu X, Yang L, Chen G (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg Med Chem Lett 25:53

    Google Scholar 

  1782. Ma J, Zhang X-L, Wang Y, Zheng J-Y, Wang C-Y, Shao C-L (2017) Aspergivones A and B, two new flavones isolated from a gorgonian-derived Aspergillus candidus fungus. Nat Prod Res 31:32

    Article  CAS  PubMed  Google Scholar 

  1783. Masi M, Meyer S, Clement S, Pescitelli G, Cimmino A, Cristofaro M, Evidente A (2017) Chloromonilinic acids C and D, phytotoxic tetrasubstituted 3-chromanonacrylic acids isolated from Cochliobolus australiensis with potential herbicidal activity against buffelgrass (Cenchrus ciliaris). J Nat Prod 80:2771

    Article  CAS  PubMed  Google Scholar 

  1784. Bashiri S, Abdollahzadeh J, Di Lecce R, Alioto D, Górecki M, Pescitelli G, Masi M, Evidente A (2020) Rabenchromenone and rabenzophenone, phytotoxic tetrasubstituted chromenone and hexasubstituted benzophenone constituents produced by the oak-decline-associated fungus Fimetariella rabenhorstii. J Nat Prod 83:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1785. Lee SR, Schalk F, Schwitalla JW, Benndorf R, Vollmers J, Kaster A-K, de Beer ZW, Park M, Ahn M-J, Jung WH, Beemelmanns C, Kim KH (2020) Polyhalogenation of isoflavonoids by the termite-associated Actinomadura sp. RB99. J Nat Prod 83:3102

    Google Scholar 

  1786. Siddiq A, Dembitsky V (2008) Acetylenic anticancer agents. Anti-Cancer Agents Med Chem 8:132

    Article  CAS  Google Scholar 

  1787. Tian Y, Wei X, Xu H (2006) Photoactivated insecticidal thiophene derivatives from Xanthopappus subacaulis. J Nat Prod 69:1241

    Article  CAS  PubMed  Google Scholar 

  1788. Casu L, Bonsignore L, Pinna M, Casu M, Floris C, Gertsch J, Cottiglia F (2006) Cytotoxic diacetylenic spiroketal enol ethers from Plagius flosculosus. J Nat Prod 69:295

    Article  CAS  PubMed  Google Scholar 

  1789. Wang KDG, Wang J, Xie S-S, Li Z-R, Kong L-Y, Luo J (2016) New naturally occurring diacetylenic spiroacetal enol ethers from Artemisia selengensis. Tetrahedron Lett 57:32

    Article  CAS  Google Scholar 

  1790. Ma L, Ge F, Tang C-P, Ke C-Q, Li X-Q, Althammer A, Ye Y (2011) The absolute configuration determination of naturally occurring diacetylenic spiroacetal enol ethers from Artemisia lactiflora. Tetrahedron 67:3533

    Article  CAS  Google Scholar 

  1791. Liu H-L, Guo Y-W (2008) Three new thiophene acetylenes from Rhaponticum uniflorum (L.) DC. Helv Chim Acta 91:130

    Google Scholar 

  1792. Lai W-C, Wu Y-C, Dankó B, Cheng Y-B, Hsieh T-J, Hsieh C-T, Tsai Y-C, El-Shazly M, Martins A, Hohmann J, Hunyadi A, Chang F-R (2014) Bioactive constituents of Cirsium japonicum var. australe. J Nat Prod 77:1624

    Google Scholar 

  1793. Margl L, Eisenreich W, Adam P, Bacher A, Zenk MH (2001) Biosynthesis of thiophenes in Tagetes patula. Phytochemistry 58:875

    Article  CAS  PubMed  Google Scholar 

  1794. Cahoon EB, Schnurr JA, Huffman EA, Minto RE (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant J 34:671

    Article  CAS  PubMed  Google Scholar 

  1795. Lane AL, Nam S-J, Fukuda T, Yamanaka K, Kauffman CA, Jensen PR, Fenical W, Moore BS (2013) Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes. J Am Chem Soc 135:4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1796. Ma SY, Xiao YS, Zhang B, Shao FL, Guo ZK, Zhang JJ, Jiao RH, Sun Y, Xu Q, Tan RX, Ge HM (2017) Amycolamycins A and B, two enediyne-derived compounds from a locust-associated actinomycete. Org Lett 19:6208

    Article  CAS  PubMed  Google Scholar 

  1797. Cohen DR, Townsend CA (2018) Characterization of an anthracene intermediate in dynemicin biosynthesis. Angew Chem Int Ed 57:5650

    Article  CAS  Google Scholar 

  1798. Van Lanen SG, Shen B (2008) Biosynthesis of enediyne antitumor antibiotics. Curr Top Med Chem 8:448

    Article  PubMed  PubMed Central  Google Scholar 

  1799. Liang Z-X (2010) Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 27:499

    Article  CAS  PubMed  Google Scholar 

  1800. Chen Y, Yin M, Horsman GP, Huang S, Shen B (2010) Manipulation of pathway regulation in Streptomyces globisporus for overproduction of the enediyne antitumor antibiotic C-1027. J Antibiot 63:482

    Article  CAS  Google Scholar 

  1801. Chen Y, Yin M, Horsman GP, Shen B (2011) Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus. J Nat Prod 74:420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1802. Gredičak M, Jerič I (2007) Enediyne compounds—new promises in anticancer therapy. Acta Pharm 57:133

    Article  PubMed  Google Scholar 

  1803. Nicolaou KC, Chen JS, Dalby SM (2009) From nature to the laboratory and into the clinic. Bioorg Med Chem 17:2290

    Article  CAS  PubMed  Google Scholar 

  1804. Komano K, Shimamura S, Inoue M, Hirama M (2007) Total synthesis of the maduropeptin chromophore aglycon. J Am Chem Soc 129:14184

    Article  CAS  PubMed  Google Scholar 

  1805. Komano K, Shimamura S, Norizuki Y, Zhao D, Kabuto C, Sato I, Hirama M (2009) Total synthesis and structure revision of the (–)-maduropeptin chromophore. J Am Chem Soc 131:12072

    Article  CAS  PubMed  Google Scholar 

  1806. Inoue M, Ohashi I, Kawaguchi T, Hirama M (2008) Total synthesis of the C-1027 chromophore core: extremely facile enediyne formation through SmI2-mediated 1,2-elimination. Angew Chem Int Ed 47:1777

    Article  CAS  Google Scholar 

  1807. Ren F, Hogan PC, Anderson AJ, Myers AG (2007) Kedarcidin chromophore: synthesis of its proposed structure and evidence for a stereochemical revision. J Am Chem Soc 129:5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1808. Yoshimura F, Lear MJ, Ohashi I, Koyama Y, Hirama M (2007) Synthesis of the entire carbon framework of the kedarcidin chromophore aglycon. Chem Commun, 3057

    Google Scholar 

  1809. Ogawa K, Koyama Y, Ohashi I, Sato I, Hirama M (2009) Total synthesis of a protected aglycon of the kedarcidin chromophore. Angew Chem Int Ed 48:1110

    Article  CAS  Google Scholar 

  1810. Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol Biochem 36:677

    Article  CAS  Google Scholar 

  1811. Schomaker JM, Borhan B (2008) Total synthesis of haterumalides NA and NC via a chromium-mediated macrocyclization. J Am Chem Soc 130:12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1812. Ueda M, Yamaura M, Ikeda Y, Suzuki Y, Yoshizato K, Hayakawa I, Kigoshi H (2009) Total synthesis and cytotoxicity of haterumalides NA and B and their artificial analogues. J Org Chem 74:3370

    Article  CAS  PubMed  Google Scholar 

  1813. Williams DE, Keyzers RA, Warabi K, Desjardine K, Riffell JL, Roberge M, Andersen RJ (2007) Spirastrellolides C to G: macrolides obtained from the marine sponge Spirastrella coccinea. J Org Chem 72:9842

    Article  CAS  PubMed  Google Scholar 

  1814. Paterson I, Anderson EA, Dalby SM, Lim JH, Maltas P (2012) The stereocontrolled total synthesis of spirastrellolide A methyl ester. Fragment coupling studies and completion of the synthesis. Org Biomol Chem 10:5873

    Google Scholar 

  1815. Paterson I, Anderson EA, Dalby SM, Lim JH, Maltas P, Loiseleur O, Genovino J, Moessner C (2012) The stereocontrolled total synthesis of spirastrellolide A methyl ester. Expedient construction of the key fragments. Org Biomol Chem 10:5861

    Google Scholar 

  1816. Arlt A, Benson S, Schulthoff S, Gabor B, Fürstner A (2013) A total synthesis of spirastrellolide A methyl ester. Chem Eur J 19:3596

    Article  CAS  PubMed  Google Scholar 

  1817. Benson S, Collin M-P, O’Neil GW, Ceccon J, Fasching B, Fenster MDB, Godbout C, Radkowski K, Goddard R, Fürstner A (2009) Total synthesis of spirastrellolide F methyl ester—part 2: macrocyclization and completion of the synthesis. Angew Chem Int Ed 48:9946

    Article  CAS  Google Scholar 

  1818. Benson S, Collin M-P, Arlt A, Gabor B, Goddard R, Fürstner A (2011) Second-generation total synthesis of spirastrellolide F methyl ester: the alkyne route. Angew Chem Int Ed 50:8739

    Article  CAS  Google Scholar 

  1819. MacMillan JB, Xiong-Zhou G, Skepper CK, Molinski TF (2008) Phorbasides A-E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations. J Org Chem 73:3699

    Google Scholar 

  1820. Dalisay DS, Molinski TF (2010) Structure elucidation at the nanomole scale. 3. Phorbasides G–I from Phorbas sp. J Nat Prod 73:679

    Google Scholar 

  1821. Paterson I, Paquet T (2010) Total synthesis and configurational validation of (+)-phorbaside A. Org Lett 12:2158

    Article  CAS  PubMed  Google Scholar 

  1822. Gerth K, Steinmetz H, Höfle G, Jansen R (2008) Chlorotonil A, a macrolide with a unique gem-dichloro-1,3-dione functionality from Sorangium cellulosum, So ce1525. Angew Chem Int Ed 47:600

    Article  CAS  Google Scholar 

  1823. Rahn N, Kalesse M (2008) The total synthesis of chlorotonil A. Angew Chem Int Ed 47:597

    Article  CAS  Google Scholar 

  1824. Greve H, Schupp PJ, Eguereva E, Kehraus S, König GM (2008) Ten-membered lactones from the marine-derived fungus Curvularia sp. J Nat Prod 71:1651

    Article  CAS  PubMed  Google Scholar 

  1825. Erkel G, Belahmer H, Serwe A, Anke T, Kunz H, Kolshorn H, Liermann J, Opatz T (2008) Oxacyclododecindione, a novel inhibitor of IL-4 signaling from Exserohilum rostratum. J Antibiot 61:285

    Article  CAS  Google Scholar 

  1826. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, Kawashima A (2009) The search for a hair-growth stimulant: new radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Lett 50:108

    Google Scholar 

  1827. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, Kawashima A (2009) Pochonins K-P: new radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron 65:3446

    Google Scholar 

  1828. Shinonaga H, Sakai N, Nozawa Y, Ikeda A, Aoki M, Kawashima A (2009) 13-Bromomonocillin I: a new WNT-5A expression inhibitor produced by Pochonia chlamydosporia var. chlamydosporia. Heterocycles 78:2855

    Google Scholar 

  1829. Choe H, Cho H, Ko H-J, Lee J (2017) Total synthesis of (+)-pochonin D and (+)-monocillin II via chemo- and regioselective intramolecular nitrile oxide cycloaddition. Org Lett 19:6004

    Article  CAS  PubMed  Google Scholar 

  1830. Karthikeyan G, Zambaldo C, Barluenga S, Zoete V, Karplus M, Winssinger N (2012) Asymmetric synthesis of pochonin E and F, revision of their proposed structure, and their conversion to potent Hsp90 inhibitors. Chem Eur J 18:8978

    Article  CAS  PubMed  Google Scholar 

  1831. El-Elimat T, Raja HA, Day CS, Chen W-L, Swanson SM, Oberlies NH (2014) Greensporones: resorcylic acid lactones from an aquatic Halenospora sp. J Nat Prod 77:2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1832. Gaddam J, Reddy AVV, Sarma AVS, Yadav JS, Mohapatra DK (2020) Total synthesis and structural revision of greensporone F and dechlorogreensporone F. J Org Chem 85:12418

    Article  CAS  PubMed  Google Scholar 

  1833. Zhang W, Shao C-L, Chen M, Liu Q-A, Wang C-Y (2014) Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett 55:4888

    Article  CAS  Google Scholar 

  1834. Mejia EJ, Loveridge ST, Stepan G, Tsai A, Jones GS, Barnes T, White KN, Drašković M, Tenney K, Tsiang M, Geleziunas R, Cihlar T, Pagratis N, Tian Y, Yu H, Crews P (2014) Study of marine natural products including resorcyclic acid lactones from Humicola fuscoatra that reactivate latent HIV-1 expression in an in vitro model of central memory CD4+ T cells. J Nat Prod 77:618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1835. Bashyal BP, Wijeratne EMK, Tillotson J, Arnold AE, Chapman E, Gunatilaka AAL (2017) Chlorinated dehydrocurvularins and alterperylenepoxide A from Alternaria sp. AST0039, a fungal endophyte of Astragalus lentiginosus. J Nat Prod 80:427

    Google Scholar 

  1836. Shao C-L, Wu H-X, Wang C-Y, Liu Q-A, Xu Y, Wei M-Y, Qian P-Y, Gu Y-C, Zheng C-J, She Z-G, Lin Y-C (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629

    Article  CAS  PubMed  Google Scholar 

  1837. Shao C-L, Wu H-X, Wang C-Y, Liu Q-A, Xu Y, Wei M-Y, Qian P-Y, Gu Y-C, Zheng C-J, She Z-G, Lin Y-C (2013) Correction to potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 76:302

    Article  CAS  Google Scholar 

  1838. Liu Q-A, Shao C-L, Gu Y-C, Blum M, Gan L-S, Wang K-L, Chen M, Wang C-Y (2014) Antifouling and fungicidal resorcylic acid lactones from the sea anemone-derived fungus Cochliobolus lunatus. J Agric Food Chem 62:3183

    Article  CAS  PubMed  Google Scholar 

  1839. Mahankali B, Srihari P (2015) A carbohydrate approach for the first total synthesis of cochliomycin C: stereoselective total synthesis of paecilomycin E, paecilomycin F and 6′-epi-cochliomycin C. Eur J Org Chem:3983

    Google Scholar 

  1840. Pal P, Jana N, Nanda S (2014) Asymmetric total synthesis of paecilomycin E, 10′-epipaecilomycin E and 6′-epi-cochliomycin C. Org Biomol Chem 12:8257

    Article  CAS  PubMed  Google Scholar 

  1841. Banwell MG, Ma X, Bolte B, Zhang Y, Dlugosch M (2017) Chemical syntheses of the cochliomycins and certain related resorcylic acid lactones. Tetrahedron Lett 58:4025

    Article  CAS  Google Scholar 

  1842. Zhou J, Gao Y, Chang J-L, Yu H-Y, Chen J, Zhou M, Meng X-G, Ruan H-L (2020) Resorcylic acid lactones from an Ilyonectria sp. J Nat Prod 83:1505

    Article  CAS  PubMed  Google Scholar 

  1843. Hickford SJH, Blunt JW, Munro MHG (2009) Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem 17:2199

    Article  CAS  PubMed  Google Scholar 

  1844. Dalisay DS, Morinaka BI, Skepper CK, Molinski TF (2009) A tetrachloro polyketide hexahydro-1H-isoindolone, muironolide A, from the marine sponge Phorbas sp. natural products at the nanomole scale. J Am Chem Soc 131:7552

    Google Scholar 

  1845. Xiao Q, Young K, Zakarian A (2015) Total synthesis and structural revision of (+)-muironolide A. J Am Chem Soc 137:5907

    Article  CAS  PubMed  Google Scholar 

  1846. Lu C, Liu X, Li Y, Shen Y (2010) Two 18-membered epothilones from Sorangium cellulosum So0157-2. J Antibiot 63:571

    Article  CAS  Google Scholar 

  1847. Matthew S, Salvador LA, Schupp PJ, Paul VJ, Luesch H (2010) Cytotoxic halogenated macrolides and modified peptides from the apratoxin-producing marine cyanobacterium Lyngbya bouillonii from Guam. J Nat Prod 73:1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1848. Yan P, Lv Y, van Ofwegen L, Proksch P, Lin W (2010) Lobophytones A-G, new isobiscembranoids from the soft coral Lobophytum pauciflorum. Org Lett 12:2484

    Article  CAS  PubMed  Google Scholar 

  1849. Yan P, Deng Z, van Ofwegen L, Proksch P, Lin W (2010) Lobophytones O-T, new biscembranoids and cembranoid from soft coral Lobophytum pauciflorum. Mar Drugs 8:2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1850. Chlipala GE, Tri PH, Hung NV, Krunic A, Shim SH, Soejarto DD, Orjala J (2010) Nhatrangins A and B, aplysiatoxin-related metabolites from the marine cyanobacterium Lyngbya majuscula from Vietnam. J Nat Prod 73:784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1851. Nam S-J, Gaudencio SP, Kauffman CA, Jensen PR, Kondratyuk TP, Marler LE, Pezzuto JM, Fenical W (2010) Fijiolides A and B, inhibitors of TNF-α-induced NFαB activation, from a marine-derived sediment bacterium of the genus Nocardiopsis. J Nat Prod 73:1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1852. Heinz C, Cramer N (2015) Synthesis of fijiolide A via an atropselective paracyclophane formation. J Am Chem Soc 137:11278

    Article  CAS  PubMed  Google Scholar 

  1853. Lin A-S, Stout EP, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Aalbersberg W, Hay ME, Kubanek J (2010) Bioactive bromophycolides R-U from the Fijian red alga Callophycus serratus. J Nat Prod 73:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1854. Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N, Kashman Y (2010) Salarins D-J, seven new nitrogenous macrolides from the Madagascar sponge Fascaplysinopsis sp. Tetrahedron 66:4339

    Article  CAS  Google Scholar 

  1855. Fukuda T, Takahashi M, Kasai H, Nagai K, Tomoda H (2017) Chlokamycin, a new chloride from the marine-derived Streptomyces sp. MA2-12. Nat Prod Commun 12:1223

    Google Scholar 

  1856. Talontsi FM, Facey P, Tatong MDK, Islam MT, Frauendorf H, Draeger S, von Tiedemann A, Laatsch H (2012) Zoosporicidal metabolites from an endophytic fungus Cryptosporiopsis sp. of Zanthoxylum leprieurii. Phytochemistry 83:87

    Google Scholar 

  1857. Choi H, Mevers E, Byrum T, Valeriote FA, Gerwick WH (2012) Lyngbyabellins K–N from two Palmyra Atoll collections of the marine cyanobacterium Moorea bouillonii. Eur J Org Chem: 5141

    Google Scholar 

  1858. Pham C-D, Hartmann R, Böhler P, Stork B, Wesselborg S, Lin W, Lai D, Proksch P (2014) Callyspongiolide a cytotoxic macrolide from the marine sponge Callyspongia sp. Org Lett 16:266

    Article  CAS  PubMed  Google Scholar 

  1859. Ma J, Shen Y-M, Zeng Y, Zhao P-J (2012) Two new N-(O)-carbamoylglucopyranosyl)-N-dimethylansamitocins from Actinosynnema pretiosum. Helv Chim Acta 95:1630

    Article  CAS  Google Scholar 

  1860. Mao S, Chen H, Chen L, Wang C, Jia W, Chen X, Yang H, Huang W, Zheng W (2013) Two novel ansamitocin analogs from Actinosynnema pretiosum. Nat Prod Res 27:1532

    Article  CAS  Google Scholar 

  1861. Wyche TP, Piotrowski JS, Hou Y, Braun D, Deshpande R, McIlwain S, Ong IM, Myers CL, Guzei IA, Westler WM, Andes DR, Bugni TS (2014) Forazoline A: marine-derived polyketide with antifungal in vivo efficacy. Angew Chem Int Ed 53:11583

    Article  CAS  Google Scholar 

  1862. Gira S, Kindo AJ (2012) A review of Candida species causing blood stream infection. Indian J Med Microbiol 30:270

    Article  Google Scholar 

  1863. Gupta DK, Kaur P, Leong ST, Tan LT, Prinsep MR, Chu JJH (2014) Anti-chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar Drugs 12:115

    Article  PubMed  PubMed Central  Google Scholar 

  1864. Lorente A, Gil A, Fernández R, Cuevas C, Albericio F, Álvarez M (2015) Phormidolides B and C, cytotoxic agents from the sea: enantioselective synthesis of the macrocyclic core. Chem Eur J 21:150

    Article  CAS  PubMed  Google Scholar 

  1865. Moon K, Ahn C-H, Shin Y, Won TH, Ko K, Lee SK, Oh K-B, Shin J, Nam S-I, Oh D-C (2014) New benzoxazine secondary metabolites from an Arctic actinomycete. Mar Drugs 12:2526

    Article  PubMed  PubMed Central  Google Scholar 

  1866. Perrin CL, Rodgers BL, O’Connor JM (2007) Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules. J Am Chem Soc 129:4795

    Article  CAS  PubMed  Google Scholar 

  1867. Richter J, Sandjo LP, Liermann JC, Opatz T, Erkel G (2015) 4-Dechloro-14-deoxy-oxacyclododecindione and 14-deoxy-oxacylododecindione, two inhibitors of inducible connective tissue growth factor expression from the imperfect fungus Exserohilum rostratum. Bioorg Med Chem 23:556

    Article  CAS  PubMed  Google Scholar 

  1868. Tauber J, Rohr M, Walter T, Schollmeyer D, Rahn-Hotze K, Erkel G, Opatz T (2016) A surprising switch in absolute configuration of anti-inflammatory macrolactones. Org Biomol Chem 14:3695

    Article  CAS  PubMed  Google Scholar 

  1869. Rasmussen SA, Meier S, Andersen NG, Blossom HE, Duus JØ, Nielsen KF, Hansen PJ, Larsen TO (2016) Chemodiversity of ladder-frame prymnesin polyethers in Prymnesium parvum. J Nat Prod 79:2250

    Article  CAS  PubMed  Google Scholar 

  1870. Nagai H, Sato S, Iida K, Hayashi K, Kawaguchi M, Uchida H, Satake M (2019) Oscillatoxin I. A new aplysiatoxin derivative from a marine cyanobacterium. Toxins 11:366

    Google Scholar 

  1871. Nagai H, Watanabe M, Sato S, Kawaguchi M, Xiao Y-Y, Hayashi K, Watanabe R, Uchida H, Satake M (2019) New aplysiatoxin derivatives from the Okinawan cyanobacterium Moorea producens. Tetrahedron 75:2486

    Article  CAS  Google Scholar 

  1872. Kawaguchi M, Satake M, Zhang B-T, Xiao Y-Y, Fukuoka M, Uchida H, Nagai H (2020) Neo-aplysiatoxin A isolated from Okinawan cyanobacterium Moorea producens. Molecules 25:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1873. Fogarty S, Ouyang Y, Li L, Chen Y, Rane H, Manoni F, Parra KJ, Rutter J, Harran PG (2020) Callyspongiolide is a potent inhibitor of the vacuolar ATPase. J Nat Prod 83:3381

    Article  CAS  PubMed  Google Scholar 

  1874. Ghosh AK, Kassekert LA, Bungard JD (2016) Enantioselective total synthesis and structural assignment of callyspongiolide. Org Biomol Chem 14:11357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1875. Manoni F, Rumo C, Li L, Harran PG (2018) Unconventional fragment usage enables a concise total synthesis of (–)-callyspongiolide. J Am Chem Soc 140:1280

    Article  CAS  PubMed  Google Scholar 

  1876. Igarashi Y, Matsuoka N, In Y, Kataura T, Tashiro E, Saiki I, Sudoh Y, Duangmal K, Thamchaipenet A (2017) Nonthmicin, a polyether polyketide bearing a halogen-modified tetronate with neuroprotective and antiinvasive activity from Actinomadura sp. Org Lett 19:1406

    Article  CAS  PubMed  Google Scholar 

  1877. Ochoa JL, Sanchez LM, Koo B-M, Doherty JS, Rajendram M, Huang KC, Gross CA, Linington RG (2018) Marine mammal microbiota yields novel antibiotic with potent activity against Clostridium difficile. ACS Infect Dis 4:59

    Article  CAS  PubMed  Google Scholar 

  1878. Pérez-Bonilla M, Oves-Costales D, de la Cruz M, Kokkini M, Martín J, Vicente F, Genilloud O, Reyes F (2018) Phocoenamicins B and C, new antibacterial spirotetronates isolated from a marine Micromonospora sp. Mar Drugs 16:95

    Article  PubMed  PubMed Central  Google Scholar 

  1879. Xiao Y, Li S, Niu S, Ma L, Zhang G, Zhang H, Zhang G, Ju J, Zhang C (2011) Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase. J Am Chem Soc 133:1092

    Article  CAS  PubMed  Google Scholar 

  1880. Niu S, Hu T, Li S, Xiao Y, Ma L, Zhang G, Zhang H, Yang X, Ju J, Zhang C (2011) Characterization of a sugar-O-methyltransferase TiaS5 affords new tiacumicin analogues with improved antibacterial properties and reveals substrate promiscuity. ChemBioChem 12:1740

    Article  CAS  PubMed  Google Scholar 

  1881. Zhang H, Tian X, Pu X, Zhang Q, Zhang W, Zhang C (2018) Tiacumicin congeners with improved antibacterial activity from a halogenase-inactivated mutant. J Nat Prod 81:1219

    Article  CAS  PubMed  Google Scholar 

  1882. Erb W, Zhu J (2013) From natural product to marketed drug: the tiacumicin odyssey. Nat Prod Rep 30:161

    Article  CAS  PubMed  Google Scholar 

  1883. Dorst A, Gademann K (2020) Chemistry and biology of the clinically used macrolactone antibiotic fidaxomicin. Helv Chim Acta 103:e2000038

    Article  CAS  Google Scholar 

  1884. Dorst A, Shchelik IS, Schäfle D, Sander P, Gademann K (2020) Synthesis and biological evaluation of iodinated fidaxomicin antibiotics. Helv Chim Acta 103:e2000130

    Article  CAS  Google Scholar 

  1885. Yu Z, Zhang H, Yuan C, Zhang Q, Khan I, Zhu Y, Zhang C (2019) Characterizing two cytochrome P450s in tiacumicin biosynthesis reveals reaction timing for tailoring modifications. Org Lett 21:7679

    Article  CAS  PubMed  Google Scholar 

  1886. Erg W, Grassot J-M, Linder D, Neuville L, Zhu J (2015) Enantioselective synthesis of putative lipiarmycin aglycon related to fidaxomicin/tiacumicin B. Angew Chem Int Ed 54:1929

    Article  Google Scholar 

  1887. Miyatake-Ondozabal H, Kaufmann E, Gademann K (2015) Total synthesis of the protected aglycon of fidaxomicin (tiacumicin B, lipiarmycin A3). Angew Chem Int Ed 54:1933

    Article  CAS  Google Scholar 

  1888. Glaus F, Altmann K-H (2015) Total synthesis of the tiacumicin B (lipiarmycin A3/fidaxomicin) aglycone. Angew Chem Int Ed 54:1937

    Article  CAS  Google Scholar 

  1889. Kaufmann E, Hattori H, Miyatake-Ondozabal H, Gademann K (2015) Total synthesis of the glycosylated macrolide antibiotic fidaxomicin. Org Lett 17:3514

    Article  CAS  PubMed  Google Scholar 

  1890. Cui C, Dai W-M (2018) Total synthesis of laingolide B stereoisomers and assignment of absolute configuration. Org Lett 20:3358

    Article  CAS  PubMed  Google Scholar 

  1891. Hayakawa I, Suzuki K, Okamura M, Funakubo S, Onozaki Y, Kawamura D, Ohyoshi T, Kigoshi H (2017) Total synthesis of biselide E, a marine polyketide. Org Lett 19:5713

    Article  CAS  PubMed  Google Scholar 

  1892. Roulland E (2008) Total synthesis of (+)-oocydin A: application of the Suzuki-Miyaura cross-coupling of 1,1-dichloro-1-alkenes with 9-alkyl 9-BBN. Angew Chem Int Ed 47:3762

    Article  CAS  Google Scholar 

  1893. Nicolaou KC, Tang Y, Wang J (2009) Total synthesis of sporolide B. Angew Chem Int Ed 48:3449

    Article  CAS  Google Scholar 

  1894. Smith III AB, Sfouggatakis C, Risatti CA, Sperry JB, Zhu W, Doughty VA, Tomioka T, Gotchev DB, Bennett CS, Sakamoto S, Atasoylu O, Shirakami S, Bauer D, Takeuchi M, Koyanagi J, Sakamoto Y (2009) Spongipyran synthetic studies. Evolution of a scalable total synthesis of (+)-spongistatin 1. Tetrahedron 65:6489

    Google Scholar 

  1895. O’Brien M, Diéguez-Vázquez A, Hsu D-S, Kraus H, Sumino Y, Ley SV (2008) Azeotropic reflux chromatography: an efficient solution to a difficult separation in the scale-up synthesis of spongistatin 1. Org Biomol Chem 6:1159

    Article  CAS  PubMed  Google Scholar 

  1896. Smith AB III, Razler TM, Ciavarri JP, Hirose T, Ishikawa T, Meis RM (2008) A second-generation total synthesis of (+)-phorboxazole A. J Org Chem 73:1192

    Article  CAS  PubMed  Google Scholar 

  1897. Hoye TR, Danielson ME, May AE, Zhao H (2010) Total synthesis of (–)-callipeltoside A. J Org Chem 75:7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1898. Frost JR, Pearson CM, Snaddon TN, Booth RA, Turner RM, Gold J, Shaw DM, Gaunt MJ, Ley SV (2015) Callipeltosides A, B and C: total syntheses and structural confirmation. Chem Eur J 21:13261

    Article  CAS  PubMed  Google Scholar 

  1899. Lam NYS, Muir G, Challa VR, Britton R, Paterson I (2019) A counterintuitive stereochemical outcome from a chelation-controlled vinylmetal aldehyde addition leads to the configurational reassignment of phormidolide A. Chem Commun 55:9717

    Article  CAS  Google Scholar 

  1900. Larivée A, Unger JB, Thomas M, Wirtz C, Dubost C, Handa S, Fürstner A (2011) The leiodolide B puzzle. Angew Chem Int Ed 50:304

    Article  Google Scholar 

  1901. Heinrich M, Murphy JJ, Ilg MK, Letort A, Flasz JT, Philipps P, Fürstner A (2020) Chagosensine: a riddle wrapped in a mystery inside an enigma. J Am Chem Soc 142:6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1902. Klüppel A, Gille A, Karayel CE, Hiersemann M (2019) Synthesis of a diastereomer of the marine macrolide lytophilippine A. Org Lett 21:2421

    Article  PubMed  Google Scholar 

  1903. Fuwa H, Okuaki Y, Yamagata N, Sasaki M (2015) Total synthesis, stereochemical reassignment, and biological evaluation of (–)-lyngbyaloside B. Angew Chem Int Ed 54:868

    Article  CAS  Google Scholar 

  1904. Fuwa H, Yamagata N, Okuaki Y, Ogata Y, Saito A, Sasaki M (2016) Total synthesis and complete stereostructure of a marine macrolide glycoside, (–)-lyngbyaloside B. Chem Eur J 22:6815

    Article  CAS  PubMed  Google Scholar 

  1905. Chang C-F, Stefan E, Taylor RE (2015) Total synthesis and structural reassignment of lyngbyaloside C highlighted by intermolecular ketene esterification. Chem Eur J 21:10681

    Article  CAS  PubMed  Google Scholar 

  1906. Nicolaou KC, Frederick MO, Aversa RJ (2008) The continuing saga of the marine polyether biotoxins. Angew Chem Int Ed 47:7182

    Article  CAS  Google Scholar 

  1907. Lorente A, Lamariano-Merketegi J, Albericio F, Álvarez M (2013) Tetrahydrofuran-containing macrolides: a fascinating gift from the deep sea. Chem Rev 113:4567

    Article  CAS  PubMed  Google Scholar 

  1908. Shen W, Mao H, Huang Q, Dong J (2015) Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities. Eur J Med Chem 97:747

    Article  CAS  PubMed  Google Scholar 

  1909. Kitson RRA, Moody CJ (2013) Learning from nature: advances in geldanamycin- and radicicol-based inhibitors of Hsp90. J Org Chem 78:5117

    Article  CAS  PubMed  Google Scholar 

  1910. Gallimore AR (2009) The biosynthesis of polyketide-derived polycyclic ethers. Nat Prod Rep 26:266

    Article  CAS  PubMed  Google Scholar 

  1911. Paterson I, Findlay AD (2009) Recent advances in the total synthesis of polyketide natural products as promising anticancer agents. Aust J Chem 62:624

    Article  CAS  Google Scholar 

  1912. Chu M, Patel MG, Pai J-K, Das PR, Puar MS (1996) SCH 53823 and SCH 53825, novel fungal metabolites with phospholipase D inhibitory activity. Bioorg Med Chem Lett 6:579

    Article  CAS  Google Scholar 

  1913. Cai Y-S, Kurtán T, Miao Z-H, Mándi A, Komáromi I, Liu H-L, Ding J, Guo Y-W (2011) Palmarumycins BG1–BG7 and preussomerin BG1: establishment of their absolute configurations using theoretical calculations of electronic circular dichroism spectra. J Org Chem 76:1821

    Article  CAS  PubMed  Google Scholar 

  1914. Ai W, Wei X, Lin X, Sheng L, Wang Z, Tu Z, Yang X, Zhou X, Li J, Liu Y (2014) Guignardins A–F, spirodioxynaphthalenes from the endophytic fungus Guignardia sp. KcF8 as a new class of PTP1B and SIRT1 inhibitors. Tetrahedron 70:5806

    Google Scholar 

  1915. Chen S, Chen D, Cai R, Cui H, Long Y, Lu Y, Li C, She Z (2016) Cytotoxic and antibacterial preussomerins from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. J Nat Prod 79:2397

    Article  CAS  PubMed  Google Scholar 

  1916. Ding H, Zhang D, Zhou B, Ma Z (2017) Inhibitors of BRD4 protein from a marine-derived fungus Alternaria sp. NH-F6. Mar Drugs 15:76

    Google Scholar 

  1917. Yamazaki H, Yagi A, Akaishi M, Kirikoshi R, Takahashi O, Abe T, Chiba S, Takahashi K, Iwakura N, Namikoshi M, Uchida R (2018) Halogenated cladosporols produced by the sodium halide-supplemented fermentation of the plant-associated fungus Cladosporium sp. TMPU1621. Tetrahedron Lett 59:1913

    Google Scholar 

  1918. Liu X, Wang W, Zhao Y, Lai D, Zhou L, Liu Z, Wang M (2018) Total synthesis and structure revision of palmarumycin B6. J Nat Prod 81:1803

    Article  CAS  PubMed  Google Scholar 

  1919. Cai Y-S, Guo Y-W, Krohn K (2010) Structure, bioactivities, biosynthetic relationships and chemical synthesis of the spirodioxynaphthalenes. Nat Prod Rep 27:1840

    Article  CAS  PubMed  Google Scholar 

  1920. Motohashi K, Sue M, Furihata K, Ito S, Seto H (2008) Terpenoids produced by actinomycetes: napyradiomycins from Streptomyces antimycoticus NT17. J Nat Prod 71:595

    Article  CAS  PubMed  Google Scholar 

  1921. Yamamoto K, Tashiro E, Motohashi K, Seto H, Imoto M (2012) Napyradiomycin A1, an inhibitor of mitochondrial complexes I and II. J Antibiot 65:211

    Article  CAS  Google Scholar 

  1922. Winter JM, Jansma AL, Handel TM, Moore BS (2009) Formation of the pyridazine natural product azamerone by biosynthetic rearrangement of an aryl diazoketone. Angew Chem Int Ed 48:767

    Article  CAS  Google Scholar 

  1923. Nawrat CC, Moody CJ (2011) Natural products containing a diazo group. Nat Prod Rep 28:1426

    Article  CAS  PubMed  Google Scholar 

  1924. Wu Z, Li S, Li J, Chen Y, Saurav K, Zhang Q, Zhang H, Zhang W, Zhang W, Zhang S, Zhang C (2013) Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs 11:2113

    Google Scholar 

  1925. Cheng Y-B, Jensen PR, Fenical W (2013) Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. Eur J Org Chem: 3751

    Google Scholar 

  1926. Farnaes L, Coufal NG, Kauffman CA, Rheingold AL, DiPasquale AG, Jensen PR, Fenical W (2014) Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis. J Nat Prod 77:15

    Article  CAS  PubMed  Google Scholar 

  1927. Farnaes L, La Clair JJ, Fenical W (2014) Napyradiomycins CNQ525.510B and A80915C target the Hsp90 paralogue Grp94. Org Biomol Chem 12:418

    Google Scholar 

  1928. Lacret R, Pérez-Victoria I, Oves-Costales D, de la Cruz M, Domingo E, Martín J, Díaz C, Vicente F, Genilloud O, Reyes F (2016) MDN-0170, a new napyradiomycin from Streptomyces sp. strain CA-271078. Mar Drugs 14:188

    Google Scholar 

  1929. Carretero-Molina D, Ortiz-López FJ, Martín J, Oves-Costales D, Díaz C, de la Cruz M, Cautain B, Vicente F, Genilloud O, Reyes F (2020) New napyradiomycin analogues from Streptomyces sp. strain CA-271078. Mar Drugs 18:22

    Google Scholar 

  1930. Hwang JS, Kim GJ, Choi HG, Kim MC, Hahn D, Nam J-W, Nam S-J, Kwon HC, Chin J, Cho SJ, Hwang H, Choi H (2017) Identification of antiangiogenic potential and cellular mechanisms of napyradiomycin A1 isolated from the marine-derived Streptomyces sp. YP127. J Nat Prod 80:2269

    Google Scholar 

  1931. Pereira F, Almeida JR, Paulino M, Grilo IR, Macedo H, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP (2020) Antifoling napyradiomycins from marine-derived actinomycetes Streptomyces aculeolatus. Mar Drugs 18:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1932. Snyder SA, Tang Z-Y, Gupta R (2009) Enantioselective total synthesis of (–)-napyradiomycin A1 via asymmetric chlorination of an isolated olefin. J Am Chem Soc 131:5744

    Article  CAS  PubMed  Google Scholar 

  1933. McKinnie SMK, Miles ZD, Jordan PA, Awakawa T, Pepper HP, Murray LAM, George JH, Moore BS (2018) Total enzyme syntheses of napyradiomycins A1 and B1. J Am Chem Soc 140:17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1934. Feng Z, Chakraborty D, Dewell SB, Reddy BVB, Brady SF (2012) Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J Am Chem Soc 134:2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1935. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI (2017) Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci 8:3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1936. Qin Z, Devine R, Booth TJ, Farrar EHE, Grayson MN, Hutchings MI, Wilkinson B (2020) Formicamycin biosynthesis involves a unique reductive ring contraction. Chem Sci 11:8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1937. Fukumoto A, Kim Y-P, Iwatsuki M, Hirose T, Sunazuka T, Hanaki H, Ōmura S, Shiomi K (2017) Naphthacemycins, novel circumventors of β-lactam resistance in MRSA, produced by Streptomyces sp. KB-3346-5. II. Structure elucidation. J Antibiot 70:568

    Google Scholar 

  1938. Huo C, Zheng Z, Xu Y, Ding Y, Zheng H, Mu Y, Niu Y, Gao J, Lu X (2020) Naphthacemycins from a Streptomyces sp. as protein-tyrosine phosphatase inhibitors. J Nat Prod 83:1394

    Google Scholar 

  1939. Yuan J, Wang L, Ren J, Huang J-P, Yu M, Tang J, Yan Y, Yang J, Huang S-X (2020) Antibacterial pentacyclic polyketides from a soil-derived Streptomyces. J Nat Prod 83:1919

    Article  CAS  PubMed  Google Scholar 

  1940. Qin Z, Devine R, Hutchings MI, Wilkinson B (2019) A role for antibiotic biosynthesis monooxygenase domain proteins in fidelity control during aromatic polyketide biosynthesis. Nature Commun 10:3611

    Article  Google Scholar 

  1941. Sakoulas G, Nam S-J, Loesgen S, Fenical W, Jensen PR, Nizet V, Hensler M (2012) Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus. PLoS One 7:e29439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1942. Kaysser L, Bernhardt P, Nam S-J, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS (2012) Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J Am Chem Soc 134:11988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1943. Kaysser L, Bernhardt P, Nam S-J, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS (2014) Correction to “Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases.” J Am Chem Soc 136:14626

    Article  CAS  PubMed Central  Google Scholar 

  1944. Ryu M-J, Hwang S, Kim S, Yang I, Oh D-C, Nam S-J, Fenical W (2019) Meroindenon and merochlorins E and F, antibacterial meroterpenoids from a marine-derived sediment bacterium of the genus Streptomyces. Org Lett 21:5779

    Article  CAS  PubMed  Google Scholar 

  1945. Miles ZD, Diethelm S, Pepper HP, Huang DM, George JH, Moore BS (2017) A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis. Nature Chem 9:1235

    Article  CAS  Google Scholar 

  1946. Pepper HP, George JH (2013) Biomimetic total synthesis of (±)-merochlorin A. Angew Chem Int Ed 52:12170

    Article  CAS  Google Scholar 

  1947. Meier R, Strych S, Trauner D (2014) Biomimetic synthesis of (±)-merochlorin B. Org Lett 16:2634

    Article  CAS  PubMed  Google Scholar 

  1948. Pepper HP, George JH (2015) The biosynthesis and biomimetic synthesis of merochlorins A and B. Synlett 26:2485

    Article  CAS  Google Scholar 

  1949. Yang H, Liu X, Li Q, Li L, Zhang J-R, Tang Y (2016) Total synthesis and preliminary SAR study of (±)-merochlorins A and B. Org Biomol Chem 14:198

    Article  CAS  PubMed  Google Scholar 

  1950. Brandstätter M, Freis M, Huwyler N, Carreira EM (2019) Total synthesis of (–)-merochlorin A. Angew Chem Int Ed 58:2490

    Article  Google Scholar 

  1951. Sloman DL, Bacon JW, Porco JA Jr (2011) Total synthesis and absolute stereochemical assignment of kibdelone C. J Am Chem Soc 133:9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1952. Butler JR, Wang C, Bian J, Ready JM (2011) Enantioselective total synthesis of (–)-kibdelone C. J Am Chem Soc 133:9956

    Article  CAS  PubMed  Google Scholar 

  1953. Dai Y, Ma F, Shen Y, Xie T, Gao S (2018) Convergent synthesis of kibdelone C. Org Lett 20:2872

    Article  CAS  PubMed  Google Scholar 

  1954. Winter DK, Endoma-Arias MA, Hudlicky T, Beutler JA, Porco JA Jr (2013) Enantioselective total synthesis and biological evaluation of (+)-kibdelone A and a tetrahydroxanthone analogue. J Org Chem 78:7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1955. Chlipala GE, Sturdy M, Krunic A, Lantvit DD, Shen Q, Porter K, Swanson SM, Orjala J (2010) Cylindrocyclophanes with proteasome inhibitory activity from the cyanobacterium Nostoc sp. J Nat Prod 73:1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1956. Kang H-S, Santarsiero BD, Kim H, Krunic A, Shen Q, Swanson SM, Chai H, Kinghorn AD, Orjala J (2012) Merocyclophanes A and B, antiproliferative cyclophanes from the cultured terrestrial cyanobacterium Nostoc sp. Phytochemistry 79:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1957. Luo S, Kang H-S, Krunic A, Chlipala GE, Cai G, Chen W-L, Franzblau SG, Swanson SM, Orjala J (2014) Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedron Lett 55:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1958. Preisitsch M, Harmrolfs K, Pham HTL, Heiden SE, Füssel A, Wiesner C, Pretsch A, Swiatecka-Hagenbruch M, Niedermeyer THJ, Müller R, Mundt S (2015) Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J Antibiot 68:165

    Google Scholar 

  1959. Preisitsch M, Niedermeyer THJ, Heiden SE, Neidhardt I, Kumpfmüller J, Wurster M, Harmrolfs K, Wiesner C, Enke H, Müller R, Mundt S (2016) Cylindrofridins A-C, linear cylindrocyclophane-related alkylresorcinols from the cyanobacterium Cylindrospermum stagnale. J Nat Prod 79:106

    Article  CAS  PubMed  Google Scholar 

  1960. Nakamura H, Hamer HA, Sirasani G, Balskus EP (2012) Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center. J Am Chem Soc 134:18518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1961. Nakamura H, Balskus EP (2013) Using chemical knowledge to uncover new biological function: discovery of the cylindrocyclophane biosynthetic pathway. Synlett 24:1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1962. Nakamura H, Wang JX, Balskus EP (2015) Assembly line termination in cylindrocyclophane biosynthesis: discovery of an editing type II thioesterase domain in a type I polyketide synthase. Chem Sci 6:3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1963. Preisitsch M, Heiden SE, Beerbaum M, Niedermeyer THJ, Schneefeld M, Herrmann J, Kumpfmüller J, Thürmer A, Neidhardt I, Wiesner C, Daniel R, Müller R, Bange F-C, Schmieder P, Schweder T, Mundt S (2016) Effects of halide ions on the carbamidocyclophane biosynthesis in Nostoc sp. CAVN2. Mar Drugs 14:21

    Google Scholar 

  1964. Nakamura H, Schultz EE, Balskus EP (2017) A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat Chem Biol 13:916

    Article  CAS  PubMed  Google Scholar 

  1965. Hoye TR, Humpal PE, Moon B (2000) Total synthesis of (–)-cylindrocyclophane A via a double Horner-Emmons macrocyclic dimerization event. J Am Chem Soc 122:4982

    Article  CAS  Google Scholar 

  1966. Smith III AB, Adams CM, Kozmin SA, Paone DV (2001) Total synthesis of (–)-cylindrocyclophanes A and F exploiting the reversible nature of the olefin cross metathesis reaction. J Am Chem Soc 123:5925

    Article  CAS  PubMed  Google Scholar 

  1967. Yamakoshi H, Ikarashi F, Minami M, Shibuya M, Sugahara T, Kanoh N, Ohori H, Shibata H, Iwabuchi Y (2009) Syntheses of naturally occurring cytotoxic [7.7]paracyclophanes, (–)-cyclindrocyclophane A and its enantiomer, and implications for biological activity. Org Biomol Chem 7:3772

    Google Scholar 

  1968. Nicolaou KC, Sun Y-P, Korman H, Sarlah D (2010) Asymmetric total synthesis of cylindrocyclophanes A and F through cyclodimerization and a Ramberg-Bäcklund reaction. Angew Chem Int Ed 49:5875

    Article  CAS  Google Scholar 

  1969. Qin J, Su H, Zhang Y, Gao J, Zhu L, Wu X, Pan H, Li X (2010) Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 20:7152

    Article  CAS  PubMed  Google Scholar 

  1970. Murakami S, Takahashi Y, Naganawa H, Takeuchi T, Aoyagi T (1995) Belactins A and B, new serine carboxypeptidase inhibitors produced by actinomycete. II. Physico-chemical properties, structure determinations and enzymatic inhibitory activities compared with other ß-lactone containing inhibitors. J Enzym Inhibit 9:277

    Google Scholar 

  1971. Murakami S, Takahashi Y, Takeuchi T, Kodama Y, Aoyagi T (1999) The absolute configuration of belactin A, a ß-lactone-containing serine carboxypeptidase inhibitor: importance of the ß-lactone structure for serine carboxypeptidase inhibition. J Enzym Inhibit 14:437

    Article  CAS  Google Scholar 

  1972. Rehman NU, Rafiq K, Khan A, Halim SA, Ali L, Al-Saady N, Al-Balushi AH, Al-Busaidi HK, Al-Harrasi A (2019) α-Glucosidase inhibition and molecular docking studies of natural brominated metabolites from marine macro brown alga Dictyopteris hoytii. Mar Drugs 17:666

    Article  CAS  Google Scholar 

  1973. Baumeister TUH, Staudinger M, Wirgenings M, Pohnert G (2019) Halogenated anilines as novel natural products from a marine biofilm forming microalga. Chem Commun 55:11948

    Article  CAS  Google Scholar 

  1974. Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G, Wright PR, Menche D, Schäberle TF, König GM (2013) Salimabromide: unexpected chemistry from the obligate marine myxobacterium Enhygromxya salina. Chem Eur J 19:9319

    Article  CAS  PubMed  Google Scholar 

  1975. Schmid M, Grossmann AS, Wurst K, Magauer T (2018) Total synthesis of salimabromide: a tetracyclic polyketide from a marine myxobacterium. J Am Chem Soc 140:8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1976. Schmid M, Grossmann AS, Mayer P, Müller T, Magauer T (2019) Ring-expansion approaches for the total synthesis of salimabromide. Tetrahedron 75:3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1977. Palm A, Knopf C, Schmalzbauer B, Menche D (2019) Enantioselective total synthesis of (+)-salimabromide reveals almost racemic nature of natural salimabromide. Org Lett 21:1939

    Article  CAS  PubMed  Google Scholar 

  1978. Cartagena E, Marcinkevicius K, Luciardi C, Rodríguez G, Bardón A, Arena ME (2014) Activity of a novel compound produced by Aspergillus parasiticus in the presence of red flour beetle Tribolium castaneum against Pseudomonas aeruginosa and coleopteran insects. J Pest Sci 87:521

    Article  Google Scholar 

  1979. Chan QHS, Zolensky ME, Kebukawa Y, Fries M, Ito M, Steele A, Rahman Z, Nakato A, Kilcoyne ALD, Suga H, Takahashi Y, Takeichi Y, Mase K (2018) Organic matter in extraterrestrial water-bearing salt crystals. Sci Adv 4:eaao3521

    Google Scholar 

  1980. Eigenrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam AC, Franz HB, Glavin DP, Archer PD Jr, Mahaffy PR, Conrad PG, Hurowitz JA, Grotzinger JP, Gupta S, Ming DW, Sumner DY, Szopa C, Malespin C, Buch H, Coll P (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360:1096

    Google Scholar 

  1981. Führer U, Deißler A, Ballschmiter K (1996) Determination of biogenic halogenated methyl-phenyl ethers (halogenated anisoles) in the picogram m-3 range in air. Fresenius J Anal Chem 354:333

    Article  Google Scholar 

  1982. Bouman EAP, Dusbábek F, Šimek P, Zahradníèková H (2003) Methyl 3-chloro-4-methoxybenzoate, a new candidate semiochemical inhibiting copulation behaviour of Ixodes ricinus (L.) males. Physiol Entomol 28:276

    Google Scholar 

  1983. Chen J-J, Lin W-J, Liao C-H, Shieh P-C (2007) Anti-inflammatory benzenoids from Antrodia camphorata. J Nat Prod 70:989

    Article  CAS  PubMed  Google Scholar 

  1984. Morris HR, Masento MS, Taylor GW, Jermyn KA, Kay RR (1988) Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mold Dictyostelium discoideum. Biochem J 249:903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1985. Omata W, Shibata H, Nagasawa M, Kojima I, Kikuchi H, Oshima Y, Hosaka K, Kubohara Y (2007) Dictyostelium differentiation-inducing factor-1 induces glucose transporter 1 translocation and promotes glucose uptake in mammalian cells. FEBS J 274:3392

    Article  CAS  PubMed  Google Scholar 

  1986. Kubohara Y, Kikuchi H, Oshima Y (2008) Exploitation of the derivatives of Dictyostelium differentiation-inducing factor-1, which promote glucose consumption in mammalian cells. Life Sci 83:608

    Article  CAS  PubMed  Google Scholar 

  1987. Labbé C, Faini F, Villagrán C, Coll J, Rycroft DS (2007) Bioactive polychlorinated bibenzyls from the liverwort Riccardia polyclada. J Nat Prod 70:2019

    Article  PubMed  Google Scholar 

  1988. Chen X-Q, Li Y, He J, Wang K, Li M-M, Pan Z-H, Peng L-Y, Cheng X, Zhao Q-S (2009) Four new lignans from Viburnum foetidum var. foedidum. Chem Pharm Bull 57:1129

    Google Scholar 

  1989. Ziaratnia SM, Ohyama K, Hussein AB-F, Muranaka T, Lall N, Kunert KJ, Meyer JJM (2009) Isolation and identification of a novel chlorophenol from a cell suspension culture of Helichrysum aureonitens. Chem Pharm Bull 57:1282

    Article  CAS  Google Scholar 

  1990. Al-Zereini W, Schuhmann I, Laatsch H, Helmke E, Anke H (2007) New aromatic nitro compounds from Salegentibacter sp. T436, an Arctic Sea ice bacterium: taxonomy, fermentation, isolation and biological activities. J Antibiot 60:301

    Google Scholar 

  1991. Schuhmann I, Yao CBF-F, Al-Zereini W, Anke H, Helmke E, Laatsch H (2009) Nitro derivatives from the Arctic ice bacterium Salegentibacter sp. isolate T436. J Antibiot 62:453

    Google Scholar 

  1992. Klausmeyer P, Howard OMZ, Shipley SM, McCloud TG (2009) An inhibitor of CCL2-induced chemotaxis from the fungus Leptoxyphium sp. J Nat Prod 72:1369

    Article  CAS  PubMed  Google Scholar 

  1993. Hosono K, Ogihara J, Ohdake T, Masuda S (2009) LL-Z1272α epoxide, a precursor of ascochlorin produced by a mutant of Ascochyta viciae. J Antibiot 62:571

    Article  CAS  Google Scholar 

  1994. Kikuchi H, Ishiko S, Nakamura K, Kubohara Y, Oshima Y (2010) Novel prenylated and geranylated aromatic compounds isolated from Polysphondylium cellular slime molds. Tetrahedron 66:6000

    Article  CAS  Google Scholar 

  1995. Hiebl J, Lehnert K, Vetter W (2011) Identification of a fungi-derived terrestrial halogenated natural product in wild boar (Sus scrofa). J Agric Food Chem 59:6188

    Article  CAS  PubMed  Google Scholar 

  1996. Wang T, Rabe P, Citron CA, Dickschat JS (2013) Halogenated volatiles from the fungus Geniculosporium and the actinomycete Streptomyces chartreusis. Beilstein J Org Chem 9:2767

    Article  PubMed  PubMed Central  Google Scholar 

  1997. Wang Z-H, Huang J, Ma X-C, Li G-Y, Ma Y-P, Li N, Wang J-H (2013) Phenolic glycosides from Curculigo orchioides Gaertn. Fitoterapia 86:64

    Article  CAS  PubMed  Google Scholar 

  1998. Chen X, Zuo A, Deng Z, Huang X, Zhang X, Geng C, Li T, Chen J (2017) New phenolic glycosides from Curculigo orchioides and their xanthine oxidase inhibitory activities. Fitoterapia 122:144

    Article  CAS  PubMed  Google Scholar 

  1999. Zhao M, Da-Wa Z-M, Gu Y-C, Guo D-L, Ye Y, Ding L-S, Zhou Y (2017) Three new chlorinated phenolic glycosides from Przewalskia tangutica. Phytochem Lett 20:168

    Article  CAS  Google Scholar 

  2000. Lou L-L, Li L-G, Liu Q-B, Li D-Q, Liu Z-X, Huang X-X, Song S-J (2016) 3,3′-Neolignans from Pithecellobium clypearia Benth. and their anti-inflammatory activity. Fitoterapia 112:16

    Article  CAS  PubMed  Google Scholar 

  2001. Shang S-Z, Yan J-M, Zhang H-B, Shi Y-M, Gao Z-H, Du X, Li Y, Xiao W-L, Sun H-D (2012) Two new neolignans from Manglietia insignis. Nat Prod Bioprospect 2:227

    Article  CAS  PubMed Central  Google Scholar 

  2002. Shiono Y, Miyazaki N, Murayama T, Koseki T, Harizon KDG, Supratman U, Nakata J, Kakihara Y, Saeki M, Yoshida J, Uesugi S, Kimura K (2016) GSK-3β inhibitory activities of novel dichroloresorcinol derivatives from Cosmospora vilior isolated from a mangrove plant. Phytochem Lett 18:122

    Article  CAS  Google Scholar 

  2003. Shiono Y, Muslihah NI, Suzuki T, Arefta NR, Anwar C, Nurjanto HH, Aboshi T, Murayama T, Tawaraya K, Koseki T, Yoshida J, Usukhbayar N, Uesugi S, Kimura K (2017) New eremophilane and dichlororesorcinol derivatives produced by endophytes isolated from Ficus ampelas. J Antibiot 70:1133

    Article  CAS  Google Scholar 

  2004. Masi M, Cimmino A, Boari A, Zonno MC, Górecki M, Pescitelli G, Tuzi A, Vurro M, Evidente A (2017) Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyran-2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron 73:6644

    Article  CAS  Google Scholar 

  2005. Verastegui-Omaña B, Rebollar-Ramos D, Pérez-Vásquez A, Martínez AL, Madariaga-Mazón A, Flores-Bocanegra L, Mata R (2017) α-Glucosidase inhibitors from Malbranchea flavorosea. J Nat Prod 80:190

    Article  PubMed  Google Scholar 

  2006. Hassan AR, El-Kousy SM, El-Toumy SA, Frydenvang K, Tung TT, Olsen J, Nielsen J, Christensen SB (2017) Metformin, an anthropogenic contaminant of Seidlitzia rosmarinus collected in a desert region near the Gulf of Aqaba, Sinai Peninsula. J Nat Prod 80:2830

    Article  CAS  PubMed  Google Scholar 

  2007. Kikuchi H, Ito I, Takahashi K, Ishigaki H, Iizumi K, Kubohara Y, Oshima Y (2017) Isolation, synthesis, and biological activity of chlorinated alkylresorcinols from Dictyostelium cellular slime molds. J Nat Prod 80:2716

    Article  CAS  PubMed  Google Scholar 

  2008. Joulain D, Tabacchi R (2009) Lichen extracts as raw materials in perfumery. Part 1: oakmoss. Flavour Fragr J 24:49

    Google Scholar 

  2009. Garvie LAJ, Wilkens B, Groy TL, Glaeser JA (2015) Substantial production of drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by the lignicolous basidiomycete Phellinus badius in the heartwood of mesquite (Prosopis juliflora) trees. Sci Nat 102:18

    Article  Google Scholar 

  2010. Sefton MA, Simpson RF (2005) Compounds causing cork taint and the factors affecting their transfer from natural cork closures to wine—a review. Aust J Grape Wine Res 11:226

    Article  CAS  Google Scholar 

  2011. Jönsson S, Hagberg J, van Bavel B (2008) Determination of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole in wine using microextraction in packed syringe and gas chromatography-mass spectrometry. J Agric Food Chem 56:4962

    Article  PubMed  Google Scholar 

  2012. Siegmund B, Pöllinger-Zierler B (2007) Growth behavior of off-flavor-forming microorganisms in apple juice. J Agric Food Chem 55:6692

    Article  CAS  PubMed  Google Scholar 

  2013. Schroeder M, Pöllinger-Zierler B, Aichernig N, Siegmund B, Guebitz GM (2008) Enzymatic removal of off-flavors from apple juice. J Agric Food Chem 56:2485

    Article  CAS  PubMed  Google Scholar 

  2014. Perez-Cacho PR, Rouseff R (2008) Processing and storage effects on orange juice aroma: a review. J Agric Food Chem 56:9785

    Article  PubMed  Google Scholar 

  2015. Wells, D (2007) Organohalogen taints in foods. Australian Food Grocery Council, 1

    Google Scholar 

  2016. Li K, Li X-M, Ji N-Y, Wang B-G (2007) Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg Med Chem 15:6627

    Article  CAS  PubMed  Google Scholar 

  2017. Hodgkin JH, Craigie JS, McInnes AG (1966) The occurrence of 2,3-dibromobenzyl alcohol 4,5-disulfate, dipotassium salt, in Polysiphonia lanosa. Can J Chem 44:74

    Article  CAS  Google Scholar 

  2018. Kurata K, Amiya T, Yabe K (1973) Studies on the constituents of a red marine alga, Odonthalia corymbifera. Bull Jpn Soc Sci Fish 39:973

    Article  CAS  Google Scholar 

  2019. Duan X-J, Li X-M, Wang B-G (2007) Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity. J Nat Prod 70:1210

    Article  CAS  PubMed  Google Scholar 

  2020. Chen L, Fang Y, Zhu T, Gu Q, Zhu W (2008) Gentisyl alcohol derivatives from the marine-derived fungus Penicillium terrestre. J Nat Prod 71:66

    Article  CAS  PubMed  Google Scholar 

  2021. Pontius A, Mohamed I, Krick A, Kehraus S, König GM (2008) Aromatic polyketides from marine algicolous fungi. J Nat Prod 71:272

    Article  CAS  PubMed  Google Scholar 

  2022. Buchanan MS, Carroll AR, Wessling D, Jobling M, Avery VM, Davis RA, Feng Y, Xue Y, Öster L, Fex T, Deinum J, Hooper JNA, Quinn RJ (2008) Clavatadine A, a natural product with selective recognition and irreversible inhibition of factor XIa. J Med Chem 51:3583

    Article  CAS  PubMed  Google Scholar 

  2023. Conn SJ, Vreeland SM, Wexler AN, Pouwer RN, Quinn RJ, Chamberland S (2015) Total synthesis of clavatadine A. J Nat Prod 78:120

    Article  CAS  PubMed  Google Scholar 

  2024. Jin HJ, Oh MY, Jin DH, Hong YK (2008) Identification of a Taq DNA polymerase inhibitor from the red seaweed Symphyocladia latiuscula. J Environ Biol 29:475

    CAS  PubMed  Google Scholar 

  2025. Lim C-W, Lee J-S, Cho Y-J (2000) Structures and some properties of the antimicrobial compounds in the red alga, Symphyocladia latiuscula. Korean Fish Soc 33:280

    CAS  Google Scholar 

  2026. Badr JM, Shaala LA, Abou-Shoer MI, Tawfik MK, Habib A-AM (2008) Bioactive brominated metabolites from the red sea sponge Pseudoceratina arabica. J Nat Prod 71:1472

    Article  CAS  PubMed  Google Scholar 

  2027. Liu Q-W, Qiao Q-A, Zhang T, Sun L-X, Wang M-S (2009) The structure elucidation of a new bromophenol metabolite from Polysiphonia urceolata by experimental and DFT theoretical methods. J Mol Struct 929:1

    Article  CAS  Google Scholar 

  2028. Zhang P, Bao B, Dang HT, Hong J, Lee HJ, Yoo ES, Bae KS, Jung JH (2009) Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 72:270

    Article  CAS  PubMed  Google Scholar 

  2029. Xu X, Song F, Fan X, Fang N, Shi J (2009) A novel bromophenol from marine red alga Symphyocladia latiuscula. Chem Nat Compd 45:811

    Article  CAS  Google Scholar 

  2030. Kim J-K, Noh JH, Lee S, Choi JS, Suh H, Chung HY, Song Y-O, Choi WC (2002) The first total synthesis of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) and its antioxidant activity. Bull Korean Chem Soc 23:661

    Article  CAS  Google Scholar 

  2031. Popplewell WL, Northcote PT (2009) Colensolide A: a new nitrogenous bromophenol from the New Zealand marine red alga Osmundaria colensoi. Tetrahedron Lett 50:6814

    Article  CAS  Google Scholar 

  2032. Plaza A, Keffer JL, Bifulco G, Lloyd JR, Bewley CA (2010) Chrysophaentins A-H, antibacterial bisdiarylbutene macrocycles that inhibit the bacterial cell division protein FtsZ. J Am Chem Soc 132:9069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2033. Li K, Li X-M, Gloer JB, Wang B-G (2011) Isolation, characterization, and antioxidant activity of bromophenols of the marine red alga Rhodomela confervoides. J Agric Food Chem 59:9916

    Article  CAS  PubMed  Google Scholar 

  2034. Rob T, Ogi T, Maarisit W, Taira J, Ueda K (2011) Isolation of C11 compounds and a cyclopropane fatty acid from an Okinawan ascidian, Diplosoma sp. Molecules 16:9972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2035. Feng Y, Bowden BF, Kapoor V (2012) Ianthellamide A, a selective kynurenine-3-hydroxylase inhibitor from the Australian marine sponge Ianthella quadrangulata. Bioorg Med Chem Lett 22:3398

    Article  CAS  PubMed  Google Scholar 

  2036. Li K, Li X-M, Gloer JB, Wang B-G (2012) New nitrogen-containing bromophenols from the marine red alga Rhodomela confervoides and their radical scavenging activity. Food Chem 135:868

    Article  CAS  PubMed  Google Scholar 

  2037. Xu X, Piggott AM, Yin L, Capon RJ, Song F (2012) Symphyocladins A-G: bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula. Tetrahedron Lett 53:2103

    Article  CAS  Google Scholar 

  2038. Xu X, Yin L, Fang N, Fan X, Song F (2012) Bromophenol coupled with diketopiperazine from marine red alga Symphyocladia latiuscula. Chem Nat Compd 48:622

    Article  Google Scholar 

  2039. Xu X, Yin L, Gao L, Gao J, Chen J, Li J, Song F (2013) Two new bromophenols with radical scavenging activity from marine red alga Symphyocladia latiuscula. Mar Drugs 11:842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2040. Xu X, Yin L, Wang Y, Wang S, Song F (2013) A new bromobenzyl methyl sulphoxide from marine red alga Symphyocladia latiuscula. Nat Prod Res 27:723

    Article  CAS  PubMed  Google Scholar 

  2041. Xu X, Yang H, Khalil ZG, Yin L, Xiao X, Neupane P, Bernhardt PV, Salim AA, Song F, Capon RJ (2017) Chemical diversity from a Chinese marine red alga, Symphyocladia latiuscula. Mar Drugs 15:374

    Article  PubMed  PubMed Central  Google Scholar 

  2042. Xu X, Yang H, Khalil ZG, Yin L, Xiao X, Salim AA, Song F, Capon RJ (2019) Bromocatechol conjugates from a Chinese marine red alga, Symphyocladia latiuscula. Phytochemistry 158:20

    Article  CAS  PubMed  Google Scholar 

  2043. Fu P, Kong F, Wang Y, Wang Y, Liu P, Zuo G, Zhu W (2013) Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ-1703. Chin J Chem 31:100

    Google Scholar 

  2044. Moore SL, Berthomier L, Braganza CD, MacKichan JK, Ryan JL, Visnovsky G, Keyzer RA (2016) Identification, library synthesis and anti-vibriosis activity of 2-benzyl-4-chlorophenol from cultures of the marine bacterium Shewanella halifaxensis. Bioorg Med Chem Lett 26:3086

    Article  CAS  PubMed  Google Scholar 

  2045. Mikami D, Kurihara H, Ono M, Kim SM, Takahashi K (2016) Inhibition of algal bromophenols and their related phenols against glucose 6-phosphate dehydrogenase. Fitoterapia 108:20

    Article  CAS  PubMed  Google Scholar 

  2046. Michael P, Hansen KØ, Isaksson J, Andersen JH, Hansen E (2017) A novel brominated alkaloid securidine A, isolated from the marine bryozoan Securiflustra securifrons. Molecules 22:1236

    Article  PubMed  PubMed Central  Google Scholar 

  2047. Tadesse M, Strøm MB, Svenson J, Jaspars M, Milne BF, Tørfoss V, Andersen JH, Hansen E, Stensvåg K, Haug T (2010) Synoxazolidinones A and B: novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org Lett 12:4752

    Article  CAS  PubMed  Google Scholar 

  2048. Tadesse M, Svenson J, Sepčić K, Trembleau L, Engqvist M, Andersen JH, Jaspars M, Stensvåg K, Haug T (2014) Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J Nat Prod 77:364

    Article  CAS  PubMed  Google Scholar 

  2049. Cheng C, Balasubramanian S, Fekete A, Krischke M, Mueller MJ, Hentschel U, Oelschlaeger TA, Abdelmohsen UR (2017) Inhibitory potential of strepthonium A against Shiga toxin production in enterohemorrhagic Escherichia coli (EHEC) strain EDL933. Nat Prod Res 31:2818

    Article  CAS  PubMed  Google Scholar 

  2050. Islam MR, Mikami D, Kurihara H (2017) Two new algal bromophenols from Odonthalia corymbifera. Tetrahedron Lett 58:4119

    Article  CAS  Google Scholar 

  2051. Han Z, Li Y-X, Liu L-L, Lu L, Guo X-R, Zhang X-X, Zhang X-Y, Qi S-H, Xu Y, Qian P-Y (2017) Thielavins W–Z7, new antifouling thielavins from the marine-derived fungus Thielavia sp. UST030930-004. Mar Drugs 15:128

    Google Scholar 

  2052. Wang W, Li S, Chen Z, Li Z, Liao Y, Chen J (2017) Secondary metabolites produced by the deep-sea-derived fungus Engyodontium album. Chem Nat Compd 53:224

    Article  CAS  Google Scholar 

  2053. Wu Z, Li Y, Liu D, Ma M, Chen J, Lin W (2017) New resorcinol derivatives from a sponge-derived fungus Hansfordia sinuosae. Chem Biodivers 14:e1700059

    Article  Google Scholar 

  2054. Suzuki T, Yoshida S, Koseki T, Aboshi T, Murayama T, Supratman U, Shiono Y (2018) New metabolites produced by Cylindrocarpon sp. SY-39 from a driftwood. Chem Biodivers 15:e1700493

    Google Scholar 

  2055. Costa M, Sampaio-Dias IE, Castelo-Branco R, Scharfenstein H, de Castro RR, Silva A, Schneider MPC, Araújo MJ, Martins R, Domingues VF, Nogueira F, Camões V, Vasconcelos VM, Leão PN (2019) Structure of hierridin C, synthesis of hierridins B and C, and evidence for prevalent alkylresorcinol biosynthesis in picocyanobacteria. J Nat Prod 82:393

    Article  CAS  PubMed  Google Scholar 

  2056. Cao D-T, Nguyen T-L, Tran V-H, Doan-Thi-Mai H, Vu-Thi Q, Nguyen M-A, Le-Thi H-M, Chau V-M, Pham V-C (2019) Synthesis, structure and antimicrobial activity of novel metabolites from a marine actinomycete in Vietnam’s East Sea. Nat Prod Commun 14:121

    Google Scholar 

  2057. Niu S, Liu Q, Xia J-M, Xie C-L, Luo Z-H, Shao Z, Liu G, Yang X-W (2018) Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent antifood allergic activities. J Agric Food Chem 66:1369

    Google Scholar 

  2058. Hofer S, Hartmann A, Orfanoudaki M, Ngoc HN, Nagl M, Karsten U, Heesch S, Ganzera M (2019) Development and validation of an HPLC method for the quantitative analysis of bromophenolic compounds in the red alga Vertebrata lanosa. Mar Drugs 17:675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2059. Shaala LA, Youssef DTA, Alzughaibi TA, Elhady SS (2020) Antimicrobial chlorinated 3-phenylpropanoic acid derivatives from the Red Sea marine actinomycete Streptomyces coelicolor LY001. Mar Drugs 18:450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2060. Afonso TB, Costa MS, de Castro RR, Freitas S, Silva A, Schneider MPC, Martins R, Leão PN (2016) Bartolosides E-K from a marine coccoid cyanobacterium. J Nat Prod 79:2504

    Article  CAS  PubMed  Google Scholar 

  2061. Davison JR, Bewley CA (2019) Antimicrobial chrysophaentin analogs identified from laboratory cultures of the marine microalga Chrysophaeum taylorii. J Nat Prod 82:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2062. Abou-Shoer MI, Shaala LA, Youssef DTA, Badr JM, Habib A-AM (2008) Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J Nat Prod 71:1464

    Article  CAS  PubMed  Google Scholar 

  2063. Shaker KH, Zinecker H, Ghani MA, Imhoff JF, Schneider B (2010) Bioactive metabolites from the sponge Suberea sp. Chem Biodivers 7:2880

    Article  CAS  PubMed  Google Scholar 

  2064. Shaala LA, Khalifa SI, Mesbah MK, van Soest RWM, Youssef DTA (2008) Subereaphenol A, a new cytotoxic and antimicrobial dibrominated phenol from the Red Sea sponge Suberea mollis. Nat Prod Commun 3:219

    CAS  Google Scholar 

  2065. Yun K, Kondempudi CM, Choi HD, Kang JS, Son BW (2011) Microbial mannosidation of bioactive chlorogentisyl alcohol by the marine-derived fungus Chrysosporium synchronum. Chem Pharm Bull 59:499

    Article  CAS  Google Scholar 

  2066. Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, Allen EE, Moore BS (2014) Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 10:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2067. Oh K-B, Lee JH, Chung S-C, Shin J, Shin HJ, Kim H-K, Lee H-S (2008) Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorg Med Chem Lett 18:104

    Article  CAS  PubMed  Google Scholar 

  2068. Barrett TN, Braddock DC, Monta A, Webb MR, White AJP (2011) Total synthesis of the marine metabolite (±)-polysiphenol via highly regioselective intramolecular oxidative coupling. J Nat Prod 74:1980

    Article  CAS  PubMed  Google Scholar 

  2069. Bayrak Ç, Taslimi P, Gülçin İ, Menzek A (2017) The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg Chem 72:359

    Article  CAS  PubMed  Google Scholar 

  2070. Rezai M, Bayrak Ç, Taslimi P, Gülçin İ, Menzek A (2018) The first synthesis and antioxidant and anticholinergic activities of 1-(4,5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products. Turk J Chem 43:808

    Google Scholar 

  2071. Bayrak C, Taslimi P, Karaman HS, Gulcin I, Menzek A (2019) The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg Chem 85:128

    Article  CAS  PubMed  Google Scholar 

  2072. Bayrak C, Menzek A (2020) The first synthesis of phenylpropanoid derivative bromophenols including natural products: formation of an indene derivative compound. Tetrahedron 76:131016

    Article  CAS  Google Scholar 

  2073. Cordes J, Wessel C, Harms K, Koert U (2008) meta-Selective aromatic borylation as key step in the synthesis of poipuol. Synthesis, 2217

    Google Scholar 

  2074. Balaydin HT, Şentürk M, Menzek A (2012) Synthesis and carbonic anhydrase inhibitory properties of novel cyclohexanonyl bromophenol derivatives. Bioorg Med Chem Lett 22:1352

    Article  CAS  PubMed  Google Scholar 

  2075. Balaydin HT, Şentürk M, Göksu S, Menzek A (2012) Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives including natural products: vidalol B. Eur J Med Chem 54:423

    Article  CAS  PubMed  Google Scholar 

  2076. Matulja D, Vranješević F, Markovic MK, Pavelić SK, Marković D (2022) Anticancer activities of marine-derived phenolic compounds and their derivatives. Molecules 27:1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2077. Dong H, Dong S, Hansen PE, Stagos D, Lin X, Liu M (2020) Progress of bromophenols in marine algae from 2011 to 2020: structure, bioactivities, and applications. Mar Drugs 18:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2078. Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2079. Boyle JL, Lindsay RC, Stuiber DA (1992) Contributions of bromophenols to marine-associated flavors of fish and seafoods. J Aquatic Food Prod Technol 1:43

    Article  CAS  Google Scholar 

  2080. Boyle JL, Lindsay RC, Stuiber DA (1993) Occurrence and properties of flavor-related bromophenols found in the marine environment: a review. J Aquatic Food Prod Technol 2:75

    Article  CAS  Google Scholar 

  2081. Malleret L, Bruchet A (2002) A taste and odor episode caused by 2,4,6-tribromoanisole. J Am Water Works Assn 94:84

    Article  CAS  Google Scholar 

  2082. Whitfield FB, Hill JL, Shaw KJ (1997) 2,4,6-Tribromoanisole: a potential case of mustiness in packaged food. J Agric Food Chem 45:889

    Article  CAS  Google Scholar 

  2083. Acero JL, Piriou P, von Gunten U (2005) Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development. Water Res 39:2979

    Article  CAS  PubMed  Google Scholar 

  2084. Bendig P, Lehnert K, Vetter W (2014) Quantification of bromophenols in Islay whiskies. J Agric Food Chem 62:2767

    Google Scholar 

  2085. Bidleman TF, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen LM, Nygren O, Poole J, Ripszam M, Tysklind M (2016) Sea-air exchange of bromoanisoles and methoxylated bromodiphenyl ethers in the Northern Baltic. Mar Pollut Bull 112:58

    Article  CAS  PubMed  Google Scholar 

  2086. Bidleman TF, Brorström-Lundén E, Hansson K, Laudon H, Nygren O, Tysklind M (2017) Atmospheric transport and deposition of bromoanisoles along a temperate to Arctic gradient. Environ Sci Technol 51:10974

    Article  CAS  PubMed  Google Scholar 

  2087. Bidleman TF, Andersson A, Brugel S, Ericson L, Haglund P, Kupryianchyk D, Lau DCP, Liljelind P, Lundin L, Tysklind A, Tysklind M (2019) Bromoanisoles and methoxylated bromodiphenyl ethers in macroalgae from Nordic coastal regions. Environ Sci Processes Impacts 21:881

    Article  CAS  Google Scholar 

  2088. Löfstrand K, Malmvärn A, Haglund P, Bignert A, Bergman Å, Asplund L (2010) Brominated phenols, anisoles, and dioxins present in blue mussels from the Swedish coastline. Environ Sci Pollut Res 17:1460

    Article  Google Scholar 

  2089. Carrizo D, Unger M, Holmstrand H, Andersson P, Gustafsson Ö, Sylva SP, Reddy CM (2011) Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environ Chem 8:127

    Article  CAS  Google Scholar 

  2090. Gribble GW, Leese RM, Evans BE (1977) Reactions of sodium borohydride in acidic media. IV. Reduction of diarylmethanols and triarylmethanols in trifluoroacetic acid. Synthesis, 172

    Google Scholar 

  2091. Gribble GW, Nutaitis CF (1985) [1.1.1.1.1]Paracyclophane and [1.1.1.1.1.1]paracyclophane. Tetrahedron Lett 26:6023

    Google Scholar 

  2092. Fan X, Xu NJ, Shi JG (2003) Two new bromophenols from red alga Rhodomela confervoides. Chin Chem Lett 14:939

    CAS  Google Scholar 

  2093. Xu NJ, Fan X, Yang YC, Shi JG (2003) A new poly brominated dibenzylphenol from Rhodomela confervoides. Chin Chem Lett 14:807

    CAS  Google Scholar 

  2094. Li K, Li X-M, Ji N-Y, Wang B-G (2008) Bromophenols from the marine red alga Polysiphonia urceolata with DPPH radical scavenging activity. J Nat Prod 71:28

    Article  CAS  PubMed  Google Scholar 

  2095. Vetter W, Turek C, Marsh G, Gaus C (2008) Identification and quantification of new polybrominated dimethoxybiphenyls (PBDMBs) in marine mammals from Australia. Chemosphere 73:580

    Article  CAS  PubMed  Google Scholar 

  2096. Olsen EK, Hansen E, Isaksson J, Andersen JH (2013) Cellular antioxidant effect of four bromophenols from the red algae, Vertebrata lanosa. Mar Drugs 11:2769

    Article  PubMed  PubMed Central  Google Scholar 

  2097. Xu X, Yin L, Gao J, Gao L, Song F (2014) Antifungal bromophenols from marine red alga Symphyocladia latiuscula. Chem Biodivers 11:807

    Article  CAS  PubMed  Google Scholar 

  2098. Choi YK, Ye B-R, Kim E-A, Kim J, Kim M-S, Lee WW, Ahn G-N, Kang N, Jung W-K, Heo S-J (2018) Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed Pharmacother 103:1170

    Google Scholar 

  2099. Lever J, Curtis G, Brkljača R, Urban S (2019) Bromophenolics from the red alga Polysiphonia decipiens. Mar Drugs 17:497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2100. Song R-Y, Liu Y, Liu R-H, Wang X-B, Li T-X, Kong L-Y, Yang M-H (2017) Benzophenone derivatives from the plant endophytic fungus, Pestalotiopsis sp. Phytochem Lett 22:189

    Article  CAS  Google Scholar 

  2101. Shi D, Li J, Guo S, Su H, Fan X (2009) The antitumor effect of bromophenol derivative in vitro and Leathesia nana extract in vivo. Chin J Oceanol Limnol 27:277

    Article  CAS  Google Scholar 

  2102. Wu N, Luo J, Jiang B, Wang L, Wang S, Wang C, Fu C, Li J, Shi D (2015) Marine bromophenol bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane inhibits the proliferation, migration, and invasion of heptocellular carcinoma cells via modulating β1-integrin/FAK signaling. Mar Drugs 13:1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2103. Oh K-B, Lee JH, Lee JW, Yoon K-M, Chung S-C, Jeon HB, Shin J, Lee H-S (2009) Synthesis and antimicrobial activities of halogenated bis(hydroxyphenyl)methanes. Bioorg Med Chem Lett 19:945

    Article  CAS  PubMed  Google Scholar 

  2104. Oh K-B, Jeon HB, Han Y-R, Lee Y-J, Park J, Lee S-H, Yang D, Kwon M, Shin J, Lee H-S (2010) Bromophenols as Candida albicans isocitrate lyase inhibitors. Bioorg Med Chem Lett 20:6644

    Article  CAS  PubMed  Google Scholar 

  2105. Liu M, Wang G, Xiao L, Xu X, Liu X, Xu P, Lin X (2014) Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar Drugs 12:3838

    Article  PubMed  PubMed Central  Google Scholar 

  2106. Taslimi P, Aslan HE, Demir Y, Oztaskin N, Maraş A, Gulçin I, Beydemir S, Goksu S (2018) Diarylmethanon, bromophenol and diarylmethane compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int J Biol Macromol 119:857

    Article  CAS  PubMed  Google Scholar 

  2107. Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, Wang B, Wang C, Shi D (2015) Marine bromophenol derivative 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol protects hepatocytes from lipid-induced cell damage and insulin resistance via PTP1B inhibition. Mar Drugs 13:4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2108. Luo J, Hou Y, Xie M, Ma W, Shi D, Jiang B (2020) CYC31, a natural bromophenol PTP1B inhibitor, activates insulin signaling and improves long chain-fatty acid oxidation in C2C12 myotubes. Mar Drugs 18:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2109. Balaydin HT, Gülçin Ï, Menzek A, Göksu S, Şahin E (2010) Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J Enzym Inhib Med Chem 25:685

    Article  CAS  Google Scholar 

  2110. Akbaba Y, Balaydm HT, Göksu S, Sahin E, Menzek A (2010) Total synthesis of the biologically active, naturally occurring 3,4-dibromo-5-[2-bromo-3,4-dihydroxy-6-(methoxymethyl)benzyl]benzene-1,2-diol and regioselective O-demethylation of aryl methyl ethers. Helv Chim Acta 93:1127

    Article  CAS  Google Scholar 

  2111. Balaydin HT, Soyut H, Ekinci D, Göksu S, Beydemir Ş, Menzek A, Şahin E (2012) Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols including natural products. J Enzym Inhib Med Chem 27:43

    Article  Google Scholar 

  2112. Wegener A, Miller KA (2017) Total synthesis of avrainvilleol. J Org Chem 82:11655

    Article  CAS  PubMed  Google Scholar 

  2113. Balaydin HT, Akbaba Y, Menzek A, Sahin E, Göksu S (2009) First and short syntheses of biologically active, naturally occurring brominated mono- and dibenzyl phenols. Arkivoc 14:75

    Google Scholar 

  2114. Bultel-Poncé V, Debitus C, Berge J-P, Cerceau C, Guyot M (1998) Metabolites from the sponge-associated bacterium Micrococcus luteus. J Mar Biotechnol 6:233

    PubMed  Google Scholar 

  2115. Nishina A, Kihara H, Uchibori T, Oi T (1991) Antimicrobial substances in “DF-100”, extract of grapefruit seeds. Bokin Bobai 19:401

    CAS  Google Scholar 

  2116. Zinkernagel R, Koenig M (1967) 2,4,4′-Trichloro-2′-hydroxydiphenyl ether, a new antimicrobial agent. Seifen Oele Fette Wachse 93:670

    CAS  Google Scholar 

  2117. Cameron GM, Stapleton BL, Simonsen SM, Brecknell DJ, Garson MJ (2000) New sesquiterpene and brominated metabolites from the tropical marine sponge Dysidea sp. Tetrahedron 56:5247

    Article  CAS  Google Scholar 

  2118. Shimada A, Takahashi I, Kawano T, Kimura Y (2001) Chloroisosulochrin, chloroisosulochrin dehydrate, and pestheic acid, plant growth regulators, produced by Pestalotiopsis theae. Z Naturforsch 56b:797

    Google Scholar 

  2119. Utkina NK, Denisenko VA (2006) New polybrominated diphenyl ether from the marine sponge Dysidea herbacea. Chem Nat Compd 42:606

    Article  CAS  Google Scholar 

  2120. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62:1221

    Article  CAS  PubMed  Google Scholar 

  2121. Lee I-K, Lee J-H, Yin B-S (2008) Polychlorinated compounds with PPAR-γ agonistic effect from the medicinal fungus Phellinus ribis. Bioorg Med Chem Lett 18:4566

    Article  CAS  PubMed  Google Scholar 

  2122. Zhang H, Skildum A, Stromquist E, Rose-Hellekant T, Chang LC (2008) Bioactive polybrominated diphenyl ethers from the marine sponge Dysidea sp. J Nat Prod 71:262

    Article  CAS  PubMed  Google Scholar 

  2123. Li K, Li X-M, Ji N-Y, Gloer JB, Wang B-G (2008) Urceolatin, a structurally unique bromophenol from Polysiphonia urceolata. Org Lett 10:1429

    Article  CAS  PubMed  Google Scholar 

  2124. Calcul L, Chow R, Oliver AG, Tenney K, White KN, Wood AW, Fiorilla C, Crews P (2009) NMR strategy for unraveling structures of bioactive sponge-derived oxy-polyhalogenated diphenyl ethers. J Nat Prod 72:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2125. Millot M, Tomasi S, Studzinska E, Rouaud I, Boustie J (2009) Cytotoxic constituents of the lichen Diploicia canescens. J Nat Prod 72:2177

    Article  CAS  PubMed  Google Scholar 

  2126. Wang J-F, Zhou L-M, Chen S-T, Yang B, Liao S-R, Kong F-D, Lin X-P, Wang F-Z, Zhou X-F, Liu Y-H (2018) New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001. Fitoterapia 125:49

    Article  CAS  PubMed  Google Scholar 

  2127. Choi H, Engene N, Smith JE, Preskitt LB, Gerwick WH (2010) Crossbyanols A-D, toxic brominated polyphenyl ethers from the Hawai’ian bloom-forming cyanobacterium Leptolyngbya crossbyana. J Nat Prod 73:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2128. Unger M, Asplund L, Marsh G, Gustafsson Ö (2010) Characterization of an abundant and novel methyl- and methoxy-substituted brominated diphenyl ether isolated from whale blubber. Chemosphere 79:408

    Article  CAS  PubMed  Google Scholar 

  2129. Keffer JL, Hammill JT, Lloyd JR, Plaza A, Wipf P, Bewley CA (2012) Geographic variability and anti-staphylococcal activity of the chrysophaentins and their synthetic fragments. Mar Drugs 10:1103

    Article  PubMed  PubMed Central  Google Scholar 

  2130. Schreiber D, Jung M, Sandjo LP, Liermann JC, Opatz T, Erkel G (2012) 3′-Demethyldihydromaldoxin and dihydromaldoxin, two anti-inflammatory diaryl ethers from a Steganospora species. J Antibiot 65:473

    Article  CAS  Google Scholar 

  2131. Zhan F, Yang T, Han Y, Li G (2013) A new chlorinated diphenyl ether and five known polyketide metabolites from Penicillium griseofulvum Cib-119. Nat Prod Res 27:1393

    Article  CAS  PubMed  Google Scholar 

  2132. Rukachaisirikul V, Satpradit S, Klaiklay S, Phongpaichit S, Borwornwiriyapan K, Sakayaroj J (2014) Polyketide anthraquinone, diphenyl ether, and xanthone derivatives from the soil fungus Penicillium sp. PSU-RSPG99. Tetrahedron 70:5148

    Google Scholar 

  2133. Niu S, Liu D, Proksch P, Shao Z, Lin W (2015) New polyphenols from a deep sea Spiromastix sp. fungus, and their antibacterial activities. Mar Drugs 13:2526

    Google Scholar 

  2134. Hussain H, Root N, Jabeen F, Al-Harrasi A, Ahmad M, Mabood F, Hassan Z, Shah A, Green IR, Schulz B, Krohn K (2015) Microsphaerol and seimatorone: two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp. Chem Biodivers 12:289

    Google Scholar 

  2135. Liu H, Lohith K, Rosario M, Pulliam TH, O’Connor RD, Bell LJ, Bewley CA (2016) Polybrominated diphenyl ethers: structure determination and trends in antibacterial activity. J Nat Prod 79:1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2136. Dewi AS, Cheney KL, Urquhart HH, Blanchfield JT, Garson MJ (2016) The sesquestration of oxy-polybrominated diphenyl ethers in the nudibranchs Miamira magnifica and Miamira miamirana. Mar Drugs 14:198

    Article  PubMed  PubMed Central  Google Scholar 

  2137. Phainuphong P, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2017) Diphenyl ethers and indanones from the soil-derived fungus Aspergillus unguis PSU-RSPG204. Tetrahedron 73:5920

    Article  CAS  Google Scholar 

  2138. Ki D-W, Awouafack MD, Wong CP, Nguyen HM, Thai QM, Nu LHT, Morita H (2019) Brominated diphenyl ethers including a new tribromoiododiphenyl ether from the Vietnamese marine sponge Arenosclera sp. and their antibacterial activities. Chem Biodivers 16:e1800593

    Google Scholar 

  2139. Yamaoka Y, Ohta S, Carmona ML, Oclarit JM (2006) Content and composition of brominated compounds in marine sponges. Bull Soc Sea Water Sci Jpn 60:195

    CAS  Google Scholar 

  2140. Chilczuk T, Monson R, Schmieder P, Christov V, Enke H, Salmond G, Niedermeyer THJ (2020) Ambigols from the cyanobacterium Fischerella ambigua increase prodigiosin production in Serratia spp. ACS Chem Biol 15:2929

    Article  CAS  PubMed  Google Scholar 

  2141. Kresna IDM, Linares-Otoya L, Milzarek T, Duell ER, Mohseni MM, Mettal U, König GM, Gulder TAM, Schäberle TF (2021) In vitro characterization of 3-chloro-4-hydroxybenzoic acid building block formation in ambigol biosynthesis. Org Biomol Chem 19:2302

    Article  CAS  PubMed  Google Scholar 

  2142. Shridhar DMP, Mahajan GB, Kamat VP, Naik CG, Parab RR, Thakur NR, Mishra PD (2009) Antibacterial activity of 2-(2′,4′-dibromophenoxy)-4,6-dibromophenol from Dysidea granulosa. Mar Drugs 7:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2143. Sun S, Canning CB, Bhargava K, Sun X, Zhu W, Zhou N, Zhang Y, Zhou K (2015) Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett 25:2181

    Article  CAS  PubMed  Google Scholar 

  2144. Hanif N, Ardan MS, Tohir D, Setiawan A, de Voogd NJ, Farid M, Murni A, Tanaka J (2019) Polybrominated diphenyl ethers with broad spectrum antibacterial activity from the Indonesian marine sponge Lamellodysidea herbacea. J Appl Pharm Sci 9:001

    Article  CAS  Google Scholar 

  2145. Keffer JL, Huecas S, Hammill JT, Wipf P, Andreu JM, Bewley CA (2013) Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria. Bioorg Med Chem 21:5673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2146. Schmitt L, Hinxlage I, Cea PA, Gohlke H, Wesselborg S (2021) 40 years of research on polybrominated diphenyl ethers (PBDEs)—a historical overview and newest data of a promising anticancer drug. Molecules 26:995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2147. Legradi J, van Pomeren M, Dahlberg A-K, Legler J (2017) Effects of hydroxylated polybrominated diphenyl ethers in developing zebrafish are indicative of disruption of oxidative phosphorylation. Int J Mol Sci 18:970

    Article  PubMed  PubMed Central  Google Scholar 

  2148. Singh KS, Singh A (2022) Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. J Mol Struct 1265:133302

    Article  CAS  Google Scholar 

  2149. Wan Y, Wiseman S, Chang H, Zhang X, Jones PD, Hecker M, Kannan K, Tanabe S, Hu J, Lam MHW, Giesy JP (2009) Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? Environ Sci Technol 43:7536

    Article  CAS  PubMed  Google Scholar 

  2150. Alonso MB, Azevedo A, Torres JPM, Dorneles PR, Eljarrat E, Barceló D, Lailson-Brito J Jr, Malm O (2014) Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans—a review. Sci Total Environ 481:619

    Article  CAS  PubMed  Google Scholar 

  2151. Lindqvist D, Dahlgren E, Asplund L (2017) Biosynthesis of hydroxylated polybrominated diphenyl ethers and the correlation with photosynthetic pigments in the red alga Ceramium tenuicorne. Phytochemistry 133:51

    Article  CAS  PubMed  Google Scholar 

  2152. Losada S, Roach A, Roosens L, Santos FJ, Galceran MT, Vetter W, Neels H, Covaci A (2009) Biomagnification of anthropogenic and naturally-produced organobrominated compounds in a marine food web from Sydney Harbour, Australia. Environ Int 35:1142

    Article  CAS  PubMed  Google Scholar 

  2153. Kim U-J, Jo H, Lee I-S, Joo G-J, Oh J-E (2015) Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. Chemosphere 137:108

    Article  CAS  PubMed  Google Scholar 

  2154. Bendig P, Vetter W (2013) UV-induced formation of bromophenols from polybrominated diphenyl ethers. Environ Sci Technol 47:3665

    Article  CAS  PubMed  Google Scholar 

  2155. Lin K, Gan J, Liu W (2014) Production of hydroxylated polybrominated diphenyl ethers from bromophenols by bromoperoxidase-catalyzed dimerization. Environ Sci Technol 48:11977

    Article  CAS  PubMed  Google Scholar 

  2156. Solano G, Motti CA, Jaspars M (2009) New iodotyramine derivatives from Didemnum rubeum. Tetrahedron 65:7482

    Article  CAS  Google Scholar 

  2157. Aiella A, Fattorusso E, Imperatore C, Menna M, Müller WEG (2010) Iodocionin, a cytotoxic iodinated metabolite from the Mediterranean ascidian Ciona edwardsii. Mar Drugs 8:285

    Article  Google Scholar 

  2158. Tian L-W, Feng Y, Shimizu Y, Pfeifer TA, Wellington C, Hooper JNA, Quinn RJ (2014) ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp. Bioorg Med Chem Lett 24:3537

    Article  CAS  PubMed  Google Scholar 

  2159. Tarazona G, Santamaría G, Cruz PG, Fernández R, Pérez M, Martínez-Leal JF, Rodríguez J, Jiménez C, Cuevas C (2017) Cytotoxic anomoian B and aplyzanzine B, new bromotyrosine alkaloids from Indonesian sponges. ACS Omega 2:3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2160. Bromley CL, Raab A, Parker-Nance S, Beukes DR, Jaspars M, Davies-Coleman MT (2018) Hyphenated LC-ICP-MS/ESI-MS identification of halogenated metabolites in South African marine ascidian extracts. Afr J Chem 71:111

    Article  CAS  Google Scholar 

  2161. Guillen PO, Jaramillo KB, Jennings L, Genta-Jouve G, de la Cruz M, Cautain B, Reyes F, Rodríguez J, Thomas OP (2019) Halogenated tyrosine derivatives from the tropical Eastern Pacific zoantharians Antipathozoanthus hickmani and Parazoanthus darwini. J Nat Prod 82:1354

    Article  CAS  PubMed  Google Scholar 

  2162. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA II, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638

    Article  CAS  PubMed  Google Scholar 

  2163. Tan ES, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS (2007) Exploring the structure–activity relationship of the ethylamine portion of 3-iodothyronamine for rat and mouse trace amine-associated receptor 1. J Med Chem 50:2787

    Article  CAS  PubMed  Google Scholar 

  2164. Chemburkar SR, Deming KC, Reddy RE (2010) Chemistry of thyroxine: an historical perspective and recent progress on its synthesis. Tetrahedron 66:1955

    Article  CAS  Google Scholar 

  2165. Joharapurkar AA, Dhote VV, Jain MR (2012) Selective thyromimetics using receptor and tissue selectivity approaches: prospects for dyslipidemia. J Med Chem 55:5649

    Article  CAS  PubMed  Google Scholar 

  2166. Ueberlein S, Machill S, Niemann H, Proksch P, Brunner E (2014) The skeletal amino acid composition of the marine demosponge Aplysina cavernicola. Mar Drugs 12:4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2167. Ueberlein S, Machill S, Schupp PJ, Brunner E (2017) Determination of the halogenated skeleton constituents of the marine demosponge Ianthella basta. Mar Drugs 15:34

    Article  PubMed  PubMed Central  Google Scholar 

  2168. de Lira TO, Berlinck RGS, Nascimento GGF, Hajdu E (2006) Further dibromotyrosine-derived metabolites from the marine sponge Aplysina caissara. J Braz Chem Soc 17:1233

    Article  Google Scholar 

  2169. Hernández-Guerrero CJ, Zubía E, Ortega MJ, Carballo JL (2007) Cytotoxic dibromotyrosine-derived metabolites from the sponge Aplysina gerardogreeni. Bioorg Med Chem 15:5275

    Article  PubMed  Google Scholar 

  2170. Peng J, Li J, Hamann MT (2005) The marine bromotyrosine derivatives. Alkaloids 61:59

    CAS  Google Scholar 

  2171. Rogers EW, Molinski TF (2007) Highly polar spiroisoxazolines from the sponge Aplysina fulva. J Nat Prod 70:1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2172. Motti CA, Freckelton ML, Tapiolas DM, Willis RH (2009) FTICR-MS and LC-UV/MS-SPE-NMR applications for the rapid dereplication of a crude extract from the sponge Ianthella flabelliformis. J Nat Prod 72:290

    Article  CAS  PubMed  Google Scholar 

  2173. Kalaitzis JA, Leone PDA, Hooper JNA, Quinn RJ (2008) Ianthesine E, a new bromotyrosine-derived metabolite from the Great Barrier Reef sponge Pseudoceratina sp. Nat Prod Res 22:1257

    Article  CAS  PubMed  Google Scholar 

  2174. Ma K, Yang Y, Deng Z, de Voogd NJ, Proksch P, Lin W (2008) Two new bromotyrosine derivatives from the marine sponge Pseudoceratina sp. Chem Biodivers 5:1313

    Article  CAS  PubMed  Google Scholar 

  2175. Buchanan MS, Carroll AR, Fechner GA, Boyle A, Simpson MM, Addepalli R, Avery VM, Hooper JNA, Su N, Chen H, Quinn RJ (2007) Spermatinamine, the first natural product inhibitor of isoprenylcysteine carboxyl methyltransferase, a new cancer target. Bioorg Med Chem Lett 17:6860

    Article  CAS  PubMed  Google Scholar 

  2176. Yin S, Davis RA, Shelper T, Sykes ML, Avery VM, Elofsson M, Sundin C, Quinn RJ (2011) Pseudoceramines A-D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp. Org Biomol Chem 9:6755

    Article  CAS  PubMed  Google Scholar 

  2177. Buchanan MS, Carroll AR, Addepalli R, Avery VM, Hooper JNA, Quinn RJ (2007) Psammaplysenes C and D, cytotoxic alkaloids from Psammoclemma sp. J Nat Prod 70:1827

    Article  CAS  PubMed  Google Scholar 

  2178. Buchanan MS, Carroll AR, Fechner GA, Boyle A, Simpson M, Addepalli R, Avery VM, Hooper JNA, Cheung T, Chen H, Quinn RJ (2008) Aplysamine 6, an alkaloidal inhibitor of isoprenylcysteine carboxyl methyltransferase from the sponge Pseudoceratina sp. J Nat Prod 71:1066

    Article  CAS  PubMed  Google Scholar 

  2179. Ullah N, Arafeh KM (2009) The first total synthesis of aplysamine 6, an inhibitor of isoprenylcysteine carboxy methyltransferase. Tetrahedron Lett 50:158

    Article  CAS  Google Scholar 

  2180. Teruya T, Iwasaki A, Suenaga K (2008) 20-N-Methylpurpuramine E: new bromotyrosine-drived metabolite from Okinawan marine sponge Pseudoceratina purpurea. Bull Chem Soc Jpn 81:1026

    Article  CAS  Google Scholar 

  2181. Shinde PB, Lee YM, Dang HT, Hong J, Lee C-O, Jung JH (2008) Cytotoxic bromotyrosine derivatives from a two-sponge association of Jaspis sp. and Poecillastra sp. Bioorg Med Chem Lett 18:6414

    Google Scholar 

  2182. Buchanan MS, Carroll AR, Wessling D, Jobling M, Avery VM, Davis RA, Feng Y, Hooper JNA, Quinn RJ (2009) Clavatadines C-E, guanidine alkaloids from the Australian sponge Suberea clavata. J Nat Prod 72:973

    Article  CAS  PubMed  Google Scholar 

  2183. Nuñez CV, de Almeida EVR, Granato AC, Marques SO, Santos KO, Pereira FR, Macedo ML, Ferreira AG, Hajdu E, Pinheiro US, Muricy G, Peixinho S, Freeman CJ, Gleason DF, Berlinck RGS (2008) Chemical variability within the marine sponge Aplysina fulva. Biochem Syst Ecol 36:283

    Article  Google Scholar 

  2184. Mukai H, Kubota T, Aoyama K, Mikami Y, Fromont J, Kobayashi J (2009) Tyrokeradines A and B, new bromotyrosine alkaloids with an imidazolyl-quinolinone moiety from a Verongid sponge. Bioorg Med Chem Lett 19:1337

    Article  CAS  PubMed  Google Scholar 

  2185. Fujiwara T, Hwang J-H, Kanamoto A, Nagai H, Takagi M, Shin-ya K (2009) JBIR-44, a new bromotyrosine compound from a marine sponge Psammaplysilla purpurea. J Antibiot 62:393

    Article  CAS  Google Scholar 

  2186. Cachet N, Genta-Jouve G, Regalado EL, Mokrini R, Amade P, Culioli G, Thomas OP (2009) Parazoanthines A-E, hydantoin alkaloids from the Mediterranean Sea anemone Parazoanthus axinellae. J Nat Prod 72:1612

    Article  CAS  PubMed  Google Scholar 

  2187. Yin S, Cullinane C, Carroll AR, Quinn RJ, Davis RA (2010) Botryllamides K and L, new tyrosine derivatives from the Australian ascidian Aplidium altarium. Tetrahedron Lett 51:3403

    Article  CAS  Google Scholar 

  2188. Henrich CJ, Robey RW, Takada K, Bokesch HR, Bates SE, Shukla S, Ambudkar SV, McMahon JB, Gustafson KR (2009) Botryllamides: natural product inhibitors of ABCG2. ACS Chem Biol 4:637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2189. Wright AE, Roth GP, Hoffman JK, Divlianska DB, Pechter D, Sennett SH, Guzmán EA, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK (2009) Isolation, synthesis, and biological activity of aphrocallistin, an adenine-substituted bromotyramine metabolite from the Hexactinellida sponge Aphrocallistes beatrix. J Nat Prod 72:1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2190. Takada N, Watanabe R, Suenaga K, Yamada K, Ueda K, Kita M, Uemura D (2001) Zamamistatin, a significant antibacterial bromotyrosine derivative, from the Okinawan sponge Pseudoceratina purpurea. Tetrahedron Lett 42:5265

    Article  CAS  Google Scholar 

  2191. Kita M, Tsunematsu Y, Hayakawa I, Kigoshi H (2008) Structure of zamamistatin—a correction. Tetrahedron Lett 49:5383

    Article  CAS  Google Scholar 

  2192. Maru N, Koyama T, Ohno O, Yamada K, Uemura D (2010) Sunabedine, a novel toxic bromotyrosine-derivative alkaloid from Okinawan sponge, order Verongida. Heterocycles 82:371

    Article  CAS  Google Scholar 

  2193. Feng Y, Davis RA, Sykes ML, Avery VM, Camp D, Quinn RJ (2010) Pseudoceratinazole A: a novel bromotyrosine alkaloid from the Australian sponge Pseudoceratina sp. Tetrahedron Lett 51:4847

    Article  CAS  Google Scholar 

  2194. Kon Y, Kubota T, Shibazaki A, Gonoi T, Kobayashi J (2010) Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg Med Chem Lett 20:4569

    Article  CAS  PubMed  Google Scholar 

  2195. Yang X, Davis RA, Buchanan MS, Duffy S, Avery VM, Camp D, Quinn RJ (2010) Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J Nat Prod 73:985

    Article  CAS  PubMed  Google Scholar 

  2196. Xu M, Andrews KT, Birrell GW, Tran TL, Camp D, Davis RA, Quinn RJ (2011) Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg Med Chem Lett 21:846

    Article  CAS  PubMed  Google Scholar 

  2197. Graham SK, Lambert LK, Pierens GK, Hooper JNA, Garson MJ (2010) Psammaplin metabolites new and old: an NMR study involving chiral sulfur chemistry. Aust J Chem 63:867

    Article  CAS  Google Scholar 

  2198. Shaala LA, Bamane FH, Badr JM, Youssef DTA (2011) Brominated arginine-derived alkaloids from the Red Sea sponge Suberea mollis. J Nat Prod 74:1517

    Article  CAS  PubMed  Google Scholar 

  2199. Davis RA, Sykes M, Avery VM, Camp D, Quinn RJ (2011) Convolutamines I and J, antitrypanosomal alkaloids from the bryozoan Amathia tortusa. Bioorg Med Chem 19:6615

    Article  CAS  PubMed  Google Scholar 

  2200. Mudianta IW, Skinner-Adams T, Andrews KT, Davis RA, Hadi TA, Hayes PY, Garson MJ (2012) Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J Nat Prod 75:2132

    Article  CAS  PubMed  Google Scholar 

  2201. Wright AD, Schupp PJ, Schrör J-P, Engemann A, Rohde S, Kelman D, de Voogd N, Carroll A, Motti CA (2012) Twilight zone sponges from Guam yield theonellin isocyanate and psammaplysins I and J. J Nat Prod 75:502

    Article  CAS  PubMed  Google Scholar 

  2202. Lee Y-J, Han S, Lee H-S, Kang JS, Yun J, Sim CJ, Shin HJ, Lee JS (2013) Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity J Nat Prod 76:1731

    Google Scholar 

  2203. Carroll AR, Duffy S, Sykes M, Avery VM (2011) Wilsoniamines A and B: novel alkaloids from the temperate Australian bryozoan, Amathia wilsoni. Org Biomol Chem 9:604

    Article  CAS  PubMed  Google Scholar 

  2204. Salim AA, Khalil ZG, Capon RJ (2012) Structural and stereochemical investigations into bromotyrosine-derived metabolites from southern Australian marine sponges, Pseudoceratina spp. Tetrahedron 68:9802

    Article  CAS  Google Scholar 

  2205. Shaala LA, Youssef DTA, Sulaiman M, Behery FA, Foudah AI, El Sayed KA (2012) Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs 10:2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2206. Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ (2012) Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J Nat Prod 75:1001

    Article  CAS  PubMed  Google Scholar 

  2207. Mani L, Jullian V, Mourkazel B, Valentin A, Dubois J, Cresteil T, Folcher E, Hooper JNA, Erpenbeck D, Aalbersberg W, Debitus C (2012) New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem Biodivers 9:1436

    Article  CAS  PubMed  Google Scholar 

  2208. Tran TD, Pham NB, Fechner G, Hooper JNA, Quinn RJ (2013) Bromotyrosine alkaloids from the Australian marine sponge Pseudoceratina verrucosa. J Nat Prod 76:516

    Article  CAS  PubMed  Google Scholar 

  2209. Gotsbacher MP, Karuso P (2015) New antimicrobial bromotyrosine analogues from the sponge Pseudoceratina purpurea and its predator Tylodina corticalis. Mar Drugs 13:1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2210. Tian L-W, Feng Y, Shimizu Y, Pfeifer T, Wellington C, Hooper JNA, Quinn RJ (2014) Aplysinellamides A–C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge. J Nat Prod 77:1210

    Google Scholar 

  2211. Audoin C, Cocandeau V, Thomas OP, Bruschini A, Holderith S, Genta-Jouve G (2014) Metabolome consistency: additional parazoanthines from the Mediterranean zoanthid Parazoanthus axinellae. Metabolites 4:421

    Article  PubMed  PubMed Central  Google Scholar 

  2212. Göthel Q, Sirirak T, Köck M (2015) Bromotyrosine-derived alkaloids from the Caribbean sponge Aplysina lacunosa. Beilstein J Org Chem 11:2334

    Article  PubMed  PubMed Central  Google Scholar 

  2213. Shaala LA, Youssef DTA, Badr JM, Sulaiman M, Khedr A, El Sayed KA (2015) Bioactive alkaloids from the Red Sea marine verongid sponge Pseudoceratina arabica. Tetrahedron 71:7837

    Article  CAS  Google Scholar 

  2214. Sirimangkalakitti N, Olatunji OJ, Changwichit K, Saesong T, Chamni S, Chanvorachote P, Ingkaninan K, Plubrukarn A, Suwanborirux K (2015) Bromotyrosine alkaloids with acetylcholinesterase inhibitory activity from the Thai sponge Acanthodendrilla sp. Nat Prod Commun 10:1945

    PubMed  Google Scholar 

  2215. Shaala LA, Youssef DTA, Badr JM, Sulaiman M, Khedr A (2015) Bioactive secondary metabolites from the Red Sea marine verongid sponge Suberea species. Mar Drugs 13:1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2216. Dai J, Parrish SM, Yoshida WY, Yip MLR, Turkson J, Kelly M, Williams P (2016) Bromotyrosine-derived metabolites from an Indonesian marine sponge in the family Aplysinellidae (Order Verongiida). Bioorg Med Chem Lett 26:499

    Article  CAS  PubMed  Google Scholar 

  2217. Sirimangkalakitti N, Yokoya M, Chamni S, Chanvorachote P, Plubrukrn A, Saito N, Suwanborirux K (2016) Synthesis and absolute configuration of acanthodendrilline, a new cytotoxic bromotyrosine alkaloid from the Thai marine sponge Acanthodendrilla sp. Chem Pharm Bull 64:258

    Article  CAS  Google Scholar 

  2218. McCauley EP, Lam H, Lorig-Roach N, Luu J, Lloyd C, Tenney K, Pietraszkiewicz H, Diaz C, Valeriote FA, Auerbuch V, Crews P (2017) Investigation of the physical and bioactive properties of bromo- and iodo-containing sponge-derived compounds possessing an oxyphenylethanamine core. J Nat Prod 80:3255

    Article  CAS  PubMed  Google Scholar 

  2219. Kuromoto S, Ohno T, Hokari R, Ishiyama A, Iwatsuki M, Ōmura S, Kobayashi J, Kubota T (2018) Ceratinadins E and F, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Mar Drugs 16:463

    Article  Google Scholar 

  2220. Campos P-E, Wolfender J-L, Queiroz EF, Marcourt L, Al-Mourabit A, De Voogd N, Illien B, Gauvin-Bialecki A (2017) Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon sp. Tetrahedron Lett 58:3901

    Article  CAS  Google Scholar 

  2221. Huang X-P, Deng Z-W, van Soest RWM, Lin W-H (2008) Brominated derivatives from the Chinese sponge Pseudoceratina sp. J Asian Nat Prod Res 10:239

    Article  CAS  Google Scholar 

  2222. Shaala LA, Khalifa SI, Mesbah MK, van Soest RWM, Youssef DTA (2008) Subereaphenol A, a new cytotoxic and antimicrobial dibrominated phenol from the Red Sea sponge Suberea mollis. Nat Prod Commun 3:219

    CAS  Google Scholar 

  2223. Jiao W-H, Li J, Zhang M-M, Cui J, Gui Y-H, Zhang Y, Li J-Y, Liu K-C, Lin H-W (2019) Frondoplysins A and B, unprecedented terpene-alkaloid bioconjugates from Dysidea frondosa. Org Lett 21:6190

    Article  CAS  PubMed  Google Scholar 

  2224. Shaala LA, Youssef DTA (2019) Cytotoxic psammaplysin analogues from the verongid Red Sea sponge Aplysinella species. Biomolecules 9:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2225. Kurimoto S, Seino S, Fromont J, Kobayashi J, Kubota T (2019) Ma’edamines C and D, new bromotyrosine alkaloids possessing a unique tetrasubstituted pyridinium moiety from an Okinawan marine sponge Suberea sp. Org Lett 21:8824

    Article  CAS  PubMed  Google Scholar 

  2226. Salib MN, Jamison MT, Molinski TF (2020) Bromo-spiroisoxazoline alkaloids, including an isoserine peptide, from the Caribbean marine sponge Aplysina lacunosa. J Nat Prod 83:1532

    Article  CAS  PubMed  Google Scholar 

  2227. Tintillier F, Moriou C, Petek S, Fauchon M, Hellio C, Saulnier D, Ekins M, Hooper JNA, Al-Mourabit A, Debitus C (2020) Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the Polynesian sponge Pseudoceratina n. sp. Mar Drugs 18:272

    Google Scholar 

  2228. Youssef DTA, Asfour HZ, Shaala LA (2021) Psammaceratin A: A cytotoxic psammaplysin dimer featuring an unprecedented (2Z,3Z)-2,3-bis(aminomethylene)succinamide backbone from the Red Sea sponge Pseudoceratina arabica. Mar Drugs 19:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2229. Moriou C, Lacroix D, Petek S, El-Demerdash A, Trepos R, Leu TM, Florean C, Diederich M, Hellio C, Debitus C, Al-Mourabit A (2021) Bioactive bromotyrosine derivatives from the Pacific marine sponge Suberea clavata (Pulitzer-Finali, 1982). Mar Drugs 19:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2230. El-Demerdash A, Moriou C, Toullec J, Besson M, Soulet S, Schmitt N, Petek S, Lecchini D, Debitus C, Al-Mourabit A (2018) Bioactive bromotyrosine-derived alkaloids fom the Polynesian sponge Suberea ianthelliformis. Mar Drugs 16:146

    Article  PubMed  PubMed Central  Google Scholar 

  2231. Kubota T, Watase S, Mukai H, Fromont J, Kobayashi J (2012) Tyrokeradines C-F, new bromotyrosine alkaloids from the Verongid sponges. Chem Pharm Bull 60:1599

    Article  CAS  Google Scholar 

  2232. Kubota T, Watase S, Sakai K, Fromont J, Gonoi T, Kobayashi J (2015) Tyrokeradines G and H, new bromotyrosine alkaloids from an Okinawan verongid sponge. Bioorg Med Chem Lett 25:5221

    Article  CAS  PubMed  Google Scholar 

  2233. Ragini K, Fromont J, Piggott AM, Karuso P (2017) Enantiodivergence in the biosynthesis of bromotyrosine alkaloids from sponges? J Nat Prod 80:215

    Article  CAS  PubMed  Google Scholar 

  2234. Tadesse M, Svenson J, Jaspars M, Strøm MB, Abdelrahman MH, Andersen JH, Hansen E, Kristiansen PE, Stensvåg K, Haug T (2011) Synoxazolidinone C; a bicyclic member of the synoxazolidinone family with antibacterial and anticancer activities. Tetrahedron Lett 52:1804

    Article  CAS  Google Scholar 

  2235. Trepos R, Cervin G, Hellio C, Pavia H, Stensen W, Stensvåg K, Svendsen J-S, Haug T, Svenson J (2014) Antifouling compounds from the Sub-Arctic ascidian Synoicum pulmonaria: synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. J Nat Prod 77:2105

    Article  CAS  PubMed  Google Scholar 

  2236. Hopmann KH, Šebestík J, Novotná J, Stensen W, Urbanová M, Svenson J, Svendsen JS, Bouř P, Ruud K (2012) Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy. J Org Chem 77:858

    Article  CAS  PubMed  Google Scholar 

  2237. Pick N, Rawat M, Arad D, Lan J, Fan J, Kende AS, Av-Gay Y (2006) In vitro properties of antimicrobial bromotyrosine alkaloids. J Med Microbiol 55:407

    Article  CAS  PubMed  Google Scholar 

  2238. Galeano E, Thomas OP, Robledo S, Munoz D, Martinez A (2011) Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Mar Drugs 9:1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2239. Galeano E, Martínez A, Thomas OP, Robledo S, Munoz D (2012) Antiparasitic bromotyrosine derivatives from the Caribbean marine sponge Aiolochroia crassa. Quim Nova 35:1189

    Article  CAS  Google Scholar 

  2240. Gómez-Archila LG, Zapata W, Galeano E, Martínez A, Díaz FJ, Rugeles MT (2014) Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro. Vitae 21:114

    Article  Google Scholar 

  2241. Garcia-Vilas JA, Martínez-Poveda B, Quesada AR, Medina MÁ (2016) Aeroplysinin-1, a sponge-derived multi-targeted bioactive marine drug. Mar Drugs 14:1

    Article  Google Scholar 

  2242. Barbero H, Díez-Poza C, Barbero A (2017) The oxepane motif in marine drugs. Mar Drugs 15:361

    Article  PubMed  PubMed Central  Google Scholar 

  2243. Santalova EA, Denisenko VA, Glazunov VP, Kalinovskii AI, Anastyuk SD, Stonik VA (2011) Dibromotyrosine derivatives from the ethanol extract of the marine sponge Aplysina sp.: structures, transformations, and origin. Russ Chem Bull Int Ed 60:570

    Google Scholar 

  2244. Santalova EA (2012) Base-mediated transformations of 3,5-dibromoverongiaquinol from the sponge Aplysina sp. to cavernicolins-1, -2 and a subereatensin analogue. Nat Prod Commun 7:617

    Google Scholar 

  2245. Mándi A, Mudianta IW, Kurtán T, Garson MJ (2015) Absolute configuration and conformational study of psammaplysins A and B from the Balinese marine sponge Aplysinella strongylata. J Nat Prod 78:2051

    Article  PubMed  Google Scholar 

  2246. Florean C, Kim KR, Schnekenburger M, Kim H-J, Moriou C, Debitus C, Dicato M, Al-Mourabit A, Han BW, Diederich M (2018) Synergistic AML cell death induction by marine cytotoxin (+)-(1R,6S,1′R,6′S,11R,17S)-fistularin-3 and Bcl-2 inhibitor venetoclax. Mar Drugs 16:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2247. Nicacio KJ, Ióca LP, Fróes AM, Leomil L, Appolinario LR, Thompson CC, Thompson FL, Ferreira AG, Williams DE, Andersen RJ, Eustaquio AS, Berlinck RGS (2017) Cultures of the marine bacterium Pseudovibrio denitrificans Ab134 produce bromotyrosine-derived alkaloids previously only isolated from marine sponges. J Nat Prod 80:235

    Article  CAS  PubMed  Google Scholar 

  2248. Ullah N (2009) The first total synthesis of racemic hydroxymoloka’iamine. Z Naturforsch 64b:879

    Google Scholar 

  2249. Yoshida M, Yamaguchi K (2009) Total synthesis of the marine bromotyrosine alkaloid moloka’iakitamide. Chem Pharm Bull 57:1147

    Article  CAS  Google Scholar 

  2250. Yang Q, Liu D, Sun D, Yang S, Hu G, Wu Z, Zhao L (2010) Synthesis of the marine bromotyrosine psammaplin F and crystal structure of a psammaplin A analogue. Molecules 15:8784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2251. Kumar R, Bidgood CL, Levrier C, Gunter JH, Nelson CC, Sadowski MC, Davis RA (2020) Synthesis of a unique psammaplysin F library and functional evaluation in prostate cancer cells by multiparametric quantitative single cell imaging. J Nat Prod 83:2357

    Article  CAS  PubMed  Google Scholar 

  2252. Mujumdar P, Teruya K, Tonissen KF, Vullo D, Supuran CT, Peat TS, Poulsen S-A (2016) An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition, and protein X-ray structures of psammaplin C. J Med Chem 59:5462

    Article  CAS  PubMed  Google Scholar 

  2253. Hentschel F, Lindel T (2010) Synthesis of oximinotyrosine-derived marine natural products. Synthesis:181

    Google Scholar 

  2254. Shearman JW, Myers RM, Beale TM, Brenton JD, Ley SV (2010) Total syntheses of the bromotyrosine-derived natural products ianthelline, 5-bromoverongamine and JBIR-44. Tetrahedron Lett 51:4812

    Article  CAS  Google Scholar 

  2255. Ullah N, Haladu SA, Mosa BA (2011) An improved total synthesis of spermatinamine, an inhibitor of isoprenylcysteine carboxy methyltransferase. Tetrahedron Lett 52:212

    Article  CAS  Google Scholar 

  2256. Hillgren JM, Öberg CT, Elofsson M (2012) Syntheses of pseudoceramines A-D and a new synthesis of spermatinamine, bromotyrosine natural products from marine sponges. Org Biomol Chem 10:1246

    Article  CAS  PubMed  Google Scholar 

  2257. Shearman JW, Myers RM, Brenton JD, Ley SV (2011) Total syntheses of subereamollines A and B. Org Biomol Chem 9:62

    Article  CAS  PubMed  Google Scholar 

  2258. Kottakota SK, Evangelopoulos D, Alnimr A, Bhakta S, McHugh TD, Gray M, Groundwater PW, Marrs ECL, Perry JD, Spilling CD, Harburn JJ (2012) Synthesis and biological evaluation of purpurealidin E-derived marine sponge metabolites: aplysamine-2, aplyzanzine A, and suberedamines A and B. J Nat Prod 75:1090

    Article  CAS  PubMed  Google Scholar 

  2259. Chiyoda K, Shimokawa J, Fukuyama T (2012) Total syntheses of all the amathaspiramides. Angew Chem Int Ed 51:2505

    Article  CAS  Google Scholar 

  2260. Soheili A, Tambar UK (2013) Synthesis of (±)-amathaspiramide F and discovery of an unusual stereocontrolling element for the [2,3]-Stevens rearrangement. Org Lett 15:5138

    Article  CAS  PubMed  Google Scholar 

  2261. Cho H, Shin JE, Lee S, Jeon H, Park S, Kim S (2018) Asymmetric Cα-alkylation of proline via chirality transfers of conformationally restricted proline derivative: application to the total synthesis of (–)-amathaspiramide F. Org Lett 20:6121

    Article  CAS  PubMed  Google Scholar 

  2262. O’Connor M, Sun C, Lee D (2015) Synthesis of amathaspiramides by aminocyanation of enoates. Angew Chem Int Ed 54:9963

    Article  Google Scholar 

  2263. Cai S-L, Song R, Dong H-Q, Lin G-Q, Sun X-W (2016) Practical asymmetric synthesis of amathaspiramides B, D, and F. Org Lett 18:1996

    Article  CAS  PubMed  Google Scholar 

  2264. Ahmad S, Choudhury S, Khan FA (2015) Synthesis of marine brominated alkaloid amathamide F: a palladium-catalyzed enamide synthesis. Tetrahedron 71:4192

    Article  CAS  Google Scholar 

  2265. Khan FA, Ahmad S (2012) Synthesis of reported and revised structures of amathamide D and synthesis of convolutamine F, H and lutamide A. C. J Org Chem 77:2389

    Article  CAS  PubMed  Google Scholar 

  2266. Khan FA, Ahmad S (2013) Synthesis of wilsoniamines A and B. Tetrahedron Lett 54:2996

    Article  CAS  Google Scholar 

  2267. Kubo H, Matsui K, Saitoh T, Nishiyama S (2014) Synthesis and assignment of the absolute stereochemistry of (+)-hemifistularin 3. Tetrahedron 70:6392

    Article  CAS  Google Scholar 

  2268. Xu J, Wang K, Wu J (2018) A short and efficient total synthesis of the bromotyrosine-derived alkaloid psammaplysene A. RSC Adv 8:13747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2269. Bhat C, Ilina P, Tilli I, Voráčová M, Bruun T, Barba V, Hribernik N, Lillsunde K-E, Mäki-Lohiluoma E, Rüffer T, Lang H, Yli-Kauhaluoma J, Kiuru P, Tammela P (2018) Synthesis and antiproliferative activity of marine bromotyrosine purpurealidin I and its derivatives. Mar Drugs 16:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2270. Wu W-J, Wu Y, Liu B (2017) Synthesis of purpuroine A, nakirodin A and MDN-0104: The hidden puzzles and risk of error in their configurational assignments. Tetrahedron 73:1265

    Article  CAS  Google Scholar 

  2271. Cheng Z-Q, Song J-L, Zhu K, Zhang J, Jiang C-S, Zhang H (2018) Total synthesis of pulmonarin B and design of brominated phenylacetic acid/tacrine hybrids: marine pharmacophore inspired discovery of new ChE and Aβ aggregation inhibitors. Mar Drugs 16:293

    Article  PubMed  PubMed Central  Google Scholar 

  2272. Davenport MT, Dickson JA, Johnson MR, Chamberland S (2019) Total synthesis of clavatadine B. J Nat Prod 82:3191

    Article  CAS  PubMed  Google Scholar 

  2273. Badart MP, Squires CML, Baird SK, Hawkins BC (2016) The synthesis of clavatadine C. Tetrahedron Lett 57:5108

    Article  CAS  Google Scholar 

  2274. Wefer J, Lindel T (2015) Total synthesis of the marine natural product parazoanthine F by copper-mediated C–N coupling. Eur J Org Chem 6370

    Google Scholar 

  2275. Pieri C, Borselli D, Di Giorgio C, De Méo M, Bolla J-M, Vidal N, Combes S, Brunel JM (2014) New ianthelliformisamine derivatives as antibiotic enhancers against resistant Gram-negative bacteria. J Med Chem 57:4263

    Article  CAS  PubMed  Google Scholar 

  2276. Khan FA, Ahmad S, Kodipelli N, Shivange G, Anindya R (2014) Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Org Biomol Chem 12:3847

    Article  CAS  PubMed  Google Scholar 

  2277. Saha S, Reddy CVR, Chiranjeevi T, Addepally U, Rao TSC, Patro B (2013) The first total synthesis and biological evaluation of marine natural products ma’edamines A and B. Bioorg Med Chem Lett 23:1013

    Article  CAS  PubMed  Google Scholar 

  2278. Saha S, Reddy CVR, Xu S, Sankar S, Neamati N, Patro B (2013) Synthesis and SAR studies of marine natural products ma’edamines A, B and their analogues. Bioorg Med Chem Lett 23:5135

    Article  CAS  PubMed  Google Scholar 

  2279. Shymanska NV, An IH, Pierce JG (2014) A rapid synthesis of 4-oxazolidinones: total synthesis of synoxazolidinones A and B. Angew Chem Int Ed 53:5401

    Article  CAS  Google Scholar 

  2280. Greve H, Kehraus S, Krick A, Kelter G, Maier A, Fiebig H-H, Wright AD, König GM (2008) Cytotoxic bastadin 24 from the Australian sponge Ianthella quadrangulata. J Nat Prod 71:309

    Article  CAS  PubMed  Google Scholar 

  2281. Carroll AR, Kaiser SM, Davis RA, Moni RW, Hooper JNA, Quinn RJ (2010) A bastadin with potent and selective δ-opioid receptor binding affinity from the Australian sponge Ianthella flabelliformis. J Nat Prod 73:1173

    Article  CAS  PubMed  Google Scholar 

  2282. Calcul L, Inman WD, Morris AA, Tenney K, Ratnam J, McKerrow JH, Valeriote FA, Crews P (2010) Additional insights on the bastadins: isolation of analogues from the sponge Ianthella cf. reticulata and exploration of the oxime configurations. J Nat Prod 73:365

    Google Scholar 

  2283. Pérez-Rodríguez S, Pereira-Cameselle R, de Lera AR (2012) First total synthesis of dioxepine bastadin 3. Org Biomol Chem 10:6945

    Article  PubMed  Google Scholar 

  2284. Van Wyk AWW, Zuck KM, McKee TC (2011) Lithothamnin A, the first bastadin-like metabolite from the red alga Lithothamnion fragilissimum. J Nat Prod 74:1275

    Article  PubMed  PubMed Central  Google Scholar 

  2285. Eguchi K, Kato H, Fujiwara Y, Losung F, Mangindaan REP, de Voogd NJ, Takeya M, Tsukamoto S (2015) Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages. Bioorg Med Chem Lett 25:5389

    Article  CAS  PubMed  Google Scholar 

  2286. Niemann H, Lin W, Müller WEG, Kubbutat M, Lai D, Proksch P (2013) Trimeric hemibastadin congener from the marine sponge Ianthella basta. J Nat Prod 76:121

    Article  CAS  PubMed  Google Scholar 

  2287. Gartshore CJ, Salib MN, Renshaw AA, Molinski TF (2018) Isolation of bastadin-6-O-sulfate and expedient purifications of bastadins-4, -5 and -6 from extracts of Ianthella basta. Fitoterapia 126:16

    Article  CAS  PubMed  Google Scholar 

  2288. Guo Z, Machiya K, Salamonczyk GM, Sih CJ (1998) Total synthesis of bastadins 2, 3, and 6. J Org Chem 63:4269

    Article  CAS  Google Scholar 

  2289. Zieminska E, Lazarewicz JW, Couladouros EA, Moutsos VI, Pitsinos EN (2008) Open-chain half-bastadins mimic the effects of cyclic bastadins on calcium homeostasis in cultured neurons. Bioorg Med Chem Lett 18:5734

    Article  CAS  PubMed  Google Scholar 

  2290. Inman WD, Crews P (2011) Unraveling the bastarane and isobastarane oximo amide configurations and associated macrocycle conformations: implications of their influence on bioactivities. J Nat Prod 74:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2291. Le Norcy T, Niemann H, Proksch P, Tait K, Linossier I, Réhel K, Hellio C, Faÿ F (2017) Sponge-inspired dibromohemibastadin prevents and disrupts bacterial biofilms without toxicity. Mar Drugs 15:222

    Article  PubMed  PubMed Central  Google Scholar 

  2292. Elix JA, Wardlaw JH (2000) A new chloro-depside from the lichen Hypotrachyna leiophylla. Aust J Chem 53:1007

    Article  CAS  Google Scholar 

  2293. Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894

    Article  CAS  PubMed  Google Scholar 

  2294. Zhu C-C, Wang T-M, Wang K-J, Li N (2009) A new chlorine-containing glucosyl-fused compound from Curculigo glabrescens. Z Naturforsch 64b:1077

    Google Scholar 

  2295. Millot M, Tomasi S, Articus K, Rouaud I, Bernard A, Boustie J (2007) Metabolites from the lichen Ochrolechia parella growing under two different heliotropic conditions. J Nat Prod 70:316

    Article  CAS  PubMed  Google Scholar 

  2296. Li G-Y, Li B-G, Yang T, Liu G-Y, Zhang G-L (2008) Secondary metabolites from the fungus Chaetomium brasiliense. Helv Chim Acta 91:124

    Article  CAS  Google Scholar 

  2297. Khumkomkhet P, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K (2009) Antimalarial and cytotoxic depsidones from the fungus Chaetomium brasiliense. J Nat Prod 72:1487

    Article  CAS  PubMed  Google Scholar 

  2298. Sureram S, Wiyakrutta S, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2012) Depsidones, aromatase inhibitors and radical scavenging agents from the marine-derived fungus Aspergillus unguis CRI282-03. Planta Med 78:582

    Article  CAS  PubMed  Google Scholar 

  2299. Niu S, Liu D, Hu X, Proksch P, Shao Z, Lin W (2014) Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J Nat Prod 77:1021

    Google Scholar 

  2300. Klaiklay S, Rukachaisirikul V, Aungphao W, Phongpaichit S, Sakayaroj J (2016) Depsidone and phthalide derivatives from the soil-derived fungus Aspergillus unguis PSU-RSPG199. Tetrahedron Lett 57:4348

    Article  CAS  Google Scholar 

  2301. Uchida R, Nakajyo K, Kobayashi K, Ohshiro T, Terahara T, Imada C, Tomoda H (2016) 7-Chlorofolipastatin, an inhibitor of sterol O-acyltransferase, produced by marine-derived Aspergillus ungui NKH-007. J Antibiot 69:647

    Article  CAS  Google Scholar 

  2302. Liu D, Li Y, Li X, Cheng Z, Huang J, Proksch P, Lin W (2017) Chartarolides A-C, novel meroterpenoids with antitumor activities. Tetrahedron Lett 58:1826

    Article  CAS  Google Scholar 

  2303. Liu H, Tan H, Chen Y, Guo X, Wang W, Guo H, Liu Z, Zhang W (2019) Cytorhizins A-D, four highly structure-combined benzophenones from the endophytic fungus Cytospora rhizophorae. Org Lett 21:1063

    Article  CAS  PubMed  Google Scholar 

  2304. Ibrahim SRM, Mohamed GA, Al Haidari RA, El-Kholy AA, Zayed MF, Khayat MT (2018) Biologically active fungal depsidones: chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 129:317

    Article  CAS  PubMed  Google Scholar 

  2305. Lösgen S, Magull J, Schulz B, Draeger S, Zeeck A (2008) Isofusidienols: novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. Eur J Org Chem: 698

    Google Scholar 

  2306. Leet JE, Liu X, Drexler DM, Cantone JL, Huang S, Mamber SW, Fairchild CR, Hussain R, Newman DJ, Kingston DGI (2008) Cytotoxic xanthones from Psorospermum molluscum from the Madagascar rain forest. J Nat Prod 71:460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2307. Pontius A, Krick A, Kehraus S, Brun R, König GM (2008) Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J Nat Prod 71:1579

    Article  CAS  PubMed  Google Scholar 

  2308. Huang L, Lei T, Lin C, Kuang X, Chen H, Zhou H (2010) Blumeaxanthene II, a novel xanthene from Blumea riparia DC. Fitoterapia 81:389

    Article  CAS  PubMed  Google Scholar 

  2309. Fredimoses M, Zhou X, Lin X, Tian X, Ai W, Wang J, Liao S, Liu J, Yang B, Yang X, Liu Y (2014) New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 12:3190

    Google Scholar 

  2310. Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2311. Qin C, Lin X, Lu X, Wan J, Zhou X, Liao S, Tu Z, Xu S, Liu Y (2015) Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotrys sp. HH1 ZSDS1F1-2. J Antibiot 68:121

    Google Scholar 

  2312. Wang J, Ding W, Wang R, Du Y, Liu H, Kong X, Li C (2015) Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar Drugs 13:4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2313. He K-Y, Zhang C, Duan Y-R, Huang G-L, Yang C-Y, Lu X-R, Zheng C-J, Chen G-Y (2017) New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J Antibiot 70:823

    Article  CAS  Google Scholar 

  2314. Han J, Zhang J, Song Z, Liu M, Hu J, Hou C, Zhu G, Jiang L, Xia X, Quinn RJ, Feng Y, Zhang L, Hsiang T, Liu X (2019) Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol 103:5167

    Article  CAS  PubMed  Google Scholar 

  2315. Winter DK, Sloman DL, Porco JA Jr (2013) Polycyclic xanthone natural products: structure, biological activity and chemical synthesis. Nat Prod Rep 30:382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2316. Potterat O, Puder C, Wagner K, Bolek W, Vettermann R, Kauschke SG (2007) Chlorocyclinones A-D, chlorinated angucyclinones from Streptomyces sp. strongly antagonizing rosiglitazone-induced PPAR-γ activation. J Nat Prod 70:1934

    Google Scholar 

  2317. Karmakar R, Mal D (2012) Total synthesis of chlorocyclinone A, a PPAR-γ antagonist. J Org Chem 77:10235

    Article  CAS  PubMed  Google Scholar 

  2318. Wolkenstein K, Schoefberger W, Müller N, Oji T (2009) Proisocrinins A-F, brominated anthraquinone pigments from the stalked crinoid Proisocrinus ruberrimus. J Nat Prod 72:2036

    Article  CAS  PubMed  Google Scholar 

  2319. Wangun HVK, Wood A, Fiorilla C, Reed JK, McCarthy PJ, Wright AE (2010) Gymnochromes E and F, cytotoxic phenanthroperylenequinones from a deep-water crinoid, Holopus rangii. J Nat Prod 73:712

    Article  Google Scholar 

  2320. Murphy BT, Narender T, Kauffman CA, Woolery M, Jensen PR, Fenical W (2010) Saliniquinones A-F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola. Aust J Chem 63:929

    Article  CAS  Google Scholar 

  2321. Motohashi K, Takagi M, Yamamura H, Hayakawa M, Shin-ya K (2010) A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J Antibiot 63:545

    Article  CAS  Google Scholar 

  2322. Aly AH, Debbab A, Clements C, Edrada-Ebel R, Orlikova B, Diederich M, Wray V, Lin WH, Proksch P (2011) NF kappa B inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg Med Chem 19:414

    Google Scholar 

  2323. Huang H, Wang F, Luo M, Chen Y, Song Y, Zhang W, Zhang S, Ju J (2012) Halogenated anthraquinones from the marine-derived fungus Aspergillus sp. SCSIO F063. J Nat Prod 75:1346

    Google Scholar 

  2324. Isaka M, Chinthanom P, Rachtawee P, Srichomthong K, Srikitikulchai P, Kongsaeree P, Prabpai S (2015) Cytotoxic hydroanthraquinones from the mangrove-derived fungus Paradictyoarthrinium diffractum BCC 8704. J Antibiot 68:334

    Article  CAS  Google Scholar 

  2325. Lü Y, Yue C, Shao M, Qian S, Liu N, Bao Y, Wang M, Liu M, Li X, Wang Y, Huang Y (2016) Molecular genetic characterization of an anthrabenzoxocinones gene cluster in Streptomyces sp. FJS31-2 for the biosynthesis of BE-24566B and zunyimycin ale. Molecules 21:711

    Google Scholar 

  2326. Lü Y, Shao M, Wang Y, Qian S, Wang M, Wang Y, Li X, Bao Y, Deng C, Yue C, Liu D, Liu N, Liu M, Huang Y, Chen Z, Hu Y (2017) Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against methicillin-resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31–2. Molecules 22:251

    Google Scholar 

  2327. Mei X, Yan X, Zhang H, Yu M, Shen G, Zhou L, Deng Z, Lei C, Qu X (2018) Expanding the bioactive chemical space of anthrabenzoxocinones through engineering the highly promiscuous biosynthetic modification steps. ACS Chem Biol 13:200

    Article  CAS  PubMed  Google Scholar 

  2328. Khokhar S, Pierens GK, Hooper JNA, Ekins MG, Feng Y, Davis RA (2016) Rhodocomatulin-type anthraquinones from the Australian marine invertebrates Clathria hirsuta and Comatula rotalaria. J Nat Prod 79:946

    Article  CAS  PubMed  Google Scholar 

  2329. Cruz JCS, Maffioli SI, Bernasconi A, Brunati C, Gaspari E, Sosio M, Wellington E, Donadio S (2017) Allocyclinones, hyperchlorinated angucyclinones from Actinoallomurus. J Antibiot 70:73

    Article  CAS  Google Scholar 

  2330. Luo M, Cui Z, Huang H, Song X, Sun A, Dang Y, Lu L, Ju J (2017) Amino acid conjugated anthraquinones from the marine-derived fungus Penicillium sp. SCSIO sof101. J Nat Prod 80:1668

    Google Scholar 

  2331. Mandelare PE, Adpressa DA, Kaweesa EN, Zakharov LN, Loesgen S (2018) Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic bianthrone allianthrone A. J Nat Prod 81:1014

    Article  CAS  PubMed  Google Scholar 

  2332. Zhang D, Jiang Y, Li J, Zhang H, Ding W, Ma Z (2018) Alokicenones A–H, eight tetrahydroanthracenes from the mangrove-derived Streptomyces sp. HN-A101. Tetrahedron 74:6667

    Google Scholar 

  2333. Wolkenstein K, Fuentes-Monteverde JC, Nath N, Oji T, Griesinger C (2019) Hypalocrinins, taurine-conjugated anthraquinone and biaryl pigments from the deep sea crinoid Hypalocrinus naresianus. J Nat Prod 82:163

    Article  CAS  PubMed  Google Scholar 

  2334. Ge X, Sun C, Feng Y, Wang L, Peng J, Che Q, Gu Q, Zhu T, Li D, Zhang G (2019) Anthraquinone derivatives from a marine-derived fungus Sporendonema casei HDN16-802. Mar Drugs 17:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2335. Stevanović D, Damljanović I, Vukićević M, Manojlović N, Radulović NS, Vukićević RD (2011) Electrochemical chlorination of physcion—an approach to naturally occurring chlorinated secondary metabolites of lichens. Helv Chim Acta 94:1406

    Article  Google Scholar 

  2336. Zaleski PA, Maini R, Leiris SJ, Elban MA, Hecht SM (2012) Synthesis and biological activities of topopyrones. J Nat Prod 75:577

    Article  CAS  PubMed  Google Scholar 

  2337. Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188

    Article  PubMed  Google Scholar 

  2338. Falk H (1999) From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angew Chem Int Ed 38:3116

    Article  CAS  Google Scholar 

  2339. Greco G, Turrini E, Catanzaro E, Fimognari C (2021) Marine anthraquinones: pharmacological and toxicological issues. Mar Drugs 19:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2340. Rønnest MH, Rebacz B, Markworth L, Terp AH, Larsen TO, Krämer A, Clausen MH (2009) Synthesis and structure–activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J Med Chem 52:3342

    Article  PubMed  Google Scholar 

  2341. Rønnest MH, Raab MS, Anderhub S, Boesen S, Krämer A, Larsen TO, Clausen MH (2012) Disparate SAR data of griseofulvin analogues for the dermatophytes Trichophyton mentagrophytes, T. rubrum, and MDA-MB-231 cancer cells. J Med Chem 55:652

    Google Scholar 

  2342. Rønnest MH, Harris P, Gotfredsen CH, Larsen TO, Clausen MH (2010) Synthesis and single crystal X-ray analysis of two griseofulvin metabolites. Tetrahedron Lett 51:5881

    Article  Google Scholar 

  2343. Wen L, Guo Z, Li Q, Zhang D, She Z, Vrijmoed LLP (2010) A new griseofulvin derivative from the mangrove endophytic fungus Sporothrix sp. Chem Nat Compd 46:363

    Article  CAS  Google Scholar 

  2344. Shang Z, Li X-M, Li C-S, Wang B-G (2012) Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodivers 9:1338

    Google Scholar 

  2345. Xia X, Li Q, Li J, Shao C, Zhang J, Zhang Y, Liu X, Lin Y, Liu C, She Z (2011) Two new derivatives of griseofulvin from the mangrove endophytic fungus Nigrospora sp. (strain No. 1403) from Kandelia candel (L.) Druce. Planta Med 77:1735

    Google Scholar 

  2346. Wei M-Y, Xu R-F, Du S-Y, Wang C-Y, Xu T-Y, Shao C-L (2016) A new griseofulvin derivative from the marine-derived Arthrinium sp. fungus and its biological activity. Chem Nat Compd 52:1011

    Google Scholar 

  2347. Roullier C, Guitton Y, Valery M, Amand S, Prado S, du Pont TR, Grovel O, Pouchus YF (2016) Automated detection of natural halogenated compounds from LC-MS profiles—application to the isolation of bioactive chlorinated compounds from marine-derived fungi. Anal Chem 88:9143

    Article  CAS  PubMed  Google Scholar 

  2348. Zhang D, Zhao L, Wang L, Fang X, Zhao J, Wang X, Li L, Liu H, Wei Y, You X, Cen S, Yu L (2017) Griseofulvin derivative and indole alkaloids from Penicillium griseofulvum CPCC 400528. J Nat Prod 80:371

    Article  CAS  PubMed  Google Scholar 

  2349. Cacho RA, Chooi Y-H, Zhou H, Tang Y (2013) Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chem Biol 8:2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2350. Petersen AB, Rønnest MH, Larsen TO, Clausen MH (2014) The chemistry of griseofulvin. Chem Rev 114:12088

    Article  CAS  PubMed  Google Scholar 

  2351. Liu L, Liu S, Jiang L, Chen X, Guo L, Che Y (2008) Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org Lett 10:1397

    Article  CAS  PubMed  Google Scholar 

  2352. Liu L, Li Y, Liu S, Zheng Z, Chen X, Zhang H, Guo L, Che Y (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 11:2836

    Article  CAS  PubMed  Google Scholar 

  2353. Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y (2010) Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification. Chem Commun 46:460

    Article  CAS  Google Scholar 

  2354. Liu L, Bruhn T, Guo L, Götz DCG, Brun R, Stich A, Che Y, Bringmann G (2011) Chloropupukeanolides C-E: cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici. Chem Eur J 17:2604

    Article  CAS  PubMed  Google Scholar 

  2355. Liu L, Li Y, Li L, Cao Y, Guo L, Liu G, Che Y (2013) Spiroketals of Pestalotiopsis fici provide evidence for a biosynthetic hypothesis involving diversified Diels-Alder reaction cascades. J Org Chem 78:2992

    Article  CAS  PubMed  Google Scholar 

  2356. Wei M-Y, Li D, Shao C-L, Deng D-S, Wang C-Y (2013) (±)-Pestalachloride D, an antibacterial racemate of chlorinated benzophenone derivative from a soft coral-derived fungus Pestalotiopsis sp. Mar Drugs 11:1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2357. Arredondo V, Roa DE, Yan S, Liu-Smith F, Van Vranken DL (2019) Total synthesis of (±)-pestalachloride C and (±)-pestalachloride D through a biomimetic Knoevenagel/hetero-Diels–Alder cascade. Org Lett 21:1755

    Article  CAS  PubMed  Google Scholar 

  2358. Slavov N, Cvengros J, Neudörfl J-M, Schmalz H-G (2010) Total synthesis of the marine antibiotic pestalone and its surprisingly facile conversion into pestalalactone and pestalachloride A. Angew Chem Int Ed 49:7588

    Article  CAS  Google Scholar 

  2359. Xing Q, Gan L-S, Mou X-F, Wang W, Wang C-Y, Wei M-Y, Shao C-L (2016) Isolation, resolution and biological evaluation of pestalachlorides E and F containing both point and axial chirality. RSC Adv 6:22653

    Article  CAS  Google Scholar 

  2360. Misiek M, Williams J, Schmich K, Hüttel W, Merfort I, Salomon CE, Aldrich CC, Hoffmeister D (2009) Structure and cytotoxicity of arnamial and related fungal sesquiterpene aryl esters. J Nat Prod 72:1888

    Article  CAS  PubMed  Google Scholar 

  2361. Kobori H, Sekiya A, Suzuki T, Choi J-H, Hirai H, Kawagishi H (2015) Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod 78:163

    Article  CAS  PubMed  Google Scholar 

  2362. Bohnert M, Miethbauer S, Dahse H-M, Ziemen J, Nett M, Hoffmeister D (2011) In vitro cytotoxicity of melleolide antibiotics: structural and mechanistic aspects. Bioorg Med Chem Lett 21:2003

    Article  CAS  PubMed  Google Scholar 

  2363. Kornsakulkarn J, Thongpanchang C, Chainoy R, Choowong W, Nithithanasilp S, Thongpanchang T (2010) Bioactive metabolites from cultures of basidiomycete Favolaschia tonkinensis. J Nat Prod 73:759

    Article  CAS  PubMed  Google Scholar 

  2364. Kornsakulkarn J, Palasarn S, Choowong W, Thongpanchang T, Boonyuen N, Choeyklin R, Boonpratuang T, Isaka M, Thongpanchang C (2020) Antimalarial 9-methoxystrobilurins, oudemansins, and related polyketides from cultures of basidiomycete Favolaschia species. J Nat Prod 83:905

    Article  CAS  PubMed  Google Scholar 

  2365. Guimarães DO, Lopes NP, Pupo MT (2012) Meroterpenes isolated from the endophytic fungus Guignardia mangiferae. Phytochem Lett 5:519

    Article  Google Scholar 

  2366. Kim S-H, Kwon SH, Park S-H, Lee JK, Bang H-S, Nam S-J, Kwon HC, Shin J, Oh D-C (2013) Tripartin, a histone demethylase inhibitor from a bacterium associated with a dung beetle larva. Org Lett 15:1834

    Article  CAS  PubMed  Google Scholar 

  2367. Asai T, Otsuki S, Sakurai H, Yamashita K, Ozeki T, Oshima Y (2013) Benzophenones from an endophytic fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD+-dependent HDAC inhibitor. Org Lett 15:2058

    Article  CAS  PubMed  Google Scholar 

  2368. Kawaguchi M, Fukuda T, Uchida R, Nonaka K, Masuma R, Tomoda H (2013) A new ascochlorin derivative from Cylindrocarpon sp. FKI-4602. J Antibiot 66:23

    Google Scholar 

  2369. Wanigesekara WMAP, Wijeratne EMK, Arnold AE, Gunatilaka AAL (2013) 10′-Deoxy-10′α-hydroxyascochlorin, a new cell migration inhibitor and other metabolites from Acremonium sp., a fungal endophyte in Ephedra trifurca. Nat Prod Commun 8:601

    Google Scholar 

  2370. Isaka M, Yangchum A, Supothina S, Laksanacharoen P, Luangsa-ard JJ, Hywel-Jones NL (2015) Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074. J Antibiot 68:47

    Google Scholar 

  2371. Nirma C, Eparvier V, Stien D (2015) Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest. J Nat Prod 78:159

    Article  CAS  PubMed  Google Scholar 

  2372. Sorres J, Sabri A, Brel O, Stien D, Eparvier V (2018) Ilicicolinic acids and ilicicolinal derivatives from the fungus Neonectria discophora SNB-CN63 isolated from the nest of the termite Nasutitermes corniger found in French Guiana show antimicrobial activity. Phytochemistry 151:69

    Article  CAS  PubMed  Google Scholar 

  2373. Wu J, Tokunaga T, Kondo M, Ishigami K, Tokuyama S, Suzuki T, Choi J-H, Hirai H, Kawagishi H (2015) Erinaceolactones A to C, from the culture broth of Hericium erinaceus. J Nat Prod 78:155

    Article  CAS  PubMed  Google Scholar 

  2374. Fu Y, Wu P, Xue J, Wei X (2014) Cytotoxic and antibacterial quinone sesquiterpenes from a Myrothecium fungus. J Nat Prod 77:1791

    Article  CAS  PubMed  Google Scholar 

  2375. Hammerschmidt L, Debbab A, Ngoc TD, Wray V, Hemphil CP, Lin WH, Broetz-Oesterhelt H, Kassack MU, Proksch P, Aly AH (2014) Polyketides from the mangrove-derived endophytic fungus Acremonium strictum. Tetrahedron Lett 55:3463

    Article  CAS  Google Scholar 

  2376. Bunyapaiboonsri T, Yoiprommarat S, Lapanun S, Balram U, Chanthaket R, Klaysuban A, Suetrong S (2016) Trichothecenes from the fungus Acremonium crotocinigenum BCC 20012. Phytochem Lett 18:39

    Article  CAS  Google Scholar 

  2377. Du L, King JB, Cichewicz RH (2014) Chlorinated polyketide obtained from a Daldina sp. treated with the epigenetic modifier suberoylanilide hydroxamic acid. J Nat Prod 77:2454

    Google Scholar 

  2378. Daengrot C, Rukachaisirikul V, Tansakul C, Thongpanchang T, Phongpaichit S, Bowornwiriyapan K, Sakayaroj J (2015) Eremophilane sesquiterpenes and diphenyl thioesters from the soil fungus Penicillium copticola PSU-RSPG138. J Nat Prod 78:615

    Article  CAS  PubMed  Google Scholar 

  2379. Bu Y-Y, Yamazaki H, Ukai K, Namikoshi M (2015) Penicillimide, an open-chain hemisuccinimide from Okinawan marine-derived Penicillium copticola. J Antibiot 68:537

    Article  CAS  Google Scholar 

  2380. Cardoso-Martínez F, de la Rosa JM, Díaz-Marrero AR, Darias J, Cerella C, Diederich M, Cueto M (2015) Tanzawaic acids isolated from a marine-derived fungus of the genus Penicillium with cytotoxic activities. Org Biomol Chem 13:7248

    Article  PubMed  Google Scholar 

  2381. Zhao Y, Si L, Liu D, Proksch P, Zhou D, Lin W (2015) Truncateols A-N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron 71:2708

    Article  CAS  Google Scholar 

  2382. Niu S, Si L, Liu D, Zhou A, Zhang Z, Shao Z, Wang S, Zhang L, Zhou D, Lin W (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229

    Article  CAS  PubMed  Google Scholar 

  2383. Ren X, Chen C, Ye Y, Xu Z, Zhao Q, Luo X, Liu Y, Guo P (2022) Anti-inflammatory compounds from the mangrove endophytic fungus Amorosia sp. SCSIO 41026. Front Microbiol 13:976399

    Google Scholar 

  2384. Tanaka S, Honmura Y, Uesugi S, Fukushi E, Tanaka K, Maeda H, Kimura K, Nehira T, Hashimoto M (2017) Cyclohelminthol X, a hexa-substituted spirocyclopropane from Helminthosporium velutinum yone96: structural elucidation, electronic circular dichroism analysis, and biological properties. J Org Chem 82:5574

    Article  CAS  PubMed  Google Scholar 

  2385. Tanaka S, Tanaka K, Maeda H, Hashimoto M (2018) Cyclohelminthols Y1–Y4 metabolites possessing two spirocyclopropanes in their structure. J Org Chem 83:5688

    Article  CAS  PubMed  Google Scholar 

  2386. Subko K, Kildgaard S, Vicente F, Reyes F, Genilloud O, Larsen TO (2021) Bioactive ascochlorin analogues from the marine-derived fungus Stilbella fimetaria. Mar Drugs 19:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2387. Bogdanov A, Papu A, Kehraus S, Cruesemann M, Wägele H, König GM (2020) Metabolome of the Phyllidiella pustulosa species complex (Nudibranchia, Heterobranchia, Gastropoda) reveals rare dichloroimidic sesquiterpene derivatives from a phylogenetically distinct and undescribed clade. J Nat Prod 83:2785

    Article  CAS  PubMed  Google Scholar 

  2388. Iqbal Z, Han L-C, Soares-Sello AM, Nofiani R, Thormann G, Zeeck A, Cox RJ, Willis CL, Simpson TJ (2018) Investigations into the biosynthesis of the antifungal strobilurins. Org Biomol Chem 16:5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2389. Nofiani R, de Mattos-Shipley K, Lebe KE, Han L-C, Iqbal Z, Bailey AM, Willis CL, Simpson TJ, Cox RJ (2018) Strobilurin biosynthesis in basidiomycete fungi. Nature Commun 9:3940

    Article  Google Scholar 

  2390. Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse H-M, Hoffmeister D, Hertweck C (2014) Biosynthesis of the halogenated mycotoxin aspirochlorine in Koji mold involves a cryptic amino acid conversion. Angew Chem Int Ed 53:13409

    Article  CAS  Google Scholar 

  2391. Quan Z, Awakawa T, Wang D, Hu Y, Abe I (2019) Multidomain P450 epoxidase and a terpene cyclase from the ascochlorin biosynthetic pathway in Fusarium sp. Org Lett 21:2330

    Article  CAS  PubMed  Google Scholar 

  2392. Tsunematsu Y, Maeda N, Sato M, Hara K, Hashimoto H, Watanabe K, Hertweck C (2021) Specialized flavoprotein promotes sulfur migration and spiroaminal formation in aspirochlorine biosynthesis. J Am Chem Soc 143:206

    Article  CAS  PubMed  Google Scholar 

  2393. Haga Y, Tonoi T, Anbiru Y, Takahashi Y, Tamura S, Yamamoto M, Ifuku S, Morimoto M, Saimoto H (2010) A short and efficient total synthesis of (±)-ascofuranone. Chem Lett 39:622

    Article  CAS  Google Scholar 

  2394. Grabovyi GA, Mohr JT (2016) Total synthesis of grifolin, grifolic acid, LL-Z1272α, LL-Z1272α, and ilicicolinic acid A. Org Lett 18:5010

    Article  CAS  PubMed  Google Scholar 

  2395. Hovey MT, Cohen DT, Walden DM, Cheong PH-Y, Scheidt KA (2017) A carbene catalysis strategy for the synthesis of protoilludane natural products. Angew Chem Int Ed 56:9864

    Article  CAS  Google Scholar 

  2396. Marsico G, Pignataro BA, Masi M, Evidente A, Casella F, Zonno MC, Tak J-H, Bloomquist JR, Superchi S, Scafato P (2018) Asymmetric synthesis and structure-activity studies of the fungal metabolites colletorin A, colletochlorin A and their halogenated analogues. Tetrahedron 74:3912

    Article  CAS  Google Scholar 

  2397. Pinchman JR, Boger DL (2013) Investigation into the functional impact of the vancomycin C-ring aryl chloride. Bioorg Med Chem Lett 23:4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2398. Pinchman JR, Boger DL (2013) Probing the role of the vancomycin E-ring aryl chloride: selective divergent synthesis and evaluation of alternatively substituted E-ring analogues. J Med Chem 56:4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2399. Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagacé-Wiens PRS, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides. A comparative review of dalbavancin, oritavancin and telavancin. Drugs 70:859

    Google Scholar 

  2400. Wright GD (2011) Molecular mechanisms of antibiotic resistance. Chem Commun 47:4055

    Article  CAS  Google Scholar 

  2401. Jia ZG, O’Mara ML, Zuegg J, Cooper MA, Mark AE (2013) Vancomycin: ligand recognition, dimerization and super-complex formation. FEBS J 280:1294

    Article  CAS  PubMed  Google Scholar 

  2402. Butler MS, Hansford KA, Blaskovich MAT, Halai R, Cooper MA (2014) Glycopeptide antibiotics: back to the future. J Antibiot 67:631

    Article  CAS  Google Scholar 

  2403. Okano A, Isley NA, Boger DL (2017) Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues. Chem Rev 117:11952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2404. Moore MJ, Qu S, Tan C, Cai Y, Mogi Y, Keith DJ, Boger DL (2020) Next-generation total synthesis of vancomycin. J Am Chem Soc 142:16039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2405. Crane CM, Boger DL (2009) Synthesis and evaluation of vancomycin aglycon analogues that bear modifications in the N-terminal d-leucyl amino acid. J Med Chem 52:1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2406. Leung SSF, Tirado-Rives J, Jorgensen WL (2009) Vancomycin analogs: seeking improved binding of d-ala-d-ala and d-ala-d-lac peptides by side-chain and backbone modifications. Bioorg Med Chem 17:5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2407. Quinn RK, Cianci AL, Beaudoin JA, Sculimbrene BR (2010) Synthesis of a d-ala-d-ala peptide isostere via olefin cross-metathesis and evaluation of vancomycin binding. Bioorg Med Chem Lett 20:4382

    Article  CAS  PubMed  Google Scholar 

  2408. Wu Z-C, Boger DL (2019) Exploration of the site-specific nature and generalizability of a trimethylammonium salt modification on vancomycin: A-ring derivatives. Tetrahedron 75:3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2409. Gu W, Chen B, Ge M (2014) Design and synthesis of new vancomycin derivatives. Bioorg Med Chem Lett 24:2305

    Article  CAS  PubMed  Google Scholar 

  2410. Crane CM, Pierce JG, Leung SSF, Tirado-Rives J, Jorgensen WL, Boger DL (2010) Synthesis and evaluation of selected key methyl ether derivatives of vancomycin aglycon. J Med Chem 53:7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2411. Oh T-J, Kim DH, Kang SY, Yamaguchi T, Sohng JK (2011) Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase. J Antibiot 64:103

    Article  CAS  Google Scholar 

  2412. Kitamura K, Shigeta M, Maezawa Y, Watanabe Y, Hsu D-S, Ando Y, Matsumoto T, Suzuki K (2013) Preparation of l-vancosamine-related glycosyl donors. J Antibiot 66:131

    Article  CAS  Google Scholar 

  2413. Guan D, Chen F, Xiong L, Tang F, Faridoon QY, Zhang N, Gong L, Li J, Lan L, Huang W (2018) Extra sugar on vancomycin: new analogues for combating multidrug-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. J Med Chem 61:286

    Article  CAS  PubMed  Google Scholar 

  2414. Peltier-Pain P, Marchillo K, Zhou M, Andes DR, Thorson JS (2012) Natural product disaccharide engineering through tandem glycosyltransferase catalysis reversibility and neoglycosylation. Org Lett 14:5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2415. Pathak TP, Miller SJ (2012) Site-selective bromination of vancomycin. J Am Chem Soc 134:6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2416. Choi K-H, Lee H-J, Park BJ, Wang K-K, Shin EP, Park J-C, Kim YK, Oh M-K, Kim Y-R (2012) Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chem Commun 48:4591

    Article  CAS  Google Scholar 

  2417. Zhang S-J, Yang Q, Xu L, Chang J, Sun X (2012) Synthesis and antibacterial activity against Clostridium difficile of novel demethylvancomycin derivatives. Bioorg Med Chem Lett 22:4942

    Article  CAS  PubMed  Google Scholar 

  2418. Fowler BS, Laemmerhold KM, Miller SJ (2012) Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J Am Chem Soc 134:9755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2419. Yarlagadda V, Sarkar P, Manjunath GB, Haldar J (2015) Lipophilic vancomycin aglycon dimer with high activity against vancomycin-resistant bacteria. Bioorg Med Chem Lett 25:5477

    Article  CAS  PubMed  Google Scholar 

  2420. Mishra NM, Briers Y, Lamberigts C, Steenackers H, Robijns S, Landuyt B, Vanderleyden J, Schoofs L, Lavigne R, Luyten W, Van der Eycken EV (2015) Evaluation of the antibacterial and antibiofilm activities of novel CRAMP–vancomycin conjugates with diverse linkers. Org Biomol Chem 13:7477

    Article  CAS  PubMed  Google Scholar 

  2421. Yarlagadda V, Sarkar P, Samaddar S, Haldar J (2016) A vancomycin derivative with a pyrophosphate-binding group: a strategy to combat vancomycin-resistant bacteria. Angew Chem Int Ed 55:7836

    Article  CAS  Google Scholar 

  2422. Silverman SM, Moses JE, Sharpless KB (2017) Reengineering antibiotics to combat bacterial resistance: click chemistry [1,2,3]-triazole vancomycin dimers with potent activity against MRSA and VRE. Chem Eur J 23:79

    Article  CAS  PubMed  Google Scholar 

  2423. Yoganathan S, Miller SJ (2015) Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: a catalysis-based approach to combat glycopeptide-resistant pathogens. J Med Chem 58:2367

    Article  CAS  PubMed Central  Google Scholar 

  2424. Tanaka KSE, Dietrich E, Ciblat S, Métayer C, Arhin FF, Sarmiento I, Moeck G, Parr TR Jr, Far AR (2010) Synthesis and in vitro evaluation of bisphosphonated glycopeptide prodrugs for the treatment of osteomyelitis. Bioorg Med Chem Lett 20:1355

    Article  CAS  PubMed  Google Scholar 

  2425. Wadzinski TJ, Gea KD, Miller SJ (2016) A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin ‘in-chloride.’ Bioorg Med Chem Lett 26:1025

    Article  CAS  PubMed  Google Scholar 

  2426. Nakama Y, Yoshida O, Yoda M, Araki K, Sawada Y, Nakamura J, Xu S, Miura K, Maki H, Arimoto H (2010) Discovery of a novel series of semisynthetic vancomycin derivatives effective against vancomycin-resistant bacteria. J Med Chem 53:2528

    Article  CAS  PubMed  Google Scholar 

  2427. Pintér G, Batta G, Kéki S, Mándi A, Komáromi I, Takács-Novák K, Sztaricskai F, Roth E, Ostorházi E, Rozgonyi F, Naesens L, Herczegh P (2009) Diazo transfer—click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. J Med Chem 52:6053

    Article  PubMed  Google Scholar 

  2428. Pathak TP, Miller SJ (2013) Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 135:8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2429. Han S, Miller SJ (2013) Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J Am Chem Soc 135:12414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2430. Bereczki I, Kicsák M, Dobray L, Borbás A, Batta G, Kéki S, Nikodém EN, Ostorházi E, Rozgonyi F, Vanderlinden E, Naesens L, Herczegh P (2014) Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: synthesis and antiviral studies. Bioorg Med Chem Lett 24:3251

    Article  CAS  PubMed  Google Scholar 

  2431. Szűcs Z, Csávás M, Rőth E, Borbás A, Batta G, Perret F, Ostorházi E, Szatmári R, Vanderlinden E, Naesens L, Herczegh P (2017) Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. J Antibiot 70:152

    Article  Google Scholar 

  2432. Szűcs Z, Bereczki I, Csávás M, Rőth E, Borbás A, Batta G, Ostorházi E, Szatmári R, Herczegh P (2017) Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. J Antibiot 70:664

    Article  Google Scholar 

  2433. Fang X, Nam J, Shin D, Rew Y, Boger DL, Walker S (2009) Functional and biochemical analysis of a key series of ramoplanin analogues. Bioorg Med Chem Lett 19:6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2434. Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot 67:31

    Article  CAS  Google Scholar 

  2435. Schmartz PC, Zerbe K, Abou-Hadeed K, Robinson JA (2014) Bis-chlorination of a hexapeptide–PCP conjugate by the halogenase involved in vancomycin biosynthesis. Org Biomol Chem 12:5574

    Article  CAS  PubMed  Google Scholar 

  2436. Brieke C, Yim G, Peschke M, Wright GD, Cryle MJ (2016) Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates. Chem Commun 52:13679

    Article  CAS  Google Scholar 

  2437. Ozturk S, Forneris CC, Nguy AKL, Sorensen EJ, Seyedsayamdost MR (2018) Modulating OxyB-catalyzed cross-coupling reactions in vancomycin biosynthesis by incorporation of diverse d-Tyr analogues. J Org Chem 83:7309

    Article  CAS  PubMed  Google Scholar 

  2438. McCranie EK, Bachmann BO (2014) Bioactive oligosaccharide natural products. Nat Prod Rep 31:1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2439. Mertz JL, Peloso JS, Barker BJ, Babbitt GE, Occolowitz JL, Simson VL, Kline RM (1986) Isolation and structural identification of nine avilamycins. J Antibiot 39:877

    Article  CAS  Google Scholar 

  2440. Alcock RE, Jones KC (1996) Dioxins in the environment: a review of trend data. Environ Sci Technol 30:3133

    Article  CAS  Google Scholar 

  2441. Huwe JK (2002) Dioxins in food: a modern agricultural perspective. J Agric Food Chem 50:1739

    Article  CAS  PubMed  Google Scholar 

  2442. Millot M, Dieu A, Tomasi S (2016) Dibenzofurans and derivatives from lichens and ascomycetes. Nat Prod Rep 33:801

    Article  CAS  PubMed  Google Scholar 

  2443. Zhou Y, Liu J (2018) Emissions, environmental levels, sources, formation pathways, and analysis of polybrominated dibenzo-p-dioxins and dibenzofurans: a review. Environ Sci Pollut Res 25:33082

    Article  CAS  Google Scholar 

  2444. Fernandes AR, Falandysz J (2021) Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): contamination in food, humans and dietary exposure. Sci Total Environ 761:143191

    Article  CAS  PubMed  Google Scholar 

  2445. Kikuchi H, Kubohara Y, Nguyen VH, Katou Y, Oshima Y (2013) Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities. Bioorg Med Chem 21:4628

    Article  CAS  PubMed  Google Scholar 

  2446. Beekman AM, Wossa SW, Kevo O, Ma P, Barrow RA (2015) Discovery and synthesis of boletopsins 13 and 14, brominated fungal metabolites of terrestrial origin. J Nat Prod 78:2133

    Article  CAS  PubMed  Google Scholar 

  2447. Haglund P, Lindkvist K, Malmvärn A, Wiberg K, Bignert A, Nakano T, Asplund L (2005) High levels of potentially biogenic dibromo and tribromo dibenzo-p-dioxins in Swedish fish. Organohalogen Compd 67:1267

    Google Scholar 

  2448. Malmvärn A, Zebühr Y, Kautsky L, Bergman Å, Nakano T, Asplund L (2006) Hydroxylated- and methoxylated-polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga from the Baltic Sea. Organohalogen Compd 68:1004

    Google Scholar 

  2449. Haglund P, Malmvärn A, Bergek S, Bignert A, Kautsky L, Nakano T, Wiberg K, Asplund L (2007) Brominated dibenzo-p-dioxins: a new class of marine toxins? Environ Sci Technol 41:3069

    Article  CAS  PubMed  Google Scholar 

  2450. Unger M, Malmvärn A, Gustafsson Ö, Asplund L (2008) Aquatic sponge—a producer of brominated dioxins in the Baltic? Organohalogen Compd 70:1744

    CAS  Google Scholar 

  2451. Unger M, Asplund L, Haglund P, Malmvärn A, Arnoldsson K, Gustafsson O (2009) Polybrominated and mixed brominated/chlorinated dibenzo-p-dioxins in sponge (Ephydatia fluviatilis) from the Baltic Sea. Environ Sci Technol 43:8245

    Article  CAS  PubMed  Google Scholar 

  2452. Malmvärn A, Zebühr Y, Kautsky L, Bergman Å, Asplund L (2008) Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 72:910

    Article  PubMed  Google Scholar 

  2453. Haglund P (2010) On the identity and formation routes of environmentally abundant tri- and tetrabromodibenzo-p-dioxins. Chemosphere 78:724

    Article  CAS  PubMed  Google Scholar 

  2454. Haglund P, Löfstrand K, Malmvärn A, Bignert A, Asplund L (2010) Temporal variations of polybrominated dibenzo-p-dioxin and methoxylated diphenyl ether concentrations in fish revealing large differences in exposure and metabolic stability. Environ Sci Technol 44:2466

    Article  CAS  PubMed  Google Scholar 

  2455. Löfstrand K, Liu X, Lindqvist D, Jensen S, Asplund L (2011) Seasonal variations of hydroxylated and methoxylated brominated diphenyl ethers in blue mussels from the Baltic Sea. Chemosphere 84:527

    Article  PubMed  Google Scholar 

  2456. Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T (2017) Occurrence of natural mixed halogenated dibenzo-p-dioxins: specific distribution and profiles in mussels from Seto Inland Sea. Japan. Environ Sci Technol 51:11771

    Article  CAS  PubMed  Google Scholar 

  2457. Bjurlid F, Dam M, Hoydal K, Hagberg J (2018) Occurrence of polybrominated dibenzo-p-dioxins, dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs) in pilot whales (Globicephala melas) caught around the Faroe Islands. Chemosphere 195:11

    Article  CAS  PubMed  Google Scholar 

  2458. Falandysz J, Smith F, Fernandes AR (2020) Polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) in cod (Gadus morhua) liver-derived products from 1972 to 2017. Sci Total Environ 722:137840

    Article  CAS  PubMed  Google Scholar 

  2459. Wu Q, Eisenhardt N, Holbert SS, Pawlik JR, Kucklick JR, Vetter W (2021) Naturally occurring organobromine compounds (OBCs) including polybrominated dibenzo-p-dioxins in the marine sponge Hyrtios proteus from The Bahamas. Mar Pollut Bull 172:112872

    Article  CAS  PubMed  Google Scholar 

  2460. Steen PO, Grandbois M, McNeill K, Arnold WA (2009) Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs). Environ Sci Technol 43:4405

    Article  CAS  PubMed  Google Scholar 

  2461. Arnoldsson K, Andersson PL, Haglund P (2012) Photochemical formation of polybrominated dibenzo-p-dioxins from environmentally abundant hydroxylated polybrominated diphenyl ethers. Environ Sci Technol 46:7567

    Article  CAS  PubMed  Google Scholar 

  2462. Arnoldsson K, Andersson PL, Haglund P (2012) Formation of environmentally relevant brominated dioxins from 2,4,6-tribromophenol via bromoperoxidase-catalyzed dimerization. Environ Sci Technol 46:7239

    Article  CAS  PubMed  Google Scholar 

  2463. Truce WE, Kreider EM, Brand WW (1970) The Smiles and related rearrangements of aromatic systems. Org React 18:99

    CAS  Google Scholar 

  2464. Agarwal V, Moore BS (2014) Enzymatic synthesis of polybrominated dioxins from the marine environment. ACS Chem Biol 9:1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2465. Vollmuth S, Zajc A, Niessner R (1994) Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans during the photolysis of pentachlorophenol-containing water. Environ Sci Technol 28:1145

    Article  CAS  PubMed  Google Scholar 

  2466. Bastos PM, Eriksson J, Bergman A (2009) Photochemical decomposition of dissolved hydroxylated polybrominated diphenyl ethers under various aqueous conditions. Chemosphere 77:791

    Article  CAS  PubMed  Google Scholar 

  2467. Vallejo M, Fernández-Castro P, San Román MF, Ortiz I (2015) Assessment of PCDD/Fs formation in the Fenton oxidation of 2-chlorophenol: influence of the iron dose applied. Chemosphere 137:135

    Article  CAS  PubMed  Google Scholar 

  2468. Dimmel DR, Riggs KB, Pitts G, White J, Lucas S (1993) Formation mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans during pulp chlorination. Environ Sci Technol 27:2553

    Article  CAS  Google Scholar 

  2469. Wichmann H, Dettmer FT, Bahadir M (2002) Thermal formation of PBDD/F from tetrabromobisphenol A—a comparison of polymer linked TBBP A with its additive incorporation in thermoplastics. Chemosphere 47:349

    Article  CAS  PubMed  Google Scholar 

  2470. Weber R, Kuch B (2003) Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated–chlorinated dibenzodioxins and dibenzofurans. Environ Int 29:699

    Article  CAS  PubMed  Google Scholar 

  2471. Carroll WF Jr (2001) The relative contribution of wood and poly(vinyl chloride) to emissions of PCDD and PCDF from house fires. Chemosphere 45:1173

    Article  CAS  PubMed  Google Scholar 

  2472. Gullett BK, Touati A (2003) PCDD/F Emissions from forest fire simulations. Atmos Environ 37:803

    Article  CAS  Google Scholar 

  2473. Denys S, Gombert D, Tack K (2012) Combined approaches to determine the impact of wood fire on PCDD/F and PCB contamination of the environment: a case study. Chemosphere 88:806

    Article  CAS  PubMed  Google Scholar 

  2474. Holmstrand H, Gadomski D, Mandalakis M, Tysklind M, Irvine R, Andersson P, Gustafsson O (2006) Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating. Environ Sci Technol 40:3730

    Article  CAS  PubMed  Google Scholar 

  2475. Horii Y, van Bavel B, Kannan K, Petrick G, Nachtigall K, Yamashita N (2008) Novel evidence for natural formation of dioxins in ball clay. Chemosphere 70:1280

    Article  CAS  PubMed  Google Scholar 

  2476. Gu C, Li H, Teppen BJ, Boyd SA (2008) Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay. Environ Sci Technol 42:4758

    Article  CAS  PubMed  Google Scholar 

  2477. Moon H-B, Choi M, Choi H-G, Ok G, Kannan K (2009) Historical trends of PCDDs, PCDFs, dioxin-like PCBs and nonylphenols in dated sediment cores from a semi-enclosed bay in Korea: tracking the sources. Chemosphere 75:565

    Article  CAS  PubMed  Google Scholar 

  2478. Kishida M, Imamura K, Takenaka N, Maeda Y, Viet PH, Kondo A, Bandow H (2010) Characteristics of the abundance of polychlorinated dibenzo-p-dioxin and dibenzofurans, and dioxin-like polychlorinated biphenyls in sediment samples from selected Asian regions in Can Gio, Southern Vietnam and Osaka, Japan. Chemosphere 78:127

    Article  CAS  PubMed  Google Scholar 

  2479. Horii Y, Ohtsuka N, Minomo K, Nojiri K, Kannan K, Lam PKS, Yamashita N (2011) Distribution, characteristics, and worldwide inventory of dioxins in kaolin ball clays. Environ Sci Technol 45:7517

    Article  CAS  PubMed  Google Scholar 

  2480. Gu C, Liu C, Ding Y, Li H, Teppen BJ, Johnston CT, Boyd SA (2011) Clay mediated route to natural formation of polychlorodibenzo-p-dioxins. Environ Sci Technol 45:3445

    Article  CAS  PubMed  Google Scholar 

  2481. Tondeur Y, Vining B, Mace K, Mills W, Hart J (2012) Environmental release of dioxins from reservoir sources during beach nourishment programs. Chemosphere 88:358

    Article  CAS  PubMed  Google Scholar 

  2482. Alawi MA, Najjar AA, Khoury HN (2014) Analytical method development for the screening and determination of dioxins in clay matrices. Clean: Soil, Air, Water 42:979

    CAS  Google Scholar 

  2483. Grant S, Stevenson G, Malcolm D, Zennegg M, Gaus C (2015) Isomer-specific investigation of PCDD/F mobility and other fate processes in deep soil cores. Chemosphere 137:87

    Article  CAS  PubMed  Google Scholar 

  2484. Hayward DG, Bolger PM (2005) Tetrachlorodibenzo-p-dioxin in baby food made from chicken produced before and after the termination of ball clay use in chicken feed in the United States. Environ Res 99:307

    Article  CAS  PubMed  Google Scholar 

  2485. Hoogenboom R, Zeilmaker M, van Eijkeren J, Kan K, Mengelers M, Luykx D, Traag W (2010) Kaolinic clay derived PCDD/Fs in the feed chain from a sorting process for potatoes. Chemosphere 78:99

    Article  CAS  PubMed  Google Scholar 

  2486. Ghabbour AA, Davis G (eds) (2001). Humic substances: structures, models and functions, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  2487. Hatcher PG, Bortlatynski JM, Minard RD, Dec J, Bollag J-M (1993) Use of high-resolution 13C NMR to examine the enzymatic covalent binding of 13C-labeled 2,4-dichlorophenol to humic substances. Environ Sci Technol 27:2098

    Article  CAS  Google Scholar 

  2488. Lassen P, Randall A, Jørgensen O, Warwick P, Carlsen L (1994) Enzymatically mediated incorporation of 2-chlorophenol and 4-chlorophenol into humic acids. Chemosphere 28:703

    Article  CAS  Google Scholar 

  2489. Breider F, Hunkeler D (2014) Investigating chloroperoxidase-catalyzed formation of chloroform from humic substances using stable chlorine isotope analysis. Environ Sci Technol 48:1592

    Article  CAS  PubMed  Google Scholar 

  2490. Saunders RW, Kumar R, MacDonald SM, Plane JMC (2012) Insights into the photochemical transformation of iodine in aqueous systems: humic acid photosensitized reduction of iodate. Environ Sci Technol 46:11854

    Article  CAS  PubMed  Google Scholar 

  2491. Fujimori DG, Walsh CT (2007) What’s new in enzymatic halogenations. Curr Opin Chem Biol 11:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2492. Blasiak LC, Drennan CL (2009) Structural perspective on enzymatic halogenation. Acc Chem Res 42:147

    Article  CAS  PubMed  Google Scholar 

  2493. Butler A, Sandy M (2009) Mechanistic considerations of halogenating enzymes. Nature 460:848

    Article  CAS  PubMed  Google Scholar 

  2494. Senn HM (2014) Insights into enzymatic halogenation from computational studies. Front Chem 2:1

    Article  CAS  Google Scholar 

  2495. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2496. Leblanc C, Vilter H, Fournier J-B, Delage L, Potin P, Rebuffet E, Michel G, Solari PL, Feiters MC, Czjzek M (2015) Vanadium haloperoxidases: from the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coord Chem Rev 301–302:134

    Article  Google Scholar 

  2497. Groves JT (2003) The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proc Natl Acad Sci USA 100:3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2498. Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78:4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2499. Yang Y, Pignatello JJ (2017) Participation of the halogens in photochemical reactions in natural and treated waters. Molecules 22:1684

    Article  PubMed  PubMed Central  Google Scholar 

  2500. Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D (2018) Microbial synthesis and transformation of inorganic and organic chlorine compounds. Front Microbiol 9:3079

    Article  PubMed  PubMed Central  Google Scholar 

  2501. Bengtson P, Bastviken D, Öberg G (2013) Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environ Microbiol 15:991

    Article  CAS  PubMed  Google Scholar 

  2502. Öberg G, Bastviken D (2012) Transformation of chloride to organic chlorine in terrestrial environments: variability, extent, and implications. Crit Rev Environ Sci Technol 42:2526

    Article  Google Scholar 

  2503. Wagner C, Omari ME, König GM (2009) Biohalogenation: nature’s way to synthesize halogenated metabolites. J Nat Prod 72:540

    Article  CAS  PubMed  Google Scholar 

  2504. van Pée K-H (2012) Halogenation. In: Drauz K, Gröger H, May O (eds) Enzyme catalysis in organic synthesis, 3rd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p 1569

    Google Scholar 

  2505. Chung W, Vanderwal CD (2016) Stereoselective halogenation in natural product synthesis. Angew Chem Int Ed 55:4396

    Article  CAS  Google Scholar 

  2506. Weichold V, Milbredt D, van Pée K-H (2016) Specific enzymatic halogenation—from the discovery of halogenated enzymes to their applications in vitro and in vivo. Angew Chem Int Ed 55:6374

    Article  CAS  Google Scholar 

  2507. Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J (2018) Development of halogenase enzymes for use in synthesis. Chem Rev 118:232

    Article  CAS  PubMed  Google Scholar 

  2508. Herrera-Rodriguez LN, Khan F, Robins KT, Meyer H-P (2011) Perspectives on biotechnological halogenation. Chim Oggi 29:31

    CAS  Google Scholar 

  2509. Jităreanu A, Tătărîngă G, Zbancioc A-M, Trifan A (2018) Bromination-A versatile tool for drugs optimization. Med Surg J Rev Med Chir Soc Med Nat, Iaşi 122:614

    Google Scholar 

  2510. Fraley AE, Sherman DH (2018) Halogenase engineering and its utility in medicinal chemistry. Bioorg Med Chem Lett 28:1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2511. Jităreanu A, Caba IC, Agoroaei L (2019) Halogenation—a versatile tool for drug synthesis—the importance of developing effective and eco-friendly reaction protocols. Curr Anal Biotechnol 2:11

    Google Scholar 

  2512. Fejzagić AV, Gebauer J, Huwa N, Classen T (2019) Halogenating enzymes for active agent synthesis: first steps are done and many have to follow. Molecules 24:4008

    Article  PubMed  PubMed Central  Google Scholar 

  2513. Minges H, Sewald N (2020) Recent advances in synthetic application and engineering of halogenases. ChemCatChem 12:4450

    Article  CAS  Google Scholar 

  2514. Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS (2017) Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev 117:5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2515. Field JA (2016) Natural production of organohalide compounds in the environment. In: Adrian L, Löffler FE (eds) Organohalide-respiring bacteria. Springer, Berlin, Heidelberg, p 7

    Chapter  Google Scholar 

  2516. Chen X, van Pée K-H (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin 40:183

    Article  CAS  PubMed  Google Scholar 

  2517. Walz I, Schwack W (2007) Cutinase inhibition by means of insecticidal organophosphates and carbamates. 3. Oxidation of phosphorothionates by chloroperoxidase from Caldariomyces fumago. J Agric Food Chem 55:8177

    Google Scholar 

  2518. Renirie R, Dewilde A, Pierlot C, Wever R, Hober D, Aubry J-M (2008) Bactericidal and virucidal activity of the alkalophilic P395D/L241V/T343A mutant of vanadium chloroperoxidase. J Appl Microbiol 105:264

    Article  CAS  PubMed  Google Scholar 

  2519. Perez DI, Grau MM, Arends IWCE, Hollmann F (2009) Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun 45:6848

    Google Scholar 

  2520. de Hoog HM, Nallani M, Cornelissen JJLM, Rowan AE, Nolte RJM, Arends IWCE (2009) Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Org Biomol Chem 7:4604

    Article  PubMed  Google Scholar 

  2521. Natalio F, Wiese S, Brandt W, Wessjohann L (2017) Reconstitution of vanadium haloperoxidase’s catalytic activity by boric acid—towards a potential biocatalytic role of boron. Chem Eur J 23:4973

    Article  CAS  PubMed  Google Scholar 

  2522. Wang K, Huang X, Lin K (2019) Multiple catalytic roles of chloroperoxidase in the transformation of phenol: products and pathways. Ecotoxicol Environ Safety 179:96

    Article  CAS  PubMed  Google Scholar 

  2523. Dong JJ, Fernández-Fueyo E, Li J, Guo Z, Renirie R, Wever R, Hollmann F (2017) Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chem Commun 53:6207

    Article  CAS  Google Scholar 

  2524. Winter JM, Moffitt MC, Zazopoulos E, McAlpine JB, Dorrestein PC, Moore BS (2007) Molecular basis for chloronium-mediated meroterpene cyclization. J Biol Chem 282:16362

    Article  CAS  PubMed  Google Scholar 

  2525. Bernhardt P, Okino T, Winter JM, Miyanaga A, Moore BS (2011) A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc 133:4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2526. Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 468:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2527. Diethelm S, Teufel R, Kaysser L, Moore BS (2014) A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins. Angew Chem Int Ed 53:11023

    Article  CAS  Google Scholar 

  2528. Wever R, Barnett P (2017) Vanadium chloroperoxidases: the missing link in the formation of chlorinated compounds and chloroform in the terrestrial environment? Chem Asian J 12:1997

    Article  CAS  PubMed  Google Scholar 

  2529. Mubarak MQE, Gérard EF, Blanford CF, Hay S, de Visser SP (2020) How do vanadium chloroperoxidases generate hypochlorite from hydrogen peroxide and chloride? A computational study. ACS Catal 10:14067

    Article  CAS  Google Scholar 

  2530. Aeppli C, Bastviken D, Andersson P, Gustafsson Ö (2013) Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogenases, and in forest soil. Environ Sci Technol 47:6864

    Article  CAS  PubMed  Google Scholar 

  2531. Izumi Y, Ohshiro T, Wever R (1997) Bromoperoxidase from a marine red macro-alga, Corallina pilulifera. Verh-Kned Akad Tweede Reeks 98:69

    CAS  Google Scholar 

  2532. Wever R, van der Horst MA (2013) The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Trans 42:11778

    Article  CAS  PubMed  Google Scholar 

  2533. Wischang D, Brücher O, Hartung J (2011) Bromoperoxidases and functional enzyme mimics as catalysts for oxidative bromination—a sustainable synthetic approach. Coord Chem Rev 255:2204

    Article  CAS  Google Scholar 

  2534. Wischang D, Hartung J (2011) Parameters for bromination of pyrroles in bromoperoxidase-catalyzed oxidations. Tetrahedron 67:4048

    Article  CAS  Google Scholar 

  2535. Wischang D, Hartung J (2012) Bromination of phenols in bromoperoxidase-catalyzed oxidations. Tetrahedron 68:9456

    Article  CAS  Google Scholar 

  2536. Hartung J, Brücher O, Hach D, Schulz H, Vilter H, Ruick G (2008) Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum. Phytochemistry 69:2826

    Article  CAS  PubMed  Google Scholar 

  2537. Wischang D, Radlow M, Schulz H, Vilter H, Viehweger L, Altmeyer MO, Kegler C, Herrmann J, Müller R, Gaillard F, Delage L, Leblanc C, Hartung J (2012) Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum. Bioorg Chem 44:25

    Article  CAS  PubMed  Google Scholar 

  2538. Littlechild J, Rodriguez EG, Isupov M (2009) Vanadium containing bromoperoxidase—insights into the enzymatic mechanism using X-ray crystallography. J Inorg Biochem 103:617

    Article  CAS  PubMed  Google Scholar 

  2539. Sandy M, Carter-Franklin JN, Martin JD, Butler A (2011) Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing. Chem Commun 47:12086

    Article  CAS  Google Scholar 

  2540. Kaneko K, Washio K, Umezawa T, Matsuda F, Morikawa M, Okino T (2014) cDNA cloning and characterization of vanadium-dependent bromoperoxidases from the red alga Laurencia nipponica. Biosci Biotechnol Biochem 78:1310

    Article  CAS  PubMed  Google Scholar 

  2541. Belal M, Sarkar S, Subramanian R, Khan AT (2022) Synthetic utility of biomimicking vanadium bromoperoxidase and n-tetrabutylammonium tribromide (TBATB) in organic synthesis. Org Biomol Chem 20:2562

    Article  CAS  PubMed  Google Scholar 

  2542. Küpper FC, Carpenter LJ, Leblanc C, Toyama C, Uchida Y, Maskrey BH, Robinson J, Verhaeghe EF, Malin G, Luther GW III, Kroneck PMH, Kloareg B, Meyer-Klaucke W, Muramatsu Y, Megson IL, Potin P, Feiters MC (2013) In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J Exp Bot 64:2653

    Article  PubMed  PubMed Central  Google Scholar 

  2543. Leri AC, Mayer LM, Thornton KR, Ravel B (2014) Bromination of marine particulate organic matter through oxidative mechanisms. Geochem Cosmochim Acta 142:53

    Article  CAS  Google Scholar 

  2544. McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014) Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cells 157:1380

    Article  CAS  Google Scholar 

  2545. Maurya A, Mahato AK, Chaudhary N, Kesharwani N, Kachhap P, Mishra VK, Haldar C (2020) Synthesis and characterization of dimeric µ-oxidovanadium complexes as the functional model of vanadium bromoperoxidase. Appl Organometal Chem 34:e5508

    Article  CAS  Google Scholar 

  2546. Franssen MCR (1994) Haloperoxidases: useful catalysts for halogenation and oxidation reactions. Catal Today 22:441

    Article  CAS  Google Scholar 

  2547. Gkotsi DS, Dhaliwal J, McLachlan MMW, Mulholand KR, Goss RJM (2018) Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Curr Opin Chem Biol 43:119

    Article  CAS  PubMed  Google Scholar 

  2548. Menon BRK, Richmond D, Menon N (2022) Halogenases for biosynthetic pathway engineering: toward new routes to naturals and non-naturals. Catal Rev 64:533

    Article  CAS  Google Scholar 

  2549. Zeng J, Zhan J (2019) Chlorinated natural products and related halogenases. Isr J Chem 59:387

    Article  CAS  Google Scholar 

  2550. Schnepel C, Sewald N (2017) Enzymatic halogenation: a timely strategy for regioselective C-H activation. Chem Eur J 23:12064

    Article  CAS  PubMed  Google Scholar 

  2551. Goss RJM, Grüschow S (2014) A radical finding. Nat Chem Biol 10:878

    Article  CAS  PubMed  Google Scholar 

  2552. Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773

    Article  CAS  PubMed  Google Scholar 

  2553. Frank A, Seel CJ, Groll M, Gulder T (2016) Characterization of a cyanobacterial haloperoxidase and evaluation of its biocatalytic halogenation potential. ChemBioChem 17:2028

    Article  CAS  PubMed  Google Scholar 

  2554. Vardhaman AK, Barman P, Kumar S, Sastri CV, Kumar D, de Visser SP (2013) Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity. Chem Commun 49:10926

    Article  CAS  Google Scholar 

  2555. Hillwig ML, Liu X (2014) A new family of iron-dependent halogenases acts on freestanding substrates. Nat Chem Biol 10:921

    Article  CAS  PubMed  Google Scholar 

  2556. Timmins A, Quesne MG, Borowski T, de Visser SP (2018) Group transfer to an aliphatic bond: a biomimetic study inspired by nonheme iron halogenases. ACS Catal 8:8685

    Article  CAS  Google Scholar 

  2557. Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT (2007) Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46:1284

    Article  CAS  PubMed  Google Scholar 

  2558. Heemstra JR Jr, Walsh CT (2008) Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly. J Am Chem Soc 130:14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2559. Flecks S, Patallo EP, Zhu X, Ernyei AJ, Seifert G, Schneider A, Dong C, Naismith JH, van Pée K-H (2008) New insights into the mechanism of enzymatic chlorination of tryptophan. Angew Chem Int Ed 47:9533

    Article  CAS  Google Scholar 

  2560. Zhu X, De Laurentis W, Leang K, Herrmann J, Ihlefeld K, van Pée K-H, Naismith JH (2009) Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J Mol Biol 391:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2561. Lang A, Polnick S, Nicke T, William P, Patallo EP, Naismith JH, van Pée K-H (2011) Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis. Angew Chem Int Ed 50:2951

    Article  CAS  Google Scholar 

  2562. Gutleben J, Koehorst JJ, McPherson K, Pomponi S, Wijffels RH, Smidt H, Sipkema D (2019) Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol Ecol 95:fiz108

    Google Scholar 

  2563. Veldmann KH, Dachwitz S, Risse JM, Lee J-H, Sewald N, Wendisch VF (2019) Bromination of l-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  2564. Galonić DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Two Interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat Chem Biol 3:113

    Article  PubMed  Google Scholar 

  2565. Wong C, Fujimori DG, Walsh CT, Drennan CL (2009) Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. J Am Chem Soc 131:4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2566. Neumann CS, Walsh CT (2008) Biosynthesis of (–)-(1S,2R)-allocoronamic acyl thioester by an FeII-dependent halogenase and a cyclopropane-forming flavoprotein. J Am Chem Soc 130:14022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2567. Hillwig ML, Zhu Q, Ittiamornkul K, Liu X (2016) Discovery of a promiscuous non-heme iron halogenase in ambiguine alkaloid biogenesis: implication for an evolvable enzyme family for late-state halogenation of aliphatic carbons in small molecules. Angew Chem Int Ed 55:5780

    Article  CAS  Google Scholar 

  2568. Mitchell AJ, Zhu Q, Maggiolo AO, Ananth NR, Hillwig ML, Liu X, Boal AK (2016) Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme Wel05. Nat Chem Biol 12:636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2569. Hayashi T, Ligibel M, Sager E, Voss M, Hunziker J, Schroer K, Snajdrova R, Buller R (2019) Evolved aliphatic halogenases enable regiocomplementary C-H functionalization of a pharmaceutically relevant compound. Angew Chem Int Ed 58:18535

    Article  CAS  Google Scholar 

  2570. Duewel S, Schmermund L, Faber T, Harms K, Srinivasan V, Meggers E, Hoebenreich S (2020) Directed evolution of an FeII-dependent halogenase for asymmetric C(sp3)–H chlorination. ACS Catal 10:1272

    Article  CAS  Google Scholar 

  2571. Pratter SM, Ivkovic J, Birner-Gruenberger R, Breinbauer R, Zangger K, Straganz GD (2014) More than just a halogenase: modification of fatty acyl moieties by a trifunctional metal enzyme. ChemBioChem 15:567

    Article  CAS  PubMed  Google Scholar 

  2572. Eustáquio AS, Pojer F, Noel JP, Moore BS (2008) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4:69

    Article  PubMed  Google Scholar 

  2573. Xu F, Merkley A, Yu D, Zhan J (2016) Selective biochlorination of hydroxyquinolines by a flavin-dependent halogenase. Tetrahedron Lett 57:5262

    Article  CAS  Google Scholar 

  2574. Menon BRK, Brandenburger E, Sharif HH, Klemstein U, Shepherd SA, Greaney MF, Micklefield J (2017) RadH: a versatile halogenase for integration into synthetic pathways. Angew Chem Int Ed 56:11841

    Article  CAS  Google Scholar 

  2575. Ismail M, Frese M, Patschkowski T, Ortseifen V, Niehaus K, Sewald N (2019) Flavin-dependent halogenases from Xanthomonas campestris pv. campestris B100 prefer bromination over chlorination. Adv Synth Catal 361:2475

    Google Scholar 

  2576. Fisher BF, Snodgrass HM, Jones KA, Andorfer MC, Lewis JC (2019) Site-selective C-H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent Sci 5:1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2577. Gkotsi DS, Ludewig H, Sharma SV, Connolly JA, Dhaliwal J, Wang Y, Unsworth WP, Taylor RJK, McLachlan MMW, Shanahan S, Naismith JH, Goss RJM (2019) A marine viral halogenase that iodinates diverse substrates. Nat Chem 11:1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2578. Liu M, Ohashi M, Hung Y-S, Scherlach K, Watanabe K, Hertweck C, Tang Y (2021) AoiQ catalyzes germinal dichlorination of 1,3-diketone natural products. J Am Chem Soc 143:7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2579. Mondal D, Fisher BF, Jiang Y, Lewis JC (2021) Flavin-dependent halogenases catalyze enantioselective olefin halocyclization. Nat Commun 12:3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2580. Frese M, Sewald N (2015) Enzymatic halogenation of tryptophan on a gram scale. Angew Chem Int Ed 54:298

    Article  CAS  Google Scholar 

  2581. Payne JT, Poor CB, Lewis JC (2015) Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angew Chem Int Ed 54:4226

    Article  CAS  Google Scholar 

  2582. Bastviken D, Svensson T, Karlsson S, Sandén P, Oberg G (2009) Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic. Environ Sci Technol 43:3569

    Article  CAS  PubMed  Google Scholar 

  2583. Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A (2014) Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. Environ Sci Technol 48:9170

    Article  CAS  PubMed  Google Scholar 

  2584. Ruecker A, Weigold P, Behrens S, Jochmann M, Barajas XLO, Kappler A (2015) Halogenated hydrocarbon formation in a moderately acidic salt lake in Western Australia—role of abiotic and biotic processes. Environ Chem 12:406

    Article  CAS  Google Scholar 

  2585. Malle E, Buch T, Grone H-J (2003) Myeloperoxidase in kidney disease. Kidney Int 64:1956

    Article  CAS  PubMed  Google Scholar 

  2586. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukocyte Biol 77:598

    Article  CAS  PubMed  Google Scholar 

  2587. Malle E, Marsche G, Arnhold J, Davies MJ (2006) Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta 1761:392

    Article  CAS  PubMed  Google Scholar 

  2588. Yap YW, Whiteman M, Cheung NS (2007) Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 19:219

    Article  CAS  PubMed  Google Scholar 

  2589. Lau D, Baldus S (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 111:16

    Article  CAS  PubMed  Google Scholar 

  2590. Heinecke JW (2007) The role of myeloperoxidase in HDL oxidation and atherogenesis. Curr Atheroscler Rep 9:249

    Article  CAS  PubMed  Google Scholar 

  2591. Malle E, Furtmüller PG, Sattler W, Obinger C (2007) Myeloperoxidase: a target for new drug development? Brit J Pharmacol 152:838

    Article  CAS  Google Scholar 

  2592. Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271

    Article  CAS  PubMed  Google Scholar 

  2593. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88

    Article  CAS  PubMed  Google Scholar 

  2594. Gugliucci A (2008) Hypochlorous acid is a potent inactivator of human plasminogen at concentrations secreted by activated granulocytes. Clin Chem Lab Med 46:1403

    Article  CAS  PubMed  Google Scholar 

  2595. Marsche G, Furtmüller PG, Obinger C, Sattler W, Malle E (2008) Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc Res 79:187

    Article  CAS  PubMed  Google Scholar 

  2596. Rensen SS, Slaats Y, Nijhuis J, Jans A, Bieghs V, Driessen A, Malle E, Greve JW, Buurman WA (2009) Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol 175:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2597. Nusshold C, Kollroser M, Köfeler H, Rechberger G, Reicher H, Üllen A, Bernhart E, Waltl S, Kratzer I, Hermetter A, Hackl H, Trajanoski Z, Hrzenjak A, Malle E, Sattler W (2010) Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radical Biol Med 48:1588

    Article  CAS  Google Scholar 

  2598. Snell JA, Jandova J, Wondrak GT (2022) Hypochlorous acid: from innate immune factor and environmental toxicant to chemopreventive agent targeting solar UV-induced skin cancer. Front Oncol 12:887220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2599. Frangie C, Daher J (2022) Role of myeloperoxidase in inflammation and atherosclerosis (review). Biomed Rep 16:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2600. Marsche G, Stadler JT, Kargl J, Holzer M (2022) Understanding myeloperoxidase-induced damage to HDL structure and function in the vessel wall: implications for HDL-based therapies. Antioxidants 11:556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2601. Wang Y-C, Lu Y-B, Huang X-L, Lao Y-F, Zhang L, Yang J, Shi M, Ma H-L, Pan Y-W, Zhang Y-N (2022) Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 17:1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2602. Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J (2022) Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 236:108052

    Article  CAS  PubMed  Google Scholar 

  2603. Schöler HF, Keppler F (2003) Abiotic formation of organohalogens in the terrestrial environment. Chimia 57:33

    Google Scholar 

  2604. Huber SG, Kotte K, Schöler HF, Williams J (2009) Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples. Environ Sci Technol 43:4934

    Article  CAS  PubMed  Google Scholar 

  2605. Comba P, Kerscher M, Krause T, Schöler HF (2015) Iron-catalysed oxidation and halogenation of organic matter in nature. Environ Chem 12:381

    Article  CAS  Google Scholar 

  2606. Poerschmann J, Trommler U, Górecki T, Kopinke F-D (2009) Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol. Chemosphere 75:772

    Article  CAS  PubMed  Google Scholar 

  2607. Gallard H, Allard S, Nicolau R, von Gunten U, Croué JP (2009) Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide. Environ Sci Technol 43:7003

    Article  CAS  PubMed  Google Scholar 

  2608. Calza P, Massolino C, Pelizzetti E, Minero C (2008) Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci Total Environ 398:196

    Article  CAS  PubMed  Google Scholar 

  2609. Vione D, Maurino V, Man SC, Khanra S, Arsene C, Olariu R-I, Minero C (2008) Formation of organobrominated compounds in the presence of bromide under simulated atmospheric aerosol conditions. Chemsuschem 1:197

    Article  CAS  PubMed  Google Scholar 

  2610. Lin K, Yan C, Gan J (2014) Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide. Environ Sci Technol 48:263

    Article  CAS  PubMed  Google Scholar 

  2611. Lin K, Song L, Zhou S, Chen D, Gan J (2016) Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br. Chemosphere 155:266

    Article  CAS  PubMed  Google Scholar 

  2612. Liu H, Pu Y, Qiu X, Li Z, Sun B, Zhu X, Liu K (2021) Humic acid extracts leading to the photochemical bromination of phenol in aqueous bromide solutions: influences of aromatic components, polarity and photochemical activity. Molecules 26:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2613. Deng H, O’Hagan D (2008) The fluorinase, the chlorinase and the duf-62 enzymes. Curr Opin Chem Biol 12:582

    Article  CAS  PubMed  Google Scholar 

  2614. O’Hagan D, Schmidberger JW (2010) Enzymes that catalyse SN2 reaction mechanisms. Nat Prod Rep 27:900

    Article  CAS  PubMed  Google Scholar 

  2615. O’Hagan D, Deng H (2015) Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 115:634

    Article  PubMed  Google Scholar 

  2616. Carvalho MF, Oliveira RS (2017) Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol 37:880

    Article  CAS  PubMed  Google Scholar 

  2617. Yeo WL, Chew X, Smith DJ, Chan KP, Sun H, Zhao H, Lim YH, Ang EL (2017) Probing the molecular determinants of fluorinase specificity. Chem Commun 53:2559

    Article  CAS  Google Scholar 

  2618. Winkler M, Domarkas J, Schweiger LF, O’Hagan D (2008) Fluorinase-coupled base swaps: synthesis of [18F]-5′-deoxy-5′-fluorouridines. Angew Chem Int Ed 47:10141

    Article  CAS  Google Scholar 

  2619. Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O'Hagan D (2014) Identification of fluorinases from Streptomyces sp. MA37, Norcardia brasiliensis, and Actinoplanes sp. N902-109 by genome mining. ChemBioChem 15:364

    Google Scholar 

  2620. Bartholomé A, Janso JE, Reilly U, O’Hagan D (2017) Fluorometabolite biosynthesis: isotopically labeled glycerol incorporations into the antibiotic nucleocidin in Streptomyces calvus. Org Biomol Chem 15:61

    Article  Google Scholar 

  2621. Sun H, Zhao H, Ang EL (2018) A coupled chlorinase–fluorinase system with a high efficiency of trans-halogenation and a shared substrate tolerance. Chem Commun 54:9458

    Article  CAS  Google Scholar 

  2622. Walker MC, Chang MCY (2014) Natural and engineered biosynthesis of fluorinated natural products. Chem Soc Rev 43:6527

    Article  CAS  PubMed  Google Scholar 

  2623. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99

    Article  CAS  PubMed  Google Scholar 

  2624. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2625. Ryan KS, Drennan CL (2009) Divergent pathways in the biosynthesis of bisindole natural products. Chem Biol 16:351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2626. Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2627. Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048

    Article  CAS  PubMed  Google Scholar 

  2628. van Pée K-H (2012) Biosynthesis of halogenated alkaloids. The Alkaloids 71:167

    PubMed  Google Scholar 

  2629. Alkhalaf LM, Ryan KS (2015) Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. Chem Biol 22:317

    Article  CAS  PubMed  Google Scholar 

  2630. Tang M-C, Zou Y, Watanabe K, Walsh CT, Tang Y (2017) Oxidative cyclization in natural product biosynthesis. Chem Rev 117:5226

    Article  CAS  PubMed  Google Scholar 

  2631. Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH (2016) Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 33:348

    Article  CAS  PubMed  Google Scholar 

  2632. Adak S, Moore BS (2021) Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 38:1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2633. Schmidberger JW, James AB, Edwards R, Naismith JH, O’Hagan D (2010) Halomethane biosynthesis: structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana. Angew Chem Int Ed 49:3646

    Article  CAS  Google Scholar 

  2634. Toda H, Itoh N (2011) Isolation and characterization of a gene encoding a S-adenosyl-l-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: biogenic mechanism of CH3I emissions in oceans. Phytochemistry 72:337

    Article  CAS  PubMed  Google Scholar 

  2635. Okada M, Saito K, Wong CP, Li C, Wang D, Iijima M, Taura F, Kurosaki F, Awakawa T, Abe I (2017) Combinatorial biosynthesis of (+)-daurichromenic acid and its halogenated analogue. Org Lett 19:3183

    Article  CAS  PubMed  Google Scholar 

  2636. Zheng J, McKinnie SMK, El Gamal A, Feng W, Dong Y, Agarwal V, Fenical W, Kumar A, Cao Z, Moore BS, Pessah IN (2018) Organohalogens naturally biosynthesized in marine environments and produced as disinfection byproducts alter sarco/endoplasmic reticulum Ca2+ dynamics. Environ Sci Technol 52:5469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2637. Küpper FC, Carrano CJ (2019) Key aspects of the iodine metabolism in brown algae: a brief critical review. Metallomics 11:756

    Article  PubMed  Google Scholar 

  2638. Herget K, Frerichs H, Pfitzner F, Tahir MN, Tremel W (2018) Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation. Adv Mater 30:1707073

    Article  Google Scholar 

  2639. Hudlicky T, Reed JW (2009) Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev 38:3117

    Article  CAS  PubMed  Google Scholar 

  2640. Hudlicky T, Reed JW (2009) Celebrating 20 years of SYNLETT—special account on the merits of biocatalysis and the impact of arene cis-dihydrodiols on enantioselective synthesis. Synlett:685

    Google Scholar 

  2641. Matveenko M, Willis AC, Banwell MG (2008) A chemoenzymatic synthesis of the anti-influenza agent tamiflu. Tetrahedron Lett 49:7018

    Article  CAS  Google Scholar 

  2642. Werner L, Machara A, Sullivan B, Carrera I, Moser M, Adams DR, Hudlicky T (2011) Several generations of chemoenzymatic synthesis of oseltamivir (tamiflu): evolution of strategy, quest for a process-quality synthesis, and evaluation of efficiency metrics. J Org Chem 76:10050

    Article  CAS  PubMed  Google Scholar 

  2643. Sullivan B, Hudlicky T (2008) Chemoenzymatic formal synthesis of (–)-balanol. Provision of optical data for an often-reported intermediate. Tetrahedron Lett 49:5211

    Google Scholar 

  2644. Gilmet J, Sullivan B, Hudlicky T (2009) Formal total synthesis of (–)- and (+)-balanol: two complementary enantiodivergent routes from vinyloxiranes and vinylaziridines. Tetrahedron 65:212

    Article  CAS  Google Scholar 

  2645. Findlay AD, Banwell MG (2009) A chemoenzymatic total synthesis of (+)-amabiline. Org Lett 11:3160

    Article  CAS  PubMed  Google Scholar 

  2646. Jones MT, Schwartz BD, Willis AC, Banwell MG (2009) Rapid and enantioselective assembly of the lycorine framework using chemoenzymatic techniques. Org Lett 11:3506

    Article  CAS  PubMed  Google Scholar 

  2647. Pinkerton DM, Banwell MG, Willis AC (2009) Chemoenzymatic access to versatile epoxyquinol synthons. Org Lett 11:4290

    Article  CAS  PubMed  Google Scholar 

  2648. Labora M, Pandolfi EM, Schapiro V (2010) Efficient enantiodivergent total synthesis of (+) and (–)-bromoxone. Tetrahedron: Asymmetry 21:153

    Google Scholar 

  2649. Bellomo A, Bonilla JB, López-Prados J, Martín-Lomas M, Gonzalez D (2009) Chemoenzymatic synthesis of glycosyl-deoxyinositol derivatives. First example of a fagopyritol β-analogue containing an aminoinositol unit. Tetrahedron: Asymmetry 20:2061

    Google Scholar 

  2650. Bellomo A, Bertucci A, Stefani H, Vázquez A, Gonzalez D (2009) Novel deoxy-selenylconduritols: chemoenzymatic synthesis and biological evaluation. Tetrahedron: Asymmetry 20:2673

    Google Scholar 

  2651. Banwell MG, Ma X, Karunaratne OP, Willis AC (2010) A first generation chemoenzymatic synthesis of (+)-galanthamine. Aust J Chem 63:1437

    Article  CAS  Google Scholar 

  2652. Ramos JC, Bracco P, Mazzini M, Fernández JR, Gamenara D, Seoane GA (2010) Concise chemoenzymatic synthesis of methyl d-2,3-dideoxyriboside. Tetrahedron: Asymmetry 21:969

    Google Scholar 

  2653. Schwartz BD, Banwell MG, Cade IA (2011) A chemoenzymatic total synthesis of the amaryllidaceae alkaloid narseronine. Tetrahedron Lett 52:4526

    Article  CAS  Google Scholar 

  2654. White LV, Schwartz BD, Banwell MG, Willis AC (2011) A chemoenzymatic total synthesis of (+)-clividine. J Org Chem 76:6250

    Article  CAS  PubMed  Google Scholar 

  2655. Carrilho RMB, Heguaburu V, Schapiro V, Pandolfi E, Kollár L, Pereira MM (2012) An efficient route for the synthesis of chiral conduritol-derivative carboxamides via palladium-catalyzed aminocarbonylation of bromocyclohexenetetraols. Tetrahedron 68:6935

    Article  CAS  Google Scholar 

  2656. Lan P, Banwell MG, Ward JS, Willis AC (2014) Chemoenzymatic total synthesis and reassignment of the absolute configuration of ribisin C. Org Lett 16:228

    Article  CAS  PubMed  Google Scholar 

  2657. Lan P, Banwell MG, Willis AC (2014) Chemoenzymatic total syntheses of ribisins A, B, and D, polyoxygenated benzofuran derivatives displaying NGF-potentiating properties. J Org Chem 79:2829

    Article  CAS  PubMed  Google Scholar 

  2658. Vshyvenko S, Reisenauer MR, Rogelj S, Hudlicky T (2014) Synthesis and biological evaluation of unnatural derivatives of narciclasine: 7-aza-nornarciclasine and its N-oxide. Bioorg Med Chem Lett 24:4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2659. White LV, Banwell MG (2016) Conversion of the enzymatically derived (1S,2S)-3-bromocyclohexa-3,5-diene-1,2-diol into enantiomerically pure compounds embodying the pentacyclic framework of vindoline. J Org Chem 81:1617

    Article  CAS  PubMed  Google Scholar 

  2660. Yang S, Banwell MG, Willis AC, Ward JS (2015) A chemoenzymatic route to the (+)-form of the Amaryllidaceae alkaloid narseronine. Aust J Chem 68:241

    Article  CAS  Google Scholar 

  2661. Boyd DR, Sharma ND, Acaru CA, Malone JF, O’Dowd CR, Allen CCR, Stevenson PJ (2010) Chemoenzymatic synthesis of carbasugars (+)-pericosines A-C from diverse aromatic cis-dihydrodiol precursors. Org Lett 12:2206

    Article  CAS  PubMed  Google Scholar 

  2662. White LV, Dietinger CE, Pinkerton DM, Willis AC, Banwell MG (2010) An enantioselective synthesis of the epoxyquinol (+)-isoepiepoformin. Eur J Org Chem, 4365

    Google Scholar 

  2663. Lan P, White LE, Taher ES, Guest PE, Banwell MG, Willis AC (2015) Chemoenzymatic synthesis of (+)-asperpentyn and the enantiomer of the structure assigned to aspergillusol A. J Nat Prod 78:1963

    Article  CAS  PubMed  Google Scholar 

  2664. Ma X, Banwell MG, Willis AC (2013) Chemoenzymatic total synthesis of the phytotoxic geranylcyclohexentriol (–)-phomentrioloxin. J Nat Prod 76:1514

    Article  CAS  PubMed  Google Scholar 

  2665. Sharma MK, Banwell MG, Willis AC, Rae AD (2012) Approaches to the neurotrophically active natural product 11-O-debenzoyltashironin: a chemoenzymatic total synthesis of the structurally related sesquiterpene khusiol. Chem Asian J 7:676

    Article  CAS  PubMed  Google Scholar 

  2666. Vo Y, Banwell MG, Willis AC (2014) Chemoenzymatic routes to polyoxygenated cyclooctenones related to the eastern hemisphere of the macrolactam tripartilactam. Chem Asian J 9:67

    Article  CAS  PubMed  Google Scholar 

  2667. White LV, Lan P, Schwartz BD, Willis AC, Banwell MG (2015) New, homochiral synthons obtained through simple manipulations of enzymatically derived 3-halo-cis-1,2-dihydrocatechols. Aust J Chem 68:1467

    Article  CAS  Google Scholar 

  2668. Schwartz BD, Jones MT, Banwell MG, Cade IA (2010) Synthesis of the enantiomer of the structure assigned to the natural product nobilisitine A. Org Lett 12:5210

    Article  CAS  PubMed  Google Scholar 

  2669. Ramos JC, Brovetto M, Seoane GA (2013) Chemoenzymatic synthesis of trans-tetrahydrofuran cores of annonaceous acetogenins from bromobenzene. Org Lett 15:1982

    Article  CAS  PubMed  Google Scholar 

  2670. Semak V, Metcalf TA, Endoma-Arias MAA, Mach P, Hudlicky T (2012) Toluene dioxygenase mediated oxidation of halogen-substituted benzoate esters. Org Biomol Chem 10:4407

    Article  CAS  PubMed  Google Scholar 

  2671. Griffen JA, Le Coz AM, Kociok-Köhn G, Ali Khan M, Stewart AJW, Lewis SE (2011) Expanding the chiral pool: oxidation of meta-bromobenzoic acid by R. eutrophus B9 allows access to new reaction manifolds. Org Biomol Chem 9:3920

    Google Scholar 

  2672. Boyd DR, Sharma ND, Malone JF, McIntyre PBA, Stevenson PJ, Allen CCR, Kwit M, Gawronski J (2012) Structure, stereochemistry and synthesis of enantiopure cyclohexenone cis-diol bacterial metabolites derived from phenols. Org Biomol Chem 10:6217

    Article  CAS  PubMed  Google Scholar 

  2673. Leisch H, Omori AT, Finn KJ, Gilmet J, Bissett T, Ilceski D, Hudlicky T (2009) Chemoenzymatic enantiodivergent total syntheses of (+)- and (–)-codeine. Tetrahedron 65:9862

    Article  CAS  Google Scholar 

  2674. Duchek J, Piercy TG, Gilmet J, Hudlicky T (2011) Chemoenzymatic total synthesis of ent-neopinone and formal total synthesis of ent-codeinone from β-bromoethylbenzene. Can J Chem 89:709

    Article  CAS  Google Scholar 

  2675. Boyd DR, Bell M, Dunne KS, Kelly B, Stevenson PJ, Malone JF, Allen CCR (2012) Chemoenzymatic synthesis of a mixed phosphine–phosphine oxide catalyst and its application to asymmetric allylation of aldehydes and hydrogenation of alkenes. Org Biomol Chem 10:1388

    Article  CAS  PubMed  Google Scholar 

  2676. Kurihara T (2011) A mechanistic analysis of enzymatic degradation of organohalogen compounds. Biosci Biotechnol Biochem 75:189

    Article  CAS  PubMed  Google Scholar 

  2677. Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297

    Article  CAS  PubMed  Google Scholar 

  2678. Moreira IS, Amorim CL, Murphy CD, Castro PML (2018) Strategies for biodegradation of fluorinated compounds. In: Prasad R, Aranda E (eds) Approaches in bioremediation, chap 11. Springer Nature, Cham, Switzerland, p 239

    Google Scholar 

  2679. He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S (2021) Environmental occurrence and remediation of emerging organohalides: a review. Environ Pollut 290:118060

    Article  CAS  PubMed  Google Scholar 

  2680. Jugder B-E, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M (2016) Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Front Microbiol 7:249

    Article  PubMed  PubMed Central  Google Scholar 

  2681. Kunka A, Damborsky J, Prokop Z (2018) Haloalkane dehalogenases from marine organisms. Methods Enzymol 605:203

    Article  CAS  PubMed  Google Scholar 

  2682. Zakary S, Oyewusi HA, Huyop F (2021) Dehalogenases for pollutant degradation: a mini review. J Trop Life Sci 11:17

    Article  Google Scholar 

  2683. Wackett LP (2022) Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substanes. Microb Biotechnol 15:773

    Article  CAS  PubMed  Google Scholar 

  2684. Gelman F, Dybala-Defratyka A (2020) Bromine isotope effects: Predictions and measurements. Chemosphere 246:125746

    Article  CAS  PubMed  Google Scholar 

  2685. Sen S, Karn SK (2019) Cyanobacteria: the eco-friendly tool for the treatment of industrial wastewater. In: Bharagava RN (ed) Environmental contaminants: ecological implications and management, microorganisms for sustainability, chap 8. Springer Nature Singapore Pte Ltd., p 163

    Google Scholar 

  2686. Zinder SH (2016) The genus Dehalococcoides. In: Adrian L, Löffler FE (eds) Organohalide-respiring bacteria, chap 6. Springer, Berlin, Heidelberg, p 107

    Chapter  Google Scholar 

  2687. Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89:1121

    Article  CAS  PubMed  Google Scholar 

  2688. Atashgahi S, Shetty SA, Smidt H, de Vos WM (2018) Flux, impact, and fate of halogenated xenobiotic compounds in the gut. Frontiers Physiol 9:888

    Article  Google Scholar 

  2689. Maucourt B, Vuilleumier S, Bringel F (2020) Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 44:189

    Article  CAS  PubMed  Google Scholar 

  2690. Ichiyama S, Kurihara T, Kogure Y, Tsunasawa S, Kawasaki H, Esaki N (2004) Reactivity of asparagine residue at the active site of the D105N mutant of fluoroacetate dehalogenase from Moraxella sp. B. Biochim Biophys Acta 1698:27

    Article  CAS  PubMed  Google Scholar 

  2691. Osborne RL, Taylor LO, Han KP, Ely B, Dawson JH (2004) Amphitrite ornata dehaloperoxidase: enhanced activity for the catalytically active globin using MCPBA. Biochem Biophys Res Commun 324:1194

    Article  CAS  PubMed  Google Scholar 

  2692. Osborne RL, Coggins MK, Walla M, Dawson JH (2007) Horse heart myoglobin catalyzes the H2O2-dependent oxidative dehalogenation of chlorophenols to DNA-binding radicals and quinones. Biochemistry 46:9823

    Article  CAS  PubMed  Google Scholar 

  2693. Osborne RL, Coggins MK, Raner GM, Walla M, Dawson JH (2009) The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates. Biochemistry 48:4231

    Article  CAS  PubMed  Google Scholar 

  2694. Murphy CD (2007) Fluorophenol oxidation by a fungal chloroperoxidase. Biotechnol Lett 29:45

    Article  CAS  PubMed  Google Scholar 

  2695. Chen K, Mu Y, Jian S, Zang X, Chen Q, Jia W, Ke Z, Gao Y, Jiang J (2018) Comparative transcriptome analysis reveals the mechanism underlying 3,5-dibromo-4-hydroxybenzoatae catabolism via a new oxidative decarboxylation pathway. Appl Environ Microbiol 84:e02467–e02517

    Article  PubMed  PubMed Central  Google Scholar 

  2696. Louie TS, Pavlik EJ, Häggblom MM (2021) Genome analysis of Thauera chlorobenzoica strain 3CB-1, a halobenzoate-degrading bacterium isolated from aquatic sediment. Arch Microbiol 203:5095

    Article  CAS  PubMed  Google Scholar 

  2697. Solyanikova IP, Emelyanova EV, Shumkova ES, Travkin VM (2019) Pathways of 3-chlorobenzoate degradation by Rhodococcus opacus strains 1CP and 6a. Microbiology 88:563

    Article  CAS  Google Scholar 

  2698. Uhnáková B, Petříčková A, Biedermann D, Homolka L, Vejvoda V, Bednár P, Papoušková B, Šulc M, Martínková L (2009) Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere 76:826

    Article  PubMed  Google Scholar 

  2699. Golan R, Gelman F, Kuder T, Taylor AA, Ronen Z, Bernstein A (2019) Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil: pathway and isotope effects. Biodegradation 30:37

    Google Scholar 

  2700. Zhang Q, Liu Y, Lin Y, Kong W, Zhao X, Ruan T, Liu J, Schnoor JL, Jiang G (2019) Multiple metabolic pathways of 2,4,6-tribromophenol in rice plants. Environ Sci Technol 53:7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2701. Nikolaivits E, Agrafiotis A, Termentzi A, Machera K, Le Goff G, Álvarez P, Chavanich S, Benayahu Y, Ouazzani J, Fokialakis N, Topakas E (2019) Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar Drugs 17:564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2702. Watson JA Jr, McTamney PM, Adler JM, Rokita SE (2008) Flavoprotein iodotyrosine deiodinase functions without cysteine residues. ChemBioChem 9:504

    Article  CAS  PubMed  Google Scholar 

  2703. Fortino M, Marino T, Russo N, Sicilia E (2015) Mechanism of thyroxine deiodination by naphthyl-based iodothyronine deiodinase mimics and the halogen bonding role: a DFT investigation. Chem Eur J 21:8554

    Article  CAS  PubMed  Google Scholar 

  2704. Lindqvist D, Gustafsson J (2021) Degradation of naturally produced hydroxylated polybrominated diphenyl ethers in Baltic Sea sediment via reductive debromination. Environ Sci Pollut Res 28:25878

    Article  CAS  Google Scholar 

  2705. Lee LK, He J (2010) Reductive debromination of polybrominated diphenyl ethers by anaerobic bacteria from soils and sediments. Appl Environ Microbiol 76:794

    Article  CAS  PubMed  Google Scholar 

  2706. Zanaroli G, Negroni A, Häggblom MM, Fava F (2015) Microbial dehalogenation of organohalides in marine and estuarine environments. Curr Opin Biotechnol 33:287

    Article  CAS  PubMed  Google Scholar 

  2707. Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45:6806

    Google Scholar 

  2708. Nelson JL, Jiang J, Zinder SH (2014) Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ Sci Technol 48:3776

    Article  CAS  PubMed  Google Scholar 

  2709. Liang X, Devine CE, Nelson J, Lollar BS, Zinder S, Edwards EA (2013) Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosms. Environ Sci Technol 47:2378

    Article  CAS  PubMed  Google Scholar 

  2710. Zhang S, Wondrousch D, Cooper M, Zinder SH, Schüürmann G, Adrian L (2017) Anaerobic dehalogenation of chloroanilines by Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 via different pathways as related to molecular electronic structure. Environ Sci Technol 51:3714

    Article  CAS  PubMed  Google Scholar 

  2711. Krzmarzick MJ, Miller HR, Yan T, Novak PJ (2014) Novel Firmicutes group implicated in the dechlorination of two chlorinated xanthones, analogues of natural organochlorines. Appl Environ Microbiol 80:1210

    Article  PubMed  PubMed Central  Google Scholar 

  2712. Suzuki Y, Nakamura M, Otsuka Y, Suzuki N, Ohyama K, Kawakami T, Sato K, Kajita S, Hishiyama S, Fujii T, Takahashi A, Katayama Y (2011) Novel enzymatic activity of cell free extract from thermophilic Geobacillus sp. UZO 3 catalyzes reductive cleavage of diaryl ether bonds of 2,7-dichlorodibenzo-p-dioxin. Chemosphere 83:868

    Google Scholar 

  2713. Chen G, Murdoch RW, Mack EE, Seger ES, Löffler FE (2017) Complete genome sequence of Dehalobacterium formicoaceticum strain DMC, a strictly anaerobic dichloromethane-degrading bacterium. Genome Announc 5:e00897–e00917

    Article  PubMed  PubMed Central  Google Scholar 

  2714. Kleindienst S, Higgins SA, Tsementzi D, Chen G, Konstantinidis KT, Mack EE, Löffler FE (2017) ‘Candidatus dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Syst Appl Microbiol 40:150

    Google Scholar 

  2715. Chen G, Shouakar-Stash O, Phillips E, Justicia-Leon SD, Gilevska T, Lollar BS, Mack EE, Seger ES, Löffler FE (2018) Dual carbon–chlorine isotope analysis indicates distinct anaerobic dichloromethane degradation pathways in two members of Peptococcaceae. Environ Sci Technol 52:8607

    Article  CAS  PubMed  Google Scholar 

  2716. Kleindienst S, Chourey K, Chen G, Murdoch RW, Higgins SA, Iyer R, Campagna SR, Mach EE, Seger ES, Hettich RL, Löffler FE (2019) Proteogenomics reveals novel reductive dehalogenases and methyltransferases expressed during anaerobic dichloromethane metabolism. Appl Environ Microbiol 85:e02768–e2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2717. Chen G, Fisch AR, Gibson CM, Mack EE, Seger ES, Campagna SR, Löffler FE (2020) Mineralization versus fermentation: evidence for two distinct anaerobic bacterial degradation pathways for dichloromethane. ISME J 14:959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2718. Skopelitou K, Georgakis N, Efrose R, Flemetakis E, Labrou NE (2013) Sol–gel immobilization of haloalkane dehalogenase from Bradyrhizobium japonicum from the remediation 1,2-dibromoethane. J Mol Catal B: Enzymatic 97:5

    Article  CAS  Google Scholar 

  2719. Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J (2011) Substrate specificity of haloalkane dehalogenases. Biochem J 435:345

    Article  CAS  PubMed  Google Scholar 

  2720. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Phil Trans R Soc B 368:20120322

    Article  PubMed  PubMed Central  Google Scholar 

  2721. Buryska T, Daniel L, Kunka A, Brezovsky J, Damborsky J, Prokop Z (2016) Discovery of novel haloalkane dehalogenase inhibitors. Appl Environ Microbiol 82:1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2722. Kotik M, Vanacek P, Kunka A, Prokop Z, Damborsky J (2017) Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Appl Microbiol Biotechnol 101:6385

    Article  CAS  PubMed  Google Scholar 

  2723. Novak HR, Sayer C, Isupov MN, Paszkiewicz K, Gotz D, Spragg AM, Littlechild JA (2013) Marine Rhodobacteraceae l-haloacid dehalogenase contains a novel His/Glu dyad that could activate the catalytic water. FEBS J 280:1664

    Article  CAS  PubMed  Google Scholar 

  2724. Zhang J, Xin Y, Cao X, Xue S, Zhang W (2014) Purification and characterization of 2-haloacid dehalogenase from marine bacterium Paracoccus sp. DEH99, isolated from marine sponge Hymeniacidon perlevis. J Ocean Univ China 13:91

    Google Scholar 

  2725. Peng P, Zheng Y, Koehorst JJ, Schaap PJ, Stams AJM, Smidt H, Atashgahi S (2017) Concurrent haloalkanoate degradation and chlorate reduction by Pseudomonas chloritidismutans AW-1. Appl Environ Microbiol 83:e00325

    Article  PubMed  PubMed Central  Google Scholar 

  2726. Grigorian E, Groisillier A, Thomas F, Leblanc C, Delage L (2021) Functional characterization of a l-2-haloacid dehalogenase from Zobellia galactanivorans DsijT suggests a role in haloacetic acid catabolism and a wide distribution in marine environments. Front Microbiol 12:725997

    Article  PubMed  PubMed Central  Google Scholar 

  2727. Wahhab BHA, Samsulrizal NH, Edbeib MF, Wahab RA, Al-Nimer MSM, Hamid AAA, Oyewusi HA, Kaya Y, Notarte KIR, Shariff AHM, Huyop F (2021) Genomic analysis of a functional haloacid-degrading gene of Bacillus megaterium strain HBS1 isolated from Blue Lake (Mavi Gölü, Turkey). Ann Microbiol 71:12

    Article  CAS  Google Scholar 

  2728. Akcay K, Kaya Y (2019) Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds. Biotechnol Biotechnol Equip 33:945

    Article  CAS  Google Scholar 

  2729. Chekan JR, Lee GY, El Gamal A, Purdy TN, Houk KN, Moore BS (2019) Bacterial tetrabromopyrrole debrominase shares a reductive dehalogenation strategy with human thyroid deiodinase. Biochemistry 58:5329

    Article  CAS  PubMed  Google Scholar 

  2730. Yaffee HS, Stargardter F (1963) Erythema multiforme from Tedania ignis. Report of a case and an experimental study of the mechanism of cutaneous irritation from the fire sponge. Arch Dermatol 87:601

    Google Scholar 

  2731. Thorpe E, Ford EJH (1968) Development of hepatic lesions in calves fed with ragwort (Senecio jacobea). J Comp Pathol 78:195

    Article  CAS  PubMed  Google Scholar 

  2732. Scheuer PJ (1982) Marine ecology—some chemical aspects. Naturwissenschaften 69:528

    Article  CAS  Google Scholar 

  2733. König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM (1994) Biological activities of selected marine natural products. Planta Med 60:532

    Article  PubMed  Google Scholar 

  2734. Pedersén M, Collén J, Abrahamsson K, Ekdahl A (1996) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci Mar 60:257

    Google Scholar 

  2735. Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100:6916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2736. Paul NA, de Nys R, Steinberg PD (2006) Seaweed-herbivore interactions at a small scale: direct tests of feeding deterrence by filamentous algae. Mar Ecol Prog Ser 331:1

    Article  Google Scholar 

  2737. Paul NA, de Nys R, Steinberg PD (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87

    Article  CAS  Google Scholar 

  2738. Nylund GM, Cervin G, Persson F, Hermansson M, Steinberg PD, Pavia H (2008) Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation. Mar Ecol Prog Ser 369:39

    Article  CAS  Google Scholar 

  2739. Svensson JR, Nylund GM, Cervin G, Toth GB, Pavia H (2013) Novel chemical weapon of an exotic macroalga inhibits recruitment of native competitors in the invaded range. J Ecol 101:140

    Article  CAS  Google Scholar 

  2740. Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Filho GMA (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345

    Article  CAS  PubMed  Google Scholar 

  2741. Amsler CD, Iken K, McClintock JB, Baker BJ (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535

    Google Scholar 

  2742. Paul C, Pohnert G (2011) Production and role of volatile halogenated compounds from marine algae. Nat Prod Rep 28:186

    Article  CAS  PubMed  Google Scholar 

  2743. Al-Adilah H, Feiters MC, Carpenter LJ, Kumari P, Carrano CJ, Al-Bader D, Küpper FC (2022) Halogens in seaweeds: biological and environmental significance. Phycology 2:132

    Article  Google Scholar 

  2744. Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, De Clerck O, Payri CE (2016) Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Sci Rep 6:18637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2745. Greff S, Aires T, Serrão EA, Engelen AH, Thomas OP, Pérez T (2017) The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints. Sci Rep 7:42625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2746. Silva CO, Simões T, Félix R, Soares AMVM, Barata C, Novais SC, Lemos MFL (2021) Asparagopsis armata exudate cocktail: the quest for the mechanisms of toxic action of an invasive seaweed on marine invertebrates. Biology 10:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2747. Putz A, König GM, Wägele H (2010) Defensive strategies of cladobranchia (Gastropoda, Opisthobranchia). Nat Prod Rep 27:1386

    Article  CAS  PubMed  Google Scholar 

  2748. Figuerola B, Núñez-Pons L, Moles J, Avila C (2013) Feeding repellence in Antarctic bryozoans. Naturwissenschaften 100:1069

    Article  CAS  PubMed  Google Scholar 

  2749. Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65

    Article  CAS  PubMed  Google Scholar 

  2750. Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Prod Rep 27:343

    Article  CAS  PubMed  Google Scholar 

  2751. Fletcher MH, Jennings MC, Wuest WM (2014) Draining the moat: disrupting bacterial biofilms with natural products. Tetrahedron 70:6373

    Article  CAS  Google Scholar 

  2752. Wang K-L, Wu Z-H, Wang Y, Wang C-Y, Xu Y (2017) Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Mar Drugs 15:266

    Article  PubMed  PubMed Central  Google Scholar 

  2753. Chen L, Qian P-Y (2017) Review on molecular mechanisms of antifouling compounds: an update since 2012. Mar Drugs 15:264

    Article  PubMed  PubMed Central  Google Scholar 

  2754. Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J (2011) Anti-biofilm compounds derived from marine sponges. Mar Drugs 9:2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2755. Al-Lihaibi SS, Abdel-Lateff A, Alarif WM, Nogata Y, Ayyad S-EN, Okino T (2015) Potent antifouling metabolites from Red Sea organisms. Asian J Chem 27:2252

    Article  CAS  Google Scholar 

  2756. Messina CM, Renda G, Laudicella VA, Trepos R, Fauchon M, Hellio C, Santulli A (2019) From ecology to biotechnology, study of the defense strategies of algae and halophytes (from Trapani Saltworks, NW Sicily) with a focus on antioxidants and antimicrobial properties. Int J Mol Sci 20:881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2757. Lawson CA, Possell M, Seymour JR, Raina J-B, Suggett DJ (2019) Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 9:17395

    Article  PubMed  PubMed Central  Google Scholar 

  2758. Amsler CD, McClintock JB, Baker BJ (2001) Secondary metabolites as mediators of trophic interactions among Antarctic marine organisms. Am Zool 41:17

    CAS  Google Scholar 

  2759. Birkedal H, Khan RK, Slack N, Broomell C, Lichtenegger HC, Zok F, Stucky GD, Waite JH (2006) Halogenated veneers: protein cross-linking and halogenation in the jaws of Nereis, a marine polychaete worm. ChemBioChem 7:1392

    Article  CAS  PubMed  Google Scholar 

  2760. Schofield RMS, Niedbala JC, Nesson MH, Tao Y, Shokes JE, Scott RA, Latimer MJ (2009) Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials. J Struct Biol 166:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2761. Pizzi A, Sori L, Pigliacelli C, Gautieri A, Andolina C, Bergamaschi G, Gori A, Panine P, Grande AM, Linder MB, Bombelli FB, Soncini M, Metrangolo P (2022) Emergence of elastic properties in a minimalist resilin-derived heptapeptide upon bromination. Small, 2200807

    Google Scholar 

  2762. Venturi S (2011) Evolutionary significance of iodine. Curr Chem Biol 5:155

    CAS  Google Scholar 

  2763. de Jong E, Field JA, Spinnler H-E, Wijnberg JBPA, de Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl Environ Microbiol 60:264

    Article  PubMed  PubMed Central  Google Scholar 

  2764. de Jong E, Cazemier AE, Field JA, de Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 60:271

    Google Scholar 

  2765. Bengtson P, Bastviken D, de Boer W, Öberg G (2009) Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 11:1330

    Article  CAS  PubMed  Google Scholar 

  2766. Barnum TP, Coates JD (2022) The biogeochemical cycling of chlorine. Geobiology 20:634

    Article  CAS  PubMed  Google Scholar 

  2767. Spiteller P (2008) Chemical defence strategies of higher fungi. Chem Eur J 14:9100

    Article  CAS  PubMed  Google Scholar 

  2768. Henschler D (1994) Toxicity of chlorinated organic compounds: effects of the introduction of chlorine in organic molecules. Angew Chem Int Ed Engl 33:1920

    Article  Google Scholar 

  2769. Gerwick WH, Roberts MA, Proteau PJ, Chen J-L (1994) Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 6:143

    Article  CAS  Google Scholar 

  2770. Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CAO, Dinzouna-Boutamba S-D, Lee DH, Pissibanganga OGM, Ko K, Seo JI, Choo YK (2014) Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs 12:4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2771. Mridha A, Paul S (2017) Algae as potential repository of anti cancerous natural compounds. Int J Phytomed 9:181

    Article  CAS  Google Scholar 

  2772. Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R (2018) From marine origin to therapeutics: the antitumor potential of marine algae-derived compounds. Front Pharmacol 9:777

    Article  PubMed  PubMed Central  Google Scholar 

  2773. Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D (2019) Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep 36:810

    Article  CAS  PubMed  Google Scholar 

  2774. Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2775. Deshmukh SK, Prakash V, Ranjan N (2017) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536

    Article  PubMed  Google Scholar 

  2776. Schinke C, Martins T, Queiroz SCN, Melo IS, Reyes FGR (2018) Antibacterial compounds from marine bacteria, 2010–2015. J Nat Prod 80:1215

    Article  Google Scholar 

  2777. van Geelen L, Meier D, Rehberg N, Kalscheuer R (2018) (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 102:2949

    Article  PubMed  Google Scholar 

  2778. Brown DG, Lister T, May-Dracka TL (2014) New natural products as new leads for antibacterial drug discovery. Bioorg Med Chem Lett 24:413

    Article  CAS  PubMed  Google Scholar 

  2779. El Sayed KA, Bartyzel P, Shen X, Perry TL, Zjawiony JK, Hamann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949

    Article  Google Scholar 

  2780. Hikmawan BD, Wahyuono S, Setyowati EP (2020) Marine sponge compounds with antiplasmodial properties: Focus on in vitro study against Plasmodium falciparum. J Appl Pharm Sci 10:142

    Article  CAS  Google Scholar 

  2781. Moodie LWK, Sepčić K, Turk T, Frangež R, Svenson J (2019) Natural cholinesterase inhibitors from marine organisms. Nat Prod Rep 36:1053

    Article  CAS  PubMed  Google Scholar 

  2782. Ezzat SM, El Bishbishy MH, Habtemariam S, Salehi B, Sharifi-Rad M, Martins N, Sharifi-Rad J (2018) Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: a special emphasis on PTP1B inhibitors. Molecules 23:3334

    Article  PubMed  PubMed Central  Google Scholar 

  2783. Mateos R, Pérez-Correa JR, Domínguez H (2020) Bioactive properties of marine phenolics. Mar Drugs 18:501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2784. Kochanowska-Karamyan AJ, Hamann MT (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110:4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2785. Stonik VA, Fedorov SN (2014) Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 12:636

    Article  PubMed  PubMed Central  Google Scholar 

  2786. Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D (2020) Marine natural products with high anticancer activities. Curr Med Chem 27:1243

    Article  CAS  PubMed  Google Scholar 

  2787. Mbaoji FN, Nweze JA, Yang L, Huang Y, Huang S, Onwuka AM, Peter IE, Mbaoji CC, Jiang M, Zhang Y, Pan L, Yang D (2021) Novel marine secondary metabolites worthy of development as anticancer agents: a review. Molecules 26:5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2788. Jha RK, Xu Z (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123

    Article  CAS  PubMed Central  Google Scholar 

  2789. Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N (2013) Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11:2510

    Article  PubMed  PubMed Central  Google Scholar 

  2790. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13:202

    Article  PubMed  PubMed Central  Google Scholar 

  2791. Falkenberg M, Nakano E, Zambotti-Villela L, Zatelli GA, Philippus AC, Imamura KB, Velasquez AMA, Freitas RP, de Freitas TL, Colepicolo P, Graminha MAS (2019) Bioactive compounds against neglected diseases isolated from macroalgae: a review. J Appl Phycol 31:797

    Article  CAS  Google Scholar 

  2792. Gál B, Bucher C, Burns NZ (2016) Chiral alkyl halides: underexplored motifs in medicine. Mar Drugs 14:206

    Article  PubMed  PubMed Central  Google Scholar 

  2793. Martínez-Poveda B, Quesada AR, Medina MÁ (2017) Pleiotropic role of puupehenones in biomedical research. Mar Drugs 15:325

    Article  PubMed  PubMed Central  Google Scholar 

  2794. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69

    Article  CAS  PubMed  Google Scholar 

  2795. Villa FA, Gerwick L (2010) Marine natural product drug discovery: leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 32:228

    Article  CAS  PubMed  Google Scholar 

  2796. Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255

    Article  CAS  PubMed  Google Scholar 

  2797. Torres FAE, Passalacqua TG, Velásquez AMA, de Souza RA, Colepicolo P, Graminha MAS (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24:265

    Article  CAS  Google Scholar 

  2798. Kobayashi J (2016) Search for new bioactive marine natural products and application to drug development. Chem Pharm Bull 64:1079

    Article  CAS  Google Scholar 

  2799. Jiménez C (2018) Marine natural products in medicinal chemistry. ACS Med Chem Lett 9:959

    Article  PubMed  PubMed Central  Google Scholar 

  2800. Radjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG, Crews P (2011) Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Bioorg Med Chem 19:6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2801. Gochfeld DJ, El Sayed KA, Yousaf M, Hu JF, Bartyzel P, Dunbar DC, Wilkins SP, Zjawiony JK, Schinazi RF, Wirtz SS, Tharnish PM, Hamann MT (2003) Marine natural products as lead anti-HIV agents. Mini Rev Med Chem 3:401

    Article  CAS  PubMed  Google Scholar 

  2802. Laurent D, Pietra F (2006) Antiplasmodial marine natural products in the perspective of current chemotherapy and prevention of malaria. A review. Mar Biotechnol 8:433

    Article  CAS  Google Scholar 

  2803. Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63:415

    Article  CAS  Google Scholar 

  2804. Njoroge M, Njuguna NM, Mutai P, Ongarora DSB, Smith PW, Chibale K (2014) Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem Rev 114:11138

    Article  CAS  PubMed  Google Scholar 

  2805. Burrows JN, Elliott RL, Kaneko T, Mowbray CE, Waterson D (2014) The role of modern drug discovery in the fight against neglected and tropical diseases. Med Chem Commun 5:688

    Article  CAS  Google Scholar 

  2806. Sachs-Barrable K, Conway J, Gershkovich P, Ibrahim F, Wasan KM (2014) The use of the United States FDA programs as a strategy to advance the development of drug products for neglected tropical diseases. Drug Dev Ind Pharm 40:1429

    Article  CAS  PubMed  Google Scholar 

  2807. Genovese G, Tedone L, Hamann MT, Morabito M (2009) The Mediterranean red alga Asparagopsis: a source of compounds against Leishmania. Mar Drugs 7:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2808. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523

    Article  CAS  PubMed  Google Scholar 

  2809. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666

    Article  CAS  PubMed  Google Scholar 

  2810. Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3:1475

    Article  CAS  PubMed  Google Scholar 

  2811. Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Dis 20:200

    Google Scholar 

  2812. Cheung PCW (2017) A historical review of the benefits and hypothetical risks of disinfecting drinking water by chlorination (updated and revised). J Environ Ecol 8:73

    Article  Google Scholar 

  2813. Dennis C (2003) Close encounters of the jelly kind. Nature 426:12

    Article  CAS  PubMed  Google Scholar 

  2814. Roark EB, Guilderson TP, Dunbar RB, Ingram BL (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1

    Article  CAS  Google Scholar 

  2815. Houlbrèque F, McCulloch M, Roark B, Guilderson T, Meibom A, Kimball J, Mortimer G, Cuif J-P, Dunbar R (2010) Uranium-series dating and growth characteristics of the deep-sea scleractinian coral: Enallopsammia rostrata from the equatorial Pacific. Geochim Cosmochim Acta 74:2380

    Article  Google Scholar 

  2816. Barley S (2009) Deep-sea denizens make their debut. NewScientist: 12, November 28

    Google Scholar 

  2817. Lutz RA, Falkowski PG (2012) A dive to challenger deep. Science 336:301

    Article  CAS  PubMed  Google Scholar 

  2818. Johnson TA, Morgan MVC, Aratow NA, Estee SA, Sashidhara KV, Loveridge ST, Segraves NL, Crews P (2010) Assessing pressurized liquid extraction for the high-throughput extraction of marine-sponge-derived natural products. J Nat Prod 73:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2819. Esquenazi E, Daly M, Bahrainwala T, Gerwick WH, Dorrestein PC (2011) Ion mobility mass spectrometry enables the efficient detection and identification of halogenated natural products from cyanobacteria with minimal sample preparation. Bioorg Med Chem 19:6639

    Article  CAS  PubMed  Google Scholar 

  2820. Nyadong L, Hohenstein EG, Galhena A, Lane AL, Kubanek J, Sherrill CD, Fernández FM (2009) Reactive desorption electrospray ionization mass spectrometry (DESI-MS) of natural products of a marine alga. Anal Bioanal Chem 394:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2821. Hauler C, Vetter W (2015) A non-targeted gas chromatography/electron capture negative ionization mass spectrometry selected ion monitoring screening method for polyhalogenated compounds in environmental samples. Rapid Commun Mass Spectrom 29:619

    Article  CAS  PubMed  Google Scholar 

  2822. Hoh E, Dodder NG, Lehotay SJ, Pangallo KC, Reddy CM, Maruya KA (2012) Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environ Sci Technol 46:8001

    Article  CAS  PubMed  Google Scholar 

  2823. Shaul NJ, Dodder NG, Aluwihare LI, Mackintosh SA, Maruya KA, Chivers SJ, Danil K, Weller DW, Hoh E (2015) Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the southern California bight. Environ Sci Technol 49:1328

    Article  CAS  PubMed  Google Scholar 

  2824. Dalisay DS, Molinski TF (2009) NMR quantitation of natural products at the nanomole scale. J Nat Prod 72:739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2825. Andrews KG, Spivey AC (2013) Improving the accuracy of computed 13C NMR shift predictions by specific environment error correction: fragment referencing. J Org Chem 78:11302

    Article  CAS  PubMed  Google Scholar 

  2826. Casella G, Bagno A, Komorovsky S, Repisky M, Saielli G (2015) Four-component relativistic DFT calculations of 13C chemical shifts of halogenated natural substances. Chem Eur J 21:18834

    Article  CAS  PubMed  Google Scholar 

  2827. Wang X, Duggan BM, Molinski TF (2017) Ultra-high resolution band-selective HSQC for nanomole-scale identification of chlorine-substituted 13C in natural products drug discovery. Magn Reson Chem 55:263

    Article  CAS  PubMed  Google Scholar 

  2828. Maier ME (2009) Structural revisions of natural products by total synthesis. Nat Prod Rep 26:1105

    Article  CAS  PubMed  Google Scholar 

  2829. Usami Y (2009) Recent synthetic studies leading to structural revisions of marine natural products. Mar Drugs 7:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2830. Capon RJ (2020) Extracting value: mechanistic insights into the formation of natural product artifacts—case studies in marine natural products. Nat Prod Rep 37:55

    Article  CAS  PubMed  Google Scholar 

  2831. Aranami K, Rowland SJ, Readman JW (2006) Discriminating biogenic and anthropogenic chlorinated organic compounds using multi-isotope analyses of individual compounds. Radioactiv Environ 8:24

    Article  CAS  Google Scholar 

  2832. Renpenning J, Horst A, Schmidt M, Gehre M (2018) Online isotope analysis of 37Cl/35Cl universally applied for semi-volatile organic compounds using GC-MC-ICPMS. J Anal At Spectrom 33:314

    Article  CAS  Google Scholar 

  2833. Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A 774:143

    Article  CAS  PubMed  Google Scholar 

  2834. Rosenfelder N, Ostrowicz P, Fu L, Gribble GW, Tittlemier SA, Frey W, Vetter W (2010) Enantioseparation and absolute configuration of the atropisomers of a naturally produced hexahalogenated 1,1′-dimethyl-2,2′-dipyrrole. J Chromatogr A 1217:2050

    Article  CAS  PubMed  Google Scholar 

  2835. Powell RG (2009) Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents. J Nat Prod 72:516

    Article  CAS  PubMed  Google Scholar 

  2836. Sanders L (2009) Venom hunters. Science News August 15:16

    Google Scholar 

  2837. Timms BV (2005) Salt lakes in Australia: present problems and prognosis for the future. Hydrobiologia 552:1

    Article  Google Scholar 

  2838. Francezon N, Tremblay A, Mouget J-L, Pasetto P, Beaulieu L (2021) Algae as a source of natural flavors in innovative foods. J Agric Food Chem 69:11753

    Article  CAS  PubMed  Google Scholar 

  2839. Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol 25:1777

    Google Scholar 

  2840. Yamazaki H (2022) Exploration of marine natural resources in Indonesia and development of efficient strategies for the production of microbial halogenated metabolites. J Nat Med 76:1

    Article  CAS  PubMed  Google Scholar 

  2841. Williams GC (2011) The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS One 6:e22747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2842. McCauley E, Radjasa OK, Trianto A, Crews MS, Smith A, Smith GC, Zerebinski P, Sabdono A, Crews P (2018) The UNDIP-USCS campaign to culture chemically prolific gram-negative bacteria from Indonesian Jaspis sponges. Arkivoc iv:123

    Google Scholar 

  2843. Cembella AD, Ibarra DA, Diogene J, Dahl E (2005) Harmful algal blooms and their assessment in fjords and coastal embayments. Oceanography 18:158

    Article  Google Scholar 

  2844. Smith JE, Kuwabara J, Flanagan K, duPlessis S, Coney J, Beets J, Takabayashi M, Barnes S, Turner J, Brown D, Griesemer BK, Stanton F (2008) An unusual cyanobacterial bloom in Hawai’i. Coral Reefs 27:851

    Article  Google Scholar 

  2845. Steffen MM, Belisle BS, Watson SB, Boyer GL, Wilhelm SW (2014) Status, causes and controls of cyanobacterial blooms in Lake Erie. J Great Lakes Res 40:215

    Article  CAS  Google Scholar 

  2846. Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401

    Article  CAS  Google Scholar 

  2847. Kalaitzis JA, Lauro FM, Neilan BA (2009) Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 26:1447

    Article  CAS  PubMed  Google Scholar 

  2848. Raloff J (2005) Squirt alert. A tiny marine alien is emerging as a coastal Grinch. Science News 168:411

    Google Scholar 

  2849. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737

    Article  CAS  PubMed  Google Scholar 

  2850. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2009) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250

    Article  PubMed  Google Scholar 

  2851. Bidleman TF, Andersson A, Haglund P, Tysklind M (2020) Will climate change influence production and environmental pathways of halogenated natural products? Environ Sci Technol 54:6468

    Article  CAS  PubMed  Google Scholar 

  2852. Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W (2014) Halogen bond: its role beyond drug–target binding affinity for drug discovery and development. J Chem Inf Model 54:69

    Article  CAS  PubMed  Google Scholar 

  2853. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding—a novel interaction for rational drug design? J Med Chem 52:2854

    Article  CAS  PubMed  Google Scholar 

  2854. Mendez L, Henriquez G, Sirimulla S, Narayan M (2017) Looking back, looking forward at halogen bonding in drug discovery. Molecules 22:1397

    Article  PubMed  PubMed Central  Google Scholar 

  2855. Metrangolo P, Resnati G (2008) Halogen versus hydrogen. Science 321:918

    Article  CAS  PubMed  Google Scholar 

  2856. Bradley SA, Zhang J, Jensen MK (2020) Deploying microbial synthesis for halogenating and diversifying medicinal alkaloid scaffolds. Front Bioeng Biotechnol 8:594126

    Article  PubMed  PubMed Central  Google Scholar 

  2857. de Oliveira BFR, Carr CM, Dobson ADW, Laport MS (2020) Harnessing the sponge micobiome for industrial biocatalysts. Appl Microbiol Biotechnol 104:8131

    Article  PubMed  Google Scholar 

  2858. Reverter M, Rohde S, Parchemin C, Tapissier-Bontemps N, Schupp PJ (2020) Metabolomics and marine biotechnology: coupling metabolite profiling and organism biology for the discovery of new compounds. Front Mar Sci 7:613471

    Article  Google Scholar 

  2859. Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466

    Article  CAS  PubMed  Google Scholar 

  2860. Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132:2469

    Google Scholar 

  2861. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2862. Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888

    Article  Google Scholar 

  2863. Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55:5989

    Article  CAS  PubMed  Google Scholar 

  2864. Leys D, Adrian L, Smidt H (2013) Organohalide respiration: microbes breathing chlorinated molecules. Phil Trans R Soc B 368:20120316

    Article  PubMed  PubMed Central  Google Scholar 

  2865. Atashgahi S, Häggblom MM, Smidt H (2018) Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbiol 20:938

    Article  Google Scholar 

  2866. Liang Y, Lu Q, Liang Z, Liu X, Fang W, Liang D, Kuang J, Qiu R, He Z, Wang S (2021) Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration. ISME Commun 1:23

    Article  PubMed Central  Google Scholar 

  2867. Zhang C, Atashgahi S, Bosma TNP, Peng P, Smidt H (2022) Organohalide respiration potential in marine sediments from Aarhus Bay. FEMS Microbiol Ecol 98:1

    Article  Google Scholar 

  2868. Winterton N (1996) A role for methyl chloride in evolution? Mutat Res 372:147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is indebted to Ms. Wendy Berryman who typed the manuscript and drew all of the structures, and to Professor Heinz Falk for his enormous assistance with the preparation of this manuscript. A special thanks goes to the several scientists who provided photographs of some of the organisms cited herein, and to Dartmouth College for the use of the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Gribble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gribble, G.W. (2023). Naturally Occurring Organohalogen Compounds—A Comprehensive Review. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Naturally Occurring Organohalogen Compounds. Progress in the Chemistry of Organic Natural Products, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-031-26629-4_1

Download citation

Publish with us

Policies and ethics