Skip to main content

Endophytic Fungi as Sources of Novel Natural Compounds

  • Chapter
  • First Online:
Plant Mycobiome
  • 518 Accesses

Abstract

Nowadays, the increasing demands for novel natural compounds for their effective applications as medical drugs imposed severe threats on many plant species; however, the plant endofungi have emerged as promising alternative sources of these natural metabolites. This study aimed to highlight the importance of endofungi as effective producers of bioactive compounds, study the main secondary metabolites produced by these fungi, and focus on the biological applications of these natural compounds. The endofungal bioactive metabolites have the same or similar activities as their host plants. The produced natural compounds possess several pharmacological activities; mainly, anticancerous, anti-microbial, anti-inflammatory, antioxidant, immune-modulatory, and antimalarial. Currently, the recorded promising drugs of endofungal origins include Taxol, cyclosporine A, griseofulvin, lovastatin, and the β-lactam antibiotics. The non-pathogenic nature of most of the endofungi makes their secondary metabolites safe for the human usage, as they have no cytotoxicity against the mammalian cells. Aspergillus fumigatus EFBL as an example is a fungal endophyte of Catharanthus roseus, and is a potent producer of epothilone that demonstrated significant anti-proliferative efficacy against the tumor cells. The recently used mechanism to enhance the endofungal production of more novel natural compounds includes placing these endophytes under stress conditions, to induce the silent biosynthetic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M (2010) Endophytic bacteria in long-term in vitro cultivated axenic pineapple microplants revealed by PCRDGGE. World J Microbiol Biotechnol 26:555–560. https://doi.org/10.1007/s11274-009-0191-3

    Article  Google Scholar 

  • Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA (2001) Mevastatin, an HMGCoA reductase inhibitor reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32:980–986

    Article  CAS  PubMed  Google Scholar 

  • Ancheeva E, Daletos G, Proksch P (2019) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 26(11). https://doi.org/10.2174/0929867326666190916144709

  • Ansari P, Häubl G (2016) Determination of cyclopiazonic acid in white mould cheese by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using a novel internal standard. Food Chem 211:978–982

    Article  CAS  PubMed  Google Scholar 

  • Anupama N, Murali M, Jogaiah S, Amruthesh KN (2014) Crude oligosaccharides from Alternaria solani with Bacillus subtilis enhance defensive activity against early blight disease of tomato. Asian J Sci Tech 5:412–416

    CAS  Google Scholar 

  • Baba MS, Zin NM, Hassan ZA, Latip J, Pethick F, Hunter IS, Edrada-Ebel R, Herron PR (2015) In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol 53(12):847–855

    Article  CAS  PubMed  Google Scholar 

  • Babu AN, Jogaiah S, Ito S, Amruthesh KN, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Upadhyay N, Kukreja AK, Ahuja PS, Kumar S, Saha GC, Sharma RP, Chattopadhyay SK (1996) Taxanes from in vitro cultures of the Himalayan Yew Taxus wallichiana. Planta Med 62:333–335

    Article  CAS  Google Scholar 

  • Barnett CJ, Cullinan GJ, Gerzon K, Hoying RC, Jones WE, Newlon WM, Poore GA, Robison RL, Sweeney MJ, Todd GC, Dyke RW, Nelson RL (1978) Structure-activity relationships of dimeric Catharanthus alkaloids 1. Deacetyl vinblastine amide (vindesine sulfate). J Med Chem 21:88

    Article  CAS  PubMed  Google Scholar 

  • Barrios-González J, Miran da RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869

    Article  PubMed  Google Scholar 

  • Barros FAP, Rodrigues-Filho E (2005) Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem Syst Ecol 33(3):257–268

    Article  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26

    Article  Google Scholar 

  • Bilal L, Sajjad A, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulate plant endogenous hormones. Symbiosis 76:117–127. https://doi.org/10.1007/s13199-018-0545-4

    Article  CAS  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites_strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Bridgford JL, Xie SC, Cobbold SA, Pasaje CF, Herrmann S, Yang T, Gillett DL, Dick LR, Ralph SA, Dogovski C et al (2018) Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun 9:1–9

    Article  CAS  Google Scholar 

  • Brown T, Tangen C, Flemming T, Macdonald J (1993) A phase II trial of taxol and granulocyte colony stimulating factor (G-CSF) in patients with adenocarcinoma of pancreas. Proc Am Soc Clin Onco 12:200

    Google Scholar 

  • Bunyapaiboonsri T, Yoiprommarat S, Nopgason R, Intereya K, Suvannakad R, Sakayaroj J (2015) Palmarumycins from the mangrove fungus bcc 25093. Tetrahedron 71:5572–5578

    Article  CAS  Google Scholar 

  • Cao L, Huang J, Li J (2007) Fermentation conditions of Sinopodophyllum hexandrum endophytic fungus on production of podophyllotoxin. Food and Fermentation Industries 33:28–32

    CAS  Google Scholar 

  • Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50(1):3–14

    CAS  Google Scholar 

  • Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Ghosh R, Mandal NC (2019) Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A. Juss. PLoS One 14(4):e0214744. https://doi.org/10.1371/journal.pone0214744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Yang L, Li Q, Shen Y, Shao A, Lin S, Huang L (2011) Volatile metabolites analysis and molecular identification of endophytic fungi bn12 from Cinnamomum camphora var. borneol. China J Chin Materia Med 36(23):3217–3221

    CAS  Google Scholar 

  • Chen J, Li L, Tian P, Xiang W, Lu X, Huang R, Li L (2021) Fungal endophytes from medicinal plant Bletilla striata (Thunb.) Reichb. F. promot the host plant growth and phenolic accumulation. S Afr J Bot 143:25–32

    Article  CAS  Google Scholar 

  • Chetia H, Kabiraj D, Bharali B, Ojha S, BarkatakiMP SD, Singh T, Mosahari PV, Sharma P, Bora U (2019) Exploring the benefits of endophytic fungi via omics. In: Singh BP (ed) Advances in endophytic fungal research. Springer, New York, pp 51–81. https://doi.org/10.1007/978-3-030-03589-1_4

    Chapter  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540

    Article  CAS  PubMed  Google Scholar 

  • Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloe/Neotyphodium and endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106(1):93–106. https://doi.org/10.1017/S095375620100510X

    Article  Google Scholar 

  • Chutulo EC, Chalannavar RK (2018) Endophytic mycoflora and their bioactive compounds from Azadirachta indica: a comprehensive review. J Fungi 4:42

    Article  Google Scholar 

  • Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Boyd MR, Cardellina JH II, Grever MR, Schepartz S, Snader KM, Suffness M (1993) The search for new pharmaceutical crops. In: Janick J, Simon JE (eds) Drug discovery and development at the national cancer institute: new crops. Wiley, New York, pp 61–167

    Google Scholar 

  • Creasey WA (1979) The vinca alkaloids. In: Hahn FE (ed) Antibiotics, 5th edn. Springer, New York, pp 414–438

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Chichester, pp 1250–1318

    Google Scholar 

  • Crown J, O’Leary M (2000) The taxanes: an update. Lancet 355(9210):1176–1178. https://doi.org/10.1016/S0140-6736(00)02074-2

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64(11):1444–1446

    Article  CAS  PubMed  Google Scholar 

  • Cui R, Wang YZ, Wang L, Li GM, Lan K, Altmeyer R, Zou G (2016) Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus. Antivir Res 132:38–45

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Lin Y, Luo M, Lu Y, Huang X, She Z (2017) Diaporisoindoles A_C: three isoprenylisoindole alkaloid derivatives from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. Org Lett 19:5621–5624

    Article  CAS  PubMed  Google Scholar 

  • Das AK (2015) Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 5:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalhoa CR, Maiaa MQ, Sobral M, Pereirac GMD, da Silvad K, Vitalc MJS, Zillie JE, Rosaa CA, Rosaa LH (2021) Diversity and antimicrobial activity of culturable endophytic fungi associated with the neotropical ethnomedicinal plants Copaifera langsdorffii and Copaifera pubiflora. S Afr J Bot 142:305–315

    Article  Google Scholar 

  • De Souza JJ, Vieira IJ, Rodrigues-Filho E, Braz-Filho R (2011) Terpenoids from endophytic fungi. Mol Ther 16:10604–10618

    Google Scholar 

  • Demers D, Knestrick M, Fleeman R, Tawfik R, Azhari A, Souza A et al (2018) Exploitation of mangrove endophytic fungi for infectious disease drug discovery. Mar Drugs 16(10):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5(715):1–43

    Google Scholar 

  • Deshmukh SK, Agrawal S, Prakash V, Gupta MK, Reddy MS (2020) Anti-infectives from mangrove endophytic fungi. S Afr J Bot 134:237–263

    Article  CAS  Google Scholar 

  • Dewi RT, Tachibana S, Fajriah S, d Hanafi M (2015) A-glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Med Chem Res 24:737–774

    Google Scholar 

  • Domka AM, Rozpaadek P, Turnau K (2019) Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Front Microbiol 10:371. https://doi.org/10.3389/fmicb.2019.00371

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan L, Liwei G, Hong Y (2009) Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. J Anhui Agric Sci 22(7):10340

    Google Scholar 

  • Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180(2):190–195. https://doi.org/10.1016/j.plantsci.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  • Ebada SS, Eze P, Okoye FB, Esimone CO, Proksch P (2016) The fungal endophyte Nigrosporaoryzae produces quercetin monoglycosides previously known only from plants. Chem Select 16:2767–2771

    Google Scholar 

  • El-Sayed ASA, Shindia AA, Ali GS, Yassin MA, Hussein H, Awad SA, Ammar HA (2021) Production and bioprocess optimization of antitumor Epothilone B analogue from Aspergillus fumigatus, endophyte of Catharanthus roseus, with response surface methodology. Enzym Microb Technol 143:109718

    Article  CAS  Google Scholar 

  • Ettinger DS (1992) Taxol in the treatment of lung cancer. In: Abstracts of second National Cancer Institute workshop on taxol and taxus, Alexandria, pp 23–24

    Google Scholar 

  • Fadiji AE, Babalola OO (2020) Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences 27:3622–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Liu W, Li M, Ouyang Y, Yuan T (2021) Cladosporitides A–C, three polyketides from an endophytic fungi Cladosporium tenuissimum. Tetrahedron Lett 85:153492

    Article  CAS  Google Scholar 

  • Fischer J, Schroeckh V, Brakhage AA (2016) Awakening of fungal secondary metabolite gene clusters. In: Schmoll M, Dattenbock C (eds) Gene expression systems in fungi: advancements and applications, pp 253–273. https://doi.org/10.1007/978-3-319-27951-0_11

    Chapter  Google Scholar 

  • Flores HE, Sgrignoli PJ (1991) In vitro culture and precocious germination of Taxus embryos. In Vitro Cell Dev Biol 27:139–142

    Article  Google Scholar 

  • Forastiere AA, Neuberg D, Taylor SG, DeConti R, Adams G (1993) Phase II evaluation of taxol in advanced head and neck cancer: an Eastern Cooperative Oncology Group Trial. J Natl Cancer Inst Monogr 15:181–184

    Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piroformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455–1464. https://doi.org/10.1007/s00253-012-4506-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Isolation of Colletotrichum gloeosporioides: a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol Balc 5:1–4

    Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine – derived fungus Trichoderma virens. J Nat Prod 66:423–426

    Article  CAS  PubMed  Google Scholar 

  • Geetanjali (2017) Exploring the endophytic fungi for bioactive metabolites: an emerging paradigm. IJARSE 6(12):1815–1822

    Google Scholar 

  • Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50(7):464–468

    CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538. https://doi.org/10.3389/fmicb.2016.01538

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Li H, Zhang L (1998) Isolation of the fungus producting vinbrastine. J Yunnan Univ (Nat Sci Ed) 20(3):214–215

    CAS  Google Scholar 

  • Guo ZK, Zhou YQ, Han H, Wang W, Xiang L, Deng XZ et al (2018) New antibacterial phenone derivatives asperphenone A_C from mangrove-derived fungus Aspergillus sp. YHZ-1. Mar Drugs 16:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462

    Article  CAS  PubMed  Google Scholar 

  • Hardoim P, van-Overbeek L, van-Elsas J (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan ES (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins KL, Arnold AE, Coley P, Kursar T (2014) Communities of fungal endophyte in tropical forest grasses: highly diverse host and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11. https://doi.org/10.1016/j.funeco.2013.12.005

    Article  Google Scholar 

  • Huang H, Liu T, Wu X, Guo J, Lan X, Zhu Q et al (2017) A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB). Nat Prod Res 31:2593–2598

    Article  CAS  PubMed  Google Scholar 

  • Hussein RA, El-Anssary AA (2018) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. Intech, London. https://doi.org/10.5772/intechopen.76139

    Book  Google Scholar 

  • Jain D, Phurailatpam L, Mishra S (2020) Microbes-mediated mitigation of drought stress in plants: recent trends and future challenges. In: Yadav A, Rastegari A, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Microorganisms for sustainability, vol 20. Springer, Singapore, pp 199–218

    Chapter  Google Scholar 

  • Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13-hydroxylase is a cytochrome P450-dependent monooxygenase. PNAS 98:13595–13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia M, Ming QL, Zhang QY, Chen Y, Cheng N, Wu WW, Han T, Qin LP (2014) Gibberella moniliformis AH13 with antitumor activity, an endophytic fungus strain producing triolein isolated from Adlay (Coix lacryma-jobi: Poaceae). Curr Microbiol 69(3):381–387

    Article  CAS  PubMed  Google Scholar 

  • Jinfeng EC, Rafi MIM, Hoon KC, Lian HK, Kqueen CY (2017) Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus. World J Microbiol Biotechnol 33(1):5

    Article  PubMed  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19:870–882

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Bio 1:291–309. https://doi.org/10.3923/ajbmb.2011.291.309

    Article  Google Scholar 

  • Jung HJ, Kim Y, Lee HB, Kwon HJ (2015) Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from red pepper leaf. Mol Cells 38(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Khalil ZG (2014) Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism. Mycology 5:168–178

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin J-H (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11(6):e0158207. https://doi.org/10.1371/journal.pone.0158207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, McInroy JA, Liu K, Hu CH (2013) Symptoms of Fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS One 8(3):e58531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. https://doi.org/10.1016/jchembiol.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshoft M, Kusari P, Gottfried S, Zuhlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77(12):2577–2584. https://doi.org/10.1021/np500219a

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Xiao Z (2003) Lignans in treatment of cancer and other diseases. Phytochem Rev 2:341–362

    Article  CAS  Google Scholar 

  • Li TX, Yang MH, Wang Y, Wang XB, Luo J, Luo JG, Kong LY (2016) Unusual dimeric tetrahydroxanthone derivatives from Aspergillus lentulus and the determination of their axial chiralities. Sci Rep:1–10

    Google Scholar 

  • Li HL, Xu R, Li XM, Yang SQ, Meng LH, Wang BG (2018) Simpterpenoid A, a meroterpenoid with a highly functionalized cyclohexadiene moiety featuring gem-propane-1,2-dione and methylformate groups, from the mangrove-derived Penicillium simplicissimum MA-332. Org Lett 20:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Li F, He X, Sun Y, Zhang X, Tang X, Li Y, Yi Y (2019) Distinct endophytes are used by diverse plants for adaptation to karst regions. Sci Rep 9:5246. https://doi.org/10.1038/s41598-019-41802-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang WL (2014) Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 12:5657–5676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Li T, Ren H, Xi JM, Fang J, Zhang JZ, Wu QX (2021) Diverse anti-inflammation and anti-cancer polyketides isolated from the endophytic fungi Alternaria sp. MG1. Fitoterapia 153:105000. https://doi.org/10.1016/j.fitote.2021.105000

    Article  CAS  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2018) Asperorydines A-M: prenylated tryptophan-derived alkaloids with neurotrophic effects from Aspergillus oryzae. J Organomet Chem 83:812–822

    Article  CAS  Google Scholar 

  • Lu L, He J, Yu X, Li G, Zhang X (2006) Studies on isolation and identification of endophytic fungi strain SC13 from harmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Agric Bor Sin 15:85–89

    Google Scholar 

  • Mahmud SMN, Sohrab MH, Begumc MN, Rony SR, Sharmin S, Moni F, Akhter S, Mohiuddin AKM, Afroz F (2020) Cytotoxicity, antioxidant, antimicrobial studies and phytochemical screening of endophytic fungi isolated from Justicia gendarussa. Ann Agric Sci 65:225–232

    Article  Google Scholar 

  • Majumder A, Jha S (2009) Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: an overview. J Bio Sci 1:46–69

    Google Scholar 

  • Manganyi MC, Tchatchouang CDK, Regnier T, Bezuidenhout CC, Ateba CN (2019) Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology 47(3):335–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Mapook A (2020) Polyketide-derived secondary metabolites from a dothideomycetes fungus, Pseudopalawania siamensis gen. et sp. nov., (Muyocopronales) with antimicrobial and cytotoxic activities. Biomol Ther 10:569

    CAS  Google Scholar 

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation-A powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur P, Mehtani P, Sharma C (2021) Leaf endophytes and their bioactive compounds. In: Symbiotic soil microorganisms. Springer, Cham, pp 147–159

    Chapter  Google Scholar 

  • Matsuoka H, Akiyama M, Kobayashi K, Yamaji K (2013) Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Curr Microbiol 66:314–321

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Bhattacharjee A, Sharma S (2021) An ecological insight into the multifaceted world of plant-endophyte association. CRC Crit Rev Plant Sci 40(2):127–146. https://doi.org/10.1080/07352689.2021.1901044

    Article  Google Scholar 

  • Mondal A (2019) Alkaloids for cancer prevention and therapy: current progress and future perspectives. Eur J Clin Pharmacol 858:172472

    Article  CAS  Google Scholar 

  • Murali M, Amruthesh KN, Jogaiah S, Shetty HS (2012) Screening of plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. J Phytology 4:30–36

    Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 22:1–11. https://doi.org/10.1155/2014/250693

    Article  Google Scholar 

  • Nischitha R, Shivanna MB (2022) Diversity and in silico docking of antibacterial potent compounds in endophytic fungus Chaetomium subaffine Sergeeva and host Heteropogon contortus (L.) P. Beauv. Process Biochem 112:124–138

    Article  CAS  Google Scholar 

  • Paramanantham P, Pattnaik S, Siddhardha B (2019) Natural products from endophytic fungi: synthesis and applications. In: Singh B (ed) Advances in endophytic fungal research. Springer, Cham, pp 83–103

    Chapter  Google Scholar 

  • Parthasarathi S, Sathya S, Bupesh G, Samy DR, Mohan MR, Selva GK et al (2012) Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopicus BDUS49. World J Fish Mar Sci 4:268–277

    CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Pfannenstiel BT, Keller NP (2019) On top of biosynthetic gene clusters: how epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 37(6). https://doi.org/10.1016/j.biotechadv.2019.02.001

  • Phurailatpam L, Mishra S (2020) Role of plant endophytes in conferring abiotic stress tolerance. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II. Springer, Singapore, pp 603–628. https://doi.org/10.1007/978-981-15-2172-0_22

    Chapter  Google Scholar 

  • Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int:576286. https://doi.org/10.4061/2011/576286

  • Pretsch A, Nagl M, Schwendinger K, Kreiseder B, Wiederstein M, Pretsch D, Genov M, Hollaus R, Zinssmeister D, Debbab A, Hundsberger H, Eger A, Proksch P, Wiesner C (2014) Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS ONE 9(6):e97929. https://doi.org/10.1371/journal.pone.0097929

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Tricoderins, novel aminolipopeptiides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3663

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Amna T, Khajuria A, Gupta A, Arora R, Spiteller M, Qazi GN (2007) Immunomodulatory activity of an extract of the novel fungal endophyte Entrophospora infrequens isolated from Nothapodytes foetida (Wight) Sleumer. Acta Microbiol Immunol Hung 54(3):237–260

    Article  CAS  PubMed  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Hassan UISR (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the western Himalayas. Springer Plus 2(8):2–14

    Google Scholar 

  • Qiu M, Xie R, Shi Y, Zhang H, Chen H (2010) Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann Microbiol 60(1):143–150

    Article  CAS  Google Scholar 

  • Rai N, Morales LO, Aphalo PJ (2021) Perception of solar UV radiation by plants: photoreceptors and mechanisms. Plant Physiol 186(3):1382–1396. https://doi.org/10.1093/plphys/kiab162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Saxena AK (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  • Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I (2018) Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil. Front Plant Sci 9:1726. https://doi.org/10.3389/fpls.2018.01726

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash GP, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014. https://doi.org/10.1016/j.biocontrol.2019.104014

    Article  CAS  Google Scholar 

  • Sahu PK, Thomas P, Singh S, Gupta A (2020) Taxonomic and functional diversity of cultivable endophytes with respect to the fitness of cultivars against Ralstonia solanacearum. J Plant Dis Prot 127:667–676. https://doi.org/10.1007/s41348-020-00320-2

    Article  Google Scholar 

  • Salendra L, Luo X, Lin X, Liao S, Wang JZ, Yang X (2018) Bioactive novel indole alkaloids and steroids from deep sea-derived fungus Aspergillus fumigatus SCSIO 41012. Molecules 23:2379

    Article  Google Scholar 

  • Santos IP, Silva NL, Silva MV, Araujo JM, Cavalcant MSI, Lima VM (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 6(350):1–7

    Google Scholar 

  • Satheesan J, Sabu KK (2020) Endophytic fungi for a sustainable production of major plant bioactive compounds. In: Swamy M (ed) Plant-derived Bioactives. Springer, Singapore, pp 195–207

    Chapter  Google Scholar 

  • Saunders M, Kohn LM (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  CAS  PubMed  Google Scholar 

  • Schiff PB, Fant J, Auster LA, Horowitz SB (1978) Effects of taxol on cell growth and in vitro microtubule assembly. J Supramol Struct Suppl 8:328

    Google Scholar 

  • Schouten A (2019) Saving resources: the exploitation of endophytes by plants for the biosynthesis of multifunctional defence compounds. In: Schouten A (ed) Endophyte biotechnology: potential for agriculture and pharmacology. London, CABI International, pp 122–144

    Chapter  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. https://doi.org/10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Selvakumar V, Panneerselvam A (2018) Bioactive compounds from endophytic fungi. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer, Singapore, pp 699–717. https://doi.org/10.1007/978-981-13-0393-7_36

    Chapter  Google Scholar 

  • Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112(2):225–230. https://doi.org/10.1016/j.mycres.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116

    Article  CAS  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61(4):729–739

    Article  PubMed  Google Scholar 

  • Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A (2016) Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J Ethnopharmacol 194:450–456

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh DK, Kharwar RN, White JF, Gond SK (2021) Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorganisms 9:197. https://doi.org/10.3390/microorganisms9010197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    Article  CAS  PubMed  Google Scholar 

  • Song FH (2012) Quinazolin-4-one coupled with pyrrolidin-2-iminium alkaloids from marine-derived fungus Penicillium aurantiogriseum. Mar Drugs 10:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182. https://doi.org/10.1590/S1517-838220120003000045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596. https://doi.org/10.1007/s00253-013-5235-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45(6):1073–1082

    Article  CAS  Google Scholar 

  • Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27(16):1445–1449. https://doi.org/10.1080/14786419.2012.722091

    Article  CAS  PubMed  Google Scholar 

  • Subbulakshmi GK, Thalavaipandian A, Bagyalakshmi RV, Rajendran A (2012) Bioactive endophytic fungal isolates of Biotaorientalis (L) Endl., Pinus excelsa Wall. and Thujaoccidentalis L. Int J Adv Life Sci 4:9–15

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Amand S, Buisson D, Kunz C, Hachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 108:95101

    Article  Google Scholar 

  • Turbat A, Rakk D, Vigneshwari A, Kocsube S, Thu H, Szepesi A, Bakacsy LD, Skrbic BD, Jigjiddorj EA, Vagvolgyi C, Szekeres A (2020) Characterization of the plant growth-promoting activities of endophytic fungi isolated from Sophora flavescens. Microorganisms 8:683. https://doi.org/10.3390/microorganisms8050683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uche-Okereafor N, Sebola T, Tapfuma K, Mekuto L, Green E, Mavumengwana V.2019) Antibacterial activities of crude secondary metabolite extracts from Pantoea species obtained from the stem of Solanum mauritianum and their effects on two cancer cell lines. Int J Environ Res Publ Health 16(4): 602 https://doi.org/10.3390/ijerph16040602

  • Vicente MF, Cabello A, Platas G, Basilio A, Díez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Peláez F (2011) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91(5):806–813

    Article  Google Scholar 

  • Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  • Wang LG, Liu XM, Kreis W, Budman DR (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44:355–361

    Article  CAS  PubMed  Google Scholar 

  • Wang LW, Zhang YL, Lin FC, Hu YZ, Zhang CL (2011) Natural products with antitumor activity from endophytic fungi. Mini Rev Med Chem 11(12):1056–1074. https://doi.org/10.2174/138955711797247716

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wei X, Lu X, Xu F, Wan J, Lin X et al (2014) Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) druce. Tetrahedron 70:9695–9701

    Article  CAS  Google Scholar 

  • Wang JF, Liang R, Liao SR, Yang B, Tu ZC, Lin XP et al (2017) Vaccinols J_S, ten new salicyloid derivatives from the marine mangrove-derived endophytic fungus Pestalotiopsis vaccinii. Fitoterapia 120:164–170

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Meng LH, Wang BG (2020) Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms. Mar Drugs 18:614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jiang Y, Xin X, An F (2021) Bioactive indole alkaloids from insect derived endophytic Aspergillus lentulus. Fitoterapia 153:104973

    Article  CAS  PubMed  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant endophyte symbiosis: an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965. https://doi.org/10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773. https://doi.org/10.3390/molecules170910754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler NC, Jech K, Masters S (1992) Effects of genetic, epigenetic and environmental factors on taxol content in Taxus brevifolia and related species. J Nat Prod 55:432–440

    Article  CAS  PubMed  Google Scholar 

  • Woo DD, Miao SYP, Pelayo JC, Woolf AS (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368:750–753

    Article  CAS  PubMed  Google Scholar 

  • Woodrow CJ, Haynes RK, Krishna S (2005) Artemisinins. Postgrad. Med J 81:71–78

    CAS  Google Scholar 

  • Wu B, Oesker V, Wiese J, Schmalijohann R, Imhoff JF (2014) Two new antibiotic pyridines produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Chen J, Zhang X, Chen Z, Li T, She Z et al (2019) Four new isocoumarins and a new natural tryptamine with antifungal activities from a mangrove endophytic fungus Botryosphaeria ramosa L29. Mar Drugs 17:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Wu YY, Zhang TY, Zhang MY, Zhu WW, Gullen EA et al (2017) New and bioactive natural products from an endophyte of Panax notoginseng. RSC Adv 7:38100–38109

    Article  CAS  Google Scholar 

  • Xing YM, Chen J, Cui JL, Chen XM, Guo SX (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam. Curr Microbiol 62(4):1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wu X, Li G, Feng Z, Xu J (2018) Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat Prod Res 34(7):1002–1007

    Article  Google Scholar 

  • Yan Y, Liu Q, Jacobsen SE, Tang Y (2018) The impact and prospect of natural product discovery in agriculture. EMBO Rep 19:e46824

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Guo S, Zhang L, Shao H (2003) Selection of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev 15:419–422

    CAS  Google Scholar 

  • Yang K, Liang J, Li Q, Kong X, Chen R, Jin Y (2013) Cladosporium cladosporioides XJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum. World J Microbiol Biotechnol 29:933–938

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Sun YH (2011) Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine 18:802–805

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Zhou G, Zhu M, Wang W, Zhu T, Gu Q et al (2015) Neosartoryadins a and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae HDN13-313. Org Lett 18:244–247

    Article  PubMed  Google Scholar 

  • Ze-Hong WU, Dong LIU, Ying XU, Jian-Liang CHEN, Wen-Han LIN (2018) Antioxidant xanthones and anthraquinones isolated from a marine derived fungus Aspergillus versicolor. Chin J Nat Med 16:219–224

    Google Scholar 

  • Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qing LP (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43(2):238–261. https://doi.org/10.1080/1040841X.2016.1201041

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, 1st edn. Formatex Research Center, Badajoz, pp 567–576

    Google Scholar 

  • Zheng CJ, Liao HX, Mei RQ, Huang GL, Yang LJ, Zhou XM et al (2018) Two new benzophenones and one new natural amide alkaloid isolated from a mangrovederived fungus Penicillium citrinum. Natl Prod Res 33(8):1127–1134. https://doi.org/10.1080/14786419.2018.1460832

    Article  CAS  Google Scholar 

  • Zhu F, Chen G, Chen X, Huang M, Wan X (2011) Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem Nat Compd 47(5):767–769

    Article  CAS  Google Scholar 

  • Zhu X, Zhong Y, Xie Z, Wu M, Hu Z, Ding W et al (2018) Fusarihexins a and B: novel cyclic hexadepsipeptides from the mangrove endophytic fungus Fusarium sp. R5 with antifungal activities. Planta Med 84:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Zin WWM, Buttachon S, Dethoup T, Pereira JA, Gales L, Inacio A et al (2017) Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 141:86–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I express my sincere acknowledgements to my Respected Mother, my Wife Rania Hafez, and my Son Youssef, for supporting me during editing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Kamel Madbouly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madbouly, A.K. (2023). Endophytic Fungi as Sources of Novel Natural Compounds. In: Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A. (eds) Plant Mycobiome. Springer, Cham. https://doi.org/10.1007/978-3-031-28307-9_14

Download citation

Publish with us

Policies and ethics