Skip to main content

Host Switching and Geographic Expansions in (Hemi)biotrophic Plant Pathogens

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

  • 778 Accesses

Abstract

While it is increasingly well understood how plants and animals spread around the world, and how they diversify and occupy new niches, such knowledge is fairly limited for fungi and oomycetes. As is true for animals and plants, many plant pathogenic fungi have been spread anthropogenically, but, in contrast to them, only rarely as a deliberate introduction. In addition, the occupation of new niches for plant pathogenic fungi is less defined by the abiotic environment, but more by the biotic environment, as the interaction with the host plant is the major ecological determinant of fitness, especially for biotrophic and hemibiotrophic pathogens. Thus, host switches are a major driver in the diversification of pathogens, which can have an effect similar to the arrival of animals or plants on a previously uninhabited archipelago. This chapter summarises the current state of knowledge on range expansions and host jumps in plant pathogens, focusing on (hemi-)biotrophic fungi and oomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abasova L, Aghayeva D, Takamatsu S (2018) Notes on powdery mildews of the genus Erysiphe from Azerbaijan. Curr Res Environ Appl Mycol 8(1):30–53

    Article  Google Scholar 

  • Adenle VO, Cardwell KF (2000) Seed transmission of maize downy mildew (Peronosclerospora sorghi) in Nigeria. Plant Pathol 49(5):628–634

    Article  Google Scholar 

  • Aime MC (2006) Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience 47:112–122

    Article  CAS  Google Scholar 

  • Aime MC, McTaggart AG (2020) A higher-rank classification for rust fungi, with notes on genera. Fungal Syst Evol 7:21–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Aime MC, Bell C, Wilson AW (2018) Deconstructing the evolutionary complexity of rust fungi (Pucciniales) and their hosts. Stud Mycol 89:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida RF, Machado PS, Damacena MB, Santos SA, Guimarães LMS, Klopfenstein NB, Alfenas AC (2021) A new, highly aggressive race of Austropuccinia psidii infects a widely planted myrtle rust-resistant, eucalypt genotype in Brazil. Forest Pathol 51:e12679

    Article  Google Scholar 

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    Article  PubMed  Google Scholar 

  • Arechavaleta M, Zurita N, Marrero MC, Martín JL (eds) (2005) Lista preliminar de especies silvestres de Cabo Verde. Hongos, plantas y animales terrestres. Consejería de Medio Ambiente y Ordenación Territorial. Gobierno de Canarias, p 155

    Google Scholar 

  • Arechavaleta M, Rodríguez S, Zurita N, García A (2009) Lista de especies silvestres de Canarias. Hongos, plantas y animales terrestres. Gobierno de Canarias, p 579

    Google Scholar 

  • Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental United States. BioScience 60(11):886–897

    Article  Google Scholar 

  • Bakkeren G, Kämper J, Schirawski J (2008) Sex in smut fungi: structure, function and evolution of mating-type complexes. Fungal Genet Biol 45:S15–S21

    Article  CAS  PubMed  Google Scholar 

  • Barua P, You MP, Bayliss KL, Lanoiselet V, Barbetti MJ (2018) Extended survival of Puccinia graminis f. sp. tritici urediniospores: implications for biosecurity and on-farm management. Plant Pathol 67:799–809

    Article  CAS  Google Scholar 

  • Barwell LJ, Perez-Sierra A, Henricot B, Harris A, Burgess TI, Hardy G, Scott P, Williams N, Cooke DEL, Green S, Chapman DS, Purse BV (2020) Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora. J Appl Ecol 00:1–13

    Google Scholar 

  • Bauer R, Begerow D, Oberwinkler F, Piepenbring M, Berbee ML (2001) Ustilaginomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, Volume 7, systematics and evolution. Springer, Heidelberg, pp 57–83

    Chapter  Google Scholar 

  • Beakes GW, Thines M (2017) Hyphochytriomycota and Oomycota. In: Archibald J, Simpson A, Slamovits C (eds) Handbook of the protists, 2nd edn. Cham, Springer, pp 435–505

    Chapter  Google Scholar 

  • Bebber DP, Gurr SJ (2015) Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol 74:62–64

    Article  PubMed  Google Scholar 

  • Bebber DP, Holmes T, Gurr SJ (2014) The global spread of crop pests and pathogens. Glob Ecol Biogeogr 23:1398–1407

    Article  Google Scholar 

  • Bebber DP, Field E, Gui H, Mortimer P, Holmes T, Gurr SJ (2019) Many unreported crop pests and pathogens are probably already present. Glob Chang Biol 25(8):2703–2713

    Article  PubMed  Google Scholar 

  • Beenken L, Zoller S, Berndt R (2012) Rust fungi on Annonaceae II: the genus Dasyspora Berk. & M.A. Curtis. Mycologia 104:659–681

    Article  CAS  PubMed  Google Scholar 

  • Begerow D, Göker M, Lutz M, Stoll M (2004) On the evolution of smut fungi on their hosts. In: Frontiers in basidiomycote mycology. IHW-Verlag & Verlagsbuchhandlung, Eching, Germany, pp 81–98

    Google Scholar 

  • Begerow D, Schäfer AM, Kellner R, Yurkov A, Kemler M, Oberwinkler F, Bauer R (2014) Ustilaginomycotina. In: McLaughlin DJ, Spatafora JW (eds) The Mycota, Volume 7A, systematics and evolution. Springer, Heidelberg, pp 295–329

    Chapter  Google Scholar 

  • Begerow D, McTaggart AR, Agerer R (2018) Syllabus of plant families - A, Engler’s Syllabus der Pflanzenfamilien Part 1/3. (Frey W. ed). Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany

    Google Scholar 

  • Belbahri L, Calmin G, Pawlowski J, Lefort F (2005) Phylogenetic analysis and real time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol Res 109(11):1276–1287

    Article  CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, Mclaughlin EG, Lemke PA (eds) The Mycota VII. Systematics and evolution, part B. Springer, Berlin, pp 229–245

    Google Scholar 

  • Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS (2021) Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane: a contemporary review. Phytopathology 111(11):1905–1917

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Chen L, Cai M, Zhu S, Pang Z, Liu X (2014) Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici. PLoS One 9(2):e89336

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindschedler LV, Panstruga R, Spanu PD (2016) Mildew-omics: how global analyses aid the understanding of life and evolution of powdery mildews. Front Plant Sci 7:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishnoi SK, He X, Phuke RM, Kashyap PL, Alakonya A, Chhokar V, Singh RP, Singh PK (2020) Karnal bunt: a re-emerging old foe of wheat. Front Plant Sci 1486

    Google Scholar 

  • Bradshaw M, Tobin P (2020) Sequencing herbarium specimens of a common detrimental plant disease (powdery mildew). Phytopathology 110:1248–1254

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw M, Braun U, Meeboon J, Tobin P (2021) Phylogeny and taxonomy of powdery mildew caused by Erysiphe species on Corylus hosts. Mycologia 2021:1–17

    Google Scholar 

  • Bragança H, Diogo ELF, Neves L, Valente C, Araujo C, Bonifácio L, Phillips AJL (2016) Quambalaria eucalypti a pathogen of Eucalyptus globulus newly reported in Portugal and in Europe. For Pathol 46(1):67–75

    Article  Google Scholar 

  • Braun U, Cook RTA (2012) Taxonomic manual of the Erysiphales (powdery mildews). CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Bremer K (2002) Gondwanan evolution of the grass Alliance of families (Poales). Evolution 56(7):1374–1387

    CAS  PubMed  Google Scholar 

  • Brewer MT, Milgroom MG (2010) Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Ecol Evol 10:268

    Google Scholar 

  • Bufford JL, Hulme PE, Sikes BA, Cooper JA, Johnston PR, Duncan RP (2016) Taxonomic similarity, more than contact opportunity, explains novel plant-pathogen associations between native and alien taxa. New Phytol 212(3):657–667

    Article  CAS  PubMed  Google Scholar 

  • CAB International (2021) Invasive species compendium ISC. CAB International, Wallingford, UK

    Google Scholar 

  • Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144

    Article  Google Scholar 

  • Chapin FS, Sala OE, Huber-Sannwald E (2013) Global biodiversity in a changing environment: scenarios for the 21st century. Springer, New York

    Google Scholar 

  • Cho S, Han K, Choi I, Shin HD (2018) First report of powdery mildew caused by Podosphaera xanthii on Hydrocleys nymphoides in Korea. Plant Dis 102:247

    Article  Google Scholar 

  • Choi D, Priest MJ (1995) A key to the genus Albugo. Mycotaxon 53:261–272

    Google Scholar 

  • Choi YJ, Thines M (2015) Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLoS One 10(7):e0133655

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi YJ, Shin HD, Thines M (2009) The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. Mycol Prog 8(4):329–335

    Article  Google Scholar 

  • Choi YJ, Shin HD, Ploch S, Thines M (2011) Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol 115(7):598–607

    Article  PubMed  Google Scholar 

  • Choi YJ, Thines M, Tek MP, Shin HD (2012) Morphological evidence supports the existence of multiple species in Pustula (Albuginaceae, Oomycota). Nova Hedwigia 94:181–192

    Article  Google Scholar 

  • Choi IY, Abasova L, Park JH, Shin HD (2022) First report of Podosphaera mors-uvae causing powdery mildew on Ribes fasciculatum var chinense in Korea. For Pathol 2022:e12746

    Google Scholar 

  • Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217

    Article  Google Scholar 

  • Coiro M, Doyle JA, Hilton J (2019) How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol 223(1):83–99

    Article  PubMed  Google Scholar 

  • Colucci SJ (2008) Host range, fungicide resistance and management of Pseudoperonospora cubensis, causal agent of cucurbit downy mildew

    Google Scholar 

  • Conant RT (2010) Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. FAO

    Google Scholar 

  • Constantinescu O (1991) An annotated list of Peronospora names. Thunbergia 15:1–110

    Google Scholar 

  • Constantinescu O, Thines M (2010) Plasmopara halstedii is absent from Australia and New Zealand. Pol Bot J 55(2):293–298

    Google Scholar 

  • Convention on Biological Diversity (2014) Pathways of introduction of invasive species, their prioritization and management. Convention on Biological Diversity, June 2014, p 18

    Google Scholar 

  • Coosemans J (2004) First report of Peronospora lamii, downy mildew on basil (Ocimum basilicum) in Belgium. Parasitica 60(1–2):27–27

    Google Scholar 

  • Coutinho TA, Wingfield JJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  CAS  PubMed  Google Scholar 

  • Croft BJ, Braithwaite KS (2006) Management of an incursion of sugarcane smut in Australia. Australas Plant Pathol 35:113–122

    Article  Google Scholar 

  • Crosby AJ (2003) The Columbian exchange: biological and cultural consequences of 1492. Greenwood Publishing Group, Westport, CT

    Google Scholar 

  • Crouch JA, Davis WJ, Shishkoff N, Castroagudín VL, Martin F, Michelmore R, Thines M (2022) Peronosporaceae species causing downy mildew diseases of Poaceae, including nomenclature revisions and diagnostic resources. Fungal Syst Evol 9(1):43–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csikós A, Németh MZ, Frenkel O, Kiss L, Váczy KZ (2020) A fresh look at grape powdery mildew (Erysiphe necator) A and B genotypes revealed frequent mixed infections and only B genotypes in flag shoot samples. Plan Theory 9:1156

    Google Scholar 

  • Cunnington JH, Aldaoud R, Loh M, Washington WS, Irvine G (2008a) First record of Plasmopara obducens (downy mildew) on impatiens in Australia. Plant Pathol 57(2)

    Google Scholar 

  • Cunnington JH, Jones RH, De Alwis SK (2008b) First record of powdery mildew on the Cephalotaceae. Aust Plant Dis Notes 3:51–52

    Article  Google Scholar 

  • Das SP, Ahmed SM, Naik B, Laha S, Bejai V (2021) The human fungal pathogen Malassezia and its role in cancer. Fungal Biol Rev 38:9–24

    Article  CAS  Google Scholar 

  • de Beer ZW, Begerow D, Bauer R, Pegg GS, Crous PW, Wingfield MJ (2006) Phylogeny of the Quambalariaceae fam. nov., including important eucalyptus pathogens in South Africa and Australia. Stud Mycol 55:289–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeter L, Molnár ÁP, Öllerer K, Csóka G, Kiš A, Vadász C et al (2021) Rethinking the natural regeneration failure of pedunculate oak: the pathogen mildew hypothesis. Biol Conserv 253:108928

    Article  Google Scholar 

  • Denton GJ, Beal EJ, Kilty A, Denton JO, Choi YJ, Thines M (2015) Characterisation and risk assessment of the emerging Peronospora disease on Aquilegia. Mycol Prog 14(9):1–10

    Article  Google Scholar 

  • Desprez-Loustau ML, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22(9):472–480

    Article  PubMed  Google Scholar 

  • Desprez-Loustau ML, Courtecuisse R, Robin C, Husson C, Moreau PA, Blancard D, Selosse MA, Lung-Escarmant B, Piou D, Sache I (2010) Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol Invasions 12(1):157–172

    Article  Google Scholar 

  • Desprez-Loustau M-L, Massot M, Toïgo M, Fort T, Kaya AGA, Boberg J et al (2018) From leaf to continent: the multi-scale distribution of an invasive cryptic pathogen complex on oak. Fungal Ecol 36:39–50

    Article  Google Scholar 

  • Deutsche Gesellschaft für Mykologie DGfM (2020) Datenbank der Pilze Deutschlands [Database of the fungi of Germany]. http://www.pilze-deutschland.de

  • Dgebuadze YY, Petrosyan VG, Khlyap LA (2018) The most dangerous invasive species in Russia (TOP-100). KMK Scientific Press, Moscow

    Google Scholar 

  • Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature 592(7855):571–576

    Article  CAS  PubMed  Google Scholar 

  • Diéguez-Uribeondo J, Fregeneda-Grandes JM, Cerenius L, Pérez-Iniesta E, Aller-Gancedo JM, Tellería MT et al (2007) Re-evaluation of the enigmatic species complex Saprolegnia diclina-Saprolegnia parasitica based on morphological, physiological and molecular data. Fungal Genet Biol 44(7):585–601

    Article  PubMed  Google Scholar 

  • Drenth A, McTaggart AR, Wingfield BD (2019) Fungal clones win the battle, but recombination wins the war. IMA Fungus 10:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Essl F, Bacher S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, Kowarik I, Kühn I, Pyšek P, Rabitsch W, Schindler S, Van Kleunen M, Vilà M, Wilson JRU, Richardson DM (2018) Which taxa are alien? Criteria, applications, and uncertainties. BioScience 68(7):496–509. https://doi.org/10.1093/biosci/biy057

    Article  Google Scholar 

  • European and Mediterranean Plant Protection Organization EPPO (2020). EPPO Global Database (online)

    Google Scholar 

  • Farr DF, Rossman AY (2021) Fungal databases. U.S. National Fungus Collections, ARS, USDA

    Google Scholar 

  • Feng C, Saito K, Liu B, Manley A, Kammeijer K, Mauzey SJ et al (2018) New races and novel strains of the spinach downy mildew pathogen Peronospora effusa. Plant Dis 102(3):613–618

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Coweni L (2020) Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 11(3):1–17

    Article  Google Scholar 

  • Fones HN, Fisher MC, Gurr SJ (2017) Emerging fungal threats to plants and animals challenge agriculture and ecosystem resilience. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0027-2016

  • Fontaine MC, Gladieux P, Hood ME, Giraud T (2013) History of the invasion of the anther smut pathogen on Silene latifolia in North America. New Phytol 198:946–956

    Article  PubMed  Google Scholar 

  • Fortini LB, Kaiser LR, Keith LM, Price J, Hughes RF, Jacobi JD, Friday JB (2019) The evolving threat of rapid ‘Ōhi‘a Death (ROD) to Hawai‘i’s native ecosystems and rare plant species. For Ecol Manag 448(6):376–385

    Article  Google Scholar 

  • Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C et al (2018) Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19(1):1–23

    Article  Google Scholar 

  • Frantzeskakis L, Németh MZ, Barsoum M, Kusch S, Kiss L, Takamatsu S, Panstruga R (2019) The Parauncinula polyspora draft genome provides insights into patterns of gene erosion and genome expansion in powdery mildew fungi. mBio 10(5):e01692–e01619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R (2020) Rapid evolution in plant-microbe interactions-a molecular genomics perspective. New Phytol 225(3):1134–1142

    Article  PubMed  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16(2):108–116

    Article  CAS  PubMed  Google Scholar 

  • Frenkel O, Portillo I, Brewer MT, Peros JP, Cadle-Davidson L, Milgroom MG (2012) Development of microsatellite markers from the transcriptome of Erysiphe necator for analysing population structure in North America and Europe. Plant Pathol 61(1):106–119

    Article  CAS  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9(3):385–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry WE, Birch PRJ, Judelson HS, Grünwald NJ, Danies G, Everts KL et al (2015) Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 105(7):966–981

    Article  CAS  PubMed  Google Scholar 

  • Fuentes N, Marticorena A, Saldaña A, Jerez V, Carlos Ortiz J, Victoriano P, Moreno RA, Larraín J, Villaseñor-Parada C, Palfner G, Sánchez P, Pauchard A (2020) Multi-taxa inventory of naturalized species in Chile. NeoBiota 60:25–41

    Article  Google Scholar 

  • Fuller KB, Alston JM, Sambucci OS (2014) The value of powdery mildew resistance in grapes: evidence from California. Wine Econ Policy 3:90–107

    Article  Google Scholar 

  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13(1):1–16

    Article  PubMed  Google Scholar 

  • Garibaldi A, Minuto A, Minuto G, Gullino ML (2004) First report of downy mildew on basil (Ocimum basilicum) in Italy. Plant Dis 88(3):312–312

    Article  CAS  PubMed  Google Scholar 

  • Gäumann E (1923) Beiträge zu einer Monographie der Gattung Peronospora Corda. Beiträge zur Kryptogamenflora der Schweiz 5:1–360

    Google Scholar 

  • Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr 50(1):3–44

    Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, New York

    Google Scholar 

  • Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51

    Article  CAS  PubMed  Google Scholar 

  • Gobbin D, Rumbou A, Linde CC, Gessler C (2006) Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol Plant Pathol 7(6):519–531

    Article  CAS  PubMed  Google Scholar 

  • Görg M, Ploch S, Kruse J, Kummer V, Runge F, Choi YJ, Thines M (2017) Revision of Plasmopara (Oomycota, Peronosporales) parasitic to impatiens. Mycol Prog 16(8):791–799

    Article  Google Scholar 

  • Granados GM, McTaggart AR, Barnes I, Roodas CA, Roux J, Wingfield MJ (2017) The pandemic biotype of Austropuccinia psidii discovered in South America. Australas Plant Pathol 46:267–275

    Article  Google Scholar 

  • Graziosi I, Tembo M, Kuate J, Muchugi A (2020) Pests and diseases of trees in Africa: a growing continental emergency. Plants People Planet 2(1):14–28

    Article  Google Scholar 

  • Gryzenhout M, Rodas CA, Mena Portales J, Clegg P, Wingfield BD, Wingfield MJ (2006) Novel hosts of the Eucalyptus canker pathogen Chrysoporthe cubensis and a new Chrysoporthe species from Colombia. Mycol Res 110(7):833–845

    Article  CAS  PubMed  Google Scholar 

  • Gulya TJ, Sackston WE, Viranyi F, Masirevic S, Rashid KY (1991) New races of the sunflower downy mildew pathogen (Plasmopara halstedii) in Europe and North and South America. J Phytopathol 132(4):303–311

    Article  Google Scholar 

  • Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B, Ovadia S, Frenkel O (2021) Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol 23(10):6019–6037

    Article  CAS  PubMed  Google Scholar 

  • Gurr S, Samalova M, Fisher M (2011) The rise and rise of emerging infectious fungi challenges food security and ecosystem health. Fungal Biol Rev 25(4):181–188

    Article  Google Scholar 

  • Gustavsson A (1959) Studies on Nordic Peronosporas. I. Taxonomic part. Opera Bot 3(1):1–271

    Google Scholar 

  • Halliday FW, Penczykowski RM, Barrès B, Eck JJ, Numminen E, Laine A-L (2020) Facilitative priority effects drive parasite assembly under coinfection. Nat Ecol Evol 4:1510–1521

    Article  PubMed  Google Scholar 

  • Hardham AR, Blackman LM (2018) Phytophthora cinnamomi. Mol Plant Pathol 19(2):260–285

    Article  PubMed  Google Scholar 

  • Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88(12):1292–1303

    Article  PubMed  Google Scholar 

  • Hawksworth D, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

  • Helfer S (2013) Rust fungi and global change. New Phytol 201:770–780

    Article  Google Scholar 

  • Heluta VP, Makarenko NV, Al-Maali GA (2019) First records of Erysiphe corylacearum (Erysiphales, Ascomycota) on Corylus avellana in Ukraine. Mycol Rec 76(3):252–259

    Google Scholar 

  • Hirata T, Cunnington JH, Paksiri U, Limkaisang S, Shishkoff N, Grigaliunaite B et al (2000) Evolutionary analysis of subsection Magnicellulatae of Podosphaera section Sphaerotheca (Erysiphales) based on the rDNA internal transcribed spacer sequences with special reference to host plants. Can J Bot 78:1521–1530

    CAS  Google Scholar 

  • Hsiao HY, Ariyawansa HA, Hsu CC, Wang CJ, Shen YM (2022) New records of powdery mildews from Taiwan: Erysiphe ipomoeae comb. nov., E. aff. betae on buckwheat, and E. neolycopersici comb. nov. on Cardiospermum halicacabum. Diversity 14(3):204

    Google Scholar 

  • Hückelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 14(6):738–746

    Article  PubMed  Google Scholar 

  • Inaba T, Takahashi K, Morinaka T (1983) Seed transmission of spinach downy mildew. Plant Dis 67(10):1139–1141

    Article  Google Scholar 

  • Ioos R, Laugustin L, Rose S, Tourvieille J, Tourvieille de Labrouhe D (2007) Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Plant Pathol 56(2):209–218

    Article  CAS  Google Scholar 

  • IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat. https://ipbes.net/system/tdf/ipbes_global_assessment_report_summary_for_policymakers.pdf?file=1&type=node&id=35329

  • IUCN Invasive Species Specialist Group ISSG (2019a) Global Register of Introduced and Invasive Species GRIIS - Data Download. http://www.griis.org/

  • IUCN Invasive Species Specialist Group ISSG (2019b) The Global Invasive Species Database. Version 2015.1. http://www.iucngisd.org/gisd/

  • James TY, Stajich JE, Hittinger CT, Rokas A (2020) Toward a fully resolved fungal tree of life. Annu Rev Microbiol 74:291–313

    Article  CAS  PubMed  Google Scholar 

  • Jankovics T, Komáromi J, Fábián A, Jager K, Vida G, Kiss L (2015) New insights into the life cycle of the wheat powdery mildew: direct observation of ascosporic infection in Blumeria graminis f. sp. tritici. Phytopathology 105(6):797–804

    Article  PubMed  Google Scholar 

  • Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, Baschien C et al (2019) A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus oidium neolycopersici. Mol Plant Pathol 2(6):303–309

    Article  CAS  PubMed  Google Scholar 

  • Kelly LA, Vaghefi N, Bransgrove K, Fechner NA, Stuart K et al (2021) One crop disease, how many pathogens? Podosphaera xanthii and Erysiphe vignae sp. nov. identified as the two species that cause powdery mildew of mungbean (Vigna radiata) and black gram (V. mungo) in Australia. Phytopathology 111(7):1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Kenneth RG (1981) Downy mildews of graminaceous crops. In: Spencer DM (ed) The Downy Mildews. Academic Press, London, New York, San Francisco, pp 367–394

    Google Scholar 

  • Kinloch BB (2001) White pine blister rust in North America: past and prognosis. Phytopathology 93:1044–1047

    Article  Google Scholar 

  • Kiss L (1996) Occurrence of a new powdery mildew fungus (Erysiphe sp.) on tomatoes in Hungary. Plant Dis 80:224

    Article  Google Scholar 

  • Kiss L (2005) Powdery mildews as invasive plant pathogens: new epidemics caused by two North American species in Europe. Mycol Res 109:259–260

    Article  PubMed  Google Scholar 

  • Kiss L, Vaghefi N (2021) First report of powdery mildew of rainforest spinach (Elatostema reticulatum), native to Australia, caused by Podosphaera xanthii. Aust Plant Dis Notes 16:8

    Article  CAS  Google Scholar 

  • Kiss L, Cook RTA, Saenz GS, Cunnington JH, Pascoe I, Bardin M et al (2001) Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O. lycopersici, infecting tomato in different parts of the world. Mycol Res 105(6):684–697

    Article  Google Scholar 

  • Kiss L, Takamatsu S, Cunnington JH (2005) Molecular identification of Oidium neolycopersici as the causal agent of the recent tomato powdery mildew epidemics in North America. Plant Dis 89(5):491–496

    Article  CAS  PubMed  Google Scholar 

  • Kiss L, Kovács GM, Bóka K, Bohár G, Bohárné KV, Németh MZ et al (2018) Deciphering the biology of Cryptophyllachora eurasiatica gen. et sp. nov., an often cryptic pathogen of an allergenic weed, Ambrosia artemisiifolia. Sci Rep 8:10806

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss L, Vaghefi N, Bransgrove K, Dearnaley JDW, Takamatsu S, Tan YP et al (2020) Australia: a continent without native powdery mildews? The first comprehensive catalogue indicates recent introductions and multiple host range expansion events, and leads to the re-discovery of Salmonomyces as a new lineage of the Erysiphales. Front Microbiol 11:1571

    Article  PubMed  PubMed Central  Google Scholar 

  • Kofoet A, Kik C, Wietsma WA, De Vries JN (1990) Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) from Allium roylei Stearn in the backcross Allium cepa L.× (A. roylei × A. cepa). Plant Breed 105(2):144–149

    Article  Google Scholar 

  • Kreisel H, Scholler M (1994) Chronology of Phytoparasitic Fungi introduced to Germany and adjacent countries. Bot Acta 107(6):387–392

    Article  Google Scholar 

  • Kusch S, Németh MZ, Vaghefi N, Ibrahim HM, Panstruga R, Kiss L (2020) A short-read genome assembly resource for Leveillula taurica causing powdery mildew disease of sweet pepper (Capsicum annuum). Mol Plant-Microbe Interact 33(6):782–786

    Article  CAS  PubMed  Google Scholar 

  • Kusch S, Vaghefi N, Takamatsu S, Liu S-Y, Németh MZ, Seress D et al (2022) First draft genome assemblies of Pleochaeta shiraiana and Phyllactinia moricola, two tree-parasitic powdery mildew fungi with hemiendophytic mycelia. Phytopathology 112(4):961–967

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Montes-Borrego M, Muñoz-Ledesma FJ, Alcaliber SA, Jiménez-Díaz RM (2005) First report of downy mildew of opium poppy caused by Peronospora arborescens in Spain. Plant Dis 89(3):338–338

    Article  CAS  PubMed  Google Scholar 

  • Lane CR, Beales PA, O'neill TM, McPherson GM, Finlay AR, David J et al (2005) First report of impatiens downy mildew (Plasmopara obducens) in the UK. Plant Pathol 54(2)

    Google Scholar 

  • Lebeda A, Sedlářová M, Petřivalský M, Prokopová J (2008) Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. Eur J Plant Pathol 122(1):71–89

    Article  Google Scholar 

  • LeBlanc N, Salgado-Salazar C, Crouch JA (2018) Boxwood blight: an ongoing threat to ornamental and native boxwood. Appl Microbiol Biotechnol 102(10):4371–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leesutthiphonchai W, Vu AL, Ah-Fong AM, Judelson HS (2018) How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology 108(8):916–924

    Article  CAS  PubMed  Google Scholar 

  • Lefort F, Gigon V, Amos B (2003) Premier cas de Peronospora lamii, responsable du mildiou du basilic dans le bassin lémanique. Assemblée d'Automne de la Société Suisse de Phytiatrie, EIC, Nyons- Changins, 2 octobre 2003

    Google Scholar 

  • Lévésque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E et al (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11(7):1–22

    Article  Google Scholar 

  • Li YY, Wang MM, Groenewald M, Li AH, Guo YT, Wu F, Zhang BQ, Tanaka E, Wang QM, Bai FY, Begerow D (2021) Proposal of two new combinations, twenty new species, four new genera, one new family, and one new order for the anamorphic basidiomycetous yeast species in Ustilaginomycotina. Front Microbiol 12:777338–777338

    Article  PubMed  Google Scholar 

  • Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T et al (2020) Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11(1):1–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Marçais B, Desprez-Loustau M-L (2014) European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Ann For Sci 71:633–642

    Article  Google Scholar 

  • McCook S (2006) Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. J Glob Hist 1(2):177–195

    Article  Google Scholar 

  • McTaggart AR, Shivas RG, Geering ADW, Vanky K, Scharaschkin T (2012a) A review of the Ustilago-Sporisorium-Macalpinomyces complex. Persoonia 29(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart AR, Shivas RG, Geering ADW, Callaghan B, Vanky K, Scharaschkin T (2012b) Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia 29(1):116–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart AR, Shivas RG, Geering ADW, Callaghan B, Vanky K, Scharaschkin T (2012c) Soral synapomorphies are significant for the systematics of the Ustilago-Sporisorium-Macalpinomyces complex (Ustilaginaceae). Persoonia 29(1):63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart AR, Doungsa-ard C, Geering ADW, Aime MC, Shivas RG (2015) A co-evolutionary relationship exists between Endoraecium (Pucciniales) and its Acacia hosts in Australia. Persoonia 35:50–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart AR, Roux J, Granados GM, Gafur A, Tarrigan M, Santhakumar P, Wingfield MJ (2016a) Rust (Puccinia psidii) recorded in Indonesia poses a threat to forests and forestry in South-East Asia. Australas Plant Pathol 45:83–89

    Article  Google Scholar 

  • McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ (2016b) Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol 209:1149–1158

    Article  PubMed  Google Scholar 

  • McTaggart AR, Prychid CJ, Bruhl JJ, Shivas RG (2020) The PhyloCode applied to Cintractiellales, a new order of smut fungi with unresolved phylogenetic relationships in the Ustilaginomycotina. Fungal Syst Evol 6:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart AR, Drenth A, Wingfield MJ, O’Dwyer C, Shuey LS, Pegg GS (2022) Epidemic spread of smut fungi (Quambalaria) by sexual reproduction in a native pathosystem. Eur J Plant Pathol 163:341–349

    Article  CAS  Google Scholar 

  • Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H et al (2016) Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet 48(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Middleton JT (1943) The taxonomy, host range and geographic distribution of the genus Pythium. Mem Torrey Bot Club 20(1):1–171

    Google Scholar 

  • Molin C, Ribeiro NR, Matsumoto MN, Fernando Giasson N, Brollo J, Zanardo B et al (2021) Damping-off of soybean in southern Brazil can be associated with different species of Globisporangium spp. and Pythium spp. Plant Pathol 70(7):1686–1694

    Article  CAS  Google Scholar 

  • Müller MC, Praz CR, Sotiropoulos AG, Menardo F, Kunz L, Schudel S et al (2019) A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol 221(4):2176–2189

    Article  PubMed  Google Scholar 

  • MyCoPortal (2020) Mycology collections data portal. http://mycoportal.org/portal/index.php

  • Nahrung HF, Carnegie AJ (2020) Non-native forest insects and pathogens in Australia: establishment, spread, and impact. Front For Global Change 3(37):1–12

    Google Scholar 

  • Nasr S, Soudi MR, Fazeli SAS, Nguyen HD, Lutz M, Piątek M (2014) Expanding evolutionary diversity in the Ustilaginomycotina: Fereydouniaceae fam. nov. and Fereydounia gen. nov., the first urocystidalean yeast lineage. Mycol Prog 13:1217–1226

    Article  Google Scholar 

  • Nealis VG, Demerchant I, Langor D, Noseworthy MK, Pohl G, Porter K, Shanks E, Turnquist R, Waring V (2016) Historical occurrence of alien arthropods and pathogens on trees in Canada. Can J For Res 46(2):1–9

    Article  Google Scholar 

  • Newcombe G, Dugan FM (2010) Fungal pathogens of plants in the homogocene. In: Molecular identification of fungi. Springer, New York. https://doi.org/10.1007/978-3-642-05042-8_1

    Chapter  Google Scholar 

  • Nielsen KN, Gopalakrishnan S, Korneliussen TS, Skovrind M (2020) Population genomics of the emerging forest pathogen Neonectria neomacrospora. BioRxiv 2020:1–29. https://doi.org/10.1101/2020.12.07.407155

    Article  Google Scholar 

  • Niinomi S, Takamatsu S, Havrylenko M (2008) Molecular data do not support a southern hemisphere base of Nothofagus powdery mildews. Mycologia 100(5):716–726

    Article  PubMed  Google Scholar 

  • Noordeloos ME, Loerakker WM (1989) Studies in plant pathogenic fungi - II. On some powdery mildews (Erysiphales) recently recorded from The Netherlands. Persoonia 14:51–60

    Google Scholar 

  • Paap T, Wingfield MJ, Burgess TI, Wilson JRU, Richardson DM, Santini A (2022) Invasion frameworks: a forest pathogen perspective. Curr For Rep 8(1):74–89

    Article  Google Scholar 

  • Pánek M, Střížková I (2021) A comparison of the virulence of selected Pythium, Globisporangium, Phytopythium and Phytophthora species against strawberry plants. J Plant Dis Prot 128(6):1447–1458

    Article  Google Scholar 

  • Pathak VK, Mathur SB, Neergaard P (1978) Detection of Peronospora manshurica (Naum.) Syd. in seeds of soybean, Glycine max. EPPO Bull 8(1):21–28

    Article  Google Scholar 

  • Pegg GS, O'Dwyer C, Carnegie AJ, Burgess TI, Wingfield MJ, Drenth A (2008) Quambalaria species associated with plantation and native eucalypts in Australia. Plant Pathol 57(4):702–714

    Article  CAS  Google Scholar 

  • Pérez-García A, Romero D, Fernández-Ortuño D, López-Ruiz F, De Vicente A, Tores JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10(2):153–160

    Article  PubMed  Google Scholar 

  • Pettitt T, Henricot B, Matatiken D, Cook RTA (2010) First record of oidium anamorph of Podosphaera xanthii on Medusagyne oppositifolia. Plant Pathol 59:1168

    Article  Google Scholar 

  • Piątek M, Lutz M, Sousa FMP, Santos ARO, Félix CR, Landell MF, Gomes FCO, Rosa CA (2017) Pattersoniomyces tillandsiae gen. et comb. nov.: linking sexual and asexual morphs of the only known smut fungus associated with Bromeliaceae. Org Divers Evol 17:531–543

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Article  Google Scholar 

  • Ploch S, Choi YJ, Rost C, Shin HD, Schilling E, Thines M (2010) Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol Phylogenet Evol 57(2):812–820

    Article  PubMed  Google Scholar 

  • Ploch S, Choi YJ, Thines M (2018) The only known white blister rust on a basal angiosperm is a member of the genus Albugo. Org Divers Evol 18(1):63–69

    Article  Google Scholar 

  • Ploch S, Kruse J, Choi YJ, Thiel H, Thines M (2022) Ancestral state reconstruction in Peronospora provides further evidence for host jumping as a key element in the diversification of obligate parasites. Mol Phylogenet Evol 166:107321

    Article  PubMed  Google Scholar 

  • Prom LK, Perumal R, Montes-Garcia N, Isakeit T, Odvody GN, Rooney WL et al (2015) Evaluation of Gambian and Malian sorghum germplasm against downy mildew pathogen, Peronosclerospora sorghi, in Mexico and the USA. J Gen Plant Pathol 81(1):24–31

    Article  CAS  Google Scholar 

  • Ramírez-Camejo LA, Eamvijarn A, Díaz-Valderrama JR, Karlsen-Ayala E, Koch RA, Johnson E, Pruvot-Woehl S, Meija LC, Montagnon C, Maldonado-Fuentes C, Aime MC (2022a) Global analysis of Hemileia vastatrix populations shows clonal reproduction for the coffee leaf rust pathogen throughout most of its range. Phytopathology 112:643–652

    Article  PubMed  Google Scholar 

  • Ramírez-Camejo LA, Keith LM, Matsumoto T, Sugiyama L, Fukada M, Brann M, Moffitt A, Liu JRA, Aime MC (2022b) Coffee leaf rust (Hemileia vastatrix) from the recent invasion into Hawaii shares a genotypic relationship with Latin-American populations. J Fungi 8:189

    Article  Google Scholar 

  • Riess K, Schön ME, Lutz M, Butin H, Oberwinkler F, Garnica S (2016) On the evolutionary history of Uleiella chilensis, a smut fungus parasite of Araucaria Araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes. PLoS One 11(1):e0147107

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike ST (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Rouxel M, Mestre P, Baudoin A, Carisse O, Delière L, Ellis MA et al (2014) Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern North America. Phytopathology 104(7):692–701

    Article  PubMed  Google Scholar 

  • Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, Stentiford GD, Adriaens T, Bacela-Spychalska K, Bass D, Beckmann KM, Bessell P, Bojko J, Booy O, Cardoso AC, Essl F, Groom Q, Harrower C, Kleespies R et al (2017) Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv Lett 10(4):476–483

    Article  Google Scholar 

  • Runge F, Thines M (2011) Host matrix has major impact on the morphology of Pseudoperonospora cubensis. Eur J Plant Pathol 129(2):147–156

    Article  Google Scholar 

  • Runge F, Choi YJ, Thines M (2011) Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur J Plant Pathol 129(2):135–146

    Article  Google Scholar 

  • Salgado-Salazar C, Thines M (2022) Two new species of Plasmopara affecting wild grapes in the USA. Mycol Prog 21(7):1–15

    Article  Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197(1):238–250

    Article  CAS  PubMed  Google Scholar 

  • Santini A, Liebhold A, Migliorini D, Woodward S (2018) Tracing the role of human civilization in the globalization of plant pathogens. ISME J 12(3):647–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholefield P, Morison J (2010) GWRDC project GWR 08/04: assessment of economic cost of endemic pests and diseases on the Australian grape and wine industry. Grape and Wine Research and Development Corporation, Australia

    Google Scholar 

  • Scholler M, Lutz M, Aime MC (2019) Repeated formation of correlated species in Tranzschelia (Pucciniales). Mycol Prog 18:295–303

    Article  Google Scholar 

  • Scott P, Bader MKF, Burgess T, Hardy G, Williams N (2019) Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environ Sci Policy 101(September):175–182

    Article  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:1–9

    Article  Google Scholar 

  • Sharma R, Mishra B, Runge F, Thines M (2014) Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum. Genome Biol Evol 6(8):2034–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw CG (1978) Peronosclerospora species and other downy mildews of the Gramineae. Mycologia 70(3):594–604

    Article  Google Scholar 

  • Shivas RG, Beasley DR, McTaggart AR (2014) Online identification guides for Australian smut fungi (Ustilaginomycotina) and rust fungi (Pucciniales). IMA Fungus 5:195–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikes BA, Bufford JL, Hulme PE, Cooper JA, Johnston PR, Duncan RP (2018) Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLoS Biol 16(5):1–16

    Article  Google Scholar 

  • Simpson A, Eyler MC, Sikes D, Bowser M, Sellers E (2018) A comprehensive list of non-native species established in three major regions of the United States. U.S. Geological Survey Data Release

    Book  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133(1):3–25

    Article  CAS  PubMed  Google Scholar 

  • Sotiropoulos AG, Arango-Isaza E, Ban T, Barbieri C, Bourras S, Cowger C et al (2022) Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun 13(1):1–14

    Article  Google Scholar 

  • Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M (2017) The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Spectr 5:5

    Article  Google Scholar 

  • Spring O (2019) Spreading and global pathogenic diversity of sunflower downy mildew-review. Plant Prot Sci 55(3):149–158

    Article  Google Scholar 

  • Strand M, Aronsson M, Svensson M (2019) Klassificering av främmande arters effekter på biologisk mångfald i Sverige - ArtDatabankens risklista [classification of the effects of alien species on biodiversity in Sweden - the Swedish species data Bank’s risk list], ArtDatabanken Rapporterar 21. ArtDatabanken SLU, Uppsala

    Google Scholar 

  • Suharjo R, Swibawa G, Prasetyo J, Fitriana Y, Danaatmadja Y, Budiawan A, Roberts S, Noorhajati N, Amad M, Thines M (2020) Peronosclerospora australiensis is a synonym of P. maydis, which is widespread on Sumatra, and distinct from the most prevalent Java maize downy mildew pathogen. Mycol Prog 19:1309–1315

    Article  Google Scholar 

  • SwissFungi (2021) Liste der Neomyceten der Schweiz [List of neomycetes of Switzerland]. https://swissfungi.wsl.ch/de/neomyceten/neomyceten-der-schweiz/liste-der-neomyceten.html

  • Takamatsu S (2013a) Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience 54(1):75–86

    Article  Google Scholar 

  • Takamatsu S (2013b) Molecular phylogeny reveals phenotypic evolution of powdery mildews (Erysiphales, Ascomycota). J Gen Plant Pathol 79:218–226

    Article  CAS  Google Scholar 

  • Takamatsu S, Matsuda S (2004) Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales. Mycoscience 45(5):340–344

    Article  CAS  Google Scholar 

  • Takamatsu S, Matsuda S, Niinomi S, Havrylenko M (2006) Molecular phylogeny supports a northern hemisphere origin of Golovinomyces (Ascomycota: Erysiphales). Mycol Res 110(9):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Talhinhas P, Carvalho R, Figueira R, Ramos AP (2019) An annotated checklist of rust fungi (Pucciniales) occurring in Portugal. Sydowia 71(6):65–84

    Google Scholar 

  • Tavares S, Ramos AP, Pires AS, Azinheira HG, Caldeirinha P, Link T, Abranches R, Silva MDC, Voegele RT, Loureiro J, Talhinhas P (2014) Genome size analyses of Pucciniales reveal the largest fungal genomes. Front Plant Sci 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Thines M (2009) Bridging the gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS One 4(3):e4790

    Article  PubMed  PubMed Central  Google Scholar 

  • Thines M (2014) Phylogeny and evolution of plant pathogenic oomycetes—a global overview. Eur J Plant Pathol 138(3):431–447

    Article  Google Scholar 

  • Thines M (2019) An evolutionary framework for host shifts-jumping ships for survival. New Phytol 224(2):605–617

    Article  PubMed  Google Scholar 

  • Thines M, Choi YJ (2016) Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106(1):6–18

    Article  PubMed  Google Scholar 

  • Thines M, Telle S, Ploch S, Runge F (2009) Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol Res 113(5):532–540

    Article  PubMed  Google Scholar 

  • Thines M, Denton GJ, Beal EJ, Kilty A, Denton JO, Shin HD, Choi YJ (2019) Peronospora aquilegiicola sp. nov., the downy mildew affecting columbines in the UK is an invasive species from East Asia. Eur J Plant Pathol 155(2):515–525

    Article  Google Scholar 

  • Thines M, Buaya A, Ali T, Brand T (2020) Peronospora aquilegiicola made its way to Germany: the start of a new pandemic? Mycol Prog 19(8):791–798

    Article  Google Scholar 

  • Thomas CE, Inaba T, Cohen Y (1987) Physiological specialization in Pseudoperonospora cubensis. Phytopathology 77(12):1621–1624

    Article  Google Scholar 

  • Tobias PA, Schwessinger B, Deng CH, Wu C, Dong C, Sperschneider J, Jones A, Luo Z, Zhang P, Sandhu K, Smith GR, Tibbits J, Chagné D, Park RF (2021) Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 Genes Genomes Genet 11(3):jkaa015

    Article  CAS  Google Scholar 

  • Tojo M, Van West P, Hoshino T, Kida K, Fujii H, Hakoda A et al (2012) Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol 116(7):756–768

    Article  PubMed  Google Scholar 

  • Tomoshevich MA (2019) Interrelations between alien and native foliar fungal pathogens and woody plants in Siberia. Contemp Probl Ecol 12(6):642–657

    Article  Google Scholar 

  • Troch V, Audenaert K, Bekaert B, Höfte M, Haesaert G (2012) Phylogeography and virulence structure of the powdery mildew population on its ‘new’ host triticale. BMC Ecol Evol 12:76

    Google Scholar 

  • Vaghefi N, Kusch S, Németh MZ, Seress D, Braun U, Takamatsu S et al (2022) Beyond nuclear ribosomal DNA sequences: evolution, taxonomy, and closest known saprobic relatives of powdery mildew fungi (Erysiphaceae) inferred from their first comprehensive genome-scale phylogenetic analyses. Front Microbiol 13:903024

    Article  PubMed  PubMed Central  Google Scholar 

  • Vági P, Kovács GM, Kiss L (2007) Host range expansion in a powdery mildew fungus (Golovinomyces sp.) infecting Arabidopsis thaliana: Torenia fournieri as a new host. Eur J Plant Pathol 117(1):89–93

    Article  Google Scholar 

  • Vági P, Caffi T, Váczy KZ, Kiss L (2016) Refining a method for ascospore viability testing in overwintering chasmothecia of Erysiphe necator. Eur J Plant Pathol 144(4):799–802

    Article  Google Scholar 

  • Vánky K (2012) Smut fungi of the world. American Phytopathological Society (APS Press), St. Paul, MN

    Google Scholar 

  • Vánky K (2013) Illustrated genera of smut fungi, 3rd edn. American Phytopathological Society (APS Press), St. Paul, MN

    Google Scholar 

  • Viranyi F, Gulya TJ, Tourvieille DL (2015) Recent changes in the pathogenic variability of Plasmopara halstedii (sunflower downy mildew) populations from different continents. Helia 38(63):149–162

    Article  Google Scholar 

  • Voglmayr H, Piątek M, Mossebo DC (2009) Pseudoperonospora cubensis causing downy mildew disease on Impatiens irvingii in Cameroon: a new host for the pathogen. Plant Pathol 58(2)

    Google Scholar 

  • Voglmayr H, Montes-Borrego M, Landa BB (2014) Disentangling Peronospora on Papaver: phylogenetics, taxonomy, nomenclature and host range of downy mildew of opium poppy (Papaver somniferum) and related species. PLoS One 9(5):e96838

    Article  PubMed  PubMed Central  Google Scholar 

  • Voglmayr H, Schertler A, Essl F, Krisai-Greilhuber I (2022) Alien and cryptogenic fungi and oomycetes in Austria: an annotated checklist (2nd edition). Biol Invasions. https://doi.org/10.1007/s10530-022-02896-2

  • Walker AS, Bouguennec A, Confais J, Morgant G, Leroux P (2011) Evidence of host-range expansion from new powdery mildew (Blumeria graminis) infections of triticale (×Triticosecale) in France. Plant Pathol 60:207–220

    Article  CAS  Google Scholar 

  • Wang QM, Theelen B, Groenewald M, Bai FY, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81(1):149–189

    Article  PubMed  Google Scholar 

  • Weltzien HC (1978) Geographical distribution of powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic Press, London, pp 39–49

    Google Scholar 

  • Westerdijk Fungal Biodiversity Institute (2020) Fungal collection. CBS Strain Database, Westerdijk Fungal Biodiversity Institute

    Google Scholar 

  • Whipps JM, Budge SP, Fenlon JS (1998) Characteristics and host range of tomato powdery mildew. Plant Pathol 47:36–48

    Article  Google Scholar 

  • Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S et al (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45(9):1092–1096

    Article  CAS  PubMed  Google Scholar 

  • Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK et al (2022) Outline of Fungi and fungus-like taxa-2021. Mycosphere 13(1):53–453

    Article  Google Scholar 

  • Williams SE, Whittaker JM, Granot R, Müller DR (2013) Early India-Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth abyssal plain. J Geophys Res Solid Earth 118(7):3275–3284

    Article  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349(6250):832–836

    Article  CAS  PubMed  Google Scholar 

  • Winter G (1884) Repertorium. Rabenhorstii fungi europaei et extraeuropaei exsiccati cura Dr. G. Winter, Centuria XXXI et XXXII. Hedwigia 23:164–172

    Google Scholar 

  • Wood AR (2017) Fungi and invasions in South Africa. Bothalia 47(2):2124

    Article  Google Scholar 

  • Xu HG, Qiang S (2018) China’s invasive alien species (revised). Science Press

    Google Scholar 

  • Yerkes WD, Shaw CG (1959) Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology 49:499–507

    Google Scholar 

  • Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R et al (2013) The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2:e00731

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Men X, Hui C, Ge F, Ouyang F (2022) Wheat yield losses from pests and pathogens in China. Agric Ecosyst Environ 326:107821

    Article  Google Scholar 

  • Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RG, Toyoda H, Kiss L, Bai Y (2013) Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103(6):623–632

    Article  CAS  PubMed  Google Scholar 

  • Ziogas BN, Markoglou AN, Theodosiou DI, Anagnostou A, Boutopoulou S (2006) A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. Eur J Plant Pathol 115(3):283–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MT is supported by the German Federal Ministry BLE and the React-EU program of the European Union. FE and AS appreciate funding by the Austrian Science Foundation FWF (project: Alien Fungi, P 34688-B). RGS would like to thank Dr. Alistair R. McTaggart (University of Queensland, Australia) for his insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Thines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thines, M. et al. (2023). Host Switching and Geographic Expansions in (Hemi)biotrophic Plant Pathogens. In: Pöggeler, S., James, T. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-29199-9_6

Download citation

Publish with us

Policies and ethics