Skip to main content

After Air, Light, and Water, the Next Most Important Thing Is Grass: An Introduction to the Epichloë–Grass Symbiosis

  • Chapter
  • First Online:
Fungal Associations

Abstract

Epichloë (Clavicipitaceae) is a genus of filamentous fungal endophytes that have co-evolved with cool-season grasses with which they form perpetual, symbiotic associations. In natural ecosystems Epichloë endophytes have implications for species diversity, food web structures, and fundamental ecological processes. In many managed pastoral systems, selected Epichloë strains are regarded as necessary components of the sward as they confer bioprotective traits to their host grasses. The most agriculturally important associations are those between selected strains of asexual, vertically transmitted Epichloë spp. and the widely used pasture species: perennial ryegrass and tall fescue. Selected Epichloë strains confer invertebrate, especially insect, pest deterrence to their plant hosts from the production of several alkaloidal secondary metabolites. Additional Epichloë-mediated attributes include tolerance against fungal diseases and abiotic stresses, such as those caused by drought and/or nutrient deficiencies. Strains of mutualistic Epichloë have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence and wildlife deterrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afkhami M, Rudgers J (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416. https://doi.org/10.1086/589893

    Article  PubMed  Google Scholar 

  • Afkhami ME, McIntyre PJ, Strauss SY (2014) Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol Lett 17:1265–1273. https://doi.org/10.1111/ele.12332

    Article  PubMed  Google Scholar 

  • Agee C, Hill N (1994) Ergovaline variability in Acremonium-infected tall fescue due to environment and plant genotype. Crop Sci 34:221–226

    Article  Google Scholar 

  • Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain 2:95–96. https://doi.org/10.1007/s42398-019-00078-w

    Article  Google Scholar 

  • Arrieta AM, Iannone LJ, Scervino JM, Vignale MV, Novas MV (2015) A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol 17:146–154

    Article  Google Scholar 

  • Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci U S A 116:23163–23168. https://doi.org/10.1073/pnas.1906655116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Nagabhyru P, Bacon CW (2009) Chemotaxis disruption in Pratylenchus Scribneri by tall fescue root extracts and alkaloids. J Chem Ecol 35:844–850. https://doi.org/10.1007/s10886-009-9657-x

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW (1995) Toxic endophyte-infected tall fescue and range grasses: historic perspectives. J Anim Sci 73:861–870

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JF (1994) Stains, media, and procedures for analyzing endophytes. Biotechnology of endophytic fungi of grasses. CRC Press, pp 47–56

    Google Scholar 

  • Bacon C, Porter J, Robbins J, Luttrell E (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball O-P, Tapper B (1999) The production of loline alkaloids in artificial and natural grass/endophyte associations. Proceedings of the New Zealand plant protection conference, pp 264–269

    Google Scholar 

  • Ball DM, Lacefield GD, Hoveland CS (2019) The wonder grass: the story of tall fescue in the United States. Oregon Tall Fescue Commission, Salem, OR

    Google Scholar 

  • Barret M, Guimbaud JF, Darrasse A, Jacques MA (2016) Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol Plant Pathol 17:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948. https://doi.org/10.1016/j.tplants.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  • Bastías DA, Alejandra Martínez-Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE (2018a) The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. Plant Cell Environ 41:395–405. https://doi.org/10.1111/pce.13102

    Article  CAS  PubMed  Google Scholar 

  • Bastías DA, Martínez-Ghersa MA, Newman JA, Card SD, Mace WJ, Gundel PE (2018b) Jasmonic acid regulation of the anti-herbivory mechanism conferred by fungal endophytes in grasses. J Ecol 106:2365–2379. https://doi.org/10.1111/1365-2745.12990

    Article  CAS  Google Scholar 

  • Bastías DA, Jauregui R, Applegate ER, Altermann E, Card SD, Johnson LJ (2020a) Complete genome sequence of Paenibacillus sp. strain E222, a bacterial symbiont of an Epichloë fungal endophyte of ryegrass. Microbiol Resour Announc 9:e00786–e00720. https://doi.org/10.1128/MRA.00786-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastías DA, Johnson LJ, Card SD (2020b) Symbiotic bacteria of plant-associated fungi: friends or foes? Curr Opin Plant Biol 56:1–8

    Article  PubMed  Google Scholar 

  • Bastías DA, Bustos LB, Jáuregui R, Barrera A, Acuña-Rodríguez IS, Molina-Montenegro MA, Gundel PE (2021a) Epichloë fungal endophytes influence seed-associated bacterial communities. Front Microbiol 12:795354–795354

    Article  PubMed  Google Scholar 

  • Bastías DA, Gianoli E, Gundel PE (2021b) Fungal endophytes can eliminate the plant growth–defence trade-off. New Phytol 230:2105–2113

    Article  PubMed  Google Scholar 

  • Bastías DA, Applegate ER, Johnson LJ, Card SD (2022) Factors controlling the effects of mutualistic bacteria on plants associated with fungi. Ecol Lett 25:1879–1888. https://doi.org/10.1111/ele.14073

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J Appl Ecol:847–860

    Google Scholar 

  • Bazely DR, Ball JP, Vicari M, Tanentzap AJ, Bérenger M, Rakocevic T, Koh S (2007) Broad-scale geographic patterns in the distribution of vertically-transmitted, asexual endophytes in four naturally-occurring grasses in Sweden. Ecography 30:367–374

    Google Scholar 

  • Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68:4650–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry D, Mace W, Grage K, Wesche F, Gore S, Schardl CL, Young CA, Dijkwel PP, Leuchtmann A, Bode HB, Scott B (2019) Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proc Natl Acad Sci U S A 116:25614–25623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bills GF, Gloer JB (2017) Biologically active secondary metabolites from the fungi. In: The fungal kingdom, pp 1087–1119

    Google Scholar 

  • Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58:395–401

    Article  CAS  PubMed  Google Scholar 

  • Bonos SA, Wilson MM, Meyer WA, Reed FC (2005) Suppression of red thread in fine fescues through endophyte-mediated resistance. Appl Turfgrass Sci 2:1–7. https://doi.org/10.1094/ATS-2005-0725-01-RS

    Article  Google Scholar 

  • Branco S, Schauster A, Liao HL, Ruytinx J (2022) Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol

    Google Scholar 

  • Breen J (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Article  Google Scholar 

  • Brem D, Leuchtmann A (1999) High prevalence of horizontal transmission of the fungal endophyte Epichloë sylvatica. Bull Geobot Inst ETH 65:12

    Google Scholar 

  • Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189:797–805

    Article  PubMed  Google Scholar 

  • Bryant R, Cameron N, Edwards G (2010) Response of black beetle and redheaded pasture cockchafer larvae to loline alkaloids in meadow fescue roots. N Z Plant Prot 63:219–223

    Google Scholar 

  • Bultman TL, Leuchtmann A (2008) Biology of the Epichloë-Botanophila interaction: an intriguing association between fungi and insects. Fungal Biol Rev 22:131–138

    Article  Google Scholar 

  • Bultman TL, White JF (1988) “Pollination” of a fungus by a fly. Oecologia 75:317–319

    Article  PubMed  Google Scholar 

  • Bultman TL, White JF Jr, Bowdish TI, Welch AM, Johnston J (1995) Mutualistic transfer of Epichloë spermatia by Phorbia flies. Mycologia 87:182–189

    Article  Google Scholar 

  • Bultman TL, Aguilera A, Sullivan TJ (2012) Influence of fungal isolates infecting tall fescue on multitrophic interactions. Fungal Ecol 5:372–378

    Article  Google Scholar 

  • Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agric Ecosyst Environ 44:81–102. https://doi.org/10.1016/0167-8809(93)90040-V

    Article  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylin A, Card S, Hume D, Lloyd-West C, Huss-Danell K (2016) Endophyte storage and seed germination of Epichloë-infected meadow fescue. Seed Sci Technol 44:138–155

    Article  Google Scholar 

  • Campbell MA, Tapper BA, Simpson WR, Johnson RD, Mace W, Ram A, Lukito Y, Dupont P-Y, Johnson LJ, Scott DB (2017) Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy. Mycologia 109:715–729

    CAS  PubMed  Google Scholar 

  • Canals R, San Emeterio L, Oreja A (2008) Chances of loss of fungal endophytes in agronomic grasses: a case-study for Lolium rigidum. Agric Ecosyst Environ 127:146–152

    Article  Google Scholar 

  • Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68

    Article  CAS  PubMed  Google Scholar 

  • Caradus JR, Johnson LJ (2019) Improved adaptation of temperate grasses through mutualism with fungal endophytes. In: Schouten A (ed) Endophyte biotechnology: potential for agriculture and pharmacology. CABI, Wageningen, pp 85–108

    Chapter  Google Scholar 

  • Caradus JR, Johnson LJ (2020) Epichloë fungal endophytes-from a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. J Fungi 6:322. https://doi.org/10.3390/jof6040322

    Article  CAS  Google Scholar 

  • Caradus J, Chapman D, Cookson T, Cotching B, Deighton M, Donnelly L, Ferguson J, Finch S, Gard S, Hume D (2021a) Epichloë endophytes–new perspectives on a key ingredient for resilient perennial grass pastures. NZGA Res Pract Ser 17:347–360

    Google Scholar 

  • Caradus JR, Card SD, Hewitt KG, Hume DE, Johnson LJ (2021b) Asexual Epichloë fungi—obligate mutualists. Encyclopedia 1:1084–1100

    Article  Google Scholar 

  • Caradus JR, Goldson SL, Moot DJ, Rowarth JS, Stewart AV (2021c) Pastoral agriculture, a significant driver of New Zealand’s economy, based on an introduced grassland ecology and technological advances. J R Soc N Z 1-45. https://doi.org/10.1080/03036758.2021.2008985

  • Caradus JR, Card SD, Finch SC, Hume DE, Johnson LJ, Mace WJ, Popay AJ (2022) Ergot alkaloids in New Zealand pastures and their impact. N Z J Agric Res 65:1–41

    Article  CAS  Google Scholar 

  • Card SD, Tapper BA, Lloyd-West C, Wright KM (2013) Assessment of fluorescein-based fluorescent dyes for tracing Neotyphodium endophytes in planta. Mycologia 105:221–229. https://doi.org/10.3852/12-062

    Article  CAS  PubMed  Google Scholar 

  • Card S, Johnson L, Bonth Ad, Tapper B, Mace W, Faville M, Pennell C, Caradus J, and Hume D. 2014a. Epichloë endophytes from cool season grasses – reaping the rewards from a well-tuned bio-prospecting pipeline. The 10th International Mycological Congress, Bangkok.

    Google Scholar 

  • Card SD, Faville MJ, Simpson WR, Johnson RD, Voisey CR, de Bonth AC, Hume DE (2014b) Mutualistic fungal endophytes in the Triticeae–survey and description. FEMS Microbiol Ecol 88:94–106

    Article  CAS  PubMed  Google Scholar 

  • Card SD, Hume DE, Roodi D, McGill CR, Millner JP, Johnson RD (2015) Beneficial endophytic microorganisms of Brassica – a review. Biol Control 90:102–112

    Article  Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92

    Google Scholar 

  • Card SD, Bastías DA, Caradus JR (2021) Antagonism to plant pathogens by Epichloë fungal endophytes—a review. Plan Theory 10:1997

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Casas C, Torretta JP, Exeler N, Omacini M (2016) What happens next? Legacy effects induced by grazing and grass-endophyte symbiosis on thistle plants and their floral visitors. Plant Soil 405:211–229

    Article  CAS  Google Scholar 

  • Casas C, Gundel PE, Deliens E, Iannone LJ, García Martinez G, Vignale MV, Schnyder H (2022) Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—resource eco-physiological relations. Funct Ecol 36:583–594

    Article  Google Scholar 

  • Charlton ND, Craven KD, Mittal S, Hopkins AA, Young CA (2012) Epichloë canadensis, a new interspecific epichloid hybrid symbiotic with Canada wildrye (Elymus canadensis). Mycologia 104:1187–1199. https://doi.org/10.3852/11-403

    Article  PubMed  Google Scholar 

  • Chowdhary K, Arora H, Sharma S (2022) CRISPR/Cas9-based genome editing as a way ahead for inducing production of bioactive metabolites in endophytes. Natl Acad Sci Lett 45:275–280. https://doi.org/10.1007/s40009-022-01107-9

    Article  CAS  Google Scholar 

  • Christensen MJ (1995) Variation in the ability of Acremonium endophytes of Lolium perenne, Festuca arundinacea and F. pratensis to form compatible associations in the three grasses. Mycol Res 99:466–470. https://doi.org/10.1016/S0953-7562(09)80647-3

    Article  Google Scholar 

  • Christensen M, Voisey C (2006) The biology of the endophyte/grass partnership. In: Popay A, Thom ER (eds) 6th international symposium on fungal endophytes of grasses. Christchurch, New Zealand Grassland Association, pp 123–134

    Google Scholar 

  • Christensen MJ, Ball OJP, Bennett RJ, Schardl CL (1997) Fungal and host genotype effects on compatibility and vascular colonization by Epichloë festucae. Mycol Res 101:493–501. https://doi.org/10.1017/S0953756296002833

    Article  Google Scholar 

  • Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë and Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–96. https://doi.org/10.1017/S095375620100510X

    Article  Google Scholar 

  • Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93. https://doi.org/10.1016/j.fgb.2007.07.013

    Article  PubMed  Google Scholar 

  • Chu-Chou M, Guo B, An Z-Q, Hendrix J, Ferriss R, Siegel M, Dougherty C, Burrus P (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637

    Article  Google Scholar 

  • Chung KR, Schardl CL (1997) Sexual cycle and horizontal transmission of the grass symbiont, Epichloë typhina. Mycol Res 101:295–301. https://doi.org/10.1017/S0953756296002602

    Article  Google Scholar 

  • Clarke BB, White JF, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998. https://doi.org/10.1094/pd-90-0994

    Article  PubMed  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci 102:12465–12470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coley AB, Fribourg HA, Pelton MR, Gwinn KD (1995) Effects of tall fescue endophyte infestation on relative abundance of small mammals. Wiley Online Library

    Book  Google Scholar 

  • Conover MR, Messmer TA (1996) Feeding preferences and changes in mass of Canada geese grazing endophyte-infected tall fescue, Condor, pp 859–862

    Google Scholar 

  • Croy RG, Sutherland BL, Hume DE, Mace WJ, van Koten C, Finch SC (2022) Animal safety of a tall fescue endophyte (Epichloë sp.) in a perennial ryegrass (Lolium perenne) host. N Z Vet J 70:165–176. https://doi.org/10.1080/00480169.2021.2011795

    Article  CAS  PubMed  Google Scholar 

  • Daly GT (1973) The grasslands of New Zealand. In: Langer RHM (ed) Pastures and pasture plants. Wellington, A H and A W Reed Ltd

    Google Scholar 

  • de Bary A (1879) Die erscheinung der symbiose. Verlag von Karl J. Trübner, Strassburg

    Book  Google Scholar 

  • De Battista J, Bacon C, Severson R, Plattner R, Bouton J (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agron J 82:878–880

    Article  Google Scholar 

  • de Bonth A, Card S, Briggs L, Faville M, Finch S, Hong W, Johnson L, Liu L, Mace W, Pennell C, Popay A, Schmidt J, Sprosen J, Tapper B, and Hume D. 2015. Fungal foray: the pursuit of beneficial endophyte strains for Australasian pastures. 9th International Symposium on Fungal Endophytes of Grasses (ISFEG 2015), Melbourne, pp 98–99

    Google Scholar 

  • Decunta FA, Pérez LI, Malinowski DP, Molina-Montenegro MA, Gundel PE (2021) A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Front Plant Sci 12:644731

    Article  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter A (ed) History of modern biotechnology I. Springer, Berlin, pp 1–39

    Google Scholar 

  • di Menna ME, Finch SC, Popay AJ, Smith BL (2012) A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N Z Vet J 60:315–328

    Article  PubMed  Google Scholar 

  • Diehl WW (1950) Balansia and the Balansiae in America: US Department of Agriculture

    Google Scholar 

  • Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL (2017) Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol 213:324–337

    Article  CAS  PubMed  Google Scholar 

  • Dinkins RD, Nagabhyru P, Young CA, West CP, Schardl CL (2019) Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit. Plant Genome 12:180071

    Article  Google Scholar 

  • Dirihan S, Helander M, Väre H, Gundel PE, Garibaldi LA, Irisarri JGN, Saloniemi I, Saikkonen K (2016) Geographic variation in Festuca rubra L. ploidy levels and systemic fungal endophyte frequencies. PLoS One 11:e0166264

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML (2020) Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol 40:1210–1231

    Article  CAS  PubMed  Google Scholar 

  • Dupont P-Y, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208:1227–1240. https://doi.org/10.1111/nph.13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer DC (1993) Evidence that ergovaline acts on serotonin receptors. Life Sci 53:PL223–PL228. https://doi.org/10.1016/0024-3205(93)90555-H

    Article  CAS  PubMed  Google Scholar 

  • Easton H (2007) Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154:295–306

    Article  Google Scholar 

  • Easton H, Fletcher L (2006) The importance of endophyte in agricultural systems-changing plant and animal productivity. NZGA Res Pract Ser 13:11–18

    Article  Google Scholar 

  • Easton H, Lyons T, Cooper B, Mace W (2009) Loline alkaloids for better protection of pastures from insect pests. Proc N Z Grassl Assoc:151–154

    Google Scholar 

  • Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313

    Article  Google Scholar 

  • Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL (2006) On the sequence of bond formation in loline alkaloid biosynthesis. Chembiochem 7:1078–1088

    Article  CAS  PubMed  Google Scholar 

  • Finch S, Munday J, Munday R, Kerby J (2016a) Short-term toxicity studies of loline alkaloids in mice. Food Chem Toxicol 94:243–249

    Article  CAS  PubMed  Google Scholar 

  • Finch SC, Pennell CGL, Kerby JWF, Cave VM (2016b) Mice find endophyte-infected seed of tall fescue unpalatable - implications for the aviation industry. Grass Forage Sci 71:659–666. https://doi.org/10.1111/gfs.12203

    Article  CAS  Google Scholar 

  • Finch SC, Prinsep MR, Popay AJ, Wilkins AL, Webb NG, Bhattarai S, Jensen JG, Hawkes AD, Babu JV, Tapper BA, Lane GA (2020) Identification and structure elucidation of epoxyjanthitrems from Lolium perenne infected with the endophytic fungus Epichloë festucae var. lolii and determination of the tremorgenic and anti-Insect activity of epoxyjanthitrem I. Toxins 12:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Adv 3:18228–18247

    Article  CAS  Google Scholar 

  • Fletcher L (1999) “Non-toxic” endophytes in ryegrass and their effect on livestock health and production. NZGA Res Pract Ser 7:133–139

    Article  Google Scholar 

  • Fletcher LR, Harvey IC (1981) An association of a Lolium endophyte with ryegrass staggers. N Z Vet J 29:185–186

    Article  CAS  PubMed  Google Scholar 

  • Fletcher L, Sutherland B (2009) Sheep responses to grazing ryegrass with AR37 endophyte. Proc N Z Grassl Assoc:127–132

    Google Scholar 

  • Fletcher L, Hoglljnd J, Sutherland B (1990) The impact of Acremonium endophytes in New Zealand, past, present and future. Proc N Z Grassl Assoc:227–235

    Google Scholar 

  • Fletcher L, Popay AJ, Stewart AV, Tapper B (2000) Herbage and sheep production from meadow fescue with and without the endophyte Neotyphodium uncinatum. Proceedings of the 4th international neotyphodium/grass interactions symposium, 27–29 Sep 2000, Soest, pp 447–453

    Google Scholar 

  • Fletcher L, Finch S, Sutherland B, deNicolo G, Mace W, Van Koten C, Hume D (2017) The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass-endophyte associations with diverse alkaloid profiles. N Z Vet J 65:232–241

    Article  CAS  PubMed  Google Scholar 

  • Florea S, Panaccione DG, Schardl CL (2017) Ergot alkaloids of the family Clavicipitaceae. Phytopathology 107:504–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florea S, Jaromczyk J, Schardl CL (2021) Non-transgenic CRISPR-mediated knockout of entire ergot alkaloid gene clusters in slow-growing asexual polyploid fungi. Toxins 13:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman EM (1904) The seed-fungus of Lolium temulentum, L., the Darnel. Philos Trans R Soc Lond Ser B Containing Papers Biol Char 196:1–27

    Google Scholar 

  • Freitas PP, Hampton JG, Rolston MP, Glare TR, Miller PP, Card SD (2020) A tale of two grass species: temperature affects the symbiosis of a mutualistic Epichloë endophyte in both tall fescue and perennial ryegrass. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00530

  • Froehlich KA, McAnulty R, Greer A (2022) Loline alkaloid effects on gastrointestinal nematodes. Animals 12:996

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs B, Krischke M, Mueller MJ, Krauss J (2013) Peramine and lolitrem B from endophyte-grass associations cascade up the food chain. J Chem Ecol 39:1385–1389. https://doi.org/10.1007/s10886-013-0364-2

    Article  CAS  PubMed  Google Scholar 

  • Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol 29:52–58

    Article  Google Scholar 

  • Funk CR, White RH, Breen JP (1993) Importance of Acremonium endophytes in turf-grass breeding and management. Agric Ecosyst Environ 44:215–232. https://doi.org/10.1016/0167-8809(93)90048-T

    Article  Google Scholar 

  • Funk CR, Belanger FC, Murphy JA (2018) Role of endophytes in grasses used for turf and soil conservation. Biotechnology of endophytic fungi of grasses. CRC Press, pp 201–209

    Book  Google Scholar 

  • Gadberry M, Denard T, Spiers D, Piper E (2003) Effects of feeding ergovaline on lamb performance in a heat stress environment. J Anim Sci 81:1538–1545

    Article  CAS  PubMed  Google Scholar 

  • Gagic M, Faville MJ, Zhang W, Forester NT, Rolston MP, Johnson RD, Ganesh S, Koolaard JP, Easton HS, Hudson D (2018) Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Front Plant Sci 9:1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher RT, White EP, Mortimer PH (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem a and lolitrem B From staggers-producing pastures. N Z Vet J 29:189–190. https://doi.org/10.1080/00480169.1981.34843

    Article  CAS  PubMed  Google Scholar 

  • Garcia Parisi PA, Casas C, Gundel PE, Omacini M (2012) Consequences of grazing on the vertical transmission of a fungal Neotyphodium symbiont in an annual grass population. Austral Ecol 37:620–628

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Gerhards N, Neubauer L, Tudzynski P, Li S-M (2014) Biosynthetic pathways of ergot alkaloids. Toxins 6:3281–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibert A, Hazard L (2013) Genetically based vertical transmission drives the frequency of the symbiosis between grasses and systemic fungal endophytes. J Ecol 101:743–752

    Article  Google Scholar 

  • Gibert A, Volaire F, Barre P, Hazard L (2012) A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol 194:561–571. https://doi.org/10.1111/j.1469-8137.2012.04073.x

    Article  PubMed  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press

    Google Scholar 

  • Goldson SL, Rowarth JS, Caradus JR (2005) The impact of invasive invertebrate pests in pastoral agriculture: a review. N Z J Agric Res 48:401–415

    Article  Google Scholar 

  • Górzyńska K, Lembicz M, Olszanowski Z, Leuchtmann A (2011) Botanophila-epichloë interaction in a wild grass, Puccinellia distans, lacks dependence on the fly vector. Ann Entomol Soc Am 104:841–846

    Article  Google Scholar 

  • Granath G, Vicari M, Bazely DR, Ball JP, Puentes A, Rakocevic T (2007) Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients. Ecography 30:422–430

    Article  Google Scholar 

  • Green KA, Berry D, Feussner K, Eaton CJ, Ram A, Mesarich CH, Solomon P, Feussner I, Scott B (2020) Lolium perenne apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus Epichloë festucae. New Phytol 227:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundel PE, Batista WB, Texeira M, Martínez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc B Biol Sci 275:897–905

    Article  Google Scholar 

  • Gundel PE, Garibaldi LA, Tognetti PM, Aragón R, Ghersa CM, Omacini M (2009a) Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb Ecol 57:740–748

    Article  PubMed  Google Scholar 

  • Gundel PE, Martínez-Ghersa MA, Garibaldi LA, Ghersa CM (2009b) Viability of Neotyphodium endophytic fungus and endophyte-infected and noninfected Lolium multiflorum seeds. Botany 87:88–96

    Article  Google Scholar 

  • Gundel PE, Martínez-Ghersa MA, Batista WB, Ghersa CM (2010) Dynamics of Neotyphodium endophyte infection in ageing seed pools: incidence of differential viability loss of endophyte, infected seed and non-infected seed. Ann Appl Biol 156:199–209

    Article  Google Scholar 

  • Gundel PE, Garibaldi LA, Martínez-Ghersa MA, Ghersa CM (2011a) Neotyphodium endophyte transmission to Lolium multiflorum seeds depends on the host plant fitness. Environ Exp Bot 71:359–366

    Google Scholar 

  • Gundel PE, Rudgers J, Ghersa CM (2011b) Incorporating the process of vertical transmission into understanding of host–symbiont dynamics. Oikos 120:1121–1128

    Article  Google Scholar 

  • Gundel PE, Martínez-Ghersa MA, Omacini M, Cuyeu R, Pagano E, Ríos R, Ghersa CM (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849

    Article  PubMed  PubMed Central  Google Scholar 

  • Gundel PE, Pérez LI, Helander M, Saikkonen K (2013) Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends Plant Sci 18:420–427

    Article  CAS  PubMed  Google Scholar 

  • Gundel P, Sorzoli N, Ueno A, Ghersa C, Seal C, Bastías D, Martínez-Ghersa M (2015) Impact of ozone on the viability and antioxidant content of grass seeds is affected by a vertically transmitted symbiotic fungus. Environ Exp Bot 113:40–46

    Article  CAS  Google Scholar 

  • Gundel P, Irisarri J, Fazio L, Casas C, Pérez L (2016) Inferring field performance from drought experiments can be misleading: the case of symbiosis between grasses and Epichloë fungal endophytes. J Arid Environ 132:60–62

    Article  Google Scholar 

  • Gundel PE, Sun P, Charlton ND, Young CA, Miller TE, Rudgers JA (2020) Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in Poa autumnalis. Ann Bot 125:981–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Gao P, Li F, Duan T (2019) Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. Eur J Plant Pathol 154:659–671. https://doi.org/10.1007/s10658-019-01689-z

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, Scott B (2019) Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 14:e0209463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessy LM, Popay AJ, Finch SC, Clearwater MJ, Cave VM (2016) Temperature and plant genotype alter alkaloid concentrations in ryegrass infected with an Epichloë endophyte and this affects an insect herbivore. Front Plant Sci 7:1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Hereme R, Morales-Navarro S, Ballesteros G, Barrera A, Ramos P, Gundel PE, Molina-Montenegro MA (2020) Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00264

  • Hettiarachchige IK, Ekanayake PN, Mann RC, Guthridge KM, Sawbridge TI, Spangenberg GC, Forster JW (2015) Phylogenomics of asexual Epichloë fungal endophytes forming associations with perennial ryegrass. BMC Evol Biol 15:1–14

    Article  Google Scholar 

  • Hettiarachchige IK, Elkins AC, Reddy P, Mann RC, Guthridge KM, Sawbridge TI, Forster JW, Spangenberg GC (2019) Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis. Mol Gen Genomics 294:315–328

    Article  CAS  Google Scholar 

  • Hill N, Roach P (2009) Endophyte survival during seed storage: endophyte–host interactions and heritability. Crop Sci 49:1425–1430

    Article  Google Scholar 

  • Hill N, Bouton J, Hiatt E, Kittle B (2005) Seed maturity, germination, and endophyte relationships in tall fescue. Crop Sci 45:859–863

    Article  Google Scholar 

  • Hoffman GD, Rao S (2013) Association of slugs with the fungal pathogen Epichloë typhina (Ascomycotina: Clavicipitaceae): potential role in stroma fertilisation and disease spread. Ann Appl Biol 162:324–334

    Article  Google Scholar 

  • Hoffman GD, Rao S (2014) Fertilization of Epichloë typhina stromata by mycophagous slugs. Mycologia 106:1–7. https://doi.org/10.3852/13-069

    Article  PubMed  Google Scholar 

  • Holford G (1933) Grassland work overseas. Proc N Z Grassl Assoc:1–4

    Google Scholar 

  • Hoveland CS (2009) Origin and history. Chapter 1. In: Fribourg HA, Hannaway DB and West CP, editors. Tall Fescue for the twenty-first century agronomy monographs 53. Madison, WI

    Google Scholar 

  • Hoveland CS, Haaland RL, King CC Jr, Anthony WB, Clark EM, McGuire JA, Smith LA, Grimes HW, Holliman JL (1980) Association of Epichloë typhina fungus and steer performance on tall fescue pasture. Agron J 72:1064–1065. https://doi.org/10.2134/agronj1980.00021962007200060048x

    Article  Google Scholar 

  • Hume D, Sewell J (2014) Agronomic advantages conferred by endophyte infection of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) in Australia. Crop Pasture Sci 65:747–757

    Article  Google Scholar 

  • Hume D, Ryan D, Cooper B, Popay A (2007) Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proc N Z Grassl Assoc 69:201–205

    Google Scholar 

  • Hume D, Cooper B, Panckhurst K (2009) The role of endophyte in determining the persistence and productivity of ryegrass, tall fescue and meadow fescue in Northland. Proc N Z Grassl Assoc 71:145–150

    Google Scholar 

  • Hume DE, Drummond JB, Rolston MP, Simpson WR, Johnson RD (2018) Epichloë endophyte improves agronomic performance and grain yield of rye (Secale cereale). Proceedings of the 10th international symposium on fungal endophytes of grasses

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jensen J, Popay A (2004) Perennial ryegrass infected with AR37 endophyte reduces survival of porina larvae. N Z Plant Prot 57:323–328

    Google Scholar 

  • Jensen J, Popay A, Tapper B (2009) Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N Z Plant Prot 62:12–18

    CAS  Google Scholar 

  • Johnson LJ, Caradus JR (2019) The science required to deliver Epichloë endophytes to commerce. Endophytes Grow World:343

    Google Scholar 

  • Johnson L, de Bonth A, Briggs L, Caradus J, Finch S, Fleetwood D, Fletcher L, Hume D, Johnson R, Popay A, Tapper B, Simpson W, Voisey C, Card S (2013a) The exploitation of Epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188. https://doi.org/10.1007/s13225-013-0239-4

    Article  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013b) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RD, Lane GA, Koulman A, Cao M, Fraser K, Fleetwood DJ, Voisey CR, Dyer JM, Pratt J, Christensen M (2015) A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses. Fungal Genet Biol 85:14–24

    Article  CAS  PubMed  Google Scholar 

  • Johnson LJ, Bastías DA, Caradus JR, Chettri P, Forester NT, Mace WJ, Miller TA, Moon CD, Voisey CR, Zhang W, Card SD (2021) Chapter 6- The dynamic mechanisms underpinning symbiotic Epichloë–grass interactions: implications for sustainable and resilient agriculture. In: White J, Kumar A, Droby S (eds) . Woodhead Publishing, Microbiome stimulants for crops, pp 73–108

    Google Scholar 

  • Ju Y, Zhong R, Christensen MJ, Zhang X (2020) Effects of Epichloë gansuensis endophyte on the root and rhizosphere soil bacteria of Achnatherum inebrians under different moisture conditions. Front Microbiol 11:747

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalosa-Kenyon E, Slaughter LC, Rudgers JA, McCulley RL (2018) Asexual Epichloë endophytes do not consistently alter arbuscular mycorrhizal fungi colonization in three grasses. Am Midl Nat 179(2):157–165. https://doi.org/10.1674/0003-0031-179.2.157

    Article  Google Scholar 

  • Kaur J, Ekanayake PN, Tian P, De Jong EVZ, Dobrowolski MP, Rochfort SJ, Mann RC, Smith KF, Forster JW, Guthridge KM (2015) Discovery and characterisation of novel asexual Epichloë endophytes from perennial ryegrass (Lolium perenne L.). Crop Pasture Sci 66:1058–1070

    Article  CAS  Google Scholar 

  • Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby E (1961) Host-parasite relations in the choke disease of grasses. Trans Br Mycol Soc 44:493–503

    Article  Google Scholar 

  • Kirkby K, Pratley J, Hume D, An M, Wu H (2011) Viability of seed and endophyte (Neotyphodium occultans) in annual ryegrass (Lolium rigidum) when buried and in long term storage. Seed Sci Technol 39:452–464

    Article  Google Scholar 

  • Klotz JL, Nicol AM (2016) Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism. Anim Prod Sci 56:1761–1774. https://doi.org/10.1071/AN14962

    Article  CAS  Google Scholar 

  • Kocmánková E, Trnka M, Juroch J, Dubrovský M, Semerádová D, Možný M, Žalud Z (2009) Impact of climate change on the occurrence and activity of harmful organisms. Plant Protect Sci 45:S48

    Article  Google Scholar 

  • Koga H, Christensen MJ, Bennett RJ (1993) Incompatibility of some grass-Acremonium endophyte associations. Mycol Res 97:1237–1244. https://doi.org/10.1016/S0953-7562(09)81292-6

    Article  Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1974) Distribution of Epichloë typhina (Ascomycetes) and its parasitic fly. Mycologia 66:77–86. https://doi.org/10.1080/00275514.1974.12019575

    Article  Google Scholar 

  • Koshino H, Togiya S, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1987) Four fungitoxic C-18 hydroxy unsaturated fatty acids from stromata of Epichloë typhina. Tetrahedron Lett 28:73–76. https://doi.org/10.1016/s0040-4039(00)95652-1

    Article  CAS  Google Scholar 

  • Koshino H, Terada S-I, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1988) Three phenolic acid derivatives from stromata of Epichloë typhina on Phleum pratense. Phytochemistry 27:1333–1338. https://doi.org/10.1016/0031-9422(88)80188-2

    Article  CAS  Google Scholar 

  • Koshino H, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1989) A ring B aromatic sterol from stromata of Epichloë typhina. Phytochemistry 28:771–772. https://doi.org/10.1016/0031-9422(89)80112-8

    Article  CAS  Google Scholar 

  • Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360. https://doi.org/10.1016/j.phytochem.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  • Krauss J, Härri SA, Bush L, Husi R, Bigler L, Power SA, Müller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116

    Article  Google Scholar 

  • Latch GCM, Christensen MJ (1982) Ryegrass endophyte, incidence, and control. N Z J Agric Res 25:443–448

    Article  Google Scholar 

  • Latch GCM, Christensen MJ (1985) Artificial infection of grasses with endophytes. Ann Appl Biol 107:17–24

    Article  Google Scholar 

  • Latch GCM, Christensen MJ, Hickson RE (1988) Endophytes of annual and hybrid ryegrasses. N Z J Agric Res 31:57–63. https://doi.org/10.1080/00288233.1988.10421364

    Article  Google Scholar 

  • Le Page M (2022) Worst drought in 500 years? New Scientist 255:8. https://doi.org/10.1016/S0262-4079(22)01459-2

    Article  Google Scholar 

  • Lembicz M, Miszalski Z, Kornaś A, Turnau K (2021) Cooling effect of fungal stromata in the Dactylis-Epichloë-Botanophila symbiosis. Commun Integr Biol 14:151–157. https://doi.org/10.1080/19420889.2021.1938824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuchtmann A, Clay K (1988) Atkinsonella Hypoxylon and Balansia Cyperi, epiphytic members of the Balansiae. Mycologia 80:192–199. https://doi.org/10.1080/00275514.1988.12025520

    Article  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215

    Article  CAS  PubMed  Google Scholar 

  • Leuchtmann A, Young CA, Stewart AV, Simpson WR, Hume DE, Scott B (2019) Epichloë novae-zelandiae, a new endophyte from the endemic New Zealand grass Poa matthewsii. N Z J Bot 57:271–288

    Article  Google Scholar 

  • Lewis G, Ravel C, Naffaa W, Astier C, Charmet G (1997) Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann Appl Biol 130:227–238

    Article  Google Scholar 

  • Leyronas C, Raynal G (2001) Presence of Neotyphodium-like endophytes in European grasses. Ann Appl Biol 139:119–127

    Article  Google Scholar 

  • Leyronas C, Raynal G (2008) Role of fungal ascospores in the infection of orchardgrass (Dactylis glomerata) by Epichloë typhina agent of choke disease. J Plant Pathol 90:15–21

    Google Scholar 

  • Li F, Guo Y, Christensen MJ, Gao P, Li Y, Duan T (2018) An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28:159–169. https://doi.org/10.1007/s00572-017-0813-9

    Article  PubMed  Google Scholar 

  • Li C, Wang Z, Chen T, Nan Z (2021) Creation of novel barley germplasm using an Epichloë endophyte

    Google Scholar 

  • Liu J, Nagabhyru P, Schardl CL (2017) Epichloë festucae endophytic growth in florets, seeds, and seedlings of perennial ryegrass (Lolium perenne). Mycologia 109:691–700

    PubMed  Google Scholar 

  • Liu B, Ju Y, Xia C, Zhong R, Christensen MJ, Zhang X, Nan Z (2022a) The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians. iScience 25:104144. https://doi.org/10.1016/j.isci.2022.104144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Tang H, Ni X, Zhang Y, Wang Y (2022b) Effects of the endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue in different saline-alkali soils. Fungal Ecol 57-58:101159. https://doi.org/10.1016/j.funeco.2022.101159

    Article  Google Scholar 

  • Lloyd AB (1959) The endophytic fungus of perennial ryegrass. N Z J Agric Res 2:1187–1194

    Article  Google Scholar 

  • Lopez G (2022) A summer of climate disasters. The New York Times

    Google Scholar 

  • Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM (2019) Analysis of the indole diterpene gene cluster for biosynthesis of the epoxy-janthitrems in Epichloë endophytes. Microorganisms 7:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489

    Article  CAS  PubMed  Google Scholar 

  • Mack KM, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Mahmud K, Lee K, Hill NS, Mergoum A, Missaoui A (2021) Influence of tall fescue Epichloë endophytes on rhizosphere soil microbiome. Microorganisms 9:1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940. https://doi.org/10.2135/cropsci2000.404923x

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52:1–14

    Article  Google Scholar 

  • Martin BD, Schwab E (2012) Symbiosis:“Living together” in chaos. Stud Hist Biol 4:7–25

    Google Scholar 

  • McDonald MB (1998) Seed quality assessment. Seed Sci Res 8:265–276

    Article  CAS  Google Scholar 

  • McLennan E (1920) The endophytic fungus of Lolium. Proc R Soc Vic (XXXII C N S) 32:252–301

    CAS  Google Scholar 

  • Mercado-Blanco J (2015) Life of microbes inside the plant. Principles of plant-microbe interactions. Springer, pp 25–32

    Book  Google Scholar 

  • Meyer WA, Funk CR (1989) Progress and benefits to humanity from breeding cool-season grasses for turf. Contributions from breeding forage and turf grasses, pp 31–48

    Google Scholar 

  • Miller TA, Hudson DA, Johnson RD, Singh JS, Mace WJ, Forester NT, Maclean PH, Voisey CR, Johnson LJ (2022) Dissection of the epoxyjanthitrem pathway in Epichloë sp. LpTG-3 strain AR37 by CRISPR gene editing. Front Fungal Biol 3. https://doi.org/10.3389/ffunb.2022.944234

  • Misra A, Yadav S, Mishra S, Tripathi M (2020) Impact of meteorological variables and climate change on plant diseases. Plant pathogens. Apple Academic Press, pp 313–327

    Google Scholar 

  • Moate PJ, Williams SRO, Grainger C, Hannah MC, Mapleson D, Auldist MJ, Greenwood JS, Popay AJ, Hume DE, Mace WJ, Wales WJ (2012) Effects of wild-type, AR1 and AR37 endophyte-infected perennial ryegrass on dairy production in Victoria, Australia. Anim Prod Sci 52:1117–1130. https://doi.org/10.1071/AN12126

    Article  CAS  Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Morales-Quintana L, Miño R, Mendez-Yañez A, Gundel PE, Ramos P (2022) Do fungal-endosymbionts improve crop nutritional quality and tolerance to stress by boosting flavonoid-mediated responses? Food Res Int 161:111850. https://doi.org/10.1016/j.foodres.2022.111850

    Article  CAS  PubMed  Google Scholar 

  • Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424

    Article  PubMed  Google Scholar 

  • Murphy JA, Sun S, Betts LL (1993) Endophyte-enhanced resistance to billbug (Coleoptera: Curculionidae), sod webworm (Lepidoptera: Pyralidae), and white Grub (Coleoptera: Scarabeidae) in tall fescue. Environ Entomol 22:699–703. https://doi.org/10.1093/ee/22.3.699

    Article  Google Scholar 

  • Neil JC (1940) The endophyte of rye-grass (Lolium perenne). N Z J Sci Technol A21:280–291

    Google Scholar 

  • Nicol AM, Klotz JL (2016) Ergovaline, an endophytic alkaloid. 2. Intake and impact on animal production, with reference to New Zealand. Anim Prod Sci 56:1775–1786. https://doi.org/10.1071/AN14963

    Article  CAS  Google Scholar 

  • Nissinen R, Helander M, Kumar M, Saikkonen K (2019) Heritable Epichloë symbiosis shapes fungal but not bacterial communities of plant leaves. Sci Rep 9:5253. https://doi.org/10.1038/s41598-019-41603-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis

    Google Scholar 

  • Novas V, Iannone L, Godeas A, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75–81

    Article  Google Scholar 

  • Oesterheld M, Sala O, McNaughton S (1992) Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356:234–236

    Article  CAS  PubMed  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    Article  CAS  PubMed  Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange A, Jones T (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL (2014) Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS One 9:e115590

    Article  PubMed  PubMed Central  Google Scholar 

  • Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Dhankher OP, Foyer CH (2020) Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Oxford University Press, pp 451–456

    Google Scholar 

  • Partida-Martinez LPP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Patchett B, Chapman R, Fletcher L, Gooneratne S (2008) Root loline concentration in endophyteinfected meadow fescue (Festuca pratensis) is increased by grass grub (Costelytra zealandica) attack. N Z Plant Prot 61:210–214

    CAS  Google Scholar 

  • Penn J, Garthwaite I, Christensen M, Johnson C, Towers N (1993) The importance of paxilline in screening for potentially tremorgenic Acremonium isolates. In: Hume D, Latch G, Easton H (eds) Proceedings of the 2nd international symposium on acremonium/grass interactions. AgResearch, Palmerston North, pp 88–93

    Google Scholar 

  • Pennell C, Popay A, Ball OJP, Hume D, Baird D (2005) Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. N Z J Agric Res 48:329–337

    Article  Google Scholar 

  • Pennell CGL, Popay AJ, Rolston MP, Townsend RJ, Lloyd-West CM, Card SD (2016) Avanex Unique Endophyte Technology – a biological deterrent for the aviation industries. Environ Entomol 45:101–108. https://doi.org/10.1093/ee/nvv145

    Article  PubMed  Google Scholar 

  • Pennell C, Rolston M, Baird D, Hume D, Mckenzie C, Card S (2017a) Using novel-grass endophyte associations as an avian deterrent. N Z Plant Prot 70:255–264

    Google Scholar 

  • Pennell C, Rolston M, Koten C, Hume D, Card S (2017b) Reducing bird numbers at New Zealand airports using a unique endophyte product. N Z Plant Prot 70:224–234

    Google Scholar 

  • Pennell C, Rolston M, Latham A, Mace W, Vlaming J, van Koten C, Latham M, Brown S, Card S (2017c) Novel grass-endophyte associations reduce the feeding behaviour of invasive European rabbits (Oryctolagus cuniculus). Wildl Res 43:681–690

    Article  Google Scholar 

  • Perez LI, Gundel PE, Marrero HJ, Arzac AG, Omacini M (2017) Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia 184:237–245. https://doi.org/10.1007/s00442-017-3850-3

    Article  CAS  PubMed  Google Scholar 

  • Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M (2020) An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. Fungal Biol Rev 34:115–125

    Article  Google Scholar 

  • Pfender WF, Alderman SC (1999) Geographical distribution and incidence of orchardgrass choke, caused by Epichloë typhina, in Oregon. Plant Dis 83:754–758. https://doi.org/10.1094/pdis.1999.83.8.754

    Article  CAS  PubMed  Google Scholar 

  • Pillay LC, Nekati L, Makhwitine PJ, Ndlovu SI (2022) Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.815008

  • Popay AJ, Bonos SA (2008) Biotic responses in endophytic grasses. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses, pp 163–185

    Google Scholar 

  • Popay AJ, Cox NR (2016) Aploneura lentisci (Homoptera: Aphididae) and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne). Front Plant Sci 7:1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Popay A, Hume D (2011) Endophytes improve ryegrass persistence by controlling insects. NZGA Res Pract Ser 15:149–156

    Article  Google Scholar 

  • Popay A, Thom E (2009) Endophyte effects on major insect pests in Waikato dairy pasture. Proc N Z Grassl Assoc:121–126

    Google Scholar 

  • Popay A, Wyatt R (1995) Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. Proceedings of the forty eighth New Zealand plant protection conference, Angus Inn, Hastings, August 8–10, 1995: New Zealand Plant Protection Society, pp 229–236

    Google Scholar 

  • Popay A, Townsend R, Fletcher L (2003) The effect of endophyte (Neotyphodium uncinatum) in meadow fescue on grass grub larvae. N Z Plant Prot 56:123–128

    Google Scholar 

  • Popay A, Tapper B, Podmore C (2009) Endophyte infected meadow fescue and loline alkaloids affect Argentine stem weevil larvae. N Z Plant Prot 62:19–27

    CAS  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  CAS  PubMed  Google Scholar 

  • Ravel C, Michalakis Y, Charmet G (1997) The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos, pp 18–24

    Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Reed KFM, Mace WJ, Walker LV, Fletcher LR (2016) Endophyte metabolites associated with perennial ryegrass toxicosis. Anim Prod Sci 56:895–907. https://doi.org/10.1071/AN14495

    Article  CAS  Google Scholar 

  • Reinholz J, Paul V (2000) Effect of temperature on the lolitrem B content in Lolium perenne infected by Neotyphodium lolii. The 3rd international conference on harmful and beneficial microorganisms in grassland pastures and turf

    Google Scholar 

  • Ren A-Z, Wang Y-H, Gao Y-B (2009) Difference in antifungal activity of morphotypes of clavicipitaceous endophytes within and between species. Acta Ecol Sin 29:227–231. https://doi.org/10.1016/j.chnaes.2009.08.005

    Article  Google Scholar 

  • Riedell W, Kieckhefer R, Petroski R, Powell R (1991) Naturally-occurring and synthetic loline alkaloid derivatives: insect feeding behavior modification and toxicity. J Entomol Sci 26:122–129

    CAS  Google Scholar 

  • Roberts EL, Ferraro A (2015) Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant Soil 396:229–239

    Article  CAS  Google Scholar 

  • Roberts E, Lindow S (2014) Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME J 8:359–368

    Article  CAS  PubMed  Google Scholar 

  • Robinson SL, Panaccione DG (2015) Diversification of ergot alkaloids in natural and modified fungi. Toxins 7:201–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. https://doi.org/10.1093/jxb/erm342

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rolston M, Hare M, Moore K, Christensen M (1986) Viability of Lolium endophyte fungus in seed stored at different moisture contents and temperatures. N Z J Exp Agric 14:297–300

    Google Scholar 

  • Rolston M, Agee C (2006) Delivering quality seed to specification-the USA and NZ novel endophyte experience. New Zealand Grasslands Association: Research and Practice Series 13:229–231

    Google Scholar 

  • Romo M, Leuchtmann A, García B, Zabalgogeazcoa I (2007) A totivirus infecting the mutualistic fungal endophyte Epichloë festucae. Virus Res 124:38–43

    Article  CAS  PubMed  Google Scholar 

  • Rowan D, Gaynor D (1986) Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12:647–658

    Article  CAS  PubMed  Google Scholar 

  • Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Commun:935–936

    Google Scholar 

  • Rowan DD, Dymock JJ, Brimble MA (1990) Effect of fungal metabolite peramine and analogs on feeding and development of Argentine stem weevil (Listronotus bonariensis). J Chem Ecol 16:1683–1695

    Article  CAS  PubMed  Google Scholar 

  • Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin MAR, Ueno AC, Batlla D, Iannone LJ, Martínez-Ghersa MA, Gundel PE (2022) Seed functional traits in cultivars of tall fescue (Schedonorus arundinaceus) are affected by the non-toxic fungal endophyte AR584. Crop Pasture Sci 73(9):1085–1096

    Google Scholar 

  • Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199. https://doi.org/10.1016/j.mycres.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Lehtimäki S, Niemeläinen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:360–366

    Article  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Young CA, Helander M, Schardl CL (2016) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665–675. https://doi.org/10.1007/s11103-015-0399-6

    Article  CAS  PubMed  Google Scholar 

  • Sampson K (1933) The systemic infection of grasses by Epichloë typhina (Pers.) Tul. Trans Br Mycol Soc 18:30–47

    Article  Google Scholar 

  • Sampson K (1937) Further observations on the systemic infection of Lolium. Trans Br Mycol Soc 21:84–97

    Article  Google Scholar 

  • Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297. https://doi.org/10.1016/j.funeco.2010.12.001

    Article  Google Scholar 

  • Sands L (2022) Pakistan floods: One third of country is under water – minister. BBC News

    Google Scholar 

  • Santangelo JS, Turley NE, Johnson MT (2015) Fungal endophytes of Festuca rubra increase in frequency following long-term exclusion of rabbits. Botany 93:233–241

    Article  Google Scholar 

  • Schardl CL (2010) The epichloae, symbionts of the grass subfamily poöideae. Ann Mo Bot Gard 97:646–665

    Article  Google Scholar 

  • Schardl CL, Philips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–438

    Article  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR (1997) Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol Biol Evol 14:133–143

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids–biology and molecular biology. Alkaloids Chem Biol 63:45–86

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344. https://doi.org/10.1016/j.funeco.2011.04.005

    Article  Google Scholar 

  • Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013a) The epichloae: alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol 16:480–488. https://doi.org/10.1016/j.pbi.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B (2013b) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9

    Google Scholar 

  • Schiestl FP, Steinbrunner F, Schulz C, von Reub S, Francke W, Weymuth C, Leuchtmann A (2006) Evolution of ‘pollinator’-attracting signals in fungi. Biol Lett 2:401–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid J, Day R, Zhang N, Dupont P-Y, Cox MP, Schardl CL, Minards N, Truglio M, Moore N, Harris DR, Zhou Y (2017) Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant-Microbe Interact 30:138–149. https://doi.org/10.1094/MPMI-10-16-0215-R

    Article  CAS  PubMed  Google Scholar 

  • Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte- host interaction. Symbiosis (Rehovot) 25:213–227

    Google Scholar 

  • Scott B, Green K, Berry D (2018) The fine balance between mutualism and antagonism in the Epichloë festucae–grass symbiotic interaction. Curr Opin Plant Biol 44:32–38. https://doi.org/10.1016/j.pbi.2018.01.010

    Article  PubMed  Google Scholar 

  • Semmartin M, Omacini M, Gundel PE, Hernández-Agramonte IM (2015) Broad-scale variation of fungal-endophyte incidence in temperate grasses. J Ecol 103:184–190

    Article  Google Scholar 

  • Simpson WR, Faville MJ, Moraga RA, Williams WM, Mcmanus MT, Johnson RD (2014) Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (= Triticeae) grasses. J Syst Evol 52:794–806

    Article  Google Scholar 

  • Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophytic colonization by fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants systematics, ecology, and evolution. APS Press, St. Paul, MN

    Google Scholar 

  • Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021) The impact of climate change on agricultural insect pests. Insects 12:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Slaughter LC, Nelson JA, Carlisle E, Bourguignon M, Dinkins RD, Phillips TD, McCulley RL (2018) Climate change and Epichloë coenophiala association modify belowground fungal symbioses of tall fescue host. Fungal Ecol 31:37–46. https://doi.org/10.1016/j.funeco.2017.10.002

    Article  Google Scholar 

  • Sleper DA, West CP (1996) Tall fescue. Cool-season forage grasses, pp 471–502

    Google Scholar 

  • Spatafora J, Sung GH, Sung JM, Hywel-Jones N, White J Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Spiering MJ, Davies E, Tapper BA, Schmid J, Lane GA (2002) Simplified extraction of ergovaline and peramine for analysis of tissue distribution in endophyte-infected grass tillers. J Agric Food Chem 50:5856–5862. https://doi.org/10.1021/jf025602b

    Article  CAS  PubMed  Google Scholar 

  • Spiering MJ, Faulkner JR, Zhang D-X, Machado C, Grossman RB, Schardl CL (2008) Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genet Biol 45:1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Star P, Brooking T (2006) Fescue to the rescue: chewings fescue, paspalum, and the application of non-British experience to pastoral practice in New Zealand, 1880-1920. Agric Hist 312–335

    Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stefanoni-Rubio PJ, Gundel PE, Novas MV, Iannone LJ (2022) Ecotype-specific effects of fungal endophytes on germination responses of seeds of the South American wild forage grass Bromus auleticus. Ann Appl Biol 180:247–258

    Article  Google Scholar 

  • Stewart A (2006) Genetic origins of perennial ryegrass (Lolium perenne) for New Zealand pastures. NZGA Res Pract Ser 12:55–61

    Article  Google Scholar 

  • Stewart AV, Barcellos G, Brilman L (2022) Use of endophytic fungi in turfgrasses: difficulties in delivery to the market. Int Turfgrass Soc Res J 14:1070–1073. https://doi.org/10.1002/its2.131

    Article  Google Scholar 

  • Strickland J, Aiken G, Spiers D, Fletcher L, Oliver J (2009) Physiological basis of fescue toxicosis. Tall Fescue for the Twenty-first Century 53:203–227

    Google Scholar 

  • Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Ed 56:3770–3821

    Article  Google Scholar 

  • Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the World. Food & Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Takach JE, Mittal S, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, Young CA (2012) Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. Appl Environ Microbiol 78:5501–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum I, Kaur J, Mann R, Sawbridge T, Rodoni B, Spangenberg G (2020) Profiling the Lolium perenne microbiome: from seed to seed. Phytobiomes J 4:281–289

    Article  Google Scholar 

  • Tapper B, Lane G (2004) Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. Proceedings of the 5th international symposium on neotyphodium/grass interactions, University of Arkansas Press, Fayetteville, AR

    Google Scholar 

  • Terlizzi NL, Rodríguez MA, Iannone LJ, Lanari E, Novas MV (2022) Epichloë endophyte affects the root colonization pattern of belowground symbionts in a wild grass. Fungal Ecol 57–58:101143. https://doi.org/10.1016/j.funeco.2022.101143

    Article  Google Scholar 

  • Thom ER, Popay AJ, Hume DE, Fletcher LR (2012) Evaluating the performance of endophytes in farm systems to improve farmer outcomes–a review. Crop Pasture Sci 63:927–943

    Article  Google Scholar 

  • Tian P, Le T-N, Smith K, Forster J, Guthridge K, Spangenberg G (2013) Stability and viability of novel perennial ryegrass host–Neotyphodium endophyte associations. Crop Pasture Sci 64:39–50

    Article  Google Scholar 

  • Tiwari P, Bae H (2022) Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms 10:360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres M, White J (2009) Clavicipitaceae: free-living and saprotrophs to plant endophytes. Encycl Microbiol 1:422–430

    Article  Google Scholar 

  • Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci U S A 91:2542–2546. https://doi.org/10.1073/pnas.91.7.2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno AC, Gundel PE, Omacini M, Ghersa CM, Bush LP, Martínez-Ghersa MA (2016) Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone. Funct Ecol 30:226–234

    Article  Google Scholar 

  • Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, Mace WJ, Martínez-Ghersa MA (2020a) Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. Plant Cell Environ 43:2540–2550

    Article  CAS  PubMed  Google Scholar 

  • Ueno AC, Gundel PE, Seal CE, Ghersa CM, Martínez-Ghersa MA (2020b) The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect. Environ Exp Bot 175:104037

    Article  CAS  Google Scholar 

  • van Zijll de Jong E, Dobrowolski MP, Bannan NR, Stewart AV, Smith KF, Spangenberg GC, Forster JW (2008) Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii. Crop Sci 48:1487–1501

    Article  Google Scholar 

  • Victoria N, Collantes M, Cabral D (2007) Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol Ecol 61:164–173

    Article  Google Scholar 

  • Vignale M, Iannone LJ, Pinget AD, De Battista JP, Novas M (2016) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287

    Article  CAS  Google Scholar 

  • Vignale M, Iannone LJ, Scervino JM, Novas M (2018) Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil 422:267–281

    Article  CAS  Google Scholar 

  • Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427

    Article  CAS  PubMed  Google Scholar 

  • Voisey CR (2010) Intercalary growth in hyphae of filamentous fungi. Fungal Biol Rev 24:123–131. https://doi.org/10.1016/j.fbr.2010.12.001

    Article  Google Scholar 

  • Wakelin S, Harrison S, Mander C, Dignam B, Rasmussen S, Monk S, Fraser K, O’Callaghan M (2015) Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community. Crop Pasture Sci 66:1049–1057

    Article  CAS  Google Scholar 

  • Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198. https://doi.org/10.1016/j.fgb.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Clarke BB, Belanger FC (2019) Transcriptome analysis of choke stroma and asymptomatic inflorescence tissues reveals changes in gene expression in both Epichloë festucae and its host plant Festuca rubra subsp. rubra. Microorganisms 7:567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tian P, Gao M, Li M (2021a) The promotion of Festuca sinensis under heavy metal treatment mediated by Epichloë endophyte. Agronomy 11:2049

    Article  CAS  Google Scholar 

  • Wang R, Luo S, Clarke BB, Belanger FC (2021b) The Epichloë festucae antifungal protein Efe-AfpA is also a possible effector protein required for the interaction of the fungus with its host grass Festuca rubra subsp. rubra. Microorganisms 9:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welty R, Azevedo M, Cooper T (1987) Influence of moisture content, temperature, and length of storage on seed germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 77:893–900

    Article  Google Scholar 

  • Wennström A (1994) Endophyte - the misuse of an old term. Oikos 71:535–536

    Article  Google Scholar 

  • Wernegreen JJ (2012) Endosymbiosis. Curr Biol 22:R555–R561. https://doi.org/10.1016/j.cub.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  • Western J, Cavett J (1959) The choke disease of cocksfoot (Dactylis glomerata) caused by Epichloë typhina (Fr.) Tul. Trans Br Mycol Soc 42:298–307

    Article  Google Scholar 

  • White JF, Morrow AC, Morgan JG, Chambless DA (1991) Endophyte-host associations in forage grasses. XIV. Primary stromata formation and seed transmission in Epichloë typhina: development and regulatory aspects. Mycologia 83:72–81

    Article  Google Scholar 

  • White J, James F, Bacon CW, Hywel-Jones NL, Spatafora JW (2003) Historical perspectives: human interactions with Clavicipitalean fungi. CRC Press, Clavicipitalean Fungi, pp 12–25

    Book  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1033. https://doi.org/10.1094/mpmi.2000.13.10.1027

    Article  CAS  PubMed  Google Scholar 

  • Williams CL, Goldson S, Baird D, Bullock D (1994) Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity 72:412–419

    Article  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Woodfield D, Judson H (2019) Balancing pasture productivity with environmental and animal health requirements. Improving grassland and pasture management in temperate agriculture. Burleigh Dodds Science Publishing, pp 257–272

    Google Scholar 

  • Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z (2018) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis 102:2061–2073

    Article  PubMed  Google Scholar 

  • Xu W, Li M, Lin W, Nan Z, Tian P (2021) Effects of Epichloë sinensis endophyte and host ecotype on physiology of Festuca sinensis under different soil moisture conditions. Plan Theory 10:1649

    CAS  Google Scholar 

  • Yan L, Zhao H, Zhao X, Xu X, Di Y, Jiang C, Shi J, Shao D, Huang Q, Yang H (2018) Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl Microbiol Biotechnol 102:6279–6298

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Togiya S, Koshino H, Sakamura S, Shimanuki T, Sato T, Tajimi A (1985) Three fungitoxic cyclopentanoid sesquiterpenes from stromata of Epichloë typhina. Tetrahedron Lett 26:5551–5554. https://doi.org/10.1016/s0040-4039(01)80885-6

    Article  CAS  Google Scholar 

  • Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  PubMed  Google Scholar 

  • Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B (2009) Indole-diterpene biosynthetic capability of Epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692

    Article  CAS  PubMed  Google Scholar 

  • Zabalgogeazcoa I, Benito EP, Ciudad AG, Criado BG, Eslava AP (1998) Double-stranded RNA and virus-like particles in the grass endophyte Epichloë festucae. Mycol Res 102:914–918

    Article  CAS  Google Scholar 

  • Zaurov DE, Bonos S, Murphy JA, Richardson M, Belanger FC (2001) Endophyte infection can contribute to aluminum tolerance in fine fescues. Crop Sci 41:1981–1984. https://doi.org/10.2135/cropsci2001.1981

    Article  Google Scholar 

  • Zhang W, Card SD, Mace WJ, Christensen MJ, McGill CR, Matthew C (2017) Defining the pathways of symbiotic Epichloë colonization in grass embryos with confocal microscopy. Mycologia 109:153–161. https://doi.org/10.1080/00275514.2016.1277469

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Mace WJ, Matthew C, Card SD (2019) The impact of endophyte infection, seed aging, and imbibition on selected sugar metabolite concentrations in seed. J Agric Food Chem 67:6921–6929

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Deng Y, Ge X, Shi X, Fan X, Dong K, Chen L, Zhao N, Gao Y, Ren A (2022) The beneficial effect of Epichloë endophytes on the growth of host grasses was affected by arbuscular mycorrhizal fungi, pathogenic fungi and nitrogen addition. Environ Exp Bot 201:104979. https://doi.org/10.1016/j.envexpbot.2022.104979

    Article  CAS  Google Scholar 

  • Zhao Z, Kou M, Zhong R, Xia C, Christensen MJ, Zhang X (2021) Transcriptome analysis revealed plant hormone biosynthesis and response pathway modification by Epichloë gansuensis in Achnatherum inebrians under different soil moisture availability. J Fungi 7:640

    Article  CAS  Google Scholar 

  • Zhong R, Xia C, Ju Y, Zhang X, Duan T, Nan Z, Li C (2021) A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant Soil 458:105–122. https://doi.org/10.1007/s11104-019-04365-7

    Article  CAS  Google Scholar 

  • Zhong R, Bastías DA, Zhang X, Li C, Nan Z (2022) Vertically transmitted Epichloë systemic endophyte enhances drought tolerance of Achnatherum inebrians host plants through promoting photosynthesis and biomass accumulation. J Fungi 8:512

    Article  CAS  Google Scholar 

  • Zhou Y, Li X, Gao Y, Ren A (2022) Plant endophytes and arbuscular mycorrhizal fungi alter the decomposition of Achnatherum sibiricum litter. Appl Soil Ecol 180. https://doi.org/10.1016/j.apsoil.2022.104616

  • Żurek G, Wiewióra B, Gozdowski D (2013) Relations between bioclimatic variables and endophyte colonization of grasses in Poland. Fungal Ecol 6:554–556

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank David Hume and Anouck de Bonth for critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart D. Card .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastías, D.A. et al. (2024). After Air, Light, and Water, the Next Most Important Thing Is Grass: An Introduction to the Epichloë–Grass Symbiosis. In: Hsueh, YP., Blackwell, M. (eds) Fungal Associations. The Mycota, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-41648-4_8

Download citation

Publish with us

Policies and ethics