Skip to main content

Mushroom-Based Natural Dyes for Sustainable Color in Textiles

  • Chapter
  • First Online:
Natural Dyes and Sustainability

Abstract

Colors are crucial on Earth, but their sourcing and production face sustainability challenges. Humans historically used a wide range of colors from nature, but overexploitation due to growing demands threatens the environment. Synthetic dyes gained popularity in the nineteenth century for their color options and commercial viability. However, they are carcinogenic and persist in the environment. Today, there is a dire need to move toward sustainable alternatives like biodegradable pigments sourced from plants, bacteria, and fungi, particularly mushrooms. Mushroom dyes offer vibrant colors present in the natural palette that decompose easily and can be produced on a large scale. Chemically, mushroom dyes are anthraquinones, xanthophylls, and carotenoids mostly in nature. This chapter explores mushroom-based pigments as a sustainable substitute for synthetic dyes in the textile industry. It discusses isolation methods and the current/future prospects of these eco-friendly pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aishwarya, A. D. (2014). Extraction of natural dyes from fungus–An alternate for textile dyeing. Journal of Natural Science Research, 4(7), 1–7.

    Google Scholar 

  2. Akilandeswari, P., & Pradeep, B. V. (2016). Exploration of industrially important pigments from soil fungi. Applied Microbiology and Biotechnology, 100, 1631–1643.

    Article  CAS  Google Scholar 

  3. Ali, N. A. A., Jansen, R., Pilgrim, H., Liberra, K., & Lindequist, U. (1996). Hispolon, a yellow pigment from Inonotus hispidus. Phytochemistry, 41, 927–992.

    Article  CAS  Google Scholar 

  4. Aumann, D. C., Cloth, G., Steffan, B., & Steglich, W. (1989). CompIexation of cesium 137 by the cap pigments of the bay boletus (Xevocomus badius). Angewandte Chemie, International Edition English, 28, 453–454.

    Article  Google Scholar 

  5. Bayer, E., & Kneifel, H. (1972). Isolation of amavadin, a vanadium compound occurring in Amanita muscaria. Zeitschrift für Naturforschung, 27B, 207–210.

    Article  Google Scholar 

  6. Bechtold, T., & Mussak, R. (2009). Natural colorants–quinoid, naphthoquinoid and anthraquinoid dyes. In Handbook of natural colorants (pp. 151–182). John Wiley & Sons Inc.

    Chapter  Google Scholar 

  7. Bechtold, T., & Mussak, R. (Eds.). (2009). Handbook of natural colorants (Vol. 8). John Wiley & Sons.

    Google Scholar 

  8. Béni, Z., Dékány, M., Kovács, B., Csupor-Löffler, B., Zomborszki, Z. P., Kerekes, E., Urbán, E., Hohmann, J., & Ványolós, A. (2018). Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom. Tapinella atrotomentosa. Molecules, 23(5), 1082.

    Article  Google Scholar 

  9. Besl, H., Michler, I., Preuss, R., & Steglich, W. (1974). Pigments of fungi, XXII Grevillin D, the main pigment of Suillus granulatus, S. luteus and S. placidus (Boletales). Zeitschrift für Naturforschung, 29C, 784–786.

    Article  Google Scholar 

  10. Besl, H., Bresinsky, A., Geigenmiiller, G., Herrmann, R., & Steglich, W. (1989). Pilzfarbstoffe, 61 Flavomentine und Spiromentine, neue Terphenylchinon-Derivate aus Paxillus atrotomentosus und P. panuoides (Boletales). Liebigs Annalen der Chemie, 1989, 803–810.

    Article  Google Scholar 

  11. Bosetti A., Fronza G., Vidari G., Vita-Finzi P. (1989). Norlactarane and lactarane sesquiterpenes from Lactarius scrobiculatus. Phytochemistry, 28, 14.

    Google Scholar 

  12. Briggs, L. H., Cambie, R. C., Dean, I. C., Hodges, R., Ingram, W. B., & Rutledge, P. S. (1976). Chemistry of fungi. XI. Corticins A, B, and C, benzobisbenzofurans from Corticium caeruleum. Australian Journal of Chemistry, 29, 179–190.

    Article  CAS  Google Scholar 

  13. Cardon, D. (2007). Natural dyes. In Sources, tradition, technology and science (p. 268). Archetype.

    Google Scholar 

  14. Caro, Y., Venkatachalam, M., Lebeau, J., Fouillaud, M., & Dufossé, L. (2017). Pigments and colorants from filamentous fungi. In Fungal metabolites (pp. 499–568). Springer.

    Chapter  Google Scholar 

  15. Carvalho, P. R. N., & Collins, C. H. (1997). HPLC determination of carminic acid in foodstuffs and beverages using diode array and fluorescence detection. Chromatographia, 45(1), 63–66.

    Article  CAS  Google Scholar 

  16. Davoli, P., Mucci, A., Schenetti, L., & Weber, R. W. S. (2005). Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry, 66, 817–823.

    Article  CAS  Google Scholar 

  17. De Bernardi, M., Vidari, G., Vita, F. P., & Fronza, G. (1992). The chemistry of Lactarius fuliginosus and Lactarius picinus. Tetrahedron, 48, 7331–7344.

    Article  Google Scholar 

  18. Feling, R., Polborn, K., Steglich, W., Mühlbacher, J., & Bringmann, G. (2001). The absolute configuration of the mushroom metabolites involution and chamonixin. Tetrahedron, 57, 7857–7863.

    Article  CAS  Google Scholar 

  19. Fugmann, B., Steffan, B., & Steglich, W. (1984). Necatarone, an alkaloidal pigment from the gilled toadstool Lactarius necator (Agaricales). Tetrahedron Letters, 25, 3575–3578.

    Article  CAS  Google Scholar 

  20. Gill, M. (1994). Pigments of fungi (Macromycetes). Natural Products Reports, 11, 67–90.

    Article  CAS  Google Scholar 

  21. Gill, M. (1999). Pigments of fungi (Macromycetes). Natural Products Reports, 16, 301–317.

    Article  CAS  Google Scholar 

  22. Gill, M., & Steglich, W. (1987). Pigments of fungi (Macromycetes). In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products (pp. 1–297).

    Google Scholar 

  23. Gong, P., Wang, S., Liu, M., Chen, F., Yang, W., Chang, X., et al. (2020). Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydrate Research, 494, 108037.

    Article  CAS  Google Scholar 

  24. Goto, M., Sato, M., & Hirose, T. (1993). Extraction of peppermint oil by supercritical carbon dioxide. Journal of Chemical Engineering of Japan, 26, 401–407.

    Article  CAS  Google Scholar 

  25. Gripenberg, J. A. R. L. (1958). Fungus pigments VIII: The structure of cinnabarin and cinnabarinic acid. Acta Chem. Scan, 12, 603–610.

    Google Scholar 

  26. Gripenberg, J., & Martikkala, J. (1970). Fungus pigments. XX. On the structure of peniophorin. One of the pigments produced by Peniophora sanguinea Bres. Acta Chemica Scandinavica, 24, 3444–3448.

    Article  CAS  Google Scholar 

  27. Grollier, J. F., Rosenbaum, G., & Cotteret, J. (1986). U.S. Patent No. 4,602,913. U.S. Patent and Trademark Office.

    Google Scholar 

  28. Hanson, J. R. (2008). Pigments and odours of fungi. In J. R. Hanson (Ed.), The chemistry of fungi (pp. 127–142). The Royal Society of Chemistry. Thomas Graham House.

    Chapter  Google Scholar 

  29. Hiltunen, S. (2005). Blue Colours from Mushrooms (in Finnish). Master’s Thesis, Department of Home Economics and Craft Science, University of Helsinki.

    Google Scholar 

  30. Hinsch, E. M. (2015). A comparative analysis of extracted fungal pigments and commercially available dyes for colorizing textiles. Oregon State University.

    Google Scholar 

  31. Hynninen, P. H., Räisänen, R., Elovaara, P., & Nokelainen, E. (2000). Preparative isolation of anthraquinones from the Fungus Dermocybe sanguined using enzymatic hydrolysis by the endogenous β-glucosidase. Zeitschrift für Naturforschung C, 55(7–8), 600–610.

    Google Scholar 

  32. Jägers, E., Hillen-Maske, E., & Steglich, W. (1987). Pilzfarbstoffe, 54. Inhaltsstoffe von Boletopsis leucomelaena (Basidiomycetes): Klärung der chemischen Natur von “Leucomelon” and “Protoleucomelon”. Zeitschrift für Naturforschung, B: Chemical Sciences, 42, 1349–1353.

    Article  Google Scholar 

  33. Johannesson, H., Ryman, S., Lundmark, H., & Danell, E. (1999). Sarcodon imbricatus and S. squamosus–two confused species. Mycological Research, 103(11), 1447–1452.

    Article  Google Scholar 

  34. Karuppan, P. E. R. U. M. A. L., Sekarenthiran, S. C., Velusamy, K., Sadasivam, M. O. N. A., Mahalingam, P. O. N. S. U. G. U. M. A. R. I., Ramayanam, B. M., & Devi, S. (2014, November). Prospective aspects of myco-chrome as promising future textiles. In Proceedings of the 8th international conference on mushroom biology and mushroom products (ICMBMP8) (pp. 412–416).

    Google Scholar 

  35. Klamann, J.-D., Fugmann, B., & Steglich, W. (1989). Alkaloidal pigments from Lactarius necator and L. atroviridis. Phytochemistry, 28, 3519–3522.

    Article  CAS  Google Scholar 

  36. Klostermeyer, D., Knops, L., Sindlinger, T., Polborn, K., & Steglich, W. (2000). Novel nebzotropolone and 2H-furo[3,2b]benzopyran/2-one pigments from Tricholoma aurantium (Agaricales). Europen Journal of Organic Chemistry, 4, 603–609.

    Article  Google Scholar 

  37. Knight, D. W., & Pattenden, G. (1976). Synthesis of the pulvinic acid pigments of lichen and fungi. Journal of Chemical Society, Chemical Communications, 16, 660–661.

    Article  Google Scholar 

  38. Kremer, G., & Chemiker, D. (2004). The history of pigments production- Use. Possibilities.www.kremer-pigmente.com

  39. Kuhnt, D., Anke, T., Besl, H., Bross, M., Herrmann, R., Mocek, U., Steffan, B., & Steglich, W. (1990). Antibiotics from Basidiomycetes. XXXVII. New inhibitors of cholesterol biosynthesis from cultures of Xerula melanotricha Dörfelt. Journal of Antibiotics, 43, 1413–1420.

    Article  CAS  Google Scholar 

  40. Lagashetti, A. C., Dufossé, L., Singh, S. K., & Singh, P. N. (2019). Fungal pigments and their prospects in different industries. Microorganisms, 7(12), 604.

    Article  CAS  Google Scholar 

  41. Lang, M., Spiteller, P., Hellwig, V., & Steglich, W. (2001). Stephanosporin, a “traceless” precursor of 2‐chloro‐4‐ nitrophenol in the abdominal fungus Stephanospora caroticolor. Angewandte Chemie, 113(9), 1749–1751.

    Google Scholar 

  42. Lang, M., Mühlbauer, A., Gräf, C., Beyer, J., Lang-Fugmann, S., Polborn, K., & Steglich, W. (2008). Studies on the structure and biosynthesis of tridentoquinone and related meroterpenoids from the mushroom Suillus tridenticus (Boletales). European Journal of Organic Chemistry, 2008, 816–825.

    Article  Google Scholar 

  43. Lawrinowitz, S., Wurlitzer, J. M., Weiss, D., Arndt, H. D., Kothe, E., Gressler, M., & Hoffmeister, D. (2022). Blue light-dependent pre-mRNA splicing controls pigment biosynthesis in the mushroom Terana caerulea. Microbiology Spectrum, 10(5), e01065–e01022.

    Article  Google Scholar 

  44. Mhemdi, H., Rodier, E., Kechaou, N., & Fages, J. (2011). A supercritical tuneable process for the selective extraction of fats and essential oil from coriander seeds. Journal of Food Engineering, 105, 609–616.

    Article  CAS  Google Scholar 

  45. Muhlbauer, A., Beyer, J., & Steglich, W. (1998). The biosynthesis of the fungal meroterpenoids boviquinone-3 and-4 follows two different pathways. Tetrahedron letters, 39(29), 5167–5170.

    Google Scholar 

  46. Narsing Rao, M. P., Xiao, M., & Li, W. J. (2017). Fungal and bacterial pigments: Secondary metabolites with wide applications. Frontiers in Microbiology, 8, 1113.

    Article  Google Scholar 

  47. Nelsen, S. F. (2010). Bluing components and other pigments of boletes. Fungi, 3(4), 11–14.

    Google Scholar 

  48. Palmstruch, J. W. (1829). Svensk botanik (Vol. 10).

    Google Scholar 

  49. Peters, S., & Spiteller, P. (2007). Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. European Journal of Organic Chemistry, 2007, 1571–1576.

    Article  Google Scholar 

  50. Peters, S., & Spiteller, P. (2007). Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. Journal of Natural Products, 70, 1274–1277.

    Article  CAS  Google Scholar 

  51. Peters, S., Jaeger, R. J. R., & Spiteller, P. (2008). Red pyrroloquinoline alkaloids from the mushroom Mycena haematopus. European Journal of Organic Chemistry, 2008, 319–323.

    Article  Google Scholar 

  52. Puertolas, E., Luengo, E., Álvarez, I., & Raso, J. (2012). Improving mass transfer to soften tissues by pulsed electric fields: Fundamentals and applications. Annual Review of Food Science and Technology, 3, 263–282.

    Article  CAS  Google Scholar 

  53. Räisänen, R. (2019). Fungal colorants in applications–focus on Cortinarius species. Coloration Technology, 135(1), 22–31.

    Article  Google Scholar 

  54. Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2019). Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. Microorganisms, 7(7), 186.

    Article  CAS  Google Scholar 

  55. Rice, M. (1980). Mushrooms for color (2nd ed.). Mad River Press.

    Google Scholar 

  56. Roselló-Soto, E., Parniakov, O., Deng, Q., Patras, A., Koubaa, M., Grimi, N., et al. (2016). Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Engineering Reviews, 8, 214–234.

    Article  Google Scholar 

  57. Saastamoinen, O. (1999). Forest policies, access rights and non-wood forest products in northern Europe. UNASYLVA-FAO, 50, 20–26.

    Google Scholar 

  58. Schweppe, H. (1993). Handbook of natural dyes. Nikol-Verl.-Ges.

    Google Scholar 

  59. Singh, R., Jain, A., Panwar, S., Gupta, D., & Khare, S. K. (2005). Antimicrobial activity of some natural dyes. Dyes and Pigments, 66(2), 99–102.

    Article  CAS  Google Scholar 

  60. Sontag, B., Rüth, M., Spitteler, P., Arnold, N., Steglich, W., Reichert, M., & Bringmann, G. (2006). Chromogenic meroterpenoids from the mushroom Russula ochroleuca and R. viscida. European Journal of Organic Chemistry, 2006, 1023–1033.

    Article  Google Scholar 

  61. Spiteller, P., & Steglich, W. (2002). Blennione, a green aminobenzoquinone derivative from Lactarius blennius. Journal of Natural Products, 65, 725–727.

    Article  CAS  Google Scholar 

  62. Spiteller, P., Arnold, N., Spiteller, M., & Steglich, W. (2003). Lilacinone, a red aminobenzoquinone pigment from Lactarius lilacinus. Journal of Natural Products, 66, 1402–1403.

    Article  CAS  Google Scholar 

  63. Sundström, C., & Sundström, E. (1983). Sienivarjays. Otava.

    Google Scholar 

  64. Téllez-Téllez, M., & Díaz-Godínez, G. (2022). Mushroom pigments and their applications. In Biomolecules from natural sources: Advances and applications (pp. 82–100). John Wiley & Sons.

    Chapter  Google Scholar 

  65. Thoen, E., Harder, C. B., Kauserud, H., Botnen, S. S., Vik, U., Taylor, A. F., Menkis, A., & Skrede, I. (2020). In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. The New Phytologist, 227(2), 601–612.

    Article  CAS  Google Scholar 

  66. Velíšek, J., & Cejpek, K. (2011). Pigments of higher fungi-A review. Czech Journal of Food Sciences, 29(2), 87–102.

    Article  Google Scholar 

  67. Walton, K., Coombs, M. M., Walker, R., & Ioannides, C. (2001). The metabolism and bioactivation of agaritine and of other mushroom hydrazines by whole mushroom homogenate and by mushroom tyrosinase. Toxicology, 161, 165–177.

    Article  CAS  Google Scholar 

  68. Weijn, A., van den Berg-Somhorst, D. B., Slootweg, J. C., Vincken, J. P., Gruppen, H., Wichers, H. J., & Mes, J. J. (2013). Main phenolic compounds of the melanin biosynthesis pathway in bruising-tolerant and bruising-sensitive button mushroom (Agaricus bisporus) strains. Journal of Agricultural and Food Chemistry, 61(34), 8224–8231.

    Article  CAS  Google Scholar 

  69. Winner, M., Gimenez, A., Schmidt, H., Sontag, B., Steffan, B., & Steglich, W. (2004). Unusual pulvinic acid dimers from the common fungi Scleroderma citrinum (common earthball) and Chalciporus piperatus (peppery bolete). Angewandte Chemie, International Edition English, 43, 1883–1886.

    Article  CAS  Google Scholar 

  70. Xu, C., Tian, Z., Zhang, C., et al. (2014). Optimization of enzyme assisted extraction of polysaccharides from Ganoderma lucidum. Engineering and Science, 12, 17–20.

    Google Scholar 

  71. Yang, X.-L., Qin, C., Wang, F., Dong, Z.-J., & Liu, J.-K. (2008). A new meroterpenoid pigment from the Basidiomycete Albatrellus confluens. Chemistry & Biodiversity, 5, 484–489.

    Article  CAS  Google Scholar 

  72. Zhou, Z. Y., & Liu, J. K. (2010). Pigments of fungi (macromycetes). Natural Product Reports, 27(11), 1531–1570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, M.Z., Adeel, S., Sultan, N., Habib, N., Ashraf, M.A., Hosseinnezhad, M. (2023). Mushroom-Based Natural Dyes for Sustainable Color in Textiles. In: Muthu, S.S. (eds) Natural Dyes and Sustainability. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-47471-2_5

Download citation

Publish with us

Policies and ethics