Skip to main content

Biosynthesis of Natural Products in Plants by Fungal Endophytes with an Emphasis on Swainsonine

  • Chapter
  • First Online:
Phytochemicals – Biosynthesis, Function and Application

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 44))

Abstract

Plant natural products are frequently used as chemotaxonomic markers which are indicative of select members of a family, genus, and/or species. However, the erratic occurrence of some natural products raises questions about their biosynthetic origin and significance as chemotaxonomic markers. Recent research has shown that fungal endophytes associated with plants are a rich source of natural products. The objective of this review is to highlight natural products found in plants that are reported to be derived from fungal endophytes and, when appropriate, briefly comment on the plant-endophyte interaction. We will summarize current knowledge on alkaloids synthesized by Clavicipitaceae endophytes, then on other diverse secondary metabolites including taxol and camptothecin. Specifically, we will highlight the role that fungal endophytes play in the synthesis of the indolizidine alkaloid swainsonine and the interaction between host and endophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kucht S, Groß J, Hussein Y, Grothe T, Keller U, Basar S, König WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of pomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  PubMed  Google Scholar 

  2. Bushman F (2002) Lateral DNA transfer. Mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker, NewYork

    Google Scholar 

  4. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  5. Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344

    Article  Google Scholar 

  6. Lorenz N, Haarmann T, Pazoutov S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832

    Article  CAS  PubMed  Google Scholar 

  7. Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The Mycota, vol. X, industrial applications, 2nd edn. Springer, Berlin-Heidelburg, pp 195–214

    Google Scholar 

  8. Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indolediterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  PubMed  Google Scholar 

  9. Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B (2009) Indole-diterpene biosynthetic capability of Epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  11. Eich E (2008) Solanaceae and Convolvulaceae: secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance. Tryptophan-derived alkaloids. Springer, Berlin, pp 213–259

    Book  Google Scholar 

  12. Tofern B, Kaloga M, Witte L, Hartmann T, Eich E (1999) Phytochemistry and chemotaxonomy of the Convolvulaceae part 8—Occurrence of loline alkaloids in Argyreia mollis (Convolvulaceae). Phytochemistry 51:1177–1180

    Article  CAS  Google Scholar 

  13. Gardiner MR, Royce R, Oldroyd B (1965) Ipomoea muelleri intoxication of sheep in western Australia. Brit Vet J 121:272–277

    Google Scholar 

  14. Araújo JAS, Riet-Correa F, Medeiros RMT, Soares MP, Oliveira DM, Carvalho FKL (2008) Intoxicação experimental por Ipomoea asarifolia (Convolvulaceae) em caprinos e ovinos. Pesquisa Vet Brasil 28:488–494

    Google Scholar 

  15. Steiner U, Ahimsa-Muller MA, Markert A, Kucht S, Gross J, Kauf N, Kuzma M, Zych M, Lamshöft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224:533–544

    Article  CAS  PubMed  Google Scholar 

  16. Steiner U, Hellwig S, Leistner E (2008) Specificity in the interaction between an epibiotic clavicipitalean fungus and its convolvulaceous host in a fungus/plant symbiotum. Plant Signal Behav 3:704–706

    Article  PubMed Central  PubMed  Google Scholar 

  17. Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133–1145

    Article  PubMed  Google Scholar 

  18. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  CAS  PubMed  Google Scholar 

  19. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophyte fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  PubMed  Google Scholar 

  21. Zhu JX, Li YC, Meng L (2008) Comparative study on different parts of taxol-producing endophytic fungi from T. chinesis in Taihang Mountain. Biotechnol Bull 4:191–194

    Google Scholar 

  22. Yan B, Bi JN, Ji Y, Wang W, Zhao Y, Zhu X (2007) An endophytic taxol-producing fungus from cypress. Acta Sci Nat Univ Nankaiensis (Nat Sci Edi) 40:67–70

    CAS  Google Scholar 

  23. Strobel GA, Hess WM, Li JY (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  24. Li JY, Sidhu RS, Ford EJ, Long DM, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264

    Article  CAS  Google Scholar 

  25. Sun DF, Ran XQ, Wang JF (2008) Isolation and identification of a taxol-producing endophytic fungus from Podocrapus. Acta Microbiol Sin 48:589–595

    CAS  Google Scholar 

  26. Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142

    Article  CAS  PubMed  Google Scholar 

  27. Sudo K, Konno K, Shigeta S, Yokota T (1998) Inhibitory effects of podophyllotoxin derivatives on Herpes simplex virus replication. Antivir Chem Chemother 9:263–267

    Article  CAS  PubMed  Google Scholar 

  28. Kim Y, Kim SB, You YJ, Ahn B-Z (2002) Deoxypodophyllotoxin; the cytotoxic and antiangiogenic component from Pulsatilla koreana. Planta Med 68:271–274

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem Pharm Bull 46:871–874

    Article  CAS  PubMed  Google Scholar 

  30. Gao R, Gao CF, Tian X, Yu X, Di X, Xiao H, Zhang X (2004) Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus sabina L, and related lignans against larvae of Pieris rapae L. Pest Manage Sci 60:1131–1136

    Article  CAS  Google Scholar 

  31. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  32. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  33. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  PubMed  Google Scholar 

  34. Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 30:129–134

    Article  CAS  PubMed  Google Scholar 

  35. Tammaro F, Xepapadakis G (1986) Plants used in phytotherapy, cosmetics and dyeing in the Pramanda district (Epirus, North-West Greece). J Ethnopharmacol 16:167–174

    Article  CAS  PubMed  Google Scholar 

  36. Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin–the facts about a controversial agent. Curr Pharm Des 11:233–253

    Article  CAS  PubMed  Google Scholar 

  37. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  38. Lorence A, Nessler CL (2004) Camptothecin: over four decades of surprising findings. Phytochemistry 65:2731–2841

    Article  Google Scholar 

  39. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  40. Saito K, Sudo H, Yamazaki M, Moseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271

    Article  CAS  Google Scholar 

  41. Aiyama R, Nagai H, Nokata K, Shinohara C, Sawada S (1988) A camptothecin derivative from Notapodytes foetida. Phytochemistry 27:3663–3664

    Article  CAS  Google Scholar 

  42. Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M (1979) Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod 42:475–477

    Article  CAS  PubMed  Google Scholar 

  43. Dai JR, Cardellina JH, Boyd MR (1999) 20-Ob-Glucopyranosyl camptothecin from Mostuea brunonis: a potential camptothecin pro-drug with improved solubility. J Nat Prod 62:1427–1429

    Article  CAS  PubMed  Google Scholar 

  44. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  45. Rehman S Shawl AS, Kour A, Kour A, Athar M, Andrabi R, Sultan P, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Micro 44:203–209

    Article  CAS  Google Scholar 

  46. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  47. Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  48. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–777

    Article  CAS  PubMed  Google Scholar 

  49. Butterworth JH (1968) Isolation of a substance that suppresses feeding in locusts. Chem Comm 23–24

    Google Scholar 

  50. Lay SV, Denholm AA, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10:109–157

    Article  Google Scholar 

  51. Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  52. Marsh CD (1909) The locoweed disease of the plains. United States Department of Agriculture Bureau Animal Industry Bulletin, No. 112

    Google Scholar 

  53. Marsh CD, Clawson AB (1936) The locoweed disease. U.S. Department of Agriculture Farmer’s Bulletin No. 1054, Issued July 1919, Revised November 1936

    Google Scholar 

  54. Gardiner MR, Linto AC, Aplin THE (1969) Toxicity of Swainsona canescens for sheep in western Australia. Aust J Agric Res 20:87–97

    Article  Google Scholar 

  55. Huang YQ, Zhang EY, Pan WF (2003) Current status of locoweed toxicity. Shandong Sci 16:34–39

    Google Scholar 

  56. Jones TC, Hunt RD, King NW (1997) Veterinary pathology. Williams and Wilkins, Baltimore, pp 1–1392

    Google Scholar 

  57. James LF, Van-Kampen KR, Hartley WJ (1970) Comparative pathology of Astragalus (locoweed) and Swainsona poisoning in sheep. Path Vet 7:116–125

    Article  CAS  Google Scholar 

  58. Panter KE, James LF, Stegelmeier BL, Ralphs MH, Pfister JA (1999) Locoweeds: effects on reproduction in livestock. J Nat Toxins 8:53–62

    CAS  PubMed  Google Scholar 

  59. Colegate SM, Dorling PR, Huxtable CR (1979) A spectroscopic investigation of swainsonine: an alpha-mannosidase inhibitor isolated from Swainsona canescens. Aust J Chem 32:2257–2264

    Article  CAS  Google Scholar 

  60. Molyneux RJ, James LF (1982) Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science 216:190–191

    Article  CAS  PubMed  Google Scholar 

  61. Hartley WJ (1971) Some observations on the pathology of Swainsona spp. poisoning in farm livestock in Eastern Australia. Acta Neuropathol 18:342–355

    Article  CAS  PubMed  Google Scholar 

  62. Dorling PR, Huxtable CR, Vogel P (1978) Lysosomal storage in Swainsona spp. toxicosis: an induced mannosidosis. Neuropath Appl Neuro 4:285–295

    Article  CAS  Google Scholar 

  63. Wang Q, Nagao H, Li Y, Wang H-S, Kakishima M (2006) Embellisia oxytropis, a new species isolated from Oxytropis kansuensis in China. Mycotaxon 95:255–260

    Google Scholar 

  64. Braun K, Romero J, Liddell C, Creamer R (2003) Production of swainsonine by fungal endophytes of locoweed. Mycol Res 107:980–988

    Article  CAS  PubMed  Google Scholar 

  65. Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S (2009) Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic Helminthosporium bornmuelleri on legumes. Botany 87:178–194

    Article  CAS  Google Scholar 

  66. Yu Y, Zhao Q, Wang J, Wang J, Wang Y, Song Y, Geng G, Li Q (2010) Swainsonine-producing fungal endophyte from major locoweed species in China. Toxicon 56:330–338

    Article  CAS  PubMed  Google Scholar 

  67. Baucom D, Romero M, Belfon R, Creamer R (2012) Two new species of Undifilum, the swainsonine producing fungal endophyte, from Astragalus species of locoweed in the United States. Botany 90:866–875

    Article  CAS  Google Scholar 

  68. Oldrup E, McLain-Romero J, Padilla A, Moya A, Gardner D, Creamer R (2010) Localization of endophytic Undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany 88:512–521

    Article  CAS  Google Scholar 

  69. Ralphs MH, Creamer R, Baucom D, Gardner DR, Welsh SL, Graham JD, Hart C, Cook D, Stegelmeier BL (2008) Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). J Chem Ecol 34:32–38

    Article  CAS  PubMed  Google Scholar 

  70. Gardner DR, Molyneux RJ, Ralphs MH (2001) Analysis of swainsonine: extraction methods, detection, and measurement in populations of locoweeds (Oxytropis spp.). J Agric Food Chem 49:4573–4580

    Article  CAS  PubMed  Google Scholar 

  71. Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT (2009) Swainsonine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J Chem Ecol 35:1272–1278

    Article  CAS  PubMed  Google Scholar 

  72. Cook D, Gardner DR, Grum D, Pfister JA, Ralphs MH, Welch KD, Green BT (2011) Swainsonine and endophyte relationships in Astragalus mollissimus and Astragalus lentiginosus. J Agric Food Chem 59:1281–1287

    Article  CAS  PubMed  Google Scholar 

  73. Cook D, Shi L, Gardner DR, Grum D, Welch KD, Ralphs MH (2012) Influence of phenological stage on swainsonine and endophyte concentrations in Oxytropis sericea. J Chem Ecol 38:195–203

    Article  CAS  PubMed  Google Scholar 

  74. Achata BJ, Creamer R, Gardner D (2012) Seasonal changes in Undifilum colonization and swainsonine content of locoweeds. J Chem Ecol 38:486–495

    Article  Google Scholar 

  75. Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  PubMed  Google Scholar 

  76. Ralphs MH, Cook D, Gardner DR, Grum DS (2011) Transmission of the locoweed endophyte to the next generation of plants. Fungal Ecol 4:251–255

    Article  Google Scholar 

  77. Roylance JT, Hill NS, Agee CS (1994) Ergovaline and peramine production in endophyte-infected tall fescue: independent regulation and effects of plant and endophyte genotype. J Chem Ecol 20:2171–2183

    Article  CAS  PubMed  Google Scholar 

  78. Easton HS, Latch GCM, Tapper BA, Ball OJ (2002) Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci 42:51–57

    Article  CAS  PubMed  Google Scholar 

  79. Grum DS, Cook D, Gardner DR, Roper JM, Pfister JA, Ralphs MH (2012) Influence of seed endophyte amounts on swainsonine concentrations in Astragalus and Oxytropis locoweeds. J Agric Food Chem 60:8083–8089

    Article  CAS  PubMed  Google Scholar 

  80. Cook D, Grum D, Gardner DR, Welch KD, Pfister JA (2013) Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea. Toxicon 61:105–111

    Article  CAS  PubMed  Google Scholar 

  81. Pfister JA, Stegelmeier BL, Gardner DR, James LF (2003) Grazing of spotted locoweed (Astragalus lentiginosus) by cattle and horses in Arizona. J Anim Sci 81:285–293

    Google Scholar 

  82. Ralphs MH, Gardner DR, Graham JD, Greathouse G, Knight AP (2002) Clipping and precipitation influences on locoweed vigor, mortality, and toxicity. J Range Manage 55:394–399

    Article  Google Scholar 

  83. Parker JE (2008) Effects of insect herbivory by the four-lined locoweed weevil, Cleonidus trivittaus (Say) (Coleoptera: Curculionidae), on the alkaloid swainsonine in locoweed Astragalus mollissimus and Oxytropis sericea. MS thesis, New Mexico State University, New Mexico, p 164

    Google Scholar 

  84. Valdez Barillas JR, Paschke MW, Ralphs MH, Child RD (2007) White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria. Ecol 88:1850–1856

    Article  Google Scholar 

  85. Delaney KJ, Klypina N, Maruthavanan J, Lange D, Sterling TM (2011) Locoweed dose responses to nitrogen: positive for biomass and primary physiology, but inconsistent for an alkaloid. Am J Bot 98:1956–1965

    Article  CAS  PubMed  Google Scholar 

  86. Vallotton AD, Murray LW, Delaney KJ, Sterling TM (2012) Water deficit induces swainsonine of some locoweed taxa, but with no swainsonine–growth trade-off. Acta Oecol 43:140–149

    Article  Google Scholar 

  87. McLain-Romero J, Creamer R, Zepeda H, Strickland J, Bell G (2004) The toxicosis of Embellisia fungi from locoweed (Oxytropis lambertii) is similar to locoweed toxicosis in rats. J Anim Sci 82:2169–2174

    CAS  PubMed  Google Scholar 

  88. Dorling PR, Colegate SM, Huxtable CR (1989) Toxic species of the plant genus Swainsona. In: James LF, Elbein AD, Molyneux RJ, Warren CD (eds) Swainsonine and Related Glycosidase Inhibitors. Iowa State University Press, Ames, pp 14–22

    Google Scholar 

  89. de Balogh KK, Dimande AP, van derLJJ, Molyneux RJ, Naudé TW, Welman WG (1999) A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. J Vet Diagn Invest 11:266–273

    Article  CAS  PubMed  Google Scholar 

  90. Barbosa RC, Riet-Correa F, Medeiros RMT, Lima EF, Barros SS, Gimeno EJ, Molyneux RJ, Gardner DR (2006) Intoxication by Ipomoea sericophylla and Ipomoea riedelii in goats in the state of Paraíba, Northeastern Brazil. Toxicon 47:371–379

    Article  CAS  PubMed  Google Scholar 

  91. Dantas AFM, Riet-Correa F, Gardner DR, Medeiros RM, Barros SS, Anjos BL, Lucena RB (2007) Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Turbina cordata in Northeastern Brazil. Toxicon 49:111–116

    Article  CAS  PubMed  Google Scholar 

  92. Colodel EM, Gardner DR, Zlotowski P, Driemeier D (2002) Identification of swainsonine as a glycoside inhibitor responsible for Sida carpinifolia poisoning. Vet Hum Toxicol 44:177–178

    CAS  PubMed  Google Scholar 

  93. Patrick M, Adlard MW, Keshavarz T (1993) Production of an indolizidine alkaloid, swainsonine by the filamentous fungus, Metarhizium anisopliae. Biotechnol Lett 15:997–1000

    Article  CAS  Google Scholar 

  94. Schneider M, Ungemach F, Broquist H, Harris TM (1983) (1S,2R,8R,8aR)-1,2,8 trihydroxyoctahydroindolizidne (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola. Tetrahedron 39:29–32

    Article  CAS  Google Scholar 

  95. Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, Pfister JA, Clay K, Marcolongo-Pereira C (2013) Production of the alkaloid swainsonine by a fungal endosymbiont of the Ascomycete order Chaetothyriales in the host Ipomoea carnea. J Agric Food Chem 61:3797–3803

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cook, D., Gardner, D., Pfister, J., Grum, D. (2014). Biosynthesis of Natural Products in Plants by Fungal Endophytes with an Emphasis on Swainsonine. In: Jetter, R. (eds) Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-04045-5_2

Download citation

Publish with us

Policies and ethics