Skip to main content

Foliar and Stem Diseases

  • Chapter
  • First Online:
Wheat Diseases and Their Management
  • 1330 Accesses

Abstract

Sixteen foliar and stem diseases including some sporadical diseases caused by fungi are described in this chapter. Among them Tan Spot, Spot blotch, Powdery mildew, three rusts, and two Septoria diseases are economically more important. As stated elsewhere, at present the occurrence of a new stem rust race Ug99 is causing a serious threat to wheat cultivation in the World. Two Septoria diseases namely Septoria nodorum blotch and Septoria tritici blotch are of major concern in several countries. A worldwide loss was estimated at US$1 billion, and in the USA alone the two Septoria diseases cause a yearly loss of over 1 % (Eyal et al. 1987). Normally, these diseases individually are capable of causing about 30–40 % loss in yield depending upon the country and the year. In the UK for cereal crops, annually 200 million Pounds are spent for fungicidal applications against Septoria diseases, without which the yield losses may amount up to 465 million Pounds (Gullino and Kuijpera 1994). Spot blotch was an important disease in several tropical and sub-tropical countries till the late 1980s. Later, due to the change in tillage practices and the development of moderately Spot blotch resistant cultivars Tan spot has become increasingly more important than the Spot blotch. In the recent years, severe incidences of Powdery mildew have also been observed in many countries (Ralph et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abrinbana M, Mozafari J, Shams-Bakhs M, Mehrabi R (2012) Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica 186:75–90.

    Google Scholar 

  • Ackermann Dias M (1990) Variabilidade patogénica de Septoria tritici Rob. Ex. Desm. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 108–114, 253 pp

    Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004) Microsatellite markers linked to the Stb 2 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    CAS  Google Scholar 

  • Adianovna TA, Konyspaevna SK (2012) Genetic control of soft wheat resistance to yellow rust. Afr J Biotechnol 11:1367–13683. doi:10.5897/AJB12.456

    Google Scholar 

  • Agarwal R (2011) Progress and challenges towards reducing spot blotch disease of wheat. Indian Phytopathol 64:322–328

    Google Scholar 

  • Agarwal R, Singh VS, Shukla R, Gurgar MS, Sangeeta G, Sharma TR (2009) URP-based DNA fingerprinting of Bipolaris sorokiniana isolates causing spot blotch of wheat. doi: 10.1111/j.1439-0434.2009.01603

  • Aguilar V, Stamp P, Winzeler H, Schachermayr G, Keller B, Zaneti S, Mesmer MM (2005) Inheritance of field resistance to Stagnospora nodorum leaf and glum blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111:325–336

    CAS  PubMed  Google Scholar 

  • Ahn S-W (1980) Eyespot of rice in Colombia, Panama and Peru. Plant Dis 64:878–880

    Google Scholar 

  • Allen PJ, Goddard DR (1938) A respiratory study of powdery mildew of wheat. Am J Bot 25:613–621

    CAS  Google Scholar 

  • Allingham EA, Jackson LF (1981) Variation in pathogenicity, virulence and aggressiveness of Septoria nodorum in Florida. Phytopathology 71:1080–1085

    Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis-inducing toxin. Phytopathology 89:293–297

    CAS  PubMed  Google Scholar 

  • Anderson JM, Bucholtz DL, Sardesai N, Santini JB, Gyulai G, Williams CE, Goodwin SB (2010) Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum × Lophopyrum elongatum disomic substitution lines. Euphytica 172:251–262

    Google Scholar 

  • Annone JG (1990a) Importancia e distribución de las septoriosis en la Argentina. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 9–14

    Google Scholar 

  • Annone JG (1990b) Importancia e distribución de las septoriosis en la Argentina. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 9–14, 253 p

    Google Scholar 

  • Arraiano LS, Balaam N, Fenwick PM, Chaoman C, Feuerheim D, Howell P, Smith SL, Widdowson JP, Brown JKM (2009) Contributions of disease resistance and escape to the control of Septoria tritici blotch of wheat. Plant Pathol 58:910–922

    Google Scholar 

  • Ash CL (1981) Fungal wheat leaf spot in North Dakota in 1981. In: Hosford RM (ed) Tan spot of wheat and related diseases workshop. North Dakota State University, Fargo, ND, 14–15 July 1981, pp 86–93

    Google Scholar 

  • Bach EE, Kimati H (2012) Purification and characterization of toxins from wheat isolates of Drechslera tritici-repentis, Bipolaris bicolor and Bipolaris sorokiniana. J Venom Anim Toxins Incl Trop Dis 1–10 Version ISSN 0104-7930

    Google Scholar 

  • Bai B, He ZH, Asad MA, Lan CX, Zang Y, Xia XC, Yan J, Chen XM, Wang CS (2012) Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop Pasture Sci 63:606–611

    Google Scholar 

  • Bains SS, Jhooty JS (1986) Seed transmission of Sclerophthora macrospora in wheat. Seed Res 13:154–156

    Google Scholar 

  • Baker JC (1970) Influence of environmental factors on the development of symptoms on wheat seedlings grown from seed infected with Leptosphaeria nodorum. Trans Br Mycol Soc 55:443–447

    Google Scholar 

  • Balley KL, Duczek LJ (1996) Managing cereal diseases under reduced tillage. Can J Plant Pathol 18:159–167

    Google Scholar 

  • Barcellos AL (1982) As ferrugens do trigo no Brasil. In: trigo no Brasil. Fundação Cargill, Campinas, SP, Brasil, pp 375–419

    Google Scholar 

  • Baturo A, Mehta YR, Sadowski CK (2004) Identification of genetic variability in Bipolaris sorokiniana isolates from wheat in Brazil. Summa Phytopathol 30:470–474

    CAS  Google Scholar 

  • Bennet RS, Yun SH, Lee TY, Turgeon BG, Arseniuk E, Cunfer BM, Bergstrom GC (2003) Identity and conservation of mating type genes in geographically diverse isolates of Phaeosphaeria nodorum. Fungal Genet Biol 40:25–37

    Google Scholar 

  • Beyer M, Jarroudi ME, Junk J, Pogoda F, Dubos T, Gorgen K, Hoffmann L (2012) Spring air temperature accounts for the bimodal temporal distribution of Septoria tritici in the winter wheat stands of Luxembourg. Crop Prot 42:250–255

    Google Scholar 

  • Bharadwaj SC, Prashar M, Jain SK, Subodh Kumar DD (2010) Adult plant resistance in some Indian wheat genotypes and postulation of leaf rust resistance genes. Indian Phytopathol 63:174–180

    Google Scholar 

  • Bhowmic TP (1974) Fungicidal control of Alternaria leaf blight of wheat. Indian Phytopathol 27:162–167

    Google Scholar 

  • Bockus WW (1998) Control strategies for stubble-borne pathogens of wheat. Can J Plant Pathol 20:371–375

    Google Scholar 

  • Bockus WW, Claassen MM (1992) Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. Plant Dis 76:633–636

    Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests. American Phytopathological Society, St. Paul, p 171

    Google Scholar 

  • Boosalis MG (1962) Precocious sporulation and longevity of conidia of Helminthosporium sativum in soil. Phytopathology 52:1172–1177

    Google Scholar 

  • Booth C (1971) Micronectria nivalis. No. 309. In: Descriptions of pathogenic fungi and bacteria. Common Mycol Inst, Assoc Appl Biologists, Kew Surrey, England

    Google Scholar 

  • Borlaug NE (1954) Mexican wheat production and its role in the epidemiology of stem rust in North America. Phytopathology 44:398–404

    Google Scholar 

  • Boroujeni FR, Arzani A, Torabi AM (2011) Postulation of leaf rust resistance genes in Iranian wheat cultivars and breeding lines. Can J Plant Pathol 33:550–558

    CAS  Google Scholar 

  • Boukef S, McDonald BA, Yahylo A, Rezgui S, Brunner PC (2012) Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. Eur J Plant Pathol 132:111–122

    CAS  Google Scholar 

  • Briggle LW (1966) Three loci in wheat involving resistance to Erysiphae graminis f. sp. tritici. Crop Sci 6:461–465

    Google Scholar 

  • Briggle LW (1969) Near isogenic lines of wheat with genes with resistance to Erysiphae graminis f. sp. tritici. Crop Sci 9:70–72

    Google Scholar 

  • Brokenshire T (1975a) The role of graminaceous species in the epidemiology of Septoria tritici on wheat. Plant Pathol 24:33–38

    Google Scholar 

  • Brokenshire T (1975b) Wheat debris as an inoculum source for seedling infection by Septoria tritici. Plant Pathol 24:202–207

    Google Scholar 

  • Bronnimann A, Sally BK, Sharp EL (1972) Investigations on Septoria nodorum in spring wheat in Montana. Plant Dis Reptr 56:188–191

    Google Scholar 

  • Buchenauer H (1982) Chemical and biological control of cereal rusts. In: Scott KJ, Chakravorty AK (eds) The rust fungi. Academic, London, pp 247–279

    Google Scholar 

  • Burleigh JR, Eversmeyer MG, Roelfs AP (1972a) Development of linear equations for predicting wheat leaf rust. Phytopathology 62:947–953

    Google Scholar 

  • Burleigh JR, Roelfs AP, Eversmeyer MG (1972b) Estimating damage to wheat caused by Puccinia recondita tritici. Phytopathology 62:944–946

    Google Scholar 

  • Burrows RM (1981) Presencia e importancia en el cultivo de trigo en Chile de Septoria nodorum (Leptosphaeria nodorum) y Fusarium roseum f. sp. Cereales cv. Graminearum (Gibberella zeae). Trabalho presentado en la reuniao de especialistas en Septoria y Giberela. Progr IICA-CONOSUR/BID, Passo Fundo, Brasil, 27–30 de outubro, 133 p

    Google Scholar 

  • Butler EJ, Johns SG (1955) Plant Pathology. Macmillan, London, 979 p

    Google Scholar 

  • Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. In: Finley KW, Shepherd KW (eds) Proc 3rd Int Wheat Genet Sympos. Canberra, Australia, pp 263–272

    Google Scholar 

  • Caldwell RM (1976) Development of the wheat Septoria blight problems in the USA over the period 1922-1975. In: Septoria diseases. Proc Wheat Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Caldwell RM, Roberts JJ, Eyal Z (1970) General resistance (“slow rusting”) to Puccinia recondita f. sp. tritici in winter and spring wheats. Phytopathology 60:1287 (abstr.)

    Google Scholar 

  • Cassini R (1981) Fusarium diseases of wheat and corn in Western Europe. In: Nelson PE et al (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, 457 p

    Google Scholar 

  • Chahal SS, Singh PP (1993) Downy mildew. In: Mathur SB, Cunfer BM (eds) Seed-borne diseases and seed health testing of wheat. Danish Government Institute of Seed Pathology for Developing Countries (DANIDA), Copenhagen, Denmark, pp 69–71

    Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, White N (2011) Rust proofing wheat for a changing climate. Euphytica 179:19–32

    Google Scholar 

  • Champeil A, Dore T, Fourber JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of Mycotoxins by Fusarium in wheat grains. Plant Sci 166:1389–1415

    CAS  Google Scholar 

  • Chaves MS, Wesp C, Barcellos AL, Scheeren PL, Soe Silva M, Caierao E (2009) Breakdown of quantitative leaf rust resistance in the wheat cultivar BRS 194 by a new race of Puccinia triticina. Ciencia Rural 39:228–231

    Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Google Scholar 

  • Chen J, Chu C, Souza EJ, Guttieri MJ, Chen X, Xu S, Hole D, Ze-metra R (2012) Genome-wide identification of QTL conferring high-temperature adult plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breed 29:791–800. doi:10.1007/s11032-011-9590-x

    CAS  Google Scholar 

  • Chester KS (1950a) Nature and prevention of plant diseases. McGraw-Hill Book, New York, 525 p

    Google Scholar 

  • Chester KS (1950b) The cereal rusts. Cronica botanica, Walthan, 269 p

    Google Scholar 

  • Chinn SHF, Ledingham RJ (1958) Application of a new laboratory method for the determination of the survival of Helminthosporium sativum spores in soil. Can J Bot 36:289–295

    Google Scholar 

  • Christensen JJ (1925) Physiologic specialization and mutation in Helminthosporium sativum. Phytopathology 15:785–795

    Google Scholar 

  • Christensen JJ (1929) The influences of the temperature in the frequency of mutation in Helminthosporium sativum. Phytopathology 19:155–162

    Google Scholar 

  • Christiane K, Ghaffary SMT, Bruelheide H, Kema GHJ, Saad B (2012) The genetic architecture of seeding resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitar × Mazurka. Molecular Breed 29:813–830

    Google Scholar 

  • Chungu C, Gilbert J, Townley-Smith F (2001) Septoria tritici blotch development as affected by temperature, duration of leaf wetness, inoculum concentration, and host. Plant Dis 85:430–435

    Google Scholar 

  • Ciuffetti LM, Francl LJ, Balance GM, Bockus WW, Lamari L, Meinhardt SW, Rasmussen JB (1998) Standardization of toxin no-menclature in the Pyrenophora tritici-repentis/wheat interaction. Can Pl Pathol 20:421–424

    Google Scholar 

  • CMI (1973) Descriptions of pathogenic fungi and bacteria. No. 400, Comm Mycol Inst, England

    Google Scholar 

  • Coakley SM, McDaniel LR, Shaner G (1985) Model for predicting severity of Septoria tritici blotch on winter wheat. Phytopathology 75:1245–1251

    Google Scholar 

  • Coelho ET, Sartori JF (1989) Raças do fungo da ferrugem-do-colmo no Brasil, de 1982 a 1985. Pesq Agropec Bras 24:887–892

    Google Scholar 

  • Contreras MER, Leyva Mir SG, Villasenor Mir HE, Espino JH, Sandoval Islãs SS, Posadas HMS (2010) Relação de altura y competencia de plantas com incidencia y dispersion de Septoria tritici em trigo de temporal. Ver Mexicana de Ciências Agrícolas 1:347–357

    Google Scholar 

  • Cook RJ, Bruehl GW (1968) Ecology and possible significance of perithecia of Calonectria nivalis in the Pacific Northwest. Phytopathology 58:702–703

    Google Scholar 

  • Cook BM, Jones DG (1970a) The epidemiology of Septoria tritici and S. nodorum. Trans Br Mycol Soc 56:121–135

    Google Scholar 

  • Cook BM, Jones DG (1970b) A field inoculation method for Septoria tritici and Septoria nodorum. Plant Pathol 19:72–74

    Google Scholar 

  • Cordo CA, Arriaga HO (1990) Variación en patogenicidade entre cepas argentinas de Mycosphaerella graminicola (anamorfo, Septoria tritici). Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, 253 p

    Google Scholar 

  • Costa Neto JPDA (1967) Fungos observados em gramineas e leguminosas no Rio Grande do Sul. Ver Fac Agron Vet Porto Alegre 9:51–67

    Google Scholar 

  • Costamilan LM (2002) Metodologias para estudo de resistência genética de trigo e cevada a oídio. Embrapa Trigo, Passo Fundo. Documentos Online: http://www.cnpt.embrapa.br/biblio/p_do14.htm

  • Costamilan LM (2003) Efetividade de genes de resistência de trigo a oídio, em 2002. Fitopatol Bras 28: S269, Uberlândia, 2003, Congresso Brasileiro de Fitopatologia

    Google Scholar 

  • Costamilan LM (2005) Variability of the wheat powdery mildew pathogen Blumeria graminis f. sp. tritici in the 2003 crop season. Fitopatol Bras 30:420–422

    Google Scholar 

  • Costamilan LM, Felicio JC, Dalla NT, Scheeren PL, Feksa HR, Maciel JL (2007) Efetividade de genes Pm de trigo a oídio, em 2006. Fitopatol Bras 32:145–146

    Google Scholar 

  • Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cougerc C (2012) Noval necrotrophic effectors from Stagnospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Phytopathology 102:498–505

    CAS  PubMed  Google Scholar 

  • Cunfer BM (1981) Survival of Septoria nodorum in wheat seed. Trans Br Mycol Soc 77:161–164

    Google Scholar 

  • Cunfer BM (1993) Leaf and glume blotch. In: Mathur SB, Cunfer BM (eds) Seed-borne diseases and seed health testing of wheat. Danish Government Institute of Seed Pathology, Copenhagan, pp 73–81

    Google Scholar 

  • Cunfer BM (1999) Stagonospora and Septoria pathogens of cereals: the infection process. In: van Ginkel M et al (eds) Septoria and Stagonospora diseases of cereals: a compendium of global re-search. CIMMYT, México, DF, pp 41–45

    Google Scholar 

  • Cunfer BM (2002) Powdery mildew. In: Curtis BC et al (eds) Bread wheat: improvement and production. FAO plant production and protection series. No. 30. Food and Agriculture Organization of the United Nations, Rome, http//www.fao.org/docrep/006/y4011e/y4011e00.htm

    Google Scholar 

  • Cunfer BM, Johnson JW (1981) Relationship of glume blotch symptoms on the wheat heads to seed infection by Septoria nodorum. Trans Br Mycol Soc 76:205–211

    Google Scholar 

  • Cunfer BM, Nelson LR (1976) Septoria diseases of wheat. Proc. Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Cunfer BM, Ueng PP (1999) Taxonomy and identification of Septoria and Stagnospora species on small grain cereals. Annu Rev Phytopathol 37:267–284

    CAS  PubMed  Google Scholar 

  • Cunfer BM, Stooksbury DE, Johnson JW (1988) Components of partial resistance to Leptosphaeria nodorum among seven soft red winter wheats. Euphytica 37:129–140

    Google Scholar 

  • Czembor P, Radecka JM, MacKowski D (2010) Virulence spectrum of Mycosphaerella graminicola isolates on wheat genotypes carrying known resistance genes to septoria tritici blotch. J Phytopathol. doi:10.1111/j.1439-0434.2010.01734

    Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–370

    Google Scholar 

  • der Plank V (1963) Plant diseases epidemics and control. Academic, New York, 349 p

    Google Scholar 

  • Dhillon NK, Dhaliwal HS (2011) Identification of molecular markers linked to leaf rust resistance genes in wheat and their detection in the local near-isogenic line. Am J Plant Sci 2:433–437

    CAS  Google Scholar 

  • Diaz de Ackermann M, Hosford RM, Cox DJ, Hammond JJ (1998) Resistance in winter wheats to geografically differing isolates of Pyrenophora tritici-repentis and observations on pseudothecia. Plant Dis 72:1028–1031

    Google Scholar 

  • Dickson JG (1956) Diseases of field crops. McGraw-Hill Book, New York, 517 p

    Google Scholar 

  • Diehl JA, Oliveira MAR, Igarashi S, Mehta YR, Gomes LS (1983) Levantamento da ocorrência de doenças do sistema radicular do trigo no Paraná. Fitopatol Bras 9:179–188

    Google Scholar 

  • Domiciano GP, Rodrigues FA, Vale FXR, Xavier Filha MS, Moreira WR, Andrade CCL, Pereira SC (2009) Wheat resistance to spot blotch potentiated by silicon. J Phytopathol 158:334–343

    Google Scholar 

  • Drechsler C (1923) Some graminicolous species of Helminthosporium. J Agric Res 24:675–677

    Google Scholar 

  • Drechsler C (1928) Zonate eyespot of grasses caused by Helminthosporium gigantea. J Agric Res 39:129–136

    Google Scholar 

  • Duveiller E, Altamirano GI (2000) Pathogenicity of Bipolaris sorokiniana isolates from wheat roots, leaves and grains in México. Plant Pathol 49:235–242

    Google Scholar 

  • Edel V, Steinberg C, Avelange I, Laguerre G, Alabouvette C (1995) Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology 85:579–585

    CAS  Google Scholar 

  • El Chartouni I, Tisserant B, Siah A, Lehueq JB, Deweer C et al (2011) Genetic diversity and population structure in French populations of Mycosphaerella graminicola. Mycologia 103:764–774

    PubMed  Google Scholar 

  • Ellingboe AH (1972) Genetics and physiology of primary infection by Erysiphae graminis. Phytopathology 62:401–406

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hypomycetes. Commonwealth Mycological Institute, Kew Surrey, UK, 608 p

    Google Scholar 

  • EMBRAPA (2011) Informações técnicas para a safra 2012: Trigo e triticale. Sistemas de Produção 9. EMBRAPA, 204 p

    Google Scholar 

  • Erlei MR (1987) Doenças do trigo IV—Septorioses. Ciba-Geigy, São Paulo, 29 p

    Google Scholar 

  • Eshed N, Wahl I (1975) Role of wild grasses in epidemics of powdery mildew on small grains in Israel. Phytopathology 65:57–63

    Google Scholar 

  • Eversmeyer MG, Browder LE (1974) Effect of leaf and stem rust on 1973 Kansas yields. Plant Dis Reptr 58:469–471

    Google Scholar 

  • Eversmeyr MG, Kramer CL (2000) Epidemiology of wheat leaf and stem rust in the central great plains of the USA. Annu Rev Phytopathol 38:491–513

    Google Scholar 

  • Everts KL, Leath S (1992) Effect of early season powdery mildew on development, survival and yield contribution of tillers of winter wheat. Phytopathology 82:1273–1278

    Google Scholar 

  • Eyal Z (1976) Research on Septoria leaf blotch of wheat caused by Septoria tritici in Israel. Septoria diseases of wheat. Proc. Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Eyal Z (1986) Integrated control of Septoria diseases of wheat. Plant Dis 65:763–768

    Google Scholar 

  • Eyal Z (1999) The Septoria tritici and Stagnospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105:629–641

    Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, van Ginkel M (1987) Septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, DF, 46 p

    Google Scholar 

  • Felicio JC, Camargo CEO, Chaves MS, Ferreira Filho AWP (2010) Potencial produtivo, resistência á ferrugem da folha e qualidade industrial da farinha em genótipos de trigo. Embrapa-trigo, Passo Fundo, Brasil

    Google Scholar 

  • Fernando JC, Gonzalez J, Hansen O, Lattanzi A, Morelli H, Melendez J, Zeljkovich LT, Zeljkovich V (1987) Labranza conservacionista. Publicação Técnica 3, INTA, Argentina

    Google Scholar 

  • Franke J, Gebhardt S, Menz G, Helfrich HP (2009) Geostatistical analysis of the spaciotemporal dynamics of powdery mildew and leaf rust in wheat. Phytopathology 99:974–984

    PubMed  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of wheat Stagnospora nodorum disease system: what is the molecular basis of this quantitative necrotrophic disease interaction. Can J Plant Pathol 32:20–28

    CAS  Google Scholar 

  • Friesen TL, Chu CG, Liu ZH (2009) Host-selective toxins produced by Stagnospora nodorum confer disease susceptibility in adult wheat plant under field conditions. Theor Appl Genet 118:1489–1497

    CAS  PubMed  Google Scholar 

  • Friesen TL, Chu CG, Xu SS, Faris JD (2012) SnTox5-snn5: a novel Stagnospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol Plant Pathol 13:1101–1109

    CAS  PubMed  Google Scholar 

  • Galich AN (1981) Situación de la investigación en septoriosis y fusariosis en Argentina. Trabajo presentado en la reunión de los especialistas en Septoria y Giberela. Proc CONE SUR/BID, Passo Fundo, RS, Brasil, 27-30 de octubre de 1981, 133 p

    Google Scholar 

  • GangMing Z, Hua Z, FuPing W, GuoRong W, Lili H, ZhenSheng K (2013) Population genetic diversity of Puccinia striiformis f. sp. tritici on different wheat varieties in Tianshui, Gansu Province. World J Microbiol Biotechnol 29:173–181

    Google Scholar 

  • Gasperi AJ (1961) Moléstia do trigo no Rio Grande do Sul. Bol. Tec. Secretaria da Agricultura, Rio Grande do Sul, Brasil, 36 p

    Google Scholar 

  • German S, Ackermann MD (1990) Importancia de Septoria tritici en Uruguay y avance en los trabajos realizados. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 64–79

    Google Scholar 

  • German SE, Kolmer JÁ (2012) Leaf rust resistance in selected Uruguayan common wheat cultivars with early maturity. Crop Sci 52:601–608

    Google Scholar 

  • German S, Chaves M, Campos P, Viedma L, Madariaga R (2009) Are rust pathogens under control in the Southern Cone of South America? Proceedings, oral papers and posters, 2009 Technical workshop, Borlaug Global Rust Initiative, Cd. Obrigon, Sonora Mexico, 17–20 March 2009, pp 65–73

    Google Scholar 

  • Ghaffary SMT, Faris JD, Frisen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ (2012) New broad spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142

    CAS  Google Scholar 

  • Ghodbane A, Djerbi M, Echaren AL (1976) Search for Septoria resistant germplasm in Tunesia. In: Cunfer BM, Nelson LR (eds) Septoria diseases of wheat. Proc Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Ginkel V, Rajaram S (1993) Breeding for durable disease resistance in wheat: an international perspective. In: Jacobs T, Parlevliet JE (eds) Durability of disease resistance. Kluwer Academic, Dordecht, pp 259–272

    Google Scholar 

  • Goodwin SB (2012) Resistance in wheat to Septoria diseases caused by Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria (Stagonospora) nodorum. In: Sharma (ed) Disease resistance in wheat, pp 151–159. doi:10.1079/9781845938185.0151

  • Gough FJ, Johnston RA (1981) Observations on Septoria leaf spot and Pyrenophora tan spot in Oklahoma in 1981. In: Horsford RM (ed) Proc. Tan spot of wheat and related diseases Workshop, Univ. North Dakota, ND, 14–15 July, 116 p

    Google Scholar 

  • Gough FG, Smith L (1976) The reaction of winter wheat to Septoria leaf blotch in Oklahoma in 1975-76. In: Cunfer BM, Nelson LR (eds) Septoria diseases of wheat. Proc Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Google Scholar 

  • Gul’tyaeva EI (2012) Genetic diversity of Russian common wheat varieties for leaf rust resistance. Russ Agric Sci 38:125–128

    Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    CAS  PubMed  Google Scholar 

  • Gurung S, Hansen JM, Bonman JM, Gironella AIN, Adhik TB (2012) Multiple disease resistance to four leaf spot diseases in winter wheat accessions from the USDA National Small Grains Collection. Crop Sci 52:1640–1650

    Google Scholar 

  • Gustafson GD, Shaner G (1982) The influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology 72:746–749

    Google Scholar 

  • Gyawali S, Neate SM, Adhikari TB, Puri KD, Burlakoti RR, Zhong S (2012) Genetic structure of Cochliobolus sativus populations sampled from root and leaves of barley and wheat in North Dakota. J Phytopathol 160:637–646. doi:10.1111/j.1439-0434.2012.01956

    Google Scholar 

  • Henry AW (1931) Occurrence and sporulation of Helminthosporium sativum P.K.B. in the soil. Can J Res 5:407–413

    Google Scholar 

  • Herbert TT, Rankin WH, Middleton GK (1948) Interaction of nitrogen fertilization and powdery mildew on yield of wheat. Phytopathology 38:569–570

    Google Scholar 

  • Hetzler JE, Eyal J, Fehrman H, Mehta YR, Hushnir U, Zekaria-Oren J, Cohen L (1991) Interaction between Cochliobolus sativus and wheat cultivars. In: Sounders DA (ed) Wheat for non-traditional warmer areas. CIMMYT, Mexico, DF, pp 266–283

    Google Scholar 

  • Hewett PD (1969) Septoria nodorum on wheat. J Nat Inst Agri Bot II:547–558

    Google Scholar 

  • Hewett PD (1975) Septoria nodorum on seedlings and stubble of winter wheat. Trans Br Mycol Soc 65:7–18

    Google Scholar 

  • Hodson DP (2011) Shifting boundaries: challenges for rust monitoring. Euphytica 179:93–104

    Google Scholar 

  • Holton CS (1965) Local epidemic outbreaks of fungal leaf spots on “Gains” wheat in 1964. Plant Dis Reptr 46:728

    Google Scholar 

  • Hosford RM Jr (1971a) A form of Pyrenophora trichostoma pathogenic to wheat and other grasses. Phytopathology 61:28–32

    Google Scholar 

  • Hosford RM Jr (1971b) Wheat leaf blight and blotch loss and control. Farm Res 29:5–8

    Google Scholar 

  • Hosford RM Jr (1971c) Platyspora pentamera in the great plains of wheat. Mycologia 63:668–669

    PubMed  Google Scholar 

  • Hosford RM Jr (1975a) Phoma glomerata, a new pathogen of wheat and triticale, cultivar resistance to wet period. Phytopathology 65:1236–1239

    Google Scholar 

  • Hosford RM Jr (1975b) Platyspora pentamera, a pathogen of wheat. Phytopathology 65:499–500

    Google Scholar 

  • Hosford RM Jr (1972) Propagules of Pyrenophora trichostoma and Leptosphaeria avenaria f. sp. triticia a major leaf spot complex on wheat. Phytopathology 62:765 (Abstr.)

    Google Scholar 

  • Hosford RM Jr (1976a) Fungal leaf spot diseases of wheat in North Dakota. Bul. No. 500, North Dakota Agri. Exp. Sta., Univ. North Dakota, 12 p

    Google Scholar 

  • Hosford JM Jr (1976b) Septoria avenaria f. sp. triticea, Pyrenophora trichostroma and other leaf spotting fungi. Proc. Septoria diseases of wheat Workshop, University of Georgia, Athens, GA, 4–6 May 1976, 69 p

    Google Scholar 

  • Hosford RM Jr (1981) Tan spot. In: Hosford RM (ed) Proc. Tan spot of wheat and related diseases Workshop, North Dakota State University, Fargo, ND, 14–15 July 1981, pp 1–5

    Google Scholar 

  • Hosford RM, Busch RH (1974) Losses in wheat caused by Pyrenophora trichostoma and Leptosphaeria avenaria f. sp. triticea. Phytopathology 64:184–187

    Google Scholar 

  • Hosford RM, Hogenson RO, Huguelet JE, Kiesling RL (1969) Studies on Leptosphaeria avenaria f. sp., triticea on wheat in North Dakota. Plant Dis Reptr 53:378–381

    Google Scholar 

  • Hosford RM, Solangi GRM, Kiesling RL (1975) Inheritance in Cochliobolus sativus. Phytopathology 65:699

    Google Scholar 

  • Hovmeller MS, Serenson CK, Walker S, Justesen AF (2011) Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol 49:197–217

    Google Scholar 

  • Hsam SKL, Huang XQ, Ernst F (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 96:1129–1134

    CAS  Google Scholar 

  • Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Google Scholar 

  • Hui-Fen Z, Francel LJ, Jordhl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87:154–160

    Google Scholar 

  • Hyde PM, Colhoun J (1975) Mechanism of resistance of wheat to Erysiphae graminis f. sp. tritici. Phytopathol Z 82:185–206

    Google Scholar 

  • Hysing SC, Singh R, Espino JH, Hakim MS, El-Khaliefa M, Dias O (2006) Leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum) cultivars grown in Northern Europe 1992-2002. Hereditas 143:1–14

    PubMed  Google Scholar 

  • Jain SK, Prashar M, Bhardwaj SC, Singh SB, Sharma YP (2009) Emergence of virulence to Sr25 of Puccinia graminis f. sp. tritici on wheat in India. Plant Dis 93:840

    Google Scholar 

  • James WC, Smith CS (1973) Relationship between incidence and severity of powdery mildew and leaf rust on winter wheat. Phytopathology 63:183–187

    Google Scholar 

  • Jin Y (2011) Role of Barberis spp. As alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica 179:105–108

    Google Scholar 

  • Jin Y, Szabo L, Carson M (2010) Century old mystery of Puccinia striiformis life history solved with the identification of Barberis spp. as an alternate host. Phytopathology 100:432–435

    PubMed  Google Scholar 

  • Johnson T (1947) A form of Leptosphaeria avenaria on wheat in Canada. Can J Res 25:259–270

    Google Scholar 

  • Johnston CO (1931) Effect of leaf rust infection on yield of certain varieties of wheat. J Am Soc Agron 23:1–12

    Google Scholar 

  • Jones IT, Hayes JD (1971) The effect of sowing date on adult plant resistance to Erysiphae graminis f. sp. avenae in oats. Ann Appl Biol 68:31–39

    Google Scholar 

  • Joshi LM, Goel LB, Renfro BL (1969) Multiplication of inoculum of Helminthosporium turcicum on sorghum seeds. Indian Phytopathol 22:146–148

    Google Scholar 

  • Karki CB, (1981) Tan spot and other foliar diseases of wheat in Nepal. In: Hosford RM (ed) Tan spot of wheat and related diseases workshop. North Dakota State University, Fargo, ND, July 1981, pp 14–15

    Google Scholar 

  • Kassem M, El-Ahmed A, Hakim MS, El-Khaliefa M, Nachit M (2011) Identification of prevalent races of Puccinia triticina Eriks. in Syria and Lebanon. Arab J Plant Protect 29:7–13

    Google Scholar 

  • Kaur S, Saini J, Sharma A, Singh K, Chhuneja P (2012) Identification of variability in Blumeria graminis f. sp. tritici through molecular marker analysis. Crop Improv 39:74–79

    Google Scholar 

  • Kelm C, Ghaffary SMT, Bruelheide H, Roder MS, Miersch S, Weber WE, Kema GHJ, Saal B (2012) The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitair × Muzurka. Molecular Breed 29:813–830

    Google Scholar 

  • Klein TA, Ellison FW (1981) The occurrence and significance of yellow leaf spot in the Eastern wheat belt of Australia. In: Horsford RM (ed) Proc. Tan spot of wheat and related diseases workshop. North Dakota State University, Fargo, ND, 14–15 July 1981, pp 71–75

    Google Scholar 

  • Knight NL, Platz GJ, Lehmensiek A, Sutherland MW (2010) An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley. Australas Plant Pathol 39:207–216

    Google Scholar 

  • Kohli MM, Mehta YR, Ackermann MD (1992) Spread of tan spot in the southern-cone region of south America. Advances in tan spot research. Proceedings of the second international tan spot workshop. North Dakota State University, Fargo, ND, 25–26 June, 142 p

    Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    CAS  PubMed  Google Scholar 

  • Kolmer JA (2001) Physiologic specialization of Puccinia triticina in Canada in 1998. Plant Dis 85:155–158

    Google Scholar 

  • Kolmer JA, Anderson JA, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Sci 50:2392–2395

    Google Scholar 

  • Kolmer JA, Long DL, Huges ME (2011) Physiologic specialization of Puccinia triticina on wheat in the United States in 2009. Plant Dis 89:1201–1206

    Google Scholar 

  • Kolmer JA, Hangalova A, Goyeau H, Bayer R, Morgounov A (2012) Genetic differentiation of wheat leaf rust fungus Puccinia triticina in Europe. Plant Pathol 62:21–31

    Google Scholar 

  • Kong L, Anderson JM, Ohm HW (2005) Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 48:29–40

    CAS  PubMed  Google Scholar 

  • Krupinsky JM (1982) Observations on the host range of isolates of Pyrenophora trichostroma. Can J Plant Pathol 4:42–46

    Google Scholar 

  • Krupinsky JM (1987) Pathogenicity of Pyrenophora tritici-repentis isolated from Bromus inermis. Phytopathology 77:760–765

    Google Scholar 

  • Krupinsky JM (1992) Aggressiveness of isolates of Pyrenophora tritici-repentis obtained from wheat in the Northern Great plains. Plant Dis 76:87–91

    Google Scholar 

  • Krupinsky JM (1997) Stability of Stagonospora nodorum isolates from perennial grass hosts after passage through wheat. Plant Dis 81:1037–1041

    Google Scholar 

  • Kumar VR, Arya HC (1973) Certain aspects of perpetuation and recurrence of leaf blight of wheat in Rajasthan. Indian J Mycol Plant Pathol 3:93–94

    Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Lagen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3(4):185–195

    CAS  PubMed  Google Scholar 

  • Lamari L, Bernier CC (1989) Evaluation of wheat lines and cultivars to tan spot (P. tritici-repentis) based on lesion type. Can J Plant Pathol 11:49–56

    Google Scholar 

  • Lamari L, Bernier CC, Smith RB (1991) Wheat genotypes developing both tan necrosis and extensive chlorosis in response to isolates of Pyrenophora tritici-repentis. Plant Dis 75:121–122

    Google Scholar 

  • Lamari L, Bernier CC, Balance GM (1992) The necrosis chlorosis model in tan spot of wheat. Advances in tan spot research. Proceedings of the second International tan spot workshop, North Dakota State University, Fargo, ND, June 25–26, 142 p

    Google Scholar 

  • Lamari L, Sayoud R, Boulif M, Bernier CC (1995) Identification of a new race in Pyrenophora tritici-repentis: implications for the current pathotype classification system. Can J Plant Pathol 17:312–318

    Google Scholar 

  • Lamari L, Gilbert J, Tekauz A (1998) Race differentiation in Pyrenophora tritici-repentis and survey of physiologic variation in western Canada. Can J Plant Pathol 20:396–400

    Google Scholar 

  • Lamey HA (1981) Minimum tillage and chemical control. An overview. In: Hosford (ed) Tan spot of wheat and related diseases workshop. North Dakota State University, Fargo, ND, 14–15 July 1981, pp 51–52

    Google Scholar 

  • Languidey P, Barea G (1993) Informe anual de patologia de trigo. CIAT, Santa Gruz, Bolivia, Mimeograph

    Google Scholar 

  • Large EC, Doling DA (1962) The measurement of cereal mildew and its effect on yield. Plant Pathol 11:47–57

    Google Scholar 

  • Last FT (1957) The effect of date of sowing on the incidence of powdery mildew on spring sown cereals. Ann Appl Biol 45:1–10

    Google Scholar 

  • Lebeau JB (1968) Pink snow mold in southern Alberta. Can Plant Dis Survey 48:130–131

    Google Scholar 

  • Leonard KJ, Szabo LS (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111

    PubMed  Google Scholar 

  • Li ZF, He ZH, Li LJ, Zhang HY, Wang QF, Meng WX, Yang GL, Liu DQ (2012) Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis 94:45–53

    Google Scholar 

  • Lillemo M, Singh RP, Huerta-Espino CZH, Brown JKM (2007) Leaf rust resistance gene LR34 is involved in powdery mildew resistance of CIMMYT bread wheat line Saar. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 97–102

    Google Scholar 

  • Linhares WI (1988) Perdas de produtividade ocasionadas por oídio na cultura do trigo. Fitopatol Bras 13:74–75

    Google Scholar 

  • Loegering WQ (1984) Genetics of the pathogen-host association. In: Bushnell R (ed) The cereal rusts, vol I, Origins, specificity, structure and physiology . Academic, Orlando, pp 165–192

    Google Scholar 

  • Lowe I, Cantu D, Dobcovsky J (2011) Durable resistance to wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the development of resistance genes. Euphytica 179:69–79

    Google Scholar 

  • Luke HH, Barnett RD, Pfahler PL (1986) Development of Septoria nodorum blotch on wheat from infected and treated seed. Plant Dis 70:252–254

    Google Scholar 

  • Lutrell ES (1964) Taxanomic criteria in Helminthosporium. Mycologia 56:119–132

    Google Scholar 

  • Luz WC (1995) Avaliação da resistência de cultivares de trigo á mancha bronzeada. Fitopatol Bras 20:444–448

    Google Scholar 

  • Luz WC, Hosford RM (1980) Twelve Pyrenophora tritici-repentis races for virulence to wheat in the Central Plains of North America. Phytopathology 70:1193–1196

    Google Scholar 

  • Macintosh RA, Pretorius ZA (2011) Borlaug Global rust Initiative provides momentum to wheat rust research. Euphytica 179:1–2

    Google Scholar 

  • Mahto BN, Gurung S, Adhikari TB (2011) Assessing genetic resistance to spot blotch, Stagnospora nodorum blotch and tan spot in wheat from Nepal. Eur J Plant Pathol 131:249–260

    Google Scholar 

  • Manandhar JB, Cunfer BM (1991) An improved selective medium for the assay of Septoria nodorum from wheat seed. Phytopathology 81:771–773

    Google Scholar 

  • Manninger K (2001) Occurrence and virulence of wheat leaf rust. Hungarian Academy of Science, Budapest

    Google Scholar 

  • Masri SA, Ellingboe AH (1966a) Germination of conidia and formation of appressoria and secondary hyphae in Erysiphae graminis f. sp. tritici. Phytopathology 56(3):304–308

    CAS  PubMed  Google Scholar 

  • Masri SA, Ellingboe AH (1966b) Primary infection of wheat and barley by Erysiphae graminis. Phytopathology 56:389–395

    CAS  PubMed  Google Scholar 

  • Matasci CL, Kellenberger S, Mascher F (2012) Powdery mildew on cereals—an increasing problem in triticale cultures. IOBC/WPRS Bull 78:131–134

    Google Scholar 

  • Matlock ED, McCartney CA, Gilbert J (2012) Physiological specialization in the western Canadian population of Phaeosphaeria nodorum. Can J Plant Pathol 34:75–82

    Google Scholar 

  • Maytalman D, Mert Z, Baykal AT, Inan C, Gunel A, Hasancebi S (2013) Proteomic analysis of early responsible resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformis f. sp. tritici) using ProteomeLab PF2D. Plant Omics 6:24–35

    CAS  Google Scholar 

  • McBeath JH, Smith JW, Tronsmo AM (1993) Pink snow mold, leaf blotch and ear blight. In: Mathur SB, Cunfer BM (eds) Seed-borne diseases and seed health testing of wheat. DANIDA, Copenhagen, pp 95–103

    Google Scholar 

  • McCallum BD, Seto-Goh P, Xue A (2011) Physiologic specialization of Puccinia triticina, the causal agent of wheat leaf rust in Canada in 2008. Can J Plant Pathol 33:541–549

    CAS  Google Scholar 

  • McDonald BA, Miles J, Nelson LR, Pettway RE (1994) Genetic variability in nuclear DNA in field populations of Stagonospora nodorum. Phytopathology 84:250–255

    CAS  Google Scholar 

  • McDonald MC, Razavi M, Friesen TL, Brunner PC, McDonald BA (2012) Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent. Fungal Genet Biol 49:882–895

    CAS  PubMed  Google Scholar 

  • McFadden ES (1939) Brown necrosis, a discoloration associated with rust infection in certain rust resistant wheats. J Agric Res 58:805–819

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts. An atlas of resistance genes. CSIRO, Melbourne, 200 p

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubkowsky J, Rojers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Proceedings of the 10th International Wheat Genetics Symposium. Paestum, Italy

    Google Scholar 

  • Mehta YR (1975a) Septoria avenaria f. sp. triticea in Brazil. Plant Dis Reptr 59:404

    Google Scholar 

  • Mehta YR (1975b) Leptosphaeria nodorum on wheat in Brazil and its importance. Plant Dis Reptr 59:404–406

    Google Scholar 

  • Mehta YR (1975c) Mancha foliar do trigo causada por Pyrenophora trichostoma. Summa Phytopathol 1:283–288

    Google Scholar 

  • Mehta YR (1978) Doenças do trigo e seu controle. Editora CERES, São Paulo, Brasil, 190 p

    Google Scholar 

  • Mehta YR (1981) Conidial production, sporulation period and extension of lesion of Helminthosporium sativum on flag leaves of wheat. Pesq Agrop Bras 16(1):77–99

    Google Scholar 

  • Mehta YR (1985) Breeding wheats for resistance to spot blotch. In: Sounders DA (ed) Wheat for more tropical environments: Proceedings of the International Symposium. CIMMYT, Mexico, DF, pp 135–144

    Google Scholar 

  • Mehta YR (1989) Occurrence of Septoria tritici and its perfect state in Brazil. In: Fried PM (ed) Third International workshop on Septoria diseases of cereals. Swiss Fed. Res. Sta. for Agron, Zurich, pp 34–35

    Google Scholar 

  • Mehta YR (1993) Manejo integrado de enfermedades del trigo. Imprenta Landivar, Santa Cruz de la Sierra, 314 p

    Google Scholar 

  • Mehta YR (1997) Constraints on the integration management of spot blotch of wheat. In: Duveiller et al (ed) Proceedings of an international workshop. CIMMYT, Mexico, DF, pp 18–27

    Google Scholar 

  • Mehta YR, Gaudêncio C (1991) Effects of tillage practices and crop rotation on the epidemiology of some major wheat diseases. In: Saunders DA (ed) Wheat for non-traditional warmer areas. Proc. Inter. Conf. Mexico, DF, CIMMYT, pp 266–283

    Google Scholar 

  • Mehta YR, Igarashi S (1978) Partial resistance in wheat against Puccinia recondita—a view on its detection and measuring. Summa Phytopathol 5:90–100

    Google Scholar 

  • Mehta YR, Igarashi S (1985a) Chemical control measures for major diseases of wheat with special attention to spot blotch. In: Sounders DA (ed) Wheat for more tropical environments. CIMMYT, Mexico, DF, pp 196–200

    Google Scholar 

  • Mehta YR, Igarashi S (1985b) Fungos associados nas sementes de trigo (Triticum aestivum L.) e seu efeito na infecção do sistema radicular das plantas. Rev Bras Sementes 7:133–159

    Google Scholar 

  • Mehta YR, Zadoks JC (1970) Uredospore production and sporulation period of Puccinia recondita f. sp. tritici on primary leaves. Neth J Plant Pathol 73:52–54

    Google Scholar 

  • Mehta YR, Zadoks JC (1971) Note of the efficiency of a miniaturized cyclone spore collector. Neth J Plant Pathol 77:60–63

    Google Scholar 

  • Mehta YR, Nazareno NRX, Igarashi S (1979) Avaliação de perdas causadas pelas doenças do trigo. Summa Phytopathol 5:113–117

    Google Scholar 

  • Mehta YR, Riede CR, Campos LAC, Kohli MM (1992) Integrated management of major wheat diseases in Brazil: an example for the Southern cone region of Latin America. Crop Prot 11:517–524

    Google Scholar 

  • Mehta YR, Mehta A, Riede CR (2004) Pathogenic and molecular variability amongst the isolates of Pyrenophora tritici-repentis of wheat from Brazil. Summa Phytopathol 30:436–444

    CAS  Google Scholar 

  • Mellado M (1990) Septoriosis del trigo en la zona centro sur de Chile. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 15–34

    Google Scholar 

  • Meredith DS, Campbell FG (1962) Eyespot a new foliar disease of banana caused by Drechslera gigantea. Plant Dis Reptr 46:305

    Google Scholar 

  • Meronuc RA, Pepper EH (1968) Clamydospores formation in conidia of Helminthosporium sativum. Phytopathology 58:866–867

    Google Scholar 

  • Miedaner J, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    PubMed  Google Scholar 

  • Milus EA, Chalkley DB (1997) Effect of previous crop, seed-borne inoculum, and fungicides on development of Stagonospora blotch. Plant Dis 81:1279–1283

    CAS  Google Scholar 

  • Mohler V, Bauer A, Bauer C, Flath K, Schweizer G, Hart L (2010) Genetic analysis of powdery mildew resistance in German winter wheat cultivar Cortez. doi: 10.1111/j.1439-0523.2010.01824.x

  • Morgan-Jones G (1967) Phoma glomerata CMI. In: Descriptions of pathogenic fungi and bacteria, No. 134, Comm Mycol Inst, England

    Google Scholar 

  • Morgounov A, Tufan HN, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Thomas S, Payne S, Sonder K, Mcintosh R (2012) Global incidence of wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter wheat variety Bezostaya l. Eur J Plant Pathol 132:323–340

    Google Scholar 

  • Murray G, Brennen J (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39:85–96

    Google Scholar 

  • Nagarajan S, Joshi LM (1985) Epidemiology in the Indian subcontinent. In: Roelfs B (ed) The cereal rusts, vol II, Disease distribution, epidemiology and control. Academic, Orlando, pp 371–402

    Google Scholar 

  • Nagarajan S, Singh DV (1990) Long distance dispersal of rust pathogens. Annu Rev Phytopathol 28:139–153

    CAS  PubMed  Google Scholar 

  • Nagarajan S, Singh H, Joshi LM, Saari EE (1976) Meteorological conditions associated with long-distance dissemination and deposition of Puccinia graminis tritici uredospores in India. Phytopathology 66:198–203

    Google Scholar 

  • Nair KRS, Elligboe AH (1965) Germination of conidia of Erysiphae graminis f. sp. tritici. Phytopathology 55:365–368

    Google Scholar 

  • Nair KRS, Ellingboe AH (1962) A method of controlled inoculations with conidiophores of Erysiphae graminis var. tritici. Phytopathology 52:714

    Google Scholar 

  • Nakajima T, Abe J (1996) Environmental factors affecting expression of resistance to pink snow mold caused by Microdochium nivale in winter wheat. Can J Bot 74:1783–1788

    Google Scholar 

  • Navabi A, Singh RP, Tewari JP, Briggs KG (2003) Genetic analysis of adult plant resistance to leaf rust in five spring wheat genotypes. Plant Dis 87:1522–1529

    Google Scholar 

  • Nazar RN, Hu X, Schmidt J, Culham D, Robb J (1991) Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium with pathogens. Physiol Mol Plant Pathol 39:1–11

    CAS  Google Scholar 

  • Nazareno NRX, Roelfs P (1981) Adult plant resistance of Thatcher wheat to stem rust. Phytopathology 71:181–185

    Google Scholar 

  • Neema KG, Dave GS, Khosla HK (1971) A new blotch of wheat. Plant Dis Reptr 55:95

    Google Scholar 

  • Nema KG, Joshi LM (1971) Symptoms and diagnosis of the “spot blotch” and “leaf blight” diseases of wheat. Indian Phytopathol 24:418–419

    Google Scholar 

  • Nicholson P, Gosman N, Draeger R, Thomsett M, Chandler E, Steed A (2007) The Fusarium head blight pathosystem: status and knowledge of components. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 23–36

    Google Scholar 

  • Niewoehner AS, Leath S (1998) Virulence of Blumeria graminis f. sp. tritici on winter wheat in the eastern United States. Plant Dis 82:64–68

    Google Scholar 

  • O’Donnell K, Gray L (1995) Phylogenetic relationships of soybean sudden death syndrome pathogen Fusarium solani f. sp. phaseoli inferred from rDNA sequence data and PCR primers for its identification. Mol Plant Microbe Interact 8:709–718

    PubMed  Google Scholar 

  • Oberhaensli S, Parlange F, Cuchman JP, Jenny FH, Abbot JC, Burgis TA, Spanu PD, Keller B, Wicker T (2010) Comparative sequence analysis of wheat and barley powdery mildew fungi reveals gene colinearity, dates divergence and indicates host-pathogen co-evolution. Fungal Genet Biol 48:327–334

    PubMed  Google Scholar 

  • Obst A (1980) The major leaf and ear diseases of wheat in Europe. CIBA-GEIGY, Wheat Documents, Basal, Switzerland

    Google Scholar 

  • Odvody GN, Boosalis MG (1978) A rapid technique to study sporulation requirements of Pyrenophora trichostroma. Phytopathology News 12:212–213

    Google Scholar 

  • Oliveira AMR, Matsumura TS, Prestes AM, Van der Sand ST (2002) Intraspecific variability of Bipolaris sorokiniana isolates determined by random amplified polymorphic DNA (RAPD). Genet Mol Res 1(4):350–358

    PubMed  Google Scholar 

  • Oliver RP, Friesen TL, Faris JD, Solomon PS (2012) Stagnospora nodorum: from pathology to genomics and host resistance. Annu Rev Phytopathol 50:23–43

    CAS  PubMed  Google Scholar 

  • Onfroy C, Tivoli B, Corbiere R, Bouznad Z (1996) Cultural, molecular and pathogenic variability of Mycosphaerella pinodes and Phoma medicaginis var. pinodella isolates from dried pea (Pisum sativus). Plant Pathol 48:218–229

    Google Scholar 

  • Parlevliet JE (1988) Strategies for the utilization of partial resistance for the control of cereal rusts. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, DF, pp 48–62

    Google Scholar 

  • Parmentier G, Rixhon L (1973) Effect of crop rotation on powdery mildew infection in winter wheat. Parasitica 29:129–133

    Google Scholar 

  • Pary DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small-grain cereals—a review. Plant Pathol 44(2):207–238

    Google Scholar 

  • Paxton GE (1933) Consistent mutation of Helminthosporium sativum on nitrogen medium. Phytopathology 23:617–619

    Google Scholar 

  • Payak MM, Renfro BL, Lal S (1970) Downy mildew diseases incited by Scleropthora. Indian Phytopathol 23:183–193

    Google Scholar 

  • Perello AE, Cordo CA, Arriaga HO (1990) Variación en patogenicidade entre cepas Argentinas de Mycosphaerella graminicola (anamorfo Septoria tritici). In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. Mexico, DF, CIMMYT, p 253

    Google Scholar 

  • Perello AE, Moreno MV, Mônaco C, Simon MR (2008) Biological control of Septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina. Biocontrol 54:113–122

    Google Scholar 

  • Pietrusinska A, Czembor JH, Czembor PC (2011) Pyramiding two genes for leaf rust and powdery mildew resistance in common wheat. Cereal Res Commun 39:577–588

    CAS  Google Scholar 

  • Pires PC, Fernandes JM, Nicolau M (2009) Using lesion density to characterize wheat leaf rust epidemics. Trop Plant Pathol 34:97–107

    Google Scholar 

  • Prabhu AS, Prakash V (1973) The relation of temperature and leaf wetness to the development of leaf blight of wheat. Plant Dis Reptr 57:1000–1004

    Google Scholar 

  • Prabhu AS, Prasada R (1965) Inhibition of sporulation by light in Alternaria triticina. Indian Phytopathol 18:81–82

    Google Scholar 

  • Prabhu AS, Prasada R (1966) Pathological and epidemiological studies of leaf blight of wheat caused by Alternaria triticina. Indian Phytopathol 19:95–112

    Google Scholar 

  • Prabhu AS, Prasada R (1967) Evaluation of seed infection caused by Alternaria triticina in wheat. Proc Int Seed Test Assoc 32:No. 3

    Google Scholar 

  • Prasada R, Prabhu AS (1962) Leaf blight of wheat caused by a new species of Alternaria. Indian Phytopathol 15:292–293

    Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Google Scholar 

  • Punithalingam E, Holliday P (1972) Phoma insidiosa CMI. In: Descriptions of pathogenic fungi and bacteria, No. 333, Comm Mycol Inst, England

    Google Scholar 

  • Raemaekers RH (1985) Breeding wheats with resistance to Helminthosporium sativum in Zambia. In: Sounders DA (ed) Wheats for more tropical environments. A Proceedings of the International Symposium. CIMMYT, Mexico, DF, pp 145–148

    Google Scholar 

  • Raemaekers RH (1988) Helminthosporium sativum: disease complex on wheat and sources of resistance in Zambia. In: Klatt (ed) Proc Wheat production constrains in tropical environments. CIMMYT, Mexico, DF, pp 175–186

    Google Scholar 

  • Rajaram S, Singh RP, Torres E (1988) Current CIMMYT approaches in breeding wheat for rust resistance. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, DF, pp 101–118

    Google Scholar 

  • Ralph D, Jan AL, Kan V, Pretorius ZA, Hammond-Kosak KA, Pietro A, Pietro DS, Rudd JJ, Marty D, Regine K, Ellis J, Foster GD (2012) The top ten fungal pathogens in molecular plant pathology. Mol Plant Pathol 1–17

    Google Scholar 

  • Rapilly E (1979) Epidemiology. Annu Rev Phytopathol 17:59–73

    Google Scholar 

  • Rees RG (1981) Yellow spot an important problem in the North-Eastern wheat areas of Australia. In: Horsford RM (ed) Proc. Tan spot of wheat and related diseases workshop. North Dakota State University, Fargo, ND, 14–15 July 1981, pp 68–70

    Google Scholar 

  • Rees RG (1987) Effects of tillage practices on foliar diseases. In: Pratley JE, Cornish PS (eds) Tillage—new directions in Australian agriculture. Inkata, Melbourne, pp 318–334

    Google Scholar 

  • Rees RG, Mayer RJ (1982) Yield losses in wheat from yellow spot: comparisons of estimates derived from single tillers and plots. Aust J Agric Res 33:899–908

    Google Scholar 

  • Rees RG, Platz GJ (1980) The epidemiology of yellow spot of wheat in southern Queensland. Aust J Agric Res 31:259–267

    Google Scholar 

  • Rees RG, Platz GJ (1983) Effects of yellow spot on wheat: comparison of epidemics at different stages of crop development. Aust J Agric Res 34:39–46

    Google Scholar 

  • Rees RG, Platz GJ (1990) Sources of resistance to Pyrenophora tritici-repentis in bread wheats. Euphytica 45:59–69

    Google Scholar 

  • Rees RG, Platz GJ (1992) Tan spot and its control: some Australian experiences. In: Francl LJ et al (eds) Advances in tan spot re-search. Proc 2nd Int Tan Spoy Workshop. North Dakota Agricultural Experiment Station, Fargo, pp 1–9

    Google Scholar 

  • Reis EM (1986) Densidade de inoculo de Helminthosporium sativum no solo, indicativo da interferência entre parcelas experimentais. Fitopatol Bras 11:89–94

    Google Scholar 

  • Reis EM (1987) Patologia de sementes de cereais de inverno. CNDA, São Paulo, 32 p

    Google Scholar 

  • Reis EM (1991) Doenças do trigo. V. Ferrugens. Bayer do Brasil, São Paulo, 20 p

    Google Scholar 

  • Reis EM (1991b) Integrated disease management—the changing concepts for controlling head blight and spot blotch. In: Saunders DA (ed) Wheat for the nontraditional warm areas. CIMMYT, Mexico, DF, pp 165–177

    Google Scholar 

  • Reis EM, Abrãao JJR (1983) Effect of tillage and wheat residue management on the vertical distribution and inoculum density of Cochliobolus sativus in soil. Plant Dis 67(10):1088–1089

    Google Scholar 

  • Reis EM, Baier AC (1983) Reação de cereais de inverno á podridão comum de raízes. Fitopatol Bras 8:277–281

    Google Scholar 

  • Renfro BL, Yong HC (1956) Techniques for studying varietal response to Septoria leaf blotch of wheat. Phytopathology 46(1):23 (abst.)

    Google Scholar 

  • Richards GS (1951) Factors influencing sporulation by Septoria nodurum. Phytopathology 41:571–578

    Google Scholar 

  • Richardson MJ, Zillinsky FJ (1972) A leaf blight caused by Fusarium nivale. Plant Dis Reptr 56:803–804

    Google Scholar 

  • Riede CR, Francel LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36:771–777

    Google Scholar 

  • Risser P, Ebmeyer E, Korzun V, Hart L, Miedaner T (2011) Quantitative trait loci for adult plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology doi:1094/phto-08-10-0203

    Google Scholar 

  • Roelfs AP (1982) Effects of barberry iradication on stem rust in the United States. Plant Dis 66:177–181

    Google Scholar 

  • Roelfs AP (1985) Epidemiology in North America. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II, Disease distribution, epidemiology and control, Academic, Orlando, pp 403–434

    Google Scholar 

  • Roelfs AP (1988) Resistance to leaf rust and stem rust of wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, DF, pp 10–22

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat-concepts and methods of disease management. CIMMYT, Mexico, DF, 81 p

    Google Scholar 

  • Rogenski RA, Zanlorensi LA, Mathias IM (2012) Aplicação de redes neurais artificiais para a estimativa de infecção por manchas foliares na cultura do trigo. Revista de Engenharia e Tecnologia 4:58–64

    Google Scholar 

  • Rouse MN, Nava IC, Chao Sanderson JA, Jin Y (2012) Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125(5):877–885

    PubMed  Google Scholar 

  • Rowell JB (1984) Evaluation of chemicals for rust control. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II, Disease distribution, epidemiology and control. Academic, Orlando, pp 561–589

    Google Scholar 

  • Saari EE, Young JR, Kernkamp MF (1968) Infection of North American Thalictrum spp. with Puccinia recondita f. sp. tritici. Phytopathology 58:939–943

    Google Scholar 

  • Samsampour D, Zanjani BM, Pallavi JK, Singh A, Charpe A, Gupta SK, Prabhu KV (2010) Identification of molecular markers linked to adult plant leaf rust resistance gene Lr48 in wheat and detection of Lr48 in the Thatcher near-isogenic line with gene Lr25. Euphytica 174:337–342

    CAS  Google Scholar 

  • Sanderson FR (1972) A Mycosphaerella species as the ascogenous state of Septoria tritici Rob. & Desm. New Zeal J Bot 10:707–709

    Google Scholar 

  • Sanderson FR (1976) Mycosphaerella graminicola (Fuckel) Sanderson comb. nov. the ascogenous state of Septoria tritici Rob. apud Desm. New Zeal J Bot 14:359–360

    Google Scholar 

  • Sanderwirth SD, Roelfs AP (1980) Greenhouse characterization of the adult plant resistance of Sr2 to wheat stem rust. Phytopathology 70:634–637

    Google Scholar 

  • Sapra VT, Hugles JL, Scharen AL (1976) Preliminary observations on the incidence of Septoria nodorum on wheat, rye and triticale in Alabama. In: Cunfer BM, Nelson LR (eds) Septoria diseases of wheat. Proc. Workshop. University of Georgia, Athens, GA, p 69

    Google Scholar 

  • Scharen AL (1964) Environmental influence on development of glume blotch in wheat. Phytopathology 54:300–303

    Google Scholar 

  • Scharen AL (1973) Effect of age of wheat tissues on susceptibility to Septoria nodorum. Plant Dis Reptr 47:952–955

    Google Scholar 

  • Scharen AL, Eyal Z, Huffman MD, Prescott JM (1985) The distribution and frequency of virulence genes in geographically separated populations of Leptosphaeria nodorum. Phytopathology 75:1463–1468

    Google Scholar 

  • Schroeder WT, Provvidenti R (1969) Resistance to benomyl in powdery mildew of cucurbits. Plant Dis Reptr 53:271–275

    Google Scholar 

  • Scott PR, Sanderson FR, Benedikz PW (1988) Occurrence of Mycosphaerella graminicola, telmorph of Septoria tritici, on wheat debris in the UK. Plant Pathol 37:285–290

    Google Scholar 

  • Semeniuk G (1976) Scleropthora macrospora infection of three annual grasses by oospore as a sexual inocula. Plant Dis Reptr 60:745–748

    Google Scholar 

  • Semeniuk G, Mankin CJ (1964) Occurrence and development of Scleropthora macrospora on cereals and grasses in South Dakota. Phytopathology 54:409–416

    Google Scholar 

  • Shah DA, Bergstrom GC (2000) Temperature dependent seed transmission of Stagonospora nodorum in wheat. Eur J Plant Pathol 106:837–842

    Google Scholar 

  • Shaner G (1973a) Evaluation of slow mildewing resistance of Knox wheat in the field. Phytopathology 63:867–872

    Google Scholar 

  • Shaner G (1973b) Reduced infectibility and inoculum production as factors in slow mildewing of Knox wheat. Phytopathology 63:1307–1311

    Google Scholar 

  • Shaner G (1976) Epidemiology of Septoria leaf blotch caused by Septoria tritici. Septoria diseases of wheat. Proc. Workshop, University of Georgia, Athens, GA, 69 p

    Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    CAS  Google Scholar 

  • Shaw DE (1957) Studies of Leptosphaeria avenaria f. sp. triticea on cereals and grasses. Can J Bot 35:113–118

    Google Scholar 

  • Shaw MV (1999) Epidemiology of Mycosphaerella graminicola and Phaeosphaeria nodorum. An overview. In: van Ginkel M et al (eds) Septoria and Stagnospora diseases of cereals: a compilation of global research. CIMMYT, México, DF, pp 93–97

    Google Scholar 

  • Shaw MW, Royle DJ (2007) Factors determining the severity of epidemics of Mycosphaerella graminicola (Septoria tritici) on winter wheat in the UK. Plant Pathol 42:882–899. doi:10.1111/l.1365-3059.1993.tb02674

    Google Scholar 

  • Shearer BL, Zadoks JC (1972) The latent period of Septoria nodorum in wheat. I. The effect of temperature and moisture treatments under controlled conditions. Neth J Plant Pathol 78:233–241

    Google Scholar 

  • Shilder AMC, Bergstrom GC (1991) Effect of wheat genotype, growth stage and foliar disease severity on incidence of seed infection by Pyrenophora tritici-repentis (Abstr.). Phytopathology 81:1146–1147

    Google Scholar 

  • Shipton WA (1968) Effect of Septoria diseases on wheat. Aust J Exp Agri Anim Husb 8:89–93

    Google Scholar 

  • Shoemaker RA (1959) Nomenclature of Drechslera and Bipolaris grass parasites segregated from Helminthosporium. Can J Bot 37:879–887

    Google Scholar 

  • Shurtleff MC (1980) Compendium of corn diseases, 2nd edn. IPS, St. Paul, MN

    Google Scholar 

  • Simon MR, Cordo CA, Castillo NS, Struik PC, Borner A (2012) Population structure of Mycosphaerella graminicola and location of genes for resistance to the pathogen: recent advances in Argentina. Int J Agron. doi:10.1155/2012/680275

    Google Scholar 

  • Simspson DR, Thomsett MA, Nicholson P (2004) Competitive interactions between Microdochium nivale var. majus, M. nivale var. nivale and Fusarium culmorum in planta and in vitro. Environ Microbiol 6:79–87

    Google Scholar 

  • Singh RP (1992a) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838

    Google Scholar 

  • Singh RP (1992b) Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci 32:874–878

    Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near immunity to leaf rust and stripe rust in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung 35:133–139

    CAS  Google Scholar 

  • Singh D, Park RF, Mcintosh RA (2001) Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica 120:205–218

    CAS  Google Scholar 

  • Singh RP, Kinyua MG, Wanyera R, Njau P, Jin Y, Huerta-Espino J (2007) Spread of a highly virulent race of Puccinia graminis tritici in Eastern Africa. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 51–57

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino JY, Njau P et al (2008) Will stem rust destroy world’s wheat crop? Adv Agron 98:271–309

    CAS  Google Scholar 

  • Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM (2010) Genetics of wheat—Pyrenophora tritici-repentis interactions. Euphytica 171:1–13

    Google Scholar 

  • Singh A, Pallavi JK, Prabhu KV (2011a) Identification of microssatelite markers linked to leaf rust adult plant resistance (APR) Lr48 in wheat. Plant Breed 130:31–34

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino JY, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011b) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    CAS  PubMed  Google Scholar 

  • Sivanesan A (1992) Drechslera gigantea, CMI Descriptions of fungi and bacteria, No. 1123, Kew Surrey

    Google Scholar 

  • Smith HC, Smith M (1974) Survey of powdery mildew in wheat and an estimate of national yield losses. New Zeal J Exp Agri 2:441–445

    Google Scholar 

  • Snoball K, Robson (1991) Nutrient deficiencies and toxicities in wheat: a guide for field identification. CIMMYT, Mexico, DF, 76 p

    Google Scholar 

  • Sokhi SS (1974) Alternaria blight on wheat in India. PANS 20:55–57

    Google Scholar 

  • Soliman NEK, Ashraf MM, Ibacki A, Najeeb MAA, Omara RI (2012) Geographic distribution of physiologic races of Puccinia triticina and postulation of resistance genes in new wheat cultivars in Egypt. Egyptian J Plant Pathol 1:73–80

    Google Scholar 

  • Spielmeyer W, Mcintosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust co-segregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    CAS  PubMed  Google Scholar 

  • Sprague R (1950) Diseases of cereals and grasses in North America. Ronald, New York, 538 p

    Google Scholar 

  • Stubbs RW (1977) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts Vol II. Disease, distribution, epidemiology and control. Academic, Ontario, pp 61–101

    Google Scholar 

  • Stubbs RW (1988) Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, DF, pp 23–38

    Google Scholar 

  • Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Crous PW, McDonald BA (2012) Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the Septoria tritici leaf blotch fungus Z. tritici (Synonym: Mycosphaerella graminicola). Mycologia 104:1397–1407

    PubMed  Google Scholar 

  • Tadesse W, Reents HJ, Hsam SLK, Zeller FJ (2011) Relationship of seedling and adult plant resistance and evaluation of wheat germplasm against tan spot (Pyrenophora tritici-repentis). Genet Resour Crop Evol 58:339–346

    Google Scholar 

  • Thakur RP, Mathur K (2002) Downy mildews of India. Crop Prot 21:333–345

    Google Scholar 

  • Tinline RD (1951) Studies on the perfect stage of Helminthosporium sativum. Can J Bot 29(5):467–478

    Google Scholar 

  • Tomas A, Bockus WW (1987) Cultivar-specific toxicity of culture filtrates of Pyrenophora tritici-repentis. Phytopathology 77:1337–1340

    Google Scholar 

  • Triller C, Mehta YR (1997) Efeito da idade da folha de trigo na expressão de resistência a Bipolaris sorokiniana. Summa Phytopathol 23:167–169

    Google Scholar 

  • van Beuningen LT, Kohli MM (1990) Evaluasão de germoplasma de trigo del Cono Sur para resistencia a la septoriosis. In: Kohli MM, van Beuningen LT (eds) Conferencia regional sobre la septoriosis del trigo. CIMMYT, Mexico, DF, pp 181–188, 253

    Google Scholar 

  • Van Ginkel M, Rajaram S (1998) Breeding for resistance to spot blotch in wheat: global perspective. In: Duveiller E et al (eds) Helminthosporium blights of wheat: spot blotch and tan spot. CIMMYT, Mexico, DF, pp 162–170

    Google Scholar 

  • Vargas JM Jr (1973) A benzimidazol resistant strain of Erysiphae graminis. Phytopathology 63:1366–1368

    CAS  Google Scholar 

  • Vargo RH, Stromnerg EL, Baumer JS (1981) The incidence of leaf-spotting fungi associated with hard red spring wheat in Minnesota. In: Hosford RM (ed) Proc Tan spot of wheat and related disease workshop, July 1981, North Dakota State University, Fargo, ND, pp 14–15

  • Vechet L, Burketova L (2012) Induced resistance against powdery mildew in wheat—a chance for less known inducers. IOBC/WPRS Bull 83:262–267

    Google Scholar 

  • Vicent D, Fall LA, Livk A, Mathesius U, Lipscombe RJ, Oliver RP, Friesen TL, Solomon PS (2012) A functional genomics approach to dissect the mode of action of the Stagnospora nodorum effector protein SnToxA in wheat. Mol Plant Pathol 13:467–482

    Google Scholar 

  • Von Wechmar MB (1966) Investigation on the survival of Septoria nodorum Berk. On crop residues. S Afr J Agric Sci 9:93–100

    Google Scholar 

  • Walker JC (1969) Plant pathology. McGraw-Hill, New York, 819 p

    Google Scholar 

  • Weber GF (1922) Septoria diseases of wheat. Phytopathology 12:537–585

    Google Scholar 

  • Wehmeyer LE (1949) Studies in the genus Pleospora. I. Mycologia 41:465–593

    Google Scholar 

  • Wehmeyer LE (1954) Perithecial development in Pleospora trichostoma. Bot Gaz 115:297–310

    Google Scholar 

  • Wellings C (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Google Scholar 

  • Whitehead MD (1958) Pathology and pathological histology of downy mildew, Scleropthora macrospora on six graminicolous hosts. Phytopathology 48:485–493

    Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases. The American Phytopathological Society, Michigan State University, East Lancing, 106 p

    Google Scholar 

  • William HM, Singh RP, Huerta-Espino J (2007) Characterization of genes for durable resistance to leaf rust and yellow rust in CIMMYT spring wheats. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Berlin, pp 65–70

    Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Central Plains. Phytopathology 90:17–21

    CAS  PubMed  Google Scholar 

  • Winzeler MA, Mysterhazy AM, Park RF (2000) Resistance of European winter wheat germplasm to leaf rust. Agronomie 20:783–792

    Google Scholar 

  • Wordell JA, Vale FXR, Prestes AM, Zambolim L (2005) Resistance of barley genotypes to brown leaf spot. Euphytica 142:217–225

    Google Scholar 

  • Wyand RA, Brown JKM (2007) Genetic and forma specialis diversity in Blumaria graminis of cereals and its implications for host-pathogen co-evolution. Mol Plant Pathol 4:187–198

    Google Scholar 

  • Xia XC, Li ZF, He ZH, Singh RP (2007) Stripe rust resistance in Chinese bread wheat cultivars and lines. In: Buck HT et al (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 77–82

    Google Scholar 

  • Yadav KS, Basant Ram Beniwal M (2010) Effect of different nitrogen levels on development of wheat powdery mildew in north-western plain zone of India. Ann Agri Bio Res 15:143–147

    Google Scholar 

  • Zadoks JC (1961) Yellow rust in wheat, studies in epidemiology and physiologic specialization. Planteziekten (Wageningen) 67:69–256

    Google Scholar 

  • Zadoks JC (1967) An inhibitory effect of light on the infection by brown leaf rust of wheat. Neth J Plant Pathol 73:52–54

    Google Scholar 

  • Zadoks JC, Bouwman JJ (1985) Epidemiology in Europe. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II, Diseases, distribution, epidemiology and control. Academic, Ontario, pp 329–369

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. EUCARPA Bull. No. 7

    Google Scholar 

  • Zeller SL, Kalinina O, Schmid B (2013) Cost of resistance to fungal pathogens in genetically modified wheat. J Plant Ecol 6:92–100

    Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Shanner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45(4):719–727

    CAS  PubMed  Google Scholar 

  • Zhu Z, Zhou R, Kong X, Dong Y, Jia J (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicumaccession PS5 into common wheat. Genome 48:585–590

    CAS  PubMed  Google Scholar 

  • Zillinsky FJ (1983) Common diseases of small grain cereals: a guide to identification. CIMMYT, Mexico, DF, 141 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehta, Y.R. (2014). Foliar and Stem Diseases. In: Wheat Diseases and Their Management. Springer, Cham. https://doi.org/10.1007/978-3-319-06465-9_6

Download citation

Publish with us

Policies and ethics