Skip to main content

Sensing Inside the Living Cells

  • Chapter
Introduction to Fluorescence Sensing

Abstract

The full power of fluorescence technique can be demonstrated in imaging and sensing within living cells. Its most important advantage that will probably be never competed by any other technique is a high spatial resolution together with ultimate contrast and sensitivity obtained in a noninvasive or low invasive manner. Exploration of these possibilities has led to development of powerful methods of fluorescence microscopy, such as confocal, two-photon and evanescent-wave microscopy. Resolution in time and anisotropy were successfully applied to microscopy. Recent advances allowed achieving superresolution images and observing individual molecules. All these developments lead to much deeper understanding the cell functioning, the dynamics of interactions and transformations of its constituents and metabolites. The tools for achieving that are overviewed in this Chapter, critically discussing their advantages and limitations. At the end, the reader finds the section “Sensing and thinking” with the questions and problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna G, Grohmann D, Tinnefeld P (2014) Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett 588(19):3547–3552

    Article  CAS  PubMed  Google Scholar 

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697

    Article  CAS  PubMed  Google Scholar 

  • Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical Ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124(21):6063–6076

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758(10):1541–1556. doi:10.1016/j.bbamem.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  • Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA (2006) Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl 45(44):7364–7367

    Article  CAS  PubMed  Google Scholar 

  • Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergermann F, Alber L, Sahl SJ, Engelhardt J, Hell SW (2015) 2000-fold parallelized dual-color STED fluorescence nanoscopy. Opt Express 23(1):211–223

    Article  PubMed  Google Scholar 

  • Blom H, Widengren J (2014) STED microscopy—towards broadened use and scope of applications. Curr Opin Chem Biol 20:127–133

    Article  CAS  PubMed  Google Scholar 

  • Bullok KE, Gammon ST, Violini S, Prantner AM, Villalobos VM, Sharma V, Piwnica-Worms D (2006) Permeation peptide conjugates for in vivo molecular imaging applications. Mol Imaging 5(1):1–15

    PubMed  Google Scholar 

  • Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109

    Google Scholar 

  • Chang CJ, Jaworski J, Nolan EM, Sheng M, Lippard SJ (2004) A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-induced release of intracellular zinc. Proc Natl Acad Sci U S A 101(5):1129–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3(5):284–288

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Zhou X, Andoy NM, Han K-S, Choudhary E, Zou N, Chen G, Shen H (2014) Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem Soc Rev 43(4):1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZL, Aspinwall CA (2006) Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. Analyst 131(2):236–243

    Article  CAS  PubMed  Google Scholar 

  • Clarke SJ, Hollmann CA, Zhang ZJ, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantumdots and effects on biological systems. Nat Mater 5(5):409–417

    Article  CAS  PubMed  Google Scholar 

  • Claydon TW, Fedida D (2007) Voltage clamp fluorimetry studies of mammalian voltage-gated K(+) channel gating. Biochem Soc Trans 35(Pt 5):1080–1082

    Article  CAS  PubMed  Google Scholar 

  • Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445

    Article  CAS  PubMed  Google Scholar 

  • De Serio M, Zenobi R, Deckert V (2003) Looking at the nanoscale: scanning near-field optical microscopy. TrAC Trends Anal Chem 22(2):70–77

    Article  CAS  Google Scholar 

  • de Vries AH, Cook NP, Kramer S, Arndt-Jovin DJ, Jovin TM (2015) Generation 3 programmable array microscope (PAM) for high speed, large format optical sectioning in flourescence. Proc SPIE 9376:93760C. doi: 10.1117/12.2076390

  • Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug Chem 17(4):920–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delehanty JB, Susumu K, Manthe RL, Algar WR, Medintz IL (2012) Active cellular sensing with quantum dots: transitioning from research tool to reality; a review. Anal Chim Acta 750:63–81

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17(1):19–42

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2008) Site-selective Red-Edge effects. Chapter 4. Methods Enzymol 450:59–78

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20(5):1099–1128

    Article  PubMed  Google Scholar 

  • Demchenko AP (2013) Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65(2):157–172. doi:10.1007/s10616-012-9481-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demchenko AP, Sytnik AI (1991a) Site-selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Article  CAS  Google Scholar 

  • Demchenko AP, Sytnik AI (1991b) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc Natl Acad Sci U S A 88(20):9311–9314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96(9):3461–3470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demchenko AP, Duportail G, Oncul S, Klymchenko AS, Mély Y (2015) Introduction to fluorescence probing of biological membranes. In: Methods in membrane lipids. Springer, New York, pp 19–43

    Google Scholar 

  • Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5(18):15–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickenson NE, Mooren OL, Erickson ES, Dunn RC (2014) Near-field scanning optical microscopy: a new tool for exploring structure and function in biology. In: Surface analysis and techniques in biology. Switzerland: Springer, p 225–253

    Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80(3):1417–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dittrich P, Schwille P (2001) Photobleaching and stabilization of. fluorophores used for single-molecule analysis. with one-and two-photon excitation. Appl Phys B 73(8):829–837

    Article  CAS  Google Scholar 

  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lurmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doose S, Heilemann M, Michalet X, Weiss S, Kapanidis AN (2007) Periodic acceptor excitation spectroscopy of single molecules. Eur Biophys J Biophys Lett 36(6):669–674

    Article  CAS  Google Scholar 

  • Du F, Min Y, Zeng F, Yu C, Wu S (2014) A targeted and FRET‐based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10(5):964–972

    Article  CAS  PubMed  Google Scholar 

  • Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99(15):9846–9851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher JA, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, Yodh AG, Contreras D, Salzberg BM (2008) Two-photon excitation of potentiometric probes enables optical recording of action potentials from Mammalian nerve terminals in situ. J Neurophysiol 99(3):1545–1553

    Article  PubMed  Google Scholar 

  • Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76(6):1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Fu AH, Gu WW, Boussert B, Koski K, Gerion D, Manna L, Le Gros M, Larabell CA, Alivisatos AP (2007) Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett 7(1):179–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fürstenberg A, Heilemann M (2013) Single-molecule localization microscopy–near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15(36):14919–14930

    Article  PubMed  CAS  Google Scholar 

  • Gabe Y, Ueno T, Urano Y, Kojima H, Nagano T (2006) Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Anal Bioanal Chem 386(3):621–626

    Article  CAS  PubMed  Google Scholar 

  • Gai HW, Griess GA, Demeler B, Weintraub ST, Serwer P (2007) Routine fluorescence microscopy of single untethered protein molecules confined to a planar zone. J Microsc 226(3):256–262

    Article  CAS  PubMed  Google Scholar 

  • Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Geigl JB, Uhrig S, Speicher MR (2006) Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc 1(3):1172–1184

    Article  CAS  PubMed  Google Scholar 

  • George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126(29):8896–8897

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Chizhik AM, Karedla N, Dekaliuk MO, Gregor I, Schuhmann H, Seibt M, Bodensiek K, Schaap IA, Schulz O, Demchenko AP, Enderlein J, Chizhik AI (2014) The photoluminescence of carbon nanodots: dipole emission centers and electron-phonon coupling. Nano Lett 14(10):5656–5661

    Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – the fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  PubMed  Google Scholar 

  • Grecco HE, Lidke KA, Heintzmann R, Lidke DS, Spagnuolo C, Martinez OE, Jares-Erijman EA, Jovin TM (2004) Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc Res Tech 65(4–5):169–179

    Article  CAS  PubMed  Google Scholar 

  • Grichine A, Haefele A, Pascal S, Duperray A, Michel R, Andraud C, Maury O (2014) Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chem Sci 5(9):3475–3485

    Google Scholar 

  • Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67(1):208–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  • Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22(4):440–444

    Article  CAS  PubMed  Google Scholar 

  • Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D (2014) A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 19(10):15824–15865

    Article  PubMed  CAS  Google Scholar 

  • Ha T, Tinnefeld P (2012) Photophysics of fluorescence probes for single molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617

    Google Scholar 

  • Hagen GM, Roess DA, de Leon GC, Barisas BG (2005) High probe intensity photobleaching measurement of lateral diffusion in cell membranes. J Fluoresc 15(6):873–882

    Article  CAS  PubMed  Google Scholar 

  • Han Z-X, Zhang X-B, Li Z, Gong Y-J, Wu X-Y, Jin Z, He C-M, Jian L-X, Zhang J, Shen G-L (2010) Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodamine spirolactam as a trigger. Anal Chem 82(8):3108–3113

    Article  CAS  PubMed  Google Scholar 

  • Hanley QS, Arndt-Jovin DJ, Jovin TM (2002) Spectrally resolved fluorescence lifetime imaging spectroscopy. Appl Spectrosc 56:155–156

    Article  CAS  Google Scholar 

  • Haugland RP (2005) The handbook. A guide to fluorescent probes and labeling technologies, 10th edn. Invitrogen corp, Eugene

    Google Scholar 

  • Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  PubMed  Google Scholar 

  • Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super‐resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Hensel M, Klingauf J, Piehler J (2013) Imaging the invisible: resolving cellular microcompartments by superresolution microscopy techniques. Biol Chem 394(9):1097–1113

    Article  CAS  PubMed  Google Scholar 

  • Hohlbein J, Gryte K, Heilemann M, Kapanidis AN (2010) Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 7(3):031001

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Wu HK, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Counting low-copy number proteins in a single cell. Science 315(5808):81–84

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  PubMed  Google Scholar 

  • Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    Article  CAS  PubMed  Google Scholar 

  • Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Google Scholar 

  • Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124(41):12372–12379

    Article  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci U S A 100(20):11219–11224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Stoeckel H, Takeda K, Mely Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110(27):13624–13632

    Article  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Oncul S, Didier P, Schaub E, Bagatolli L, Duportail G, Mely Y (2009) Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta 1788(2):495–499

    Article  CAS  PubMed  Google Scholar 

  • Koeppel F, Jaiswal JK, Simon SM (2007) Quantum dot-based sensor for improved detection of apoptotic cells. Nanomedicine 2(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Urano Y, Kojima H, Nagano T (2007) Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc 129(44):13447–13454

    Article  CAS  PubMed  Google Scholar 

  • Kozankiewicz B, Orrit M (2014) Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev 43(4):1029–1043

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65(2):251–297

    Article  CAS  Google Scholar 

  • Kumar AT (2011) Fluorescence lifetime-based optical molecular imaging. In: Molecular imaging. Springer, p 165–180

    Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Methods in Molecular Biology. Berlin-Heidelberg: Springer; 680:165–180

    Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Lereu A, Passian A, Dumas P (2012) Near field optical microscopy: a brief review. Int J Nanotechnol 9(3):488–501

    Article  CAS  Google Scholar 

  • Li Q, Liu L, Liu J-W, Jiang J-H, Yu R-Q, Chu X (2014) Nanomaterial-based fluorescent probes for live-cell imaging. TrAC Trends Anal Chem 58:130–144

    Article  CAS  Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nat Biotechnol 22(2):198–203

    Article  CAS  PubMed  Google Scholar 

  • Lidke DS, Nagy P, Jovin TM, Arndt-Jovin DJ (2007) Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors. Methods Mol Biol 374:69–79

    CAS  PubMed  Google Scholar 

  • Lim CS (2013) Invited mini review: two-photon probes for biomedical applications. Biochem Mol Biol Rep 46(4):188–194

    CAS  Google Scholar 

  • Lin VS, Dickinson BC, Chang CJ (2012) Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems. Methods Enzymol 526:19–43

    Article  CAS  Google Scholar 

  • Lukinavičius G, Johnsson K (2011) Switchable fluorophores for protein labeling in living cells. Curr Opin Chem Biol 15(6):768–774

    Article  PubMed  CAS  Google Scholar 

  • Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5(2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Ma ZY, Gerton JM, Wade LA, Quake SR (2006) Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys Rev Lett 97(26):260801

    Article  PubMed  CAS  Google Scholar 

  • Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90(5):1790–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3(8):591–596

    Article  CAS  PubMed  Google Scholar 

  • Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM (1991) Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J 60(6):1374–1387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23(10):1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, Wang E (2004) Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 327(2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Mauser N, Hartschuh A (2014) Tip-enhanced near-field optical microscopy. Chem Soc Rev 43(4):1248–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meier RJ, Fischer LH, Wolfbeis OS, Schäferling M (2013) Referenced luminescent sensing and imaging with digital color cameras: a comparative study. Sens Actuators B 177:500–506

    Google Scholar 

  • Miyawaki A (2003) Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr Opin Neurobiol 13(5):591–596

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96(5):2135–2140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moerner WE (2007) New directions in single-molecule imaging and analysis. Proc Natl Acad Sci U S A 104(31):12596–12602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moerner W (2012) Microscopy beyond the diffraction limit using actively controlled single molecules. J Microsc 246(3):213–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morozova KS, Piatkevich KD, Gould TJ, Zhang J, Bewersdorf J, Verkhusha VV (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99(2):L13–L15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Deniz AA (2007) Fluorescence from diffusing single molecules illuminates biomolecular structure and dynamics. J Fluoresc 17(6):775–783

    Article  CAS  PubMed  Google Scholar 

  • Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A 101(19):7317–7322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2005) Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Ngo JT, Tirrell DA (2011) Noncanonical amino acids in the interrogation of cellular protein synthesis. Acc Chem Res 44(9):677–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L, Weissleder R (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci U S A 101(33):12294–12299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oheim M, van’t Hoff M, Feltz A, Zamaleeva A, Mallet J-M, Collot M (2014) New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochim Biophys Acta Mol Cell Res 1843(10):2284–2306

    Article  CAS  Google Scholar 

  • Oliver AE, Baker GA, Fugate RD, Tablin F, Crowe JH (2000) Effects of temperature on calcium-sensitive fluorescent probes. Biophys J 78(4):2116–2126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim Biophys Acta 1798(7):1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Orrit M, Ha T, Sandoghdar V (2014) Single-molecule optical spectroscopy. Chem Soc Rev 43(4):973–976

    Article  CAS  PubMed  Google Scholar 

  • Owen DM, Magenau A, Williamson D, Gaus K (2012) The lipid raft hypothesis revisited–new insights on raft composition and function from super‐resolution fluorescence microscopy. Bioessays 34(9):739–747

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J (2011) Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J Am Chem Soc 133(17):6626–6635

    Article  CAS  PubMed  Google Scholar 

  • Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A Jr (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63(8):1936–1942

    CAS  PubMed  Google Scholar 

  • Pinaud F, Dahan M (2011) Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins. Proc Natl Acad Sci 108(24):E201–E210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pluth MD, Tomat E, Lippard SJ (2011) Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem 80:333–355

    Google Scholar 

  • Puleo CM, Liu K, Wang TH (2006) Pushing miRNA quantification to the limits: high-throughput miRNA gene expression analysis using single-molecule detection. Nanomedicine 1(1):123–127

    Article  CAS  PubMed  Google Scholar 

  • Rafalska-Metcalf IU, Janicki SM (2007) Show and tell: visualizing gene expression in living cells. J Cell Sci 120(14):2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Rajh T (2006) Bio-functionalized quantum dots: tinkering with cell machinery. Nat Mater 5(5):347–348

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen A, Deckert V (2005) New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy. Anal Bioanal Chem 381(1):165–172

    Article  CAS  PubMed  Google Scholar 

  • Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci 109(3):E135–E143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberti MJ, Bertoncini CW, Klement R, Jares-Erijman EA, Jovin TM (2007) Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein. Nat Methods 4(4):345–351

    CAS  PubMed  Google Scholar 

  • Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brulet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21(3):597–610

    Article  PubMed  Google Scholar 

  • Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci U S A 102(41):14515–14520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauer M (2003) Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew Chem Int Ed Engl 42(16):1790–1793

    Article  CAS  PubMed  Google Scholar 

  • Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51(15):3532–3554

    Article  CAS  Google Scholar 

  • Scheenen WJ, Makings LR, Gross LR, Pozzan T, Tsien RY (1996) Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chem Biol 3(9):765–774

    Article  CAS  PubMed  Google Scholar 

  • Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294(5548):1929–1932

    Article  CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103(50):18911–18916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304(5678):1797–1800

    Article  CAS  PubMed  Google Scholar 

  • Shen J-Y, Chao W-C, Liu C, Pan H-A, Yang H-C, Chen C-L, Lan Y-K, Lin L-J, Wang J-S, Lu J-F (2013) Probing water micro-solvation in proteins by water catalysed proton-transfer tautomerism. Nat Commun 4:2611

    PubMed  Google Scholar 

  • Shynkar V (2005) Fluorescent ratiometric probes based on the 3-hydroxyflavone derivatives: photophysical properties and applications in cell biology. University of Louis Pasteur, Illkirch

    Google Scholar 

  • Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim Biophys Acta 1712(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129(7):2187–2193

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Ruan G, Rhyner MN, Nie SM (2006) Engineering luminescent quantum dots for In vivo molecular and cellular imaging. Ann Biomed Eng 34(1):3–14

    Article  PubMed  Google Scholar 

  • So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24(3):339–343

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo CC, Vermeij RJ, Jares-Erijman EA (2006) Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins. J Am Chem Soc 128(37):12040–12041

    Article  CAS  PubMed  Google Scholar 

  • Stich MI, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39(8):3102–3114

    Article  CAS  PubMed  Google Scholar 

  • Straub M, Lodemann P, Holroyd P, Jahn R, Hell SW (2000) Live cell imaging by multifocal multiphoton microscopy. Eur J Cell Biol 79(10):726–734

    Article  CAS  PubMed  Google Scholar 

  • Streets AM, Huang Y (2014) Microfluidics for biological measurements with single-molecule resolution. Curr Opin Biotechnol 25:69–77

    Article  CAS  PubMed  Google Scholar 

  • Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 103(26):9785–9789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tetin SY, Hazlett TL (2000) Optical spectroscopy in studies of antibody-hapten interactions. Methods 20(3):341–361

    Article  CAS  PubMed  Google Scholar 

  • Thompson RB, Cramer ML, Bozym R (2002) Excitation ratiometric fluorescent biosensor for zinc ion at picomolar levels. J Biomed Opt 7(4):555–560

    Article  CAS  PubMed  Google Scholar 

  • Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44(18):2642–2671

    Article  CAS  Google Scholar 

  • Tomlinson ID, Warnerment MR, Mason JN, Vergne MJ, Hercules DM, Blakely RD, Rosenthal SJ (2007) Synthesis and characterization of a pegylated derivative of 3-(1,2,3,6-tetrahydro-pyridin-4yl)-1H-indole (IDT199): a high affinity SERT ligand for conjugation to quantum dots. Bioorg Med Chem Lett 17(20):5656–5660

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya KD (2011) Fluorescence in situ hybridization. Clin Lab Med 31(4):525–542

    Article  PubMed  Google Scholar 

  • Tsukube H, Yano K, Ishida A, Shinoda S (2007) Lanthanide complex strategy for detection and separation of histidine-tagged proteins. Chem Lett 36(4):554–555

    Article  CAS  Google Scholar 

  • van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009

    Article  PubMed  CAS  Google Scholar 

  • Voronin YM, Didenko IA, Chentsov YV (2006) Methods of fabricating and testing optical nanoprobes for near-field scanning optical microscopes. J Opt Technol 73(2):101–110

    Article  Google Scholar 

  • Vu TQ, Lam WY, Hatch EW, Lidke DS (2015) Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res 360(1):71–86

    Google Scholar 

  • Walkup GK, Imperiali B (1997) Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. J Am Chem Soc 119(15):3443–3450

    Article  CAS  Google Scholar 

  • Wang Q, Moerner W (2012) Lifetime and spectrally resolved characterization of the photodynamics of single fluorophores in solution using the anti-brownian electrokinetic trap. J Phys Chem B 117(16):4641–4648

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Goldsmith RH, Jiang Y, Bockenhauer SD, Moerner W (2012) Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 45(11):1955–1964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging. Proc Natl Acad Sci 111(23):8452–8457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webb SED, Needham SR, Roberts SK, Martin-Fernandez ML (2006) Multidimensional single-molecule imaging in live cells using total-internal-reflection fluorescence microscopy. Opt Lett 31(14):2157–2159

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Coupland P, Houghton FD, Leese HJ, Aylott JW (2007) The delivery of PEBBLE nanosensors to measure the intracellular environment. Biochem Soc Trans 35:538–543

    Article  CAS  PubMed  Google Scholar 

  • Westphal V, Lauterbach MA, Di Nicola A, Hell SW (2007) Dynamic far-field fluorescence nanoscopy. New J Phys 9(12):435

    Google Scholar 

  • Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918

    Article  CAS  PubMed  Google Scholar 

  • Wurm CA, Kolmakov K, Göttfert F, Ta H, Bossi M, Schill H, Berning S, Jakobs S, Donnert G, Belov VN (2012) Novel red fluorophores with superior performance in STED microscopy. Opt Nanosc 1(1):1–7

    Article  Google Scholar 

  • Xie XS, Yu J, Yang WY (2006) Perspective – living cells as test tubes. Science 312(5771):228–230

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Yang Y, Zhang C-y (2014) Single-molecule FRET for ultrasensitive detection of biomolecules. NanoBioImaging 1(1):13–24

    Google Scholar 

  • Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem 124(17):4224–4227

    Article  Google Scholar 

  • Yu BZ, Ju YM, West L, Moussy Y, Moussy F (2007) An investigation of long-term performance of minimally invasive glucose biosensors. Diabetes Technol Ther 9(3):265–275

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xiao Y, Qi J, Qu J, Kim B, Yue X, Belfield KD (2013) Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes. J Org Chem 78(18):9153–9160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Sensing Inside the Living Cells. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_13

Download citation

Publish with us

Policies and ethics