Skip to main content

Dispersal Strategies of Microfungi

  • Chapter
Biology of Microfungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Successful and efficient dispersal of fungi is crucial to the survival of the fungi, balance of ecosystems, and stability of biodiversities. Dispersal strategies of microfungi and other fungi are reviewed in detail based on the literature published in the last four decades. It covers the latest development of research on the dispersal process: liberation, transporation, deposition, resuspension, and survival of fungal spores and other propagules from microscale to macroscale. The characters of dispersal strategies of fungi from different habitats are elucidated. The fungal habitats include litter, soil, plants, insects, other animals, aquatic and marine environments, etc. For each strategy, the associated mechanisms are discussed for their ecological significance. The significance of the new technology used in the recent studies on dispersal strategies is presented. At the same time, current and future applications of dispersal strategies of microfungi are discussed in the chapter.

“Fungi cannot walk or run, but some can swim, most can soar, a few can jump, and some must be carried” (Kendrick 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott SP (2000) Holomorph studies of the Microascaceae. Ph.D. Dissertation, University of Alberta

    Google Scholar 

  • Abbott SP (2002) Insects and other arthropods as agents of vector-dispersal in fungi. Unpublished. Online version: http://www.thermapure.com/pdf/AbbottInsectdispersal.pdf

  • Abelho M, Graca MAS (1996) Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204

    Article  Google Scholar 

  • Adamatzky A (2013) Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed Eng Lett 3(4):232–241

    Article  Google Scholar 

  • Adamatzky A, Martinez GJ (2013) Bio-imitation of Mexican migration routes to the USA with slime mould on 3D terrains. J Bionic Eng 10:242–250

    Article  Google Scholar 

  • Adamatzky A, Lees M, Sloot P (2013) Bio-development of motorway network in the Netherlands: a slime mould approach. Adv Complex Syst 16(02n03)

    Google Scholar 

  • Agrios GN (1980) Insect involvement in the transmission of fungal pathogens. In: Harris KF, Maramorosch K (eds) Vectors of plant pathogens. Academic, New York, pp 293–323

    Chapter  Google Scholar 

  • Agrios GN (2006) Plant pathology, 5th edn. Academic, New York

    Google Scholar 

  • Ahimera N, Gisler S, Morgan DP, Michailides TJ (2004) Effects of single-drop impactions and natural and simulated rains on the dispersal of Botryosphaeria dothidea conidia. Phytopathology 94:1189–1197

    Article  PubMed  Google Scholar 

  • Ainsworth GC (1952) The incidence of air-borne Cladosporium spores in the London region. J Gen Microbiol 7:358–361

    Article  CAS  PubMed  Google Scholar 

  • Allgaier C (2007) Active camouflage with lichens in a terrestrial snail, Napaeus (N.) barquini Alonso and Ibáñez, 2006 (Gastropoda, Pulmonata, Enidae). Zool Sci 24:869–876

    Article  PubMed  Google Scholar 

  • Allitt U (2000) Airborne fungal spores and the thunderstorm of 24 June 1994. Aerobiologia 16:397–406

    Article  Google Scholar 

  • Alsheikh AM, Trappe JM (1983) Taxonomy of Phaeangium lefebvrei, a desert truffle eaten by birds. Can J Bot 61:1919–1925

    Article  Google Scholar 

  • Alt S, Kollar A (2010) Hydrodynamics of raindrop impact stimulate ascospore discharge of Venturia inaequalis. Fungal Biol 114(4):320–324

    Article  CAS  PubMed  Google Scholar 

  • Ananda K, Prasannarai K, Sridhar KR (1998) Occurrence of higher marine fungi on marine animal substrates of some beaches along the west coast of India. Indian J Mar Sci 27(2):233–236

    Google Scholar 

  • Andrews JH (1992) Fungal life-history strategies. In: Carroll CG, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Dekker, New York, pp 119–145

    Google Scholar 

  • Arseniuk E, Goral T, Scharen AL (1997) Seasonal patterns of spore dispersal of Phaeosphaeria spp. and Stagonospora spp. Plant Dis 82:187–194

    Article  Google Scholar 

  • Auffret AG, Berg J, Cousins SA (2014) The geography of human-mediated dispersal. Divers Distrib 20(12):1450–1456

    Article  Google Scholar 

  • Aylor DE (1978) Dispersal in time and space: aerial pathogens. In: Horsfall JG, Cowling EB (eds) Plant disease—an advanced treatise. Academic Press, New York, pp 159–180

    Google Scholar 

  • Aylor DE (1990) The role of intermittent wind in the dispersal of fungal pathogens. Annu Rev Phytopathol 28:73–92

    Article  Google Scholar 

  • Aylor DE (1993) Relative collection efficiency of Rotorod and Burkard spore samplers for airborne Venturia inequalis ascospores. Phytopathology 83:1116–1119

    Article  Google Scholar 

  • Aylor DE, McCartney HA, Brainbridge A (1981) Deposition of particles liberated in gusts of wind. J Appl Meteorol 20:1212–1221

    Article  Google Scholar 

  • Aylor DE, Taylor GS, Raynor GS (1982) Long-range transport of tobacco blue mold spores. Agric Meteorol 27(3):217–232

    Article  Google Scholar 

  • Bailey FM (1904) Additional notes on the birds of the upper Pecos. Auk 21(3):349–363

    Article  Google Scholar 

  • Bandoni RJ (1972) Terrestrial occurrence of some aquatic hyphomycetes. Can J Bot 50(11):2283–2288

    Article  Google Scholar 

  • Bandoni RJ (1974) Mycological observations on the aqueous films covering decaying leaves and other litter. Trans Mycol Soc Jpn 15:309–315

    Google Scholar 

  • Bandoni RJ, Koske RE (1974) Monolayers and microbial dispersal. Science 183:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay R, Frederickson DE, McLaren NW, Odvody GN, Ryley MJ (1998) Ergot: a new disease threat to sorghum in the Americas and Australia. Plant Dis 82:356–367

    Article  Google Scholar 

  • Bärlocher F (1981) Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mycol Soc 76(1):160–165

    Article  Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60:1487–1494

    Article  Google Scholar 

  • Bärlocher F (1992) Recent developments in stream ecology and their relevance to aquatic mycology. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin (Ecol Stud 94:16–37)

    Google Scholar 

  • Bärlocher F (1992) Research on aquatic hyphomycetes: historical background and overview. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin (Ecol Stud 94:1–15)

    Google Scholar 

  • Bärlocher F (2009) Reproduction and dispersal in aquatic hyphomycetes. Mycoscience 50:3–8

    Article  Google Scholar 

  • Bärlocher F, Murdoch JH (1989) Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia 184:61–67

    Article  Google Scholar 

  • Bertolino S, Vizzini A, Wauters LA, Tosi G (2004) Consumption of hypogeous and epigeous fungi by the red squirrel (Sciurus vulgaris) in subalpine conifer forests. Forest Ecol Manage 202(1):227–233

    Article  Google Scholar 

  • Bock CH, Jeger MJ, Fitt BDL, Sherrington J (1997) Effect of wind on the dispersal of oospores of Peronosclerospora sorghi from sorghum. Plant Pathol 46:439–449

    Article  Google Scholar 

  • Bouza E, Peláez T, Pérez-Molina J, Marín M, Alcalá L, Padilla B, Muñoz P, Adán P, Bové B, Bueno MJ, Grande F, Puente D, Rodríguez MP, Rodríguez-Créixems M, Vigil D, Cuevas O, Aspergillus Study Team (2002) Demolition of a hospital building by controlled explosion: the impact on filamentous fungal load in internal and external air. J Hosp Infect 52:234–42

    Article  CAS  PubMed  Google Scholar 

  • Bowden J, Gregory PH, Johnson CG (1971) Possible wind transport of coffee leaf rust across the Atlantic Ocean. Nature 229:500–501

    Article  CAS  PubMed  Google Scholar 

  • Bratek Z, Merenyi Z, Illies Z, Laslo P, Anton A, Papp L, Merkl O, Garay J, Vikor J, Brandt S (2010) Studies on the ecophysiology of Tuber aestivum populations in the Carpatho-Pannonian region. Österreichische Zeitschrift für Pilzkunde 19:221–226

    Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Brown JKM, HovmØller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM, Jessop AC, Rezanoor HN (1991) Genetic uniformity in barley and its powdery mildew pathogen. Proc R Soc B 246:83–90

    Article  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    Article  CAS  Google Scholar 

  • Buller AHR (1909) Researches on fungi I. Longmans, Green and Co, London, 192p

    Book  Google Scholar 

  • Bulliard JB (1791) Histoire des champignons de la France. l’auteur, Paris

    Google Scholar 

  • Burroughs HE, Hansen SJ (2008) Managing indoor air quality. The Fairmont Press, Lilburn

    Google Scholar 

  • Butler MD, Alderman SC, Hammond PC, Berry RE (2001) Association of insects and ergot in Kentucky bluegrass seed production fields. J Econ Entomol 94(6):1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Caldwell IR, Vernes K, Barlocher F (2005) The northern flying squirrel (Glaucomys sabrinus) as a vector for inoculation of red spruce (Picea rubens) seedlings with ectomycorrhizal fungi. Sydowia 57(2):166–178

    Google Scholar 

  • Carmichael JW, Kencrick WB, Conners IL, Sigler L (1980) Genera of hyphomycetes. University of Alberta Press, Edmonton, AB

    Google Scholar 

  • Carter MV (1965) Ascospore deposition of Eutypa armeniacae. Aust JAgr Res 16:825–836

    Article  Google Scholar 

  • Carter MV, Moller WJ (1961) Factors affecting the survival and disseminations of Mycosphaerella pinodes (Berk. & Blox.) Vestergr. in South Australian irrigated pea fields. Aust J Agr Res 12:879–888

    Article  Google Scholar 

  • Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601

    Article  Google Scholar 

  • Castellano MA, Trappe JM, Maser Z, Maser C (1989) Key to spores of the genera of hypogeous fungi of north temperate forests with special reference to animal mycophagy. Mad River Press, Arcata, CA

    Google Scholar 

  • Castellano MA, Trappe JM, Luoma DL (2004) Sequestrate fungi. In: Foster MS, Mueller GM, Bills GF (eds) Biodiversity of fungi: inventory and monitoring methods. Academic, Burlington, pp 197–213

    Chapter  Google Scholar 

  • Castillo-Guevara C, Sierrra J, Galindo-Flores G, Cuautle M, Lara C (2011) Gut passage of epigeous ectomycorrhizal fungi by two opportunistic mycophagous rodents. Curr Zool 57(3):293–299

    Article  Google Scholar 

  • Castillo-Guevara C, Lara C, Pérez G (2012) Micofagia por roedores en un bosque templado del centro de México. Revista Mexicana de Biodiversidad 83(3):772–777

    Article  Google Scholar 

  • Chamberlain AC, Chadwick RC (1972) Deposition of spores and other particles on vegetation and soil. Ann Appl Biol 71:141–158

    Article  Google Scholar 

  • Chan YS, Thrower L (1980) The host‐parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. I. Structure and development of the host and host–parasite combination. New Phytol 85(2):201–207

    Article  Google Scholar 

  • Chou H-Hung WW-S (2002) Phylogenetic analysis of internal transcribed spacer regions of the genus Alternaria, and the significance of filament-beaked conidia. Mycol Res 106(2):164–169

    Article  Google Scholar 

  • Christensen CM (1950) Intramural dissemination of spores of Hormodendrum resinae. J Allergy 21:409–413

    Article  CAS  PubMed  Google Scholar 

  • Chung K, Tzeng DD (2004) Nutritional requirements of the edible gall-producing fungus Ustilago esculenta. J Biol Sci 4(2):246–252

    Article  Google Scholar 

  • Claus R, Hoppen HO, Karg H (1981) The secret of truffles: a steroidal pheromone? Experientia 37:1178–1179

    Article  CAS  Google Scholar 

  • Cohen Y, Rotem J (1970) The relationship of sporulation to photosynthesis in some obligatory and facultative parasites. Phytopathology 60:1600–1604

    Article  CAS  Google Scholar 

  • Colloff MJ (2009) Dust mites. Springer, Dordrecht

    Book  Google Scholar 

  • Cork SJ, Kenagy GJ (1989) Nutritional value of a hypogeous fungus for a forest-dwelling ground squirrel. Ecology 70:577–586

    Article  Google Scholar 

  • Cornut J, Chauvet E, Florian M-B, Assemat F, Elger A (2014) Aquatic hyphomycetes species are screened by the hyporheic zone of woodland streams. Appl Environ Microbiol 80(6):1949–1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czeczuga B, Orlowska M (1994) Some aquatic fungi of hyphomycetes on tree leaves. Annales Academiae Medicae Bialostocensis 39:86–92

    CAS  PubMed  Google Scholar 

  • Czeczuga B, Orlowska M (1999) Hyphomycetes in rain water, melting snow and ice. Acta Mycol 34:181–200

    Article  Google Scholar 

  • Dang C, Gessner M, Chauvet E (2007) Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia 99(1):24–32

    Article  PubMed  Google Scholar 

  • Daws LF (1967) Movement of air streams indoors. In: Gregory PH, Monteith JL (eds) Airborne microbes. Cambridge University Press, Cambridge, pp 31–59

    Google Scholar 

  • de Bary A (1887) Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon Press, Oxford, p 525

    Google Scholar 

  • de Bekker C, Quevillon L, Smith PB, Fleming K, Ghosh D, Patterson AD, Hughes DP (2014) Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol Biol 14(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  • Deacon J (2006) Fungal biology, 4th edn. Blackwell Publishing, Malden, MA

    Google Scholar 

  • Devarajan PT, Suryanarayanan TS (2006) Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 23:111–119

    Google Scholar 

  • di Castri F, Hansen AJ, Holland MM (eds) (1988) A new look at ecotones: emerging international projects on landscape boundaries. Biology International, Special Issue 17. IUBS, Paris

    Google Scholar 

  • Dowson D, Higginson GR (1959) A numerical solution to the elasto-hydrodynamic problem. J Mech Eng Sci 1:5–15

    Article  Google Scholar 

  • Dromph KM (2001) Dispersal of entomophagic fungi by collembolan. Soil Biol Biochem 33:2047–2051

    Article  CAS  Google Scholar 

  • Duarte S, Seena S, Bärlocher F, Cássio F, Pascoal C (2012) Preliminary insights into the phylogeography of six aquatic hyphomycete species. PLoS One 7(9), e45289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutzmann S (1985) Zur Analyse der Beziehung zwinschen Klimadaten und Sporenproduktion sowie Sporenverbreitung von Erysiphe graminis f. sp. hordei. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 92:629–642

    Google Scholar 

  • Dye C (1986) Vectorial capacity: must we measure all the components? Parasitol Today 2:203–209

    Article  CAS  PubMed  Google Scholar 

  • Edmonds RL (1979) Aerobiology—the ecological systems approach. Dowden, Hutchinson & Ross Inc, Stroudsburg, 386p

    Google Scholar 

  • Ekelöf E (1907) Studien uber den Bakteriengehalt der Luft und des Erdbodens der antarktischen Gegenden, ausgefuhrt wahrend der schwedischen Sudpolar-Eypedition 1901–1903. Z Hyg Infekt Krankh 56:344–370

    Article  Google Scholar 

  • El Hamalawi ZA (2008) Attraction, acquisition, retention and spatiotemporal distribution of soilborne plant pathogenic fungi by shore flies. Ann Appl Biol 152(2):169–177

    Article  Google Scholar 

  • Elbert W, Taylor PE, Andreae MO, Poschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588

    Article  CAS  Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51(3):346–351

    Article  Google Scholar 

  • Fermaud M, Gaunt RE. (1995) Thrips obscuratus as a potential vector of Botrytis cinerea in kiwifruit. Mycol Res 99(3):267–273

    Google Scholar 

  • Fernández D, Valencia MV, Molnár T, Vega A, Sagues E (1998) Daily and seasonal variations of Alternaria and Cladosporium airborne spores in León (North-West, Spain). Aerobiologia 14:215–220

    Article  Google Scholar 

  • Feuerherdt L, Petit S, Jusaitis M (2005) Distribution of mycorrhizal fungus associated with the endangered pink-lipped spider orchid (Arachnorchis (syn. Caladenia) behrii) at Warren Conservation Park in South Australia. N Z J Bot 43:367–371

    Article  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Fischer FG, Werner G (1958) Die chemotaxis der schwarmsporen von wasserpilzen (Saprolegniaceen). Hoppe-Seylers Z Physiol Chem 310:65–91

    Article  CAS  PubMed  Google Scholar 

  • Fisher PJ, Stradling DJ, Pegler DN (1994) Leaf cutting ants, their fungus gardens and the formation of basidiomata of Leucoagaricus gongylophorus. Mycologist 8(3):128–131

    Article  Google Scholar 

  • Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52:1–31

    Google Scholar 

  • Forster GF (1977) Effect of leaf-surface wax on the deposition of airborne propagules. Trans Br Mycol Soc 68:245–250

    Article  Google Scholar 

  • Fracchia S, Krapovickas L, Aranda-Rickert A, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75(11):1016–1023

    Article  Google Scholar 

  • Frank KL, Geils BW, Kalkstein LS, Thistle HW Jr (2008) Synoptic climatology of the long-distance dispersal of white pine blister rust II. Combination of surface and upper-level conditions. Int J Biometeorol 52(7):653–666

    Article  CAS  PubMed  Google Scholar 

  • Frank JL, Anglin S, Carrington EM, Taylor DS, Viratos B, Southworth D (2009) Rodent dispersal of fungal spores promotes seedling establishment away from mycorrhizal networks on Quercus garryana. Botany 87(9):821–829

    Article  CAS  Google Scholar 

  • Fritz JA, Seminara A, Roper M, Pringle A, Brenner MP (2013) A natural O-ring optimizes the dispersal of fungal spores. J R Soc Interface 10(85):20130187. doi:10.1098/rsif.2013.0187

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage SH, Isard SA, Colunga-G M (1999) Ecological scaling of aerobiological processes. Agr Forest Meteorol 97:249–261

    Article  Google Scholar 

  • Geagea LW, Huber L, Sache I (1997) Removal of urediniospores of brown (Puccinia recondita f. sp. tritici) and yellow (Puccinia striiformis) rusts of wheat from infected leaves submitted to a mechanical stress. Eur J Plant Pathol 103:785–793

    Article  Google Scholar 

  • Gerson U, Seaward MRD (1977) Lichen–invertebrate associations. In: Seaward MRD (ed) Lichen ecology. Academic, London, pp 69–119

    Google Scholar 

  • Giner MM, Garcia JSC, Camacho CN (2001) Airborne Alternaria spores in SE Spain (1993–98)-occurrence patterns, relationship with weather variables and prediction models. Grana 40(3):111–118

    Article  Google Scholar 

  • Gönczöl J (1976) Ecological observations on the aquatic hyphomycetes of Hungary II. Acta Bot Acad Sci Hung 22:51–60

    Google Scholar 

  • Gönczöl J, Révay Á (1985) Gorgomyces, gen.nov. an unusual Hyphomycete from terrestrial litter of Hungary. Nova Hedwig 41:453–461

    Google Scholar 

  • Gönczöl J, Révay Á (2003) Treehole fungal communities: aquatic, aero-aquatic and dematiaceous hyphomycetes. Fungal Divers 12:19–34

    Google Scholar 

  • Gönczöl J, Révay Á (2004) Fungal spores in rainwater: stemflow, throughfall and gutter conidial assemblages. Fungal Divers 16:67–86

    Google Scholar 

  • Górny RL, Reponen T, Grinshpun SA, Willeke K (2001) Source strength of fungal spore aerosolization from moldy building material. Atmos Environ 35:4853–4862

    Article  Google Scholar 

  • Göttlich E, van der Lubbe W, Lange B et al (2002) Fungal flora in groundwater-derived public drinking water. Int J Hyg Environ Health 205(4):269–279

    Article  PubMed  Google Scholar 

  • Gotwald WH (1969) Comparative morphological studies of the ants, with particular reference to the mouthparts (Hymenoptera: Formicidae). Memoirs of the Cornell University Agricultural Experiment Station, no. 408, 150p

    Google Scholar 

  • Gregory PH (1961) The microbiology of the atmosphere. Intersience Publishers Inc., London, 252p

    Book  Google Scholar 

  • Gregory PH, Stedman OJ (1958) Spore dispersal in Ophiobolus graminis and other fungi of cereal foot rots. Trans Br Mycol Soc 41(4):449–456

    Article  Google Scholar 

  • Gressitt JL (1965) Flora and fauna on backs of large Papuan moss-forest weevils. Science 150:1833–1835

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS, Richmond DS (2004) New benefits of endophyte-infected grasses emerge. Turfgrass Trends 2004:86–91

    Google Scholar 

  • Grigg AH, Mulligan DR (1999) Litterfall from two eucalypt woodlands in central Queensland. Aust J Ecol 24:662–664

    Article  Google Scholar 

  • Hageskal G, Gaustad P, Heier BT, Skaar I (2007) Occurrence of moulds in drinking water. J Appl Microbiol 102(3):774–780

    Article  CAS  PubMed  Google Scholar 

  • Halász Á, Magyar D, Bobvos J (2014) Aerobiological aspects of quarantine risks in grain warehouses—a study on bunt (Tilletia spp.) dispersal. Aerobiologia 30(2):161–171

    Article  Google Scholar 

  • Hamilton ED (1959) Studies on the air spora. Acta Allergol 13:143–175

    Article  CAS  PubMed  Google Scholar 

  • Harvey R (1967) Air-spora studies at Cardiff I. Cladosporium. Trans Br Mycol Soc 50(3):479–495

    Article  Google Scholar 

  • Harvey R (1970) Spore productivity in Cladosporium. Mycopathologia et mycologia applicata 41(3–4):251–256

    Article  Google Scholar 

  • Heinrichs G, Hübner I, Schmidt CK, de Hoog GS, Haase G (2013) Analysis of black fungal biofilms occurring at domestic water taps (II): potential routes of entry. Mycopathologia 175(5–6):399–412

    Article  PubMed  Google Scholar 

  • Herwitz SR (2006) Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf Process Landf 12:425–432

    Article  Google Scholar 

  • Hirst JM (1953) Changes in atmospheric spore content: diurnal periodicity and the effects of weather. Trans Br Mycol Soc 36:375–393

    Article  Google Scholar 

  • Hirst JM, Stedman OJ (1962) The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.). III. The supply of ascospores. Ann Appl Biol 50:551–567

    Article  Google Scholar 

  • Hirst JM, Stedman OJ (1963) Dry liberation of fungus spores by raindrops. J Gen Microbiol 33:335–344

    Article  CAS  PubMed  Google Scholar 

  • Hirst JM, Stedman OJ (1971) Patterns of spore dispersal in crops. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic Press, London, p 640

    Google Scholar 

  • Hjelmroos M (1993) Relationship between airborne fungal spore presence and weather variables. Grana 32:40–47

    Article  Google Scholar 

  • Ho TM, Tan BH, Ismail S, Bujang MK (1995) Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia. Asian Pac J Allergy Clin Immunol 13:17–22

    CAS  Google Scholar 

  • Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deisin HB (ed) Plant relationships. Springer, Berlin, pp 307–333

    Google Scholar 

  • Hörberg HM (2002) Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. Eur J Plant Pathol 108:73–80

    Article  Google Scholar 

  • Huber L, Madden LV, Fitt BDL (2006) Environmental biophysics applied to the dispersal of fungal spores by rain-splash. In: The epidemiology of plant diseases, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson GE (1967) A treatise on limnology, vol II: introduction to lake biology and the limnoplankton. Wiley, New York

    Google Scholar 

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto

    Google Scholar 

  • Hynes HBN (1983) Groundwater and stream ecology. Hydrobiologia 100:93–99

    Article  Google Scholar 

  • Incagnone G, Marrone F, Barone R, Robba L, Naselli-Flores L (2014) How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia:1–21

    Google Scholar 

  • Ing B (1967) Myxomycetes as food for other organisms. Proceedings of the South London Entomological and Natural History Society 1967:18–23

    Google Scholar 

  • Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25:339–417

    Article  Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Oxford University Press, London

    Google Scholar 

  • Ingold CT (1965) Spore liberation. Oxford University Press, London

    Google Scholar 

  • Ingold CT (1971) Fungal spores: their liberation and dispersal. Clarendon, Oxford, 302 p

    Google Scholar 

  • Ingold CT (1978) Role of mucilage in dispersal of certain fungi. Trans Br Mycol Soc 70(1):137–140

    Article  Google Scholar 

  • Iqbal SH, Webster J (1973) The trapping of aquatic hyphomycete spores by air bubbles. Trans Br Mycol Soc 60:37–48

    Article  Google Scholar 

  • Jakucs E, Vajna L (2003) Mikológia. Agroinform Press, Budapest, p 478

    Google Scholar 

  • Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Global Ecol Biogeogr 16:415–425

    Article  Google Scholar 

  • Jersáková J, Malinová T (2007) Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol 176:237–241

    Article  PubMed  Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Sci Total Environ 326:151–180

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, van Donk E, de Bruin A, Rijkeboer M, Ibelings B (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685

    Article  Google Scholar 

  • Kagami M, de Bruin A, Ibelings B, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Karamchand KS, Sridhar KR (2008) Water-borne conidial fungi inhabiting tree-holes of the west coast and Western Ghats of India. Czech Mycol 60:63–74

    Google Scholar 

  • Kataržytė M, Kutorga E (2011) Small mammal mycophagy in hemiboreal forest communities of Lithuania. Cent Eur J Biol 6:446–456

    Google Scholar 

  • Katial RK, Zhang Y, Jones RH, Dyer PD (1997) Atmospheric mould spore counts in relation to meteorological parameters. Int J Biometeorol 41:17–22

    Article  CAS  PubMed  Google Scholar 

  • Keller HW, Smith DM (1978) Dissemination of myxomycete spores through the feeding activities (ingestion/defecation) of an acarid mite. Mycologia 70:1239–1241

    Article  Google Scholar 

  • Kendrick B (1985) The fifth kingdom. Mycologue Publications, Waterloo, ON

    Google Scholar 

  • Kendrick B (1990) Fungal allergens. In: Smith EG (ed) Sampling and identifying allergenic pollens and moulds. Blewstone Press, San Antonio, pp 41–165

    Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133(2):193–199

    Article  Google Scholar 

  • Kohlmeyer J (1977) New genera and species of higher fungi from the deep sea (1615–5315m). Revue de mycologie 41:189–206

    Google Scholar 

  • Kohlmeyer J, Demoulin V (1981) Parasitic and symbiotic fungi on marine algae. Bot Mar 24(1):9–18

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1971) Marine fungi from tropical America and Africa. Mycologia 63(4):831–861

    Article  CAS  PubMed  Google Scholar 

  • Komonen A (2008) Colonization experiment of fungivorous beetles (Ciidae) in a lake–island system. Entomol Tidskr 129:141–145

    Google Scholar 

  • Kong H-Z, Qi Z-T (1991) Some filamentous fungi isolated from the mate rials of King George Island in Antarctica. Mycosystema 10:59–62

    Google Scholar 

  • Kovács M (1985) A nagyvárosok környezete. Gondolat Press, Budapest, p 108

    Google Scholar 

  • Kovács K (2012) Avarlebontási kísérletek dombvidéki kisvízfolyásokon (Litter-decomposition experiments in woodland streams). Dissertation, University of Pannonia

    Google Scholar 

  • Kowalski WJ (2006) Aerobiological engineering handbook: airborne disease and control technologies. McGraw-Hill, New York

    Google Scholar 

  • Kuehn K, Koehn R (1988) A mycofloral survey of an artesian community within the Edwards Aquifer of central Texas. Mycologia 80:646–652

    Article  Google Scholar 

  • Kurkela T (1997) The number of Cladosporium conidia in the air in different weather conditions. Grana 36:54–61

    Article  Google Scholar 

  • Lacey J (1981) The aerobiology of conidial fungi. In: Cole GT, Kendrick WB (eds) The biology of conidial fungi, vol 1. Academic, New York, pp 373–415

    Chapter  Google Scholar 

  • Lacey J (1991) Aggregation of spores and its effect on aerodynamic behaviour. Grana 30:347–445

    Article  Google Scholar 

  • Lacey J (1996) Spore dispersal– its role in ecology and disease: the British contribution to fungal aerobiology. Mycol Res 100(6):641–660

    Article  Google Scholar 

  • Lacey M, West J (2006) The air spora: a manual for catching and identifying airborne biological particles. Springer, Dordrecht

    Book  Google Scholar 

  • Lana VM, Mafia RG, Ferreira MA, Sartório RC, Zauza EAV, Mounteer AH, Alfenas AC (2012) Survival and dispersal of Puccinia psidii spores in eucalypt wood products. Australas Plant Pathol 41(3):229–238

    Article  Google Scholar 

  • Langenberg WJ, Sutton JC, Gillespie TJ (1977) Relation of weather variables and periodicities of airborne spores of Alternaria dauci. Phytopathology 67:879–883

    Article  Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75(20):6415–6421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levinson HZ, Levinson AR, Muller K (1991) The adaptive function of ammonia and guanine in the biocenotic association between Ascomycetes and flour mites. Naturwissenschaften 78:174–176

    Article  CAS  Google Scholar 

  • Lewis HE, Foster AR, Mullan BJ, Cox RN, Clark RP (1969) Aerodynamics of the human microenvironment. Lancet 1:1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4):762–769

    Article  PubMed  Google Scholar 

  • Lim SH, Chew FT, Dali SDBM, Tan HTW, Lee BW, Tan TK (1998) Outdoor airborne fungal spores in Singapore. Grana 37(4):246–252

    Article  Google Scholar 

  • Littlefield LJ (1981) Biology of the plant rusts. An introduction. Iowa State University Press, Ames, IA

    Google Scholar 

  • Littlefield LJ, Heath MC (1979) Ultrastructure of rust fungi. Academic, New York

    Google Scholar 

  • Lock MA (1981) River epilithon—a light and organic energy transducer. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum Press, New York, pp 3–40

    Chapter  Google Scholar 

  • Lopez M, Salvaggio EJ (1983) Climate-weather-air pollution 1203–1214. In: Middleton E, Reed CE, Ellis EF (eds) Allergy: principles and practice. C.V. Mosby St. Louis, Toronto, p 1440

    Google Scholar 

  • Lynch JM, Poole NJ (1984) Aerial dispersal and the development of microbial communities. In: Lynch JM, Poole NJ (eds) Microbial ecology: a conceptual approach. Blackwell, Oxford, pp 140–170

    Google Scholar 

  • Madden LV (1992) Rainfall and the dispersal of fungal spores. Adv Plant Pathol 8:40–79

    Google Scholar 

  • Madden LV (1997) Effects of rain on splash dispersal of fungal pathogens. Can J Plant Pathol 19(2):225–230

    Article  Google Scholar 

  • Madelin TM (1994) Fungal aerosols: a review. J Aerosol Sci 25:1405–1412

    Article  CAS  Google Scholar 

  • Madelin TM, Johnson HE (1992) Fungal and actinomycete spore aerosols measured at different humidities with an aerodynamic particle sizer. J Appl Bacteriol 72:400–409

    Article  CAS  PubMed  Google Scholar 

  • Magyar D (2005) Aerobiological studies on mycobiota. PhD thesis, St. István University

    Google Scholar 

  • Magyar D (2007) Aeromycological aspects of mycotechnology. In: Rai MK (ed) Mycotechnology: current trends and future prospects. I.K. International Publishing House, New Delhi, pp 226–263

    Google Scholar 

  • Magyar D, Gönczöl J, Révay Á, Grillenzoni F, Seijo-Coello MDC (2005) Stauro- and scolecoconidia in floral and honeydew honeys. Fungal Divers 20:103–120

    Google Scholar 

  • Magyar D, Eszéki ER, Gy O, Szécsi Á, Kredics L, Hatvani L, Körmöczi P (2011) The air spora of an orchid greenhouse. Aerobiologia 27(2):121–134

    Article  Google Scholar 

  • Magyar D, Szőke C, Koncz Z, Szécsi Á, Bobvos J (2012) Identification of airborne propagules of the Gibberella fujikuroi species complex during maize production. Aerobiologia 28(2):263–271

    Article  Google Scholar 

  • Malloch D, Blackwell M (1992) Dispersal of fungal diaspores. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Marcel Dekker, New York, pp 147–171

    Google Scholar 

  • Maraun M, Visser S, Scheu S (1998) Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Appl Soil Ecol 9(1):175–181

    Article  Google Scholar 

  • Marin AB, Libbey LM, Morgan ME (1984) Truffles: on the scent of buried treasure. McIlvainea 6:34–38

    Google Scholar 

  • Maser CA, Claridge AW, Trappe JM (2008) Trees, truffles, and beasts: how forests function. Rutgers University Press, New Brunswick

    Google Scholar 

  • Maunsell K (1954) Concentration of airborne spores in dwelling under normal conditions and under repair. Int Arch Allergy Appl Immunol 5:373–376

    Article  CAS  PubMed  Google Scholar 

  • McGee PA (2003) Pathogen survival and dispersal of plant parasites. University of Sydney. http://bugs.bio.usyd.edu.au/learning/resources/PlantPathology/survival_dispersal/survivalDispersal.html. Accessed 7 Jan 2015

  • McLaughlin D, Beckett A, Yoon K (1985) Ultrastructure and evolution of ballistosporic basidiospores. Bot J Linn Soc 91:253–271

    Article  Google Scholar 

  • Meredith DS (1961) Spore discharge in Deightoniella torulosa (Syd.) Ellis. Ann Bot 25:271–278

    Google Scholar 

  • Meredith DS (1962) Some components of the air-spora in Jamaican banana plantations. Ann Appl Biol 50:577–592

    Article  Google Scholar 

  • Meredith DS (1965) Violent spore release in Helminthosporium turcicum. Phytopathology 55:1099–1102

    Google Scholar 

  • Meredith DS (1966) Spore dispersal in Alternaria porri (Ellis) Neerg. on onion in Nebraska. Ann Appl Biol 57:67–73

    Article  Google Scholar 

  • Minshall GW, Cummins KW, Peterson RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42:1045–1055

    Article  Google Scholar 

  • Money NP, Fischer MVF (2009) Biomechanics in spore release in phytopathogens. In: Deisig H (ed) The mycota V. Plant relationships. Springer-Verlag, Berlin

    Google Scholar 

  • Morrison KD, Reekie EG, Jensen KIN (1998) Biocontrol of common St Johnswort (Hypericum perforatum) with Chrysolina hyperici and a host-specific Colletotrichum gloeosporioides. Weed Tech 12:426–435

    Google Scholar 

  • Mulholland PJ, Newbold JD, Elwood JW, Webster JR (1985) Phosphorus spiraling in a woodland stream; seasonal variations. Ecology 66:1012–1023

    Article  Google Scholar 

  • Nag Raj TR (1993) Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo

    Google Scholar 

  • Nagarajan S, Singh H (1976) Preliminary studies on forecasting wheat stem rust appearance. Agric Meteorol 17:281–289

    Article  Google Scholar 

  • Nagarajan S, Singh DV (1990) Long-distance dispersion of rust pathogens. Annu Rev Phytopathol 28:139–153

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1991) Physiochemical and environmental plant physiology. Academic, New York

    Google Scholar 

  • Noblin X, Yang S, Dumais J (2009) Surface tension propulsion of fungal spores. J Exp Biol 212(17):2835–2843

    Article  PubMed  Google Scholar 

  • Nowotny W (2000) Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere)–Lebensformen zwischen Pflanze und Tier. Stapfia 73:7–38

    Google Scholar 

  • Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley MA (2008) ‘Everything is everywhere but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci 39(3):314–325

    Article  PubMed  Google Scholar 

  • Odvody G, Bandyopadhyay R, Frederiksen RA, Isakeit T, Frederickson D, Kaufman H, Dahlberg J, Velasquex R, Torres H (1998) Sorghum ergot goes global in less than three years. APS Feature. www.apsnet.org/publications/apsnetfeatures/Pages/Ergot.aspx

  • Ogden EC, Hayes JV, Raynor GS (1969) Diurnal patterns of pollen emission in Ambrosia, Phleum, Zea and Ricinus. Am J Bot 56:16–21

    Article  CAS  PubMed  Google Scholar 

  • Ooka JJ, Kommendahl T (1977) Wind and rain dispersal of Fusarium moniliforme in corn fields. Phytopathology 67:1023–1026

    Article  Google Scholar 

  • Oros GR, Eszéki E, Naár Z, Magyar D (2014) Phytopatological properties of symbiotic Rhizoctonia solani strains associated to orchids. Acta Agraria Debreceniensis 62:65–71

    Google Scholar 

  • Padisák J, Soróczki-Pintér É, Rezner Z (2003) Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study. In Aquatic Biodiversity (pp. 243–257). Springer Netherlands

    Google Scholar 

  • Pady SM, Kramer CL, Clary R (1969) Periodicity in spore release in Cladosporium. Mycologia 60(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Panzer JD, Tullis EC, van Arsdel EP (1957) A simple 24-hour slide spore collector. Phytopathology 47:512–514

    Google Scholar 

  • Park D (1974) Aquatic hyphomycetes in non-aquatic habitats. Trans Br Mycol Soc 63(1):183–187, IN30–IN31

    Article  Google Scholar 

  • Pasanen AL, Pasanen P, Jantunen MJ, Kalliokoski P (1991) Significance of air humidity and air velocity for fungal spore release into the air. Atmos Environ 25:459–462

    Article  Google Scholar 

  • Pataky JK, Chandler MA (2003) Production of huitlacoche, Ustilago maydis: timing inoculation and controlling pollination. Mycologia 95(6):1261–1270

    Article  PubMed  Google Scholar 

  • Paul PA, El-Allaf SM, Lipps PE, Madden LV (2004) Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Galand PE (2008) Microbial biodiversity and biogeography. Polar lakes and rivers: limnology of arctic and antarctic aquatic ecosystems, p 213–230

    Google Scholar 

  • Peiqian L, Xiaoming P, Huifang S, Jingxin Z, Ning H, Birun L (2014) Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress. FEMS Microbiol Lett 350(2):138–145

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14(2):117–129

    Article  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Dis 89:784–796

    Article  Google Scholar 

  • Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Aust J Bot 43(6):565–575

    Article  Google Scholar 

  • Philips GB (1965) Safety in the chemical laboratory. XIII. Microbiological hazards in the laboratory, I. J Chem Educ 42:A43–44, A46–A48

    Google Scholar 

  • Piattoni F, Ori F, Morara M, Iotti M, Zambonelli A (2012) The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycol 47(2):145–153

    Article  Google Scholar 

  • Picioreanu C, van Loosdrecht MC, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Pieczynska E (1990) Lentic aquatic-terrestrial ecotones: their structure, functions, and importance. In: Décamps H, Naiman RJ (eds) The ecology and management of aquatic-terrestrial ecotones, vol 4. CRC Press, Boca Raton

    Google Scholar 

  • Pirozynski KA, Hawksowrth DL (eds) (1988) Coevolution of fungi with plants and animals. Academic, London

    Google Scholar 

  • Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005) The captured launch of a ballistospore. Mycologia 97(4):866–871

    Article  PubMed  Google Scholar 

  • Prochazka K, Stewart BA, Davies BR (1991) Leaf litter retention and its implications for shredder distribution in two headwater streams. Arch Hydrobiol 120:315–325

    Google Scholar 

  • Raguso RA, Roy BA (1998) ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol Ecol 7(9):1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Rantio-Lehtimäki A (1977) Research on airborne fungus spores in Finland. Grana 16:163–165

    Google Scholar 

  • Ranzoni FV (1979) Aquatic hyphomycetes from Hawaii. Mycologia 71:786–795

    Article  Google Scholar 

  • Real LA, Rathke BJ (1991) Individual variation in nectar production and its effect on fitness in Kalmia latifolia. Ecology 72:149–155

    Article  Google Scholar 

  • Rees G (1980) Factors affecting the sedimentation rate of marine fungal spores. Bot Mar 23:375–385

    Google Scholar 

  • Regan BC, Aloni S, Jensen K, Zettl A (2005) Surface-tension-driven nanoelectromechanical relaxation oscillator. Appl Phys Lett 86(123119):1–3

    Google Scholar 

  • Reponen T, Lehtonen M, Raunemaa T, Nevalainen A (1992) Effect of indoor sources on fungal spore concentrations and size distributions. J Aerosol Sci 23:663–666

    Article  Google Scholar 

  • Richardson DHS (1975) The vanishing lichens. David and Charles, Newton

    Google Scholar 

  • Roper M, Pepper RE, Brenner MP, Pringle A (2008) Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc Natl Acad Sci USA 105(52):20583–20588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roper M, Seminara A, Bandi MM, Cobb A, Dillard HR, Pringle A (2010) Dispersal of fungal spores on a cooperatively generated wind. Proc Natl Acad Sci USA 107(41):17474–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotem J (1964) The effect of weather on dispersal of Alternaria spores in a semi-arid region of Israel. Phytopathology 54:628–632

    Google Scholar 

  • Rotem J (1994) The genus Alternaria. APS Press, St Paul, MN, p 326

    Google Scholar 

  • Royle DJ, Hickman CJ (1964) Analysis of factor governing in vitro accumulation of zoospores of Pythium aphanidermatum on roots. I. Behaviour of zoospores. Can J Microbiol 10:151–162

    Article  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6(1–3):127–141

    Article  Google Scholar 

  • Sache I (2000) Short-distance dispersal of wheat rust spores by wind and rain. Agronomie 20:757–767

    Article  Google Scholar 

  • Saint-Jean S, Testa A, Madden LV, Huber L (2006) Relationship between pathogen splash dispersal gradient and Weber number of impacting drops. Agr Forest Meteorol 141:257–262

    Article  Google Scholar 

  • Samson RA (2010) Food and indoor fungi, CBS laboratory manual series. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Sanmartín OI, Ronquist F (2004) Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol 53:216–243

    Article  PubMed  Google Scholar 

  • Savage D, Barbetti MJ, MacLeod WJ, Salam MU, Renton M (2012) Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microb Ecol 63(3):578–585

    Article  PubMed  Google Scholar 

  • Scharf CS (1978) Birds and mammals as passive transporters for algae found in lichens. Can Field Nat 92:70–71

    Google Scholar 

  • Scharf SC, DePalma KN (1981) Birds and mammals as vectors of the chestnut blight fungus (Endothia parasitica). Can J Zool 59(9):1647–1650

    Article  Google Scholar 

  • Schickmann S, Urban A, Kräutler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170(2):395–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Schigel DS (2012) Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycology 3(4):258–272

    Google Scholar 

  • Seifert KA (1985) A monograph of Stilbella and some allied hyphomycetes. Stud Mycol 27:1–235

    Google Scholar 

  • Selosse M-A, Vohník M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7

    Article  PubMed  Google Scholar 

  • Seyd EL, Seaward MRD (1984) The association of oribatid mites with lichens. Zool J Linn Soc 80:369–420

    Article  Google Scholar 

  • Shchipanov NA, Aleksandrov DY, Aleksandrova AV (2006) Dispersal of micromycete spores by small mammals. Zool Zhurnal 851:101–113

    Google Scholar 

  • Shearer CA (1992) The role of woody debris. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin (Ecol Stud 94:77–98)

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16(1):49–67

    Article  Google Scholar 

  • Short DP, O’Donnell K, Zhang N, Juba JH, Geiser DM (2011) Wide spread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J Clin Microbiol 49(12):4264–4272

    Article  PubMed  PubMed Central  Google Scholar 

  • Shykoff JA, Bucheli E (1995) Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a veneral disease of plants. J Ecol 83(2):189–198

    Article  Google Scholar 

  • Sieber TN, Kowalski T, Holdenrieder O (1995) Fungal assemblages in stem and twig lesions of Quercus robur in Switzerland. Mycol Res 99(5):534–538

    Article  Google Scholar 

  • Sigee DC (2005) Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. Wiley, Chichester, p 544

    Google Scholar 

  • Silliman BR, Newel SY (2003) Fungal farming in a snail. PNAS 100(26):15643–15648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JA (1998) Why don’t more birds eat more fungi? Australas Mycol Newsl 17:67–68

    Google Scholar 

  • Simpson JA (2000) More on mycophagous birds. Australas Mycol 19(2):49–51

    Google Scholar 

  • Sivinski J (1981) Arthropods attracted to luminous fungi. Psyche 88:383–390

    Article  Google Scholar 

  • Sivinski JM (1998) Phototropism, bioluminescence, and the diptera. Fla Entomol 81:282–292

    Article  Google Scholar 

  • Skerratt LF, BergerL SR, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4(2):125–134

    Article  Google Scholar 

  • Skjøth CA, Sommer J, Frederiksen L, Gosewinkel Karlson U (2012) Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys 12(22):11107–11123

    Article  CAS  Google Scholar 

  • Skvarla JJ, Anderegg DE (1972) Infestation of cedar pollen by Rhizophidium (Chytridiomycetes). Grana 12(1):47–51

    Article  Google Scholar 

  • Smirnov NN (1964) On the quantity of allochthonous pollen and spores received by the Rybinsk Reservoir. Hydrobiologia 24:421–429

    Article  Google Scholar 

  • Smith BJ, Sampson BJ, Walter M (2012) Efficacy of bumble bee disseminated biological control agents for control of Botrytis blossom blight of rabbiteye blueberry. Int J Fruit Sci 12(1–3):156–168. doi:10.1080/15538362.2011.619359

    Article  Google Scholar 

  • Sommerstorff H (1911) Ein Tiere fangender Pilz. Plant Syst Evol 61:361–373

    Article  Google Scholar 

  • Sparrow F (1968) Ecology of freshwater fungi. In: Ainsworth G, Sussman A (eds) The fungi—an advanced treatise, the fungal population, vol III. Academic, New York, pp 41–93

    Chapter  Google Scholar 

  • Sreeramulu T (1959) The diurnal and seasonal periodicity of spores of certain plant pathogens in the air. Trans Br Mycol Soc 42(1):177–184

    Article  Google Scholar 

  • Sridhar KR (2009) Fungi in the tree canopy—an appraisal. In: Rai M, Bridge P (eds) Applied mycology. CAB International, New York, pp 73–91

    Chapter  Google Scholar 

  • Sridhar KR, Bärlocher F (1994) Viability of aquatic hyphomycete conidia in foam. Can J Bot 72:106–110

    Article  Google Scholar 

  • Sridhar KR, Karamchand KS (2009) Diversity of water-borne fungi in throughfall and stemflow of tree canopies in India. Sydowia 61:327–344

    Google Scholar 

  • Stephenson SL, Stempen H (1994) Myxomycetes: a handbook of slime molds. Timber Press, Portland, OR

    Google Scholar 

  • Stubbs CS (1995) Dispersal of soredia by the oribatid mite, Humerobates arborea. Mycologia 87:454–458

    Article  Google Scholar 

  • Suberkropp K (1992) Aquatic hyphomycetes communities. In: Caroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Marcel Dekker, New York, pp 729–747

    Google Scholar 

  • Suberkropp K, Klug MJ (1980) The maceration of deciduous leaf litter by aquatic hyphomycetes. Can J Bot 58:1025–1031

    Article  CAS  Google Scholar 

  • Suffert F, Latxague É, Sache I (2009) Plant pathogens as agroterrorist weapons: assessment of the threat for European agriculture and forestry. Food Secur 2:221–232

    Article  Google Scholar 

  • Szécsi Á, Magyar D (2011) Yeast-mycelium dimorphism in fumonisin-producing Fusarium verticillioides. Acta Phytopathologica et Entomologica Hungarica 46(2):185–190

    Article  Google Scholar 

  • Szécsi Á, Magyar D, Tóth S, Szőke C (2013) Poaceae: a rich source of endophytic fusaria. Acta Phytopathologica et Entomologica Hungarica 48(1):19–32

    Article  Google Scholar 

  • Talbot NJ (1997) Fungal biology: growing into the air. Curr Biol 7(2):R78–R81

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc B 361:1947–1963

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-d, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688

    Article  PubMed  CAS  Google Scholar 

  • Teron JN, Hutchison LJ (2013) Consumption of truffles and other fungi by the American Red Squirrel (Tamiasciurus hudsonicus) and the Eastern Chipmunk (Tamias striatus) (Sciuridae) in northwestern Ontario. Can Field-Nat 127(1):57–59

    Google Scholar 

  • Terrell EE, Batra LR (1982) Zizania latifolia and Ustilago esculenta, a grass-fungus association. Econ Bot 36(3):274–285

    Article  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1990) A dynamic model of fungal spora in a freshwater stream. Mycol Res 95:184–188

    Article  Google Scholar 

  • Thrall PH, Jarosz AM (1994) Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. I. Ecological and genetic determinants of disease spread. J Ecol 82:549–560

    Article  Google Scholar 

  • Tilak ST, Pande BN (2005) Current trends in aeromycological research. In: Rai MK, Deshmukh SK (eds) Fungi: diversity and biotechnology. Scientific Publishers, Jodhpur, pp 281–510

    Google Scholar 

  • Trail F (2007) Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol Lett 276(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM, Maser C (1977) Ectomycorrhizal fungi: interactions of mushrooms and truffles with beasts and trees. In: Walters T (ed) Mushrooms and man, an interdisciplinary approach to mycology. Linn-Benton Community College, Albany, OR, pp 65–179

    Google Scholar 

  • Tuboly L, Vörös J (1962) A dohányperonoszpóra és leküzdésének lehetőségei. Mezőgazdasági világirodalom 4:46–53

    Google Scholar 

  • Tucker K, Stolze JL, Kennedy AH, Money NP (2007) Biomechanics of conidial dispersal in the toxic mold Stachybotrys chartarum. Fungal Genet Biol 44:641–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Turott C, Levetin E (2001) Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int J Biometeorol 45:64–74

    Article  Google Scholar 

  • Uchida W, Matsunaga S, Sugiyama R, Kazama Y, Kawano S (2003) Morphological development of anthers induced by the dimorphic smut fungus Microbotryum violaceum in female flowers of the dioecious plant Silene latifolia. Planta 218(2):240–248

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, GA

    Google Scholar 

  • Urban A, Kataržytė M, Schickmann S, Kräutler K, Pla T (2012) Is small mammal mycophagy relevant for truffle cultivation? Acta Mycol 47(2):139–143

    Article  Google Scholar 

  • Van Leeuwen MR, Van Doorn TM, Golovina EA, Stark J, Dijksterhuis J (2010) Water-and air-distributed conidia differ in sterol content and cytoplasmic microviscosity. Appl Environ Microbiol 76(1):366–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varga J, Naár Z (2002) A collembolák mint lehetséges terjesztõi a mohákban élõ gombáknak. Folia Hist Nat Mus Matraensis 26:115–120

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46(1):72–82

    Article  Google Scholar 

  • Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ, Highham JH, Laing-Morton T, Maynard RL, Murray V, Strachan D, Tee RD (1997) Thunderstorm-related asthma-the epidemic of 24/25 June 1994. Clin Exp Allergy 27:725–736

    CAS  PubMed  Google Scholar 

  • Vernes K, Dunn L (2009) Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Australia. Austral Ecol 34(1):69–76

    Article  Google Scholar 

  • Viljanen-Rollinson SLH, Cromey MG (2002) Pathways of entry and spread of rust pathogens: implications for New Zealand’s biosecurity. N Z Plant Prot 55:42–48

    Google Scholar 

  • Vincent W (1988) Microbial ecosystems in Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Wadia KDR, McCartney HA, Butler DR (1998) Dispersal of Passalora personata conidia from groundnut by wind and rain. Mycol Res 102:355–360

    Article  Google Scholar 

  • Waggoner PE, Taylor GS (1958) Dissemination by atmospheric turbulence: spores of Peronospora tabacina. Phytopathology 48:46–51

    Google Scholar 

  • Waid JS (1954) Occurrence of aquatic hyphomycetes upon the root surfaces of beech grown in woodland soils. Trans Br Mycol Soc 37(4):420–421

    Article  Google Scholar 

  • Waller JM (1979) The recent spread of coffee rust (Hemileia vastatrix) and attempts to control it. In: Ebbels DL, King JE (eds) Plant health. Blackwell, Oxford, pp 275–283

    Google Scholar 

  • Wang ZG, Wang ZG, Cong LM, Liu XM, Tong Z, Cheng SY, Ge SJ (1999) Dimorphic fungus characteristics of fumonisin-producing strains of Fusarium moniliforme from Zhejiang. Mycopathology 144:165–167

    CAS  Google Scholar 

  • Ward SV, Manners JG (1974) Environmental effects on the quantity and viability of conidia produced by Erysiphe graminis. Trans Br Mycol Soc 62:119–128

    Article  Google Scholar 

  • Watson I, De Sousa C (1983) Long distance transport of spores of Puccinia graminis tritici in the southern hemisphere. Proc Linnean Soc NSW 106:311–321

    Google Scholar 

  • Webber JF (1990) Relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschi as vectors of Dutch elm disease. Eur J For Pathol 20:184–192

    Article  Google Scholar 

  • Webster J (1959) Experiments with spores of aquatic hyphomycetes. I. Sedimentation and impaction on smooth surfaces. Ann Bot 23:595–611

    Google Scholar 

  • Webster J (1970) Coprophilous fungi. Trans Br Mycol Soc 54:161–180

    Article  Google Scholar 

  • Webster J (1980) Introduction to fungi, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Webster J (1992) Anamorph-teleomorph relationships. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 99–117

    Chapter  Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution, and ecology of conidial fungi in freshwater habitats. In: Cole GC, Kendrick B (eds) Biology of conidial fungi, vol 1. Academic, New York

    Google Scholar 

  • Weinhold AR (1955) Rate of fall of uredospores of Puccinia graminis tritici Erikss & Henn. as affected by humidity and temperature. Technical Report of Botany and Plant Pathology, Department Colorado, p 104

    Google Scholar 

  • Weitz WHJ (2004) Naturally bioluminescent fungi. Mycologist 18(01):4–5

    Article  Google Scholar 

  • Weston WD, Taylor RE (1948) The plant in health and disease. Crosby Lockwood, London

    Google Scholar 

  • Wheeler WM (1907) The fungus growing ants of North America. In: Wingfield MJ, Seifert KA, Weber JF (eds) (1993) Ceratocysitis and Ophiostoma taxonomy. Dover Reprint, New York

    Google Scholar 

  • Wheelis M, Rózsa L, Dando M (eds) (2006) Deadly cultures: biological weapons since 1945. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Whitby SM (2002) Biological warfare against crops. Palgrave, New York

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Wicklow DT (1981) Biogeography and conidial fungi. In: Cole GT, Kendrick B (eds) The biology of conidial fungi, vol 1. Academic, New York, pp 417–447

    Chapter  Google Scholar 

  • Wiemken V, Boller T (2006) Delayed succession from alpine grassland to savannah with upright pine: limitation by ectomycorrhiza formation? For Ecol Manage 237:492–502

    Article  Google Scholar 

  • Wier AM, Tattar TA, Klekowski EJ (2000) Disease of Red Mangrove (Rhizophora mangley) in Southwest Puerto Rico Caused by Cytospora rhizophorae1. Biotropica 32(2):299–306

    Google Scholar 

  • Wiese MV (1998) Smuts. Common Bunt (Stinking Smut); Dwarf Bunt. In: Compendium of wheat diseases, 2nd edn. APS Press, St Paul, MN, pp 18–21

    Google Scholar 

  • Williets HM, Thomson AR, Morris G (1989) Laboratory studies on the selection of Pythium ultinum, plant-pathogenic fungus by Onychiurus auranticus (Collembola). Asp Appl Biol 23:373–378

    Google Scholar 

  • Wingen LU, Shaw MW, Brown JKM (2013) Long-distance dispersal and its influence on adaptation to host resistance in a heterogeneous landscape. Plant Pathol 62(1):9–20

    Article  Google Scholar 

  • Wingfield MJ, Seifert KA, Weber JF (eds) (1993) Ceratocystis and Ophiostoma taxonomy, ecology, and pathogenicity. APS Press, St. Paul, MN

    Google Scholar 

  • Wiseman R (1932) Untersuchungen über die überwinterung des Apfelschorfpilzes Fusicladium dendriticum (Wallr.) Fckl. im tötem Blatt sowie die Ausbreitung der Sommersporen (konidien) des Apfelschorfes. Landwirtschaftliches Jahrbuch der Schweiz 46:619–679

    Google Scholar 

  • Wood-Eggenschwiler S, Bärlocher F (1985) Geographical distribution of Ingoldian fungi. Verh Internat Verein Limnol 22:2780–2785

    Google Scholar 

  • Wornik S, Grube M (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microb Ecol 59(1):150–157

    Article  PubMed  Google Scholar 

  • Wurzbacher CM, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

  • Wurzbacher C, Rösel S, Rychła A, Grossart HP (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PloS one 9(4):e94643

    Google Scholar 

  • Young SA, Kovalek WP, del Signore KA (1978) Distances travelled by autumn-shed leaves introduced into a woodland stream. Am Midl Nat 100:217–222

    Article  Google Scholar 

  • Yu H, Sutton JC (1997) Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol Control 10(2):113–122

    Article  Google Scholar 

  • Yu Y, Wang Y (1995) Notes on some fungi isolated from freshwater in Antarctica. Acta Mycol Sin 15(2):81–85

    Google Scholar 

  • Yuceer C, Hsu C-Y, Erbilgin N, Klepzig KD (2011) Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. Acta Zool 92(3):216–224

    Article  Google Scholar 

  • Zhao S, Shamoun SF (2010) Conidial morphology, structure and development in Valdensinia heterodoxa. Mycology 1:113–120

    Article  Google Scholar 

  • Zoberi MH (1961) Take-off of mould spores in relation to wind speed and humidity. Ann Bot 25:53–64

    Google Scholar 

  • Zopf W (1884) Zur Kenntniss der Phycomyceten—Zur Morphologie und Biologie der Ancylisteen und Chytridiaceen zugleich ein Beitrag zur Phytopathologie, vol 47. Nova Acta der Kaiserlichen Leopoldino-Carolinischen Deutschen Akademie der Naturforscher, Halle

    Google Scholar 

Download references

Acknowledgments

We thank Ágnes Révay, Zoltán Bratek, and Gyula Oros for their excellent suggestions and providing literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donát Magyar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magyar, D., Vass, M., Li, DW. (2016). Dispersal Strategies of Microfungi. In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_14

Download citation

Publish with us

Policies and ethics