Skip to main content

Viral Phenotypic Resistance Assays

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

The emergence of the human immunodeficiency virus (HIV) pandemic in the early 1980s led to a marked escalation in virology research. A rapidly expanding knowledge base percolated not only within the HIV field but also in that of other viral diseases. The identification of drug targets in these viruses led to the development and approval of antiviral agents. However, especially for HIV, it quickly became apparent that the use of these agents could select for drug-resistant viruses. The need for assays to identify resistant strains and to guide physicians in treatment decisions was urgent. Today, the availability of numerous antiretroviral agents for HIV therapy, combined with assays to guide their use, allows the selection of combination regimens that can effectively suppress HIV replication for many years. The vast amount of experience gained over many years of HIV drug development and clinical research notably hastened more recent hepatitis C virus (HCV) drug development efforts. Combination drug regimens for HCV that include one or more direct-acting antiviral agents to different targets have beenevaluated rapidly and optimized to minimize the emergence of resistance-associated variants and to promote viral clearance.

This chapter reviews the major phenotypic antiviral susceptibility assays, with a focus on HIV- and HCV-related assays. The use of intact virus assays, the development and clinical applications of recombinant virus assays for HIV drug resistance, replication capacity and coreceptor tropism determination, the use of HCV replicon assays for drug development, and the status of phenotypic assays for other viruses including HBV, CMV, HSV, and influenza virus are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. d’Herelle F, Smith GH. The bacteriophage and its behavior. Baltimore, MD: Williams and Wilkins; 1926.

    Google Scholar 

  2. Dulbecco R, Vogt M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harb Symp Quant Biol. 1953;18:273–9.

    Article  CAS  PubMed  Google Scholar 

  3. Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954;99(2):167–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dulbecco R, Vogt M. Biological properties of poliomyelitis viruses as studied by the plaque technique. Ann N Y Acad Sci. 1955;61(4):790–800.

    Article  CAS  PubMed  Google Scholar 

  5. Sidwell RW, Smee DF. In vitro and in vivo assay systems for study of influenza virus inhibitors. Antivir Res. 2000;48(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  6. Christophers J, Clayton J, Craske J, Ward R, Collins P, Trowbridge M, Darby G. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother. 1998;42(4):868–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Landry ML, Stanat S, Biron K, Brambilla D, Britt W, Jokela J, Chou S, Drew WL, Erice A, Gilliam B, Lurain N, Manischewitz J, Miner R, Nokta M, Reichelderfer P, Spector S, Weinberg A, Yen-Lieberman B, Crumpacker C. A standardized plaque reduction assay for determination of drug susceptibilities of cytomegalovirus clinical isolates. Antimicrob Agents Chemother. 2000;44(3):688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biron KK, Fyfe JA, Noblin JE, Elion GB. Selection and preliminary characterization of acyclovir-resistant mutants of varicella zoster virus. Am J Med. 1982;73(1A):383–6.

    Article  CAS  PubMed  Google Scholar 

  9. Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to Zidovudine (AZT) isolated during prolonged therapy. Science. 1989;243(March 31):1731–4.

    Article  CAS  PubMed  Google Scholar 

  10. Japour AJ, Mayers DL, Johnson VA, Kuritzkes DR, Beckett LA, Arduino JM, Lane J, Black RJ, Reichelderfer PS, D’Aquila RT, Crumpacker CS. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. Antimicrob Agents Chemother. 1993;37(5):1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bacon TH, Howard BA, Spender LC, Boyd MR. Activity of penciclovir in antiviral assays against herpes simplex virus. J Antimicrob Chemother. 1996;37(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  12. Prichard MN, Turk SR, Coleman LA, Engelhardt SL, Shipman Jr C, Drach JC. A microtiter virus yield reduction assay for the evaluation of antiviral compounds against human cytomegalovirus and herpes simplex virus. J Virol Methods. 1990;28(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  13. Leary JJ, Wittrock R, Sarisky RT, Weinberg A, Levin MJ. Susceptibilities of herpes simplex viruses to penciclovir and acyclovir in eight cell lines. Antimicrob Agents Chemother. 2002;46(3):762–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McSharry JJ, McDonough AC, Olson BA, Drusano GL. Phenotypic drug susceptibility assay for influenza virus neuraminidase inhibitors. Clin Diagn Lab Immunol. 2004;11(1):21–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Drew WL, Miner RC, Marousek GI, Chou S. Maribavir sensitivity of cytomegalovirus isolates resistant to ganciclovir, cidofovir or foscarnet. J Clin Virol. 2006;37(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  16. Dankner WM, Scholl D, Stanat SC, Martin M, Sonke RL, Spector SA. Rapid antiviral DNA-DNA hybridization assay for human cytomegalovirus. J Virol Methods. 1990;28(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  17. Chesebro B, Wehrly K. Development of a sensitive quantitative focal assay for human immunodeficiency virus infectivity. J Virol. 1988;62(10):3779–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992;66(4):2232–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill CM, Deng H, Unutmaz D, Kewalramani VN, Bastiani L, Gorny MK, Zolla-Pazner S, Littman DR. Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J Virol. 1997;71(9):6296–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997;276(5310):276–9.

    Article  CAS  PubMed  Google Scholar 

  21. Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, Carnegie G, Desselberger U, Gray PW, Weiss RA, Clapham PR. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol. 1996;70(12):8355–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vodicka MA, Goh WC, Wu LI, Rogel ME, Bartz SR, Schweickart VL, Raport CJ, Emerman M. Indicator cell lines for detection of primary strains of human and simian immunodeficiency viruses. Virology. 1997;233(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kellam P, Larder BA. Recombinant virus assay: a rapid, phenotypic assay for assessment of drug susceptibility of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother. 1994;38(1):23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boucher CA, Keulen W, van Bommel T, Nijhuis M, de Jong D, de Jong MD, Schipper P, Back NK. Human immunodeficiency virus type 1 drug susceptibility determination by using recombinant viruses generated from patient sera tested in a cell-killing assay. Antimicrob Agents Chemother. 1996;40(10):2404–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988;20(4):309–21.

    Article  CAS  PubMed  Google Scholar 

  26. Hertogs K, de Bethune MP, Miller V, Ivens T, Schel P, Van Cauwenberge A, Van Den Eynde C, Van Gerwen V, Azijn H, Van Houtte M, Peeters F, Staszewski S, Conant M, Bloor S, Kemp S, Larder B, Pauwels R. A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother. 1998;42(2):269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Race E, Dam E, Obry V, Paulous S, Clavel F. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies. AIDS. 1999;13(15):2061–8.

    Article  CAS  PubMed  Google Scholar 

  28. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, Tian H, Smith D, Winslow GA, Capon DJ, Whitcomb JM. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2000;44(4):920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fransen S, Gupta S, Huang W, Petropoulos CJ, Kiss L, Parkin NT. Performance characteristics and validation of the PhenoSense HIV integrase assay. In: 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington, DC, 24–28 Oct 2008. p. Abstract H-1214.

    Google Scholar 

  30. Fransen S, Karmochkine M, Huang W, Weiss L, Petropoulos CJ, Charpentier C. Longitudinal analysis of raltegravir susceptibility and integrase replication capacity of human immunodeficiency virus type 1 during virologic failure. Antimicrob Agents Chemother. 2009;53(10):4522–4. doi:10.1128/AAC.00651-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. PhenoSense GT plus Integrase phenotype report (algorithm version 12). Monogram Biosciences Inc., South San Francisco, US. (2015). http://www.monogrambio.com/sites/default/files/PhenoSenseGT-Plus-INtegrase_watermark.pdf.

  32. Choe S, Feng Y, Limoli K, Salzwedel K, McCallister S, Huang W, Parkin N. Measurement of maturation inhibitor susceptibility using the PhenoSense HIV assay. In: 15th Conference on Retroviruses and Opportunistic Infections, Boston, MA, US, 3–6 Feb 2008. p. Abstract 880.

    Google Scholar 

  33. Gunthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, Burger DM, Cahn P, Gallant JE, Glesby MJ, Reiss P, Saag MS, Thomas DL, Jacobsen DM, Volberding PA. Antiretroviral treatment of adult HIV infection, recommendations of the International Antiviral Society-USA Panel. JAMA. 2014;312(4):410–25. doi:10.1001/jama.2014.8722.

    Article  PubMed  CAS  Google Scholar 

  34. Qari SH, Respess R, Weinstock H, Beltrami EM, Hertogs K, Larder BA, Petropoulos CJ, Hellmann N, Heneine W. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of human immunodeficiency virus type 1. J Clin Microbiol. 2002;40(1):31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller V, Schuurman R, Clavel F, Harrigan PR, Hellmann N, Hertogs K, Race E, Phillips AN, DeGruttola V. Comparison of HIV-1 drug susceptibility (phenotype) results reported by three major laboratories. Antivir Ther. 2001;6 Suppl 1:S129.

    Google Scholar 

  36. Zhang J, Rhee SY, Taylor J, Shafer RW. Comparison of the precision and sensitivity of the Antivirogram and PhenoSense HIV drug susceptibility assays. J Acquir Immune Defic Syndr. 2005;38(4):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naeger LK, Struble KA. Food and Drug Administration analysis of tipranavir clinical resistance in HIV-1-infected treatment-experienced patients. AIDS. 2007;21(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  38. Coakley E, Chappey C, Benhamida J, Picchio G, Tambuyzer L, Vingerhoets J, Bethune M-P. Biological and clinical cut off analyses for etravirine in the PhenoSenseTM HIV assay. Antivir Ther. 2008;13 Suppl 3:A134 (Abstract 122).

    Google Scholar 

  39. Lanier ER, Hellmann N, Scott J, Ait-Khaled M, Melby T, Paxinos E, Werhane H, Petropoulos CJ, Kusaba E, St. Clair M, Smiley L, Lafon S. Determination of a clinically relevant phenotypic resistance “cutoff” for abacavir using the PhenoSense assay. In: 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, Feb 2001. p. Abstract 254.

    Google Scholar 

  40. Kempf DJ, Isaacson JD, King MS, Brun SC, Sylte J, Richards B, Bernstein B, Rode R, Sun E. Analysis of the virological response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir therapy. Antivir Ther. 2002;7(3):165–74.

    CAS  PubMed  Google Scholar 

  41. Skowron G, Whitcomb J, Wesley M, Petropoulos C, Hellmann N, Holodniy M, Kolberg J, Detmer J, Wrin MT, Frost K. Viral load response to the addition of lamivudine correlates with phenotypic susceptibility to lamivudine and the presence of T215Y/F in the absence of M184V. Antivir Ther. 1999;4 suppl 1:55–6.

    Google Scholar 

  42. Szumiloski J, Wilson H, Jensen E, Campo R, Miller N, Rice H, Zolopa A, Klein D, Horberg M, Coram M, Hellmann N, Bates M, Condra JH. Relationships between indinavir resistance and virological responses to indinavir-ritonavir-containing regimens in patients with previous protease inhibitor failure. Antivir Ther. 2002;7 suppl 1:S127.

    Google Scholar 

  43. Flandre P, Chappey C, Marcelin AG, Ryan K, Maa JF, Bates M, Seekins D, Bernard MC, Calvez V, Molina JM. Phenotypic susceptibility to didanosine is associated with antiviral activity in treatment-experienced patients with HIV-1 infection. J Infect Dis. 2007;195(3):392–8.

    Article  CAS  PubMed  Google Scholar 

  44. Borroto-Esoda K, Miller M, Petropoulos CJ, Parkin N. A Comparison of the phenotypic profiles of emtricitabine (FTC) and lamivudine (3TC). In: 44th Interscience Conference on Antimicrobial Agents and Chemotherapeutics, Washington, DC, 30 Oct–2 Nov 2004.

    Google Scholar 

  45. Coakley EP, Chappey C, Flandre P, Pesano R, Parkin N, Kohlbrenner V, Hall DB, Mayers DL. Defining lower (L) and upper (U) phenotypic clinical cutoffs (CCO’s) for tipranavir (TPV), lopinavir (LPV), saquinavir (SQV) and amprenavir (APV) co-administered with ritonavir (r) within the RESIST Dataset using the PhenoSense Assay. Antivir Ther. 2006;11:S81.

    Google Scholar 

  46. Coakley EP, Chappey C, Maa JF, Wang S, Bates M, Wirtz V, Seekins D. Determination of phenotypic clinical cutoffs for atazanavir and atazanavir/ritonavir from AI424-043 and AI424-045. Antivir Ther. 2005;10:S8.

    Google Scholar 

  47. Coakley EP, Chappey C, Benhamida J, Picchio G, de Béthune M-P. Defining the upper and lower phenotypic clinical cut-offs for darunavir/r (DRV/r) by the PhenoSense assay. In: Paper presented at the 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, 2007.

    Google Scholar 

  48. HIV-1 Phenoscript phenotype report (version 1.3). Specialty Labs, Santa Monica, US. 2003. http://www.specialtylabs.com/download/HIV_Phenoscript.pdf.

  49. Dam E, Obry V, Lecoeur H, Jouvenne P, Meynard J-L, Clavel F, Race E. Definition of clinically relevant cut-offs for the interpretation of phenotypic data obtained using Phenoscript. Antivir Ther. 2001;6 Suppl 1:123.

    Google Scholar 

  50. Antivirogram phenotype report (version 2.5.00). Virco BVBA, Mechelen, Belgium. 2008. http://www.janssendiagnostics.com/uploads/File/product_center/AVG_2.5.00_Example.pdf.

  51. De Meyer S, Vangeneugden T, Lefebvre E, Azijn H, De Baere I, Van Baelen B, de Béthune M-P. Phenotypic and genotypic determinants of resistance to TMC114: pooled analysis of POWER 1, 2 and 3. Antivir Ther. 2006;11:S83.

    Google Scholar 

  52. Lanier ER, Ait-Khaled M, Scott J, Stone C, Melby T, Sturge G, St Clair M, Steel H, Hetherington S, Pearce G, Spreen W, Lafon S. Antiviral efficacy of abacavir in antiretroviral therapy-experienced adults harbouring HIV-1 with specific patterns of resistance to nucleoside reverse transcriptase inhibitors. Antivir Ther. 2004;9(1):37–45.

    CAS  PubMed  Google Scholar 

  53. Harrigan PR, Montaner JS, Wegner SA, Verbiest W, Miller V, Wood R, Larder BA. World-wide variation in HIV-1 phenotypic susceptibility in untreated individuals: biologically relevant values for resistance testing. AIDS. 2001;15(13):1671–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bates M, Chappey C, Parkin N. Mutations in p6 Gag associated with alterations in replication capacity in drug sensitive HIV-1 are implicated in the budding process mediated by TSG101 and AIP1. In: 11th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, 8–11 Feb 2004. p. Abstract 121.

    Google Scholar 

  55. Verlinden Y, Vermeiren H, Lecocq P, Bacheler L, McKenna P, Vanpachtenbeke M, Laenen-Horvat LI, Van Houtte M, Stuyver LJ. Assessment of the Antivirogram performance over time including a revised definition of biological test cut-off values. Antivir Ther. 2005;10:S51.

    Google Scholar 

  56. Borroto-Esoda K, Parkin N, Miller MD. A comparison of the phenotypic susceptibility profiles of emtricitabine and lamivudine. Antivir Chem Chemother. 2007;18(5):297–300.

    Article  CAS  PubMed  Google Scholar 

  57. Haubrich RH, Kemper CA, Hellmann NS, Keiser PH, Witt MD, Tilles JG, Forthal DN, Leedom J, Leibowitz M, McCutchan JA, Richman DD. A randomized, prospective study of phenotype susceptibility testing versus standard of care to manage antiretroviral therapy: CCTG 575. AIDS. 2005;19(3):295–302.

    PubMed  Google Scholar 

  58. Miller MD, Margot N, Lu B, Zhong L, Chen SS, Cheng A, Wulfsohn M. Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients. J Infect Dis. 2004;189(5):837–46.

    Article  CAS  PubMed  Google Scholar 

  59. Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2004;48(2):437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Azijn H, Tirry I, Vingerhoets J, de Bethune MP, Kraus G, Boven K, Jochmans D, Van Craenenbroeck E, Picchio G, Rimsky LT. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother. 2009;54(2):718–27. doi:10.1128/AAC.00986-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Limoli K, Huang W, Toma J, Fransen S, Wrin MT, Kiss L, Utter S, Coakley E, Petropoulos CJ, Whitcomb JM. Validation, performance characteristics of the PhenoSense HIV fusion inhibitor susceptibility assay. In: 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington, DC, 16–19 Dec 2005. p. Abstract H1076.

    Google Scholar 

  62. Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: recent development and clinical use. Curr Opin Virol. 2013;3(1):51–7. doi:10.1016/j.coviro.2012.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antivir Res. 2013;98(2):158–70. doi:10.1016/j.antiviral.2013.03.017.

    Article  CAS  PubMed  Google Scholar 

  64. Greenberg M, Cammack N, Salgo M, Smiley L. HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol. 2004;14(5):321–37.

    Article  CAS  PubMed  Google Scholar 

  65. Marcelin AG, Reynes J, Yerly S, Ktorza N, Segondy M, Piot JC, Delfraissy JF, Kaiser L, Perrin L, Katlama C, Calvez V. Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. AIDS. 2004;18(9):1340–2.

    Article  CAS  PubMed  Google Scholar 

  66. Zollner B, Feucht HH, Schroter M, Schafer P, Plettenberg A, Stoehr A, Laufs R. Primary genotypic resistance of HIV-1 to the fusion inhibitor T-20 in long-term infected patients. AIDS. 2001;15(7):935–6.

    Article  CAS  PubMed  Google Scholar 

  67. Labrosse B, Labernardiere JL, Dam E, Trouplin V, Skrabal K, Clavel F, Mammano F. Baseline susceptibility of primary human immunodeficiency virus type 1 to entry inhibitors. J Virol. 2003;77(2):1610–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toma J, Weinheimer SP, Stawiski E, Whitcomb JM, Lewis ST, Petropoulos CJ, Huang W. Loss of asparagine-linked glycosylation sites in variable region 5 of human immunodeficiency virus type 1 envelope is associated with resistance to CD4 antibody ibalizumab. J Virol. 2011;85(8):3872–80. doi:10.1128/JVI.02237-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Petropoulos C, Huang W, Toma J, Fransen S, Bonhoeffer S, Whitcomb J. Resistance to HIV-1 entry inhibitors may occur by multiple molecular mechanisms. Antivir Ther. 2004;9(S25):Abstract 19.

    Google Scholar 

  70. Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, Stockdale M, Dorr P, Ciaramella G, Perros M. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007;81(5):2359–71. doi:10.1128/JVI.02006-06.

    Article  CAS  PubMed  Google Scholar 

  71. Lu J, Kuritzkes DR. A novel recombinant marker virus assay for comparing the relative fitness of hiv-1 reverse transcriptase variants. J Acquir Immune Defic Syndr. 2001;27(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  72. Resch W, Parkin N, Stuelke EL, Watkins T, Swanstrom R. A multiple-site-specific heteroduplex tracking assay as a tool for the study of viral population dynamics. Proc Natl Acad Sci U S A. 2001;98(1):176–81.

    Article  CAS  PubMed  Google Scholar 

  73. Deeks SG, Wrin T, Liegler T, Hoh R, Hayden M, Barbour JD, Hellmann NS, Petropoulos CJ, McCune JM, Hellerstein MK, Grant RM. Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N Engl J Med. 2001;344(7):472–80.

    Article  CAS  PubMed  Google Scholar 

  74. Skowron G, Spritzler JG, Weidler J, Robbins GK, Johnson VA, Chan ES, Asmuth DM, Gandhi RT, Lie Y, Bates M, Pollard RB, Team NNAP, Biosciences M. Replication capacity in relation to immunologic and virologic outcomes in HIV-1-infected treatment-naive subjects. J Acquir Immune Defic Syndr. 2009;50(3):250–8. doi:10.1097/QAI.0b013e3181938faf.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barbour JD, Hecht FM, Wrin T, Liegler TJ, Ramstead CA, Busch MP, Segal MR, Petropoulos CJ, Grant RM. Persistence of primary drug resistance among recently HIV-1 infected adults. AIDS. 2004;18(12):1683–9.

    Article  CAS  PubMed  Google Scholar 

  76. Masquelier B, Capdepont S, Neau D, Peuchant O, Taupin JL, Coakley E, Lie Y, Carpentier W, Dabis F, Fleury HJ. Virological characterization of an infection with a dual-tropic, multidrug-resistant HIV-1 and further evolution on antiretroviral therapy. AIDS. 2007;21(1):103–6.

    Article  PubMed  Google Scholar 

  77. Gandhi RT, Wurcel A, Rosenberg ES, Johnston MN, Hellmann N, Bates M, Hirsch MS, Walker BD. Progressive reversion of human immunodeficiency virus type 1 resistance mutations in vivo after transmission of a multiply drug-resistant virus. Clin Infect Dis. 2003;37(12):1693–8.

    Article  PubMed  Google Scholar 

  78. van Maarseveen NM, Wensing AM, de Jong D, Taconis M, Borleffs JC, Boucher CA, Nijhuis M. Persistence of HIV-1 variants with multiple protease inhibitor (PI)-resistance mutations in the absence of PI therapy can be explained by compensatory fixation. J Infect Dis. 2007;195(3):399–409.

    Article  PubMed  Google Scholar 

  79. Martinez-Picado J, Savara AV, Sutton L, D’Aquila RT. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol. 1999;73(5):3744–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Prado JG, Wrin T, Beauchaine J, Ruiz L, Petropoulos CJ, Frost SD, Clotet B, D’Aquila RT, Martinez-Picado J. Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity. AIDS. 2002;16(7):1009–17.

    Article  CAS  PubMed  Google Scholar 

  81. Maguire MF, Guinea R, Griffin P, Macmanus S, Elston RC, Wolfram J, Richards N, Hanlon MH, Porter DJ, Wrin T, Parkin N, Tisdale M, Furfine E, Petropoulos C, Snowden BW, Kleim JP. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J Virol. 2002;76(15):7398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ziermann R, Limoli K, Das K, Arnold E, Petropoulos CJ, Parkin NT. A mutation in human immunodeficiency virus type 1 protease, N88S, that causes in vitro hypersensitivity to amprenavir. J Virol. 2000;74(9):4414–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Resch W, Ziermann R, Parkin N, Gamarnik A, Swanstrom R. Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly. J Virol. 2002;76(17):8659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deval J, White KL, Miller MD, Parkin NT, Courcambeck J, Halfon P, Selmi B, Boretto J, Canard B. Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 reverse transcriptase containing both K65R and M184V mutations. J Biol Chem. 2004;279(1):509–16. doi:10.1074/jbc.M308806200.

    Article  CAS  PubMed  Google Scholar 

  85. White KL, Margot NA, Wrin T, Petropoulos CJ, Miller MD, Naeger LK. Molecular mechanisms of resistance to human immunodeficiency virus type 1 with reverse transcriptase mutations K65R and K65R + M184V and their effects on enzyme function and viral replication capacity. Antimicrob Agents Chemother. 2002;46(11):3437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang W, Gamarnik A, Limoli K, Petropoulos CJ, Whitcomb JM. Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication. J Virol. 2003;77(2):1512–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martinez-Picado J, Martinez MA. HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res. 2008;134(1–2):104–23. doi:10.1016/j.virusres.2007.12.021.

    Article  CAS  PubMed  Google Scholar 

  88. Buckheit Jr RW. Understanding HIV resistance, fitness, replication capacity and compensation: targeting viral fitness as a therapeutic strategy. Expert Opin Investig Drug. 2004;13(8):933–58. doi:10.1517/13543784.13.8.933.

    Article  CAS  Google Scholar 

  89. Sufka SA, Ferrari G, Gryszowka VE, Wrin T, Fiscus SA, Tomaras GD, Staats HF, Patel DD, Sempowski GD, Hellmann NS, Weinhold KJ, Hicks CB. Prolonged CD4+ cell/virus load discordance during treatment with protease inhibitor-based highly active antiretroviral therapy: immune response and viral control. J Infect Dis. 2003;187(7):1027–37.

    Article  CAS  PubMed  Google Scholar 

  90. Campbell TB, Schneider K, Wrin T, Petropoulos CJ, Connick E. Relationship between in vitro human immunodeficiency virus type 1 replication rate and virus load in plasma. J Virol. 2003;77(22):12105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2:8. doi:10.1101/cshperspect.a006866.

    Article  CAS  Google Scholar 

  92. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med. 1997;185(4):621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, Wrin T, Chappey C, Kiss LD, Paxinos EE, Petropoulos CJ. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother. 2007;51(2):566–75.

    Article  CAS  PubMed  Google Scholar 

  94. Reeves JD, Coakley E, Petropoulos CJ, Whitcomb JM. An enhanced-sensitivity Trofile HIV coreceptor tropism assay for selecting patients for therapy with entry inhibitors targeting CCR5: a review of analytical and clinical studies. J Viral Entry. 2009;3:94–102.

    Google Scholar 

  95. Levine B, Leskowitz R, Davis M. Personalized gene therapy locks out HIV, paving the way to control virus without antiretroviral drugs. Expert Opin Biol Ther. 2015;15(6):831–43. doi:10.1517/14712598.2015.1035644.

    Article  CAS  PubMed  Google Scholar 

  96. The ACTG Virology Technical Advisory Committee and the Division of AIDS National Institute of Allergy and Infectious Diseases. (1997). The ACTG Virology Manual for HIV laboratories.

    Google Scholar 

  97. McKnight A, Wilkinson D, Simmons G, Talbot S, Picard L, Ahuja M, Marsh M, Hoxie JA, Clapham PR. Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J Virol. 1997;71(2):1692–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Koot M, Vos AH, Keet RP, de Goede RE, Dercksen MW, Terpstra FG, Coutinho RA, Miedema F, Tersmette M. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992;6(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  99. Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med. 1993;118(9):681–8.

    Article  CAS  PubMed  Google Scholar 

  100. Chen Z, Zhou P, Ho DD, Landau NR, Marx PA. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol. 1997;71(4):2705–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Trouplin V, Salvatori F, Cappello F, Obry V, Brelot A, Heveker N, Alizon M, Scarlatti G, Clavel F, Mammano F. Determination of coreceptor usage of human immunodeficiency virus type 1 from patient plasma samples by using a recombinant phenotypic assay. J Virol. 2001;75(1):251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Su Z, Gulick RM, Krambrink A, Coakley E, Hughes MD, Han D, Flexner C, Wilkin TJ, Skolnik PR, Greaves WL, Kuritzkes DR, Reeves JD, and for the AIDS Clinical Trials Group A5211 Team. Response to vicriviroc in treatment-experienced subjects, as determined by an enhanced-sensitivity coreceptor tropism assay: reanalysis of AIDS clinical trials group A5211. J Infect Dis. 2009;200(11):1724–8. doi:10.1086/648090.

  103. Cooper DA, Heera J, Goodrich J, Tawadrous M, Saag M, Dejesus E, Clumeck N, Walmsley S, Ting N, Coakley E, Reeves JD, Reyes-Teran G, Westby M, Van Der Ryst E, Ive P, Mohapi L, Mingrone H, Horban A, Hackman F, Sullivan J, Mayer H. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis. 2010;201(6):803–13. doi:10.1086/650697.

    Article  CAS  PubMed  Google Scholar 

  104. Wilkin TJ, Goetz MB, Leduc R, Skowron G, Su Z, Chan ES, Heera J, Chapman D, Spritzler J, Reeves JD, Gulick RM, Coakley E. Reanalysis of coreceptor tropism in HIV-1-infected adults using a phenotypic assay with enhanced sensitivity. Clin Infect Dis. 2011;52(7):925–8. doi:10.1093/cid/cir072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coakley E, Reeves JD, Huang W, Mangas-Ruiz M, Maurer I, Harskamp AM, Gupta S, Lie Y, Petropoulos CJ, Schuitemaker H, van’t Wout AB. Comparison of human immunodeficiency virus type 1 tropism profiles in clinical samples by the Trofile and MT-2 assays. Antimicrob Agents Chemother. 2009;53(11):4686–93. doi:10.1128/AAC.00229-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chapman D, Lie Y, Paquet A, Drews W, Toma J, Petropoulos C, Demarest J, Goodrich J, Valdez H, Coakley E, Biswas P, Napolitano L. Tropism determinations derived from cellular DNA or plasma virus compartments are concordant and predict similar maraviroc treatment outcomes in an antiretroviral treatment experienced cohort. In: 19th International AIDS Conference, Washington DC, USA, 2012. p. Abstract THPE070.

    Google Scholar 

  107. Skrabal K, Low AJ, Dong W, Sing T, Cheung PK, Mammano F, Harrigan PR. Determining human immunodeficiency virus coreceptor use in a clinical setting: degree of correlation between two phenotypic assays and a bioinformatic model. J Clin Microbiol. 2007;45(2):279–84.

    Article  CAS  PubMed  Google Scholar 

  108. Huang W, Toma J, Fransen S, Stawiski E, Reeves JD, Whitcomb JM, Parkin N, Petropoulos CJ. Coreceptor tropism can be influenced by amino acid substitutions in the gp41 transmembrane subunit of human immunodeficiency virus type 1 envelope protein. J Virol. 2008;82(11):5584–93. doi:10.1128/JVI.02676-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raymond S, Delobel P, Mavigner M, Cazabat M, Souyris C, Encinas S, Bruel P, Sandres-Saune K, Marchou B, Massip P, Izopet J. Development and performance of a new recombinant virus phenotypic entry assay to determine HIV-1 coreceptor usage. J Clin Virol. 2010;47(2):126–30. doi:10.1016/j.jcv.2009.11.018.

    Article  CAS  PubMed  Google Scholar 

  110. Lin NH, Negusse DM, Beroukhim R, Giguel F, Lockman S, Essex M, Kuritzkes DR. The design and validation of a novel phenotypic assay to determine HIV-1 coreceptor usage of clinical isolates. J Virol Methods. 2010;169(1):39–46. doi:10.1016/j.jviromet.2010.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weber J, Vazquez AC, Winner D, Gibson RM, Rhea AM, Rose JD, Wylie D, Henry K, Wright A, King K, Archer J, Poveda E, Soriano V, Robertson DL, Olivo PD, Arts EJ, Quinones-Mateu ME. Sensitive cell-based assay for determination of human immunodeficiency virus type 1 coreceptor tropism. J Clin Microbiol. 2013;51(5):1517–27. doi:10.1128/JCM.00092-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hendrix CW, Collier AC, Lederman MM, Schols D, Pollard RB, Brown S, Jackson JB, Coombs RW, Glesby MJ, Flexner CW, Bridger GJ, Badel K, MacFarland RT, Henson GW, Calandra G. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr. 2004;37(2):1253–62.

    Article  CAS  PubMed  Google Scholar 

  113. Wilkin TJ, Su Z, Kuritzkes DR, Hughes M, Flexner C, Gross R, Coakley E, Greaves W, Godfrey C, Skolnik PR, Timpone J, Rodriguez B, Gulick RM. HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 inhibitor: AIDS clinical trial group A5211. Clin Infect Dis. 2007;44(4):591–5.

    Article  CAS  PubMed  Google Scholar 

  114. Hosoya N, Su Z, Wilkin T, Gulick RM, Flexner C, Hughes MD, Skolnik PR, Giguel F, Greaves WL, Coakley E, Kuritzkes DR. Assessing human immunodeficiency virus type 1 tropism: comparison of assays using replication-competent virus versus plasma-derived pseudotyped virions. J Clin Microbiol. 2009;47(8):2604–6. doi:10.1128/JCM.00632-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shaw T, Bartholomeusz A, Locarnini S. HBV drug resistance: mechanisms, detection and interpretation. J Hepatol. 2006;44(3):593–606.

    Article  CAS  PubMed  Google Scholar 

  116. Buti M, Tsai N, Petersen J, Flisiak R, Gurel S, Krastev Z, Aguilar Schall R, Flaherty JF, Martins EB, Charuworn P, Kitrinos KM, Mani Subramanian G, Gane E, Marcellin P. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig Dis Sci. 2014;60(5):1457–64. doi:10.1007/s10620-014-3486-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kitrinos KM, Corsa A, Liu Y, Flaherty J, Snow-Lampart A, Marcellin P, Borroto-Esoda K, Miller MD. No detectable resistance to tenofovir disoproxil fumarate after 6 years of therapy in patients with chronic hepatitis B. Hepatology. 2013;59(2):434–42. doi:10.1002/hep.26686.

    Article  CAS  Google Scholar 

  118. Lok AS. Drug therapy: tenofovir. Hepatology. 2010;52(2):743–7. doi:10.1002/hep.23788.

    Article  CAS  PubMed  Google Scholar 

  119. Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, Bhatia SN, Rice CM. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A. 2014;111(33):12193–8. doi:10.1073/pnas.1412631111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, Yu R, Qin Y, Gao Y, Wang Q, Hu J, Wang L, Zhou Z, Liu B, Tan D, Guan Y, Zhu H. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci U S A. 2014;111(13):E1264–73. doi:10.1073/pnas.1320071111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ladner SK, Miller TJ, King RW. The M539V polymerase variant of human hepatitis B virus demonstrates resistance to 2′-deoxy-3′-thiacytidine and a reduced ability to synthesize viral DNA. Antimicrob Agents Chemother. 1998;42(8):2128–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chin R, Shaw T, Torresi J, Sozzi V, Trautwein C, Bock T, Manns M, Isom H, Furman P, Locarnini S. In vitro susceptibilities of wild-type or drug-resistant hepatitis B virus to (-)-beta-D-2,6-diaminopurine dioxolane and 2′-fluoro-5-methyl-beta-L-arabinofuranosyluracil. Antimicrob Agents Chemother. 2001;45(9):2495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Delaney 4th WE, Edwards R, Colledge D, Shaw T, Torresi J, Miller TG, Isom HC, Bock CT, Manns MP, Trautwein C, Locarnini S. Cross-resistance testing of antihepadnaviral compounds using novel recombinant baculoviruses which encode drug-resistant strains of hepatitis B virus. Antimicrob Agents Chemother. 2001;45(6):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Delaney 4th WE, Miller TG, Isom HC. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2′,3′-dideoxy-3′-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemother. 1999;43(8):2017–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gunther S, Li BC, Miska S, Kruger DH, Meisel H, Will H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol. 1995;69(9):5437–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu Y, Curtis M, Snow-Lampart A, Yang H, Delaney W, Miller MD, Borroto-Esoda K. In vitro drug susceptibility analysis of hepatitis B virus clinical quasispecies populations. J Clin Microbiol. 2007;45(10):3335–41. doi:10.1128/JCM.00272-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barraud L, Durantel S, Ollivet A, Durantel D, Lebel-Binay S, Skrabal K, Faudon JL, Avenard G, Zoulim F. Development of a new high throughput phenotyping test to evaluate the drug susceptibility of HBV strains isolated from patients: Phenoscript-HBV. Antivir Ther. 2006;11:S9.

    Google Scholar 

  128. Durantel D, Brunelle MN, Gros E, Carrouee-Durantel S, Pichoud C, Villet S, Trepo C, Zoulim F. Resistance of human hepatitis B virus to reverse transcriptase inhibitors: from genotypic to phenotypic testing. J Clin Virol. 2005;34 Suppl 1:S34–43.

    Article  CAS  PubMed  Google Scholar 

  129. Yang H, Westland C, Xiong S, Delaney 4th WE. In vitro antiviral susceptibility of full-length clinical hepatitis B virus isolates cloned with a novel expression vector. Antivir Res. 2004;61(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  130. Liu Y, Kitrinos KM. In vitro phenotyping of recombinant hepatitis B virus containing the polymerase/reverse transcriptase gene from clinical isolates. Methods Mol Biol. 2013;1030:163–81. doi:10.1007/978-1-62703-484-5_14.

    Article  CAS  PubMed  Google Scholar 

  131. Zhu Y, Curtis M, Borroto-Esoda K. HBV DNA replication mediated by cloned patient HBV reverse transcriptase genes from HBV genotypes A-H and its use in antiviral phenotyping assays. J Virol Methods. 2011;173(2):340–6. doi:10.1016/j.jviromet.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  132. Pawlotsky JM, Feld JJ, Zeuzem S, Hoofnagle JH. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol. 2015;62(1S):S87–99. doi:10.1016/j.jhep.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  133. Manns MP, Cornberg M, Wedemeyer H. Current and future treatment of hepatitis C. Indian J Gastroenterol. 2001;20 Suppl 1:C47–51.

    PubMed  Google Scholar 

  134. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358(9286):958–65.

    Article  CAS  PubMed  Google Scholar 

  135. Jaeckel E, Cornberg M, Wedemeyer H, Santantonio T, Mayer J, Zankel M, Pastore G, Dietrich M, Trautwein C, Manns MP. Treatment of acute hepatitis C with interferon alfa-2b. N Engl J Med. 2001;345(20):1452–7.

    Article  CAS  PubMed  Google Scholar 

  136. Cabot B, Martell M, Esteban JI, Piron M, Otero T, Esteban R, Guardia J, Gomez J. Longitudinal evaluation of the structure of replicating and circulating hepatitis C virus quasispecies in nonprogressive chronic hepatitis C patients. J Virol. 2001;75(24):12005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chatterjee A, Smith PF, Perelson AS. Hepatitis C viral kinetics: the past, present, and future. Clin Liver Dis. 2012;17(1):13–26. doi:10.1016/j.cld.2012.09.003.

    Article  Google Scholar 

  138. Guedj J, Neumann AU. Understanding hepatitis C viral dynamics with direct-acting antiviral agents due to the interplay between intracellular replication and cellular infection dynamics. J Theor Biol. 2010;267(3):330–40. doi:10.1016/j.jtbi.2010.08.036.

    Article  CAS  PubMed  Google Scholar 

  139. Poveda E, Wyles DL, Mena A, Pedreira JD, Castro-Iglesias A, Cachay E. Update on hepatitis C virus resistance to direct-acting antiviral agents. Antivir Res. 2014;108:181–91. doi:10.1016/j.antiviral.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  140. Martell M, Esteban JI, Quer J, Genesca J, Weiner A, Esteban R, Guardia J, Gomez J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol. 1992;66(5):3225–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science. 1998;282(5386):103–7.

    Article  CAS  PubMed  Google Scholar 

  142. Steinhauer DA, Holland JJ. Rapid evolution of RNA viruses. Annu Rev Microbiol. 1987;41:409–33.

    Article  CAS  PubMed  Google Scholar 

  143. Lohmann V, Korner F, Koch J-O, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999;285(5424):110–13.

    Article  CAS  PubMed  Google Scholar 

  144. Blight KJ, Kolykhalov AA, Rice CM. Efficient initiation of HCV RNA replication in cell culture. Science. 2000;290(5498):1972–4.

    Article  CAS  PubMed  Google Scholar 

  145. Krieger N, Lohmann V, Bartenschlager R. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol. 2001;75(10):4614–24. doi:10.1128/JVI.75.10.4614-4624.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol. 2002;76(24):13001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ikeda M, Yi M, Li K, Lemon SM. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol. 2002;76(6):2997–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Blight KJ, McKeating JA, Marcotrigiano J, Rice CM. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol. 2003;77(5):3181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gu B, Gates AT, Isken O, Behrens SE, Sarisky RT. Replication studies using genotype 1a subgenomic hepatitis C virus replicons. J Virol. 2003;77(9):5352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K, Mizokami M, Wakita T. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology. 2003;125(6):1808–17.

    Article  CAS  PubMed  Google Scholar 

  151. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Krausslich HG, Mizokami M, Bartenschlager R, Liang TJ. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, Uprichard SL, Wakita T, Chisari FV. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A. 2005;102(26):9294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM. Complete replication of hepatitis C virus in cell culture. Science. 2005;309(5734):623–6.

    Article  CAS  PubMed  Google Scholar 

  154. Fridell RA, Qiu D, Wang C, Valera L, Gao M. Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother. 2010;54(9):3641–50. doi:10.1128/AAC.00556-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lemm JA, O’Boyle 2nd D, Liu M, Nower PT, Colonno R, Deshpande MS, Snyder LB, Martin SW, St Laurent DR, Serrano-Wu MH, Romine JL, Meanwell NA, Gao M. Identification of hepatitis C virus NS5A inhibitors. J Virol. 2010;84(1):482–91. doi:10.1128/JVI.01360-09.

    Article  CAS  PubMed  Google Scholar 

  156. Trozzi C, Bartholomew L, Ceccacci A, Biasiol G, Pacini L, Altamura S, Narjes F, Muraglia E, Paonessa G, Koch U, De Francesco R, Steinkuhler C, Migliaccio G. In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor. J Virol. 2003;77(6):3669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nguyen TT, Gates AT, Gutshall LL, Johnston VK, Gu B, Duffy KJ, Sarisky RT. Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob Agents Chemother. 2003;47(11):3525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, Cortese R, De Francesco R, Eldrup AB, Getty KL, Hou XS, LaFemina RL, Ludmerer SW, MacCoss M, McMasters DR, Stahlhut MW, Olsen DB, Hazuda DJ, Flores OA. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem. 2003;278(49):49164–70.

    Article  CAS  PubMed  Google Scholar 

  159. Tong X, Chase R, Skelton A, Chen T, Wright-Minogue J, Malcolm BA. Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antivir Res. 2006;70(2):28–38.

    Article  CAS  PubMed  Google Scholar 

  160. Yi M, Tong X, Skelton A, Chase R, Chen T, Prongay A, Bogen SL, Saksena AK, Njoroge FG, Veselenak RL, Pyles RB, Bourne N, Malcolm BA, Lemon SM. Mutations conferring resistance to SCH6, a novel hepatitis C virus NS3/4A protease inhibitor: reduced RNA replication fitness and partial rescue by second-site mutations. J Biol Chem. 2006;281(12):8205–15.

    Article  CAS  PubMed  Google Scholar 

  161. Le Pogam S, Jiang WR, Leveque V, Rajyaguru S, Ma H, Kang H, Jiang S, Singer M, Ali S, Klumpp K, Smith D, Symons J, Cammack N, Najera I. In vitro selected Con1 subgenomic replicons resistant to 2′-C-Methyl-Cytidine or to R1479 show lack of cross resistance. Virology. 2006;351(2):349–59.

    Article  PubMed  CAS  Google Scholar 

  162. Kukolj G, McGibbon GA, McKercher G, Marquis M, Lefebvre S, Thauvette L, Gauthier J, Goulet S, Poupart MA, Beaulieu PL. Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase. J Biol Chem. 2005;280(47):39260–7.

    Article  CAS  PubMed  Google Scholar 

  163. Ascher DB, Wielens J, Nero TL, Doughty L, Morton CJ, Parker MW. Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep. 2014;4:4765. doi:10.1038/srep04765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antivir Chem Chemother. 2005;16(4):225–45.

    Article  CAS  PubMed  Google Scholar 

  165. Barth H. Hepatitis C virus: is it time to say goodbye yet? Perspectives and challenges for the next decade. World J Hepatol. 2015;7(5):725–37. doi:10.4254/wjh.v7.i5.725.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kwong AD, Najera I, Bechtel J, Bowden S, Fitzgibbon J, Harrington P, Kempf D, Kieffer TL, Koletzki D, Kukolj G, Lim S, Pilot-Matias T, Lin K, Mani N, Mo H, O’Rear J, Otto M, Parkin N, Pawlotsky JM, Petropoulos C, Picchio G, Ralston R, Reeves JD, Schooley RT, Seiwert S, Standring D, Stuyver L, Sullivan J, Miller V. Sequence and phenotypic analysis for resistance monitoring in hepatitis C virus drug development: recommendations from the HCV DRAG. Gastroenterology. 2011;140(3):755–60. doi:10.1053/j.gastro.2011.01.029.

    Article  PubMed  Google Scholar 

  167. Huang W, Strommen K, Newton A, Cook J, Toma J, Anton ED, Frantzell A, Rivera A, Han D, Choe S, Whitcomb J, Petropoulos CJ, Reeves JD. Cross-sectional characterization of the susceptibility of HCV genotype 1 patient isolates to direct acting antiviral (DAA) agents. Antivir Ther. 2012;17 Suppl 1:A101.

    Google Scholar 

  168. Han D, Strommen K, Anton E, Rivera A, Chen M, Tan Y, Choe S, Petropoulos CJ, Reeves JD. Analytical validation of an HCV replicon-based phenotypic assay for evaluating replication capacity and susceptibility of genotype 1a/1b patient viruses to polymerase inhibitors. Antivir Ther. 2011;16 Suppl 1:A92.

    Google Scholar 

  169. Qi X, Bae A, Liu S, Yang H, Sun SC, Harris J, Delaney W, Miller M, Mo H. Development of a replicon-based phenotypic assay for assessing the drug susceptibilities of HCV NS3 protease genes from clinical isolates. Antivir Res. 2009;81(2):166–73. doi:10.1016/j.antiviral.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  170. Ludmerer SW, Graham DJ, Boots E, Murray EM, Simcoe A, Markel EJ, Grobler JA, Flores OA, Olsen DB, Hazuda DJ, LaFemina RL. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob Agents Chemother. 2005;49(5):2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tripathi RL, Krishnan P, He Y, Middleton T, Pilot-Matias T, Chen CM, Lau DT, Lemon SM, Mo H, Kati W, Molla A. Replication efficiency of chimeric replicon containing NS5A-5B genes derived from HCV-infected patient sera. Antivir Res. 2007;73(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  172. Penuel E, Han D, Favero K, Lam E, Liu Y, Parkin NT. Development of a rapid phenotypic susceptibility assay for HCV polymerase inhibitors. Antivir Ther. 2006;11:S12.

    Google Scholar 

  173. Anton ED, Strommen K, Jauregui S, Cheng M, Tan Y, Rivera A, Newton A, Larson J, Whitcomb JM, Petropoulos CJ, Huang W, Reeves JD. HCV GT2, GT3 and GT4 NS5B polymerases exhibit increased phenotypic susceptibility to ribavirin and a nucleoside polymerase inhibitor. Antivir Ther. 2013;18 Suppl 1:A11.

    Google Scholar 

  174. OLYSIO (simeprevir) capsules, for oral use: Highlights of Prescribing Information. [Online] (2015). http://www.olysio.com/shared/product/olysio/prescribing-information.pdf. Accessed 5 June 2015.

  175. AASLD-IDSA. Recommendations for testing, managing, and treating hepatitis C. http://www.hcvguidelines.org. Accessed December 30, 2016.

  176. Manns M, Marcellin P, Poordad F, de Araujo ES, Buti M, Horsmans Y, Janczewska E, Villamil F, Scott J, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, De La Rosa G, Kalmeijer R, Sinha R, Beumont-Mauviel M. Simeprevir with pegylated interferon alfa 2a or 2b plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-2): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2014;384(9941):414–26. doi:10.1016/S0140-6736(14)60538-9.

    Article  CAS  PubMed  Google Scholar 

  177. Jacobson IM, Dore GJ, Foster GR, Fried MW, Radu M, Rafalsky VV, Moroz L, Craxi A, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, De La Rosa G, Kalmeijer R, Scott J, Sinha R, Beumont-Mauviel M. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2014;384(9941):403–13. doi:10.1016/S0140-6736(14)60494-3.

    Article  CAS  PubMed  Google Scholar 

  178. Lenz O, Verbinnen T, Fevery B, Tambuyzer L, Vijgen L, Peeters M, Buelens A, Ceulemans H, Beumont M, Picchio G, De Meyer S. Virology analyses of HCV isolates from genotype 1-infected patients treated with simeprevir plus peginterferon/ribavirin in Phase IIb/III studies. J Hepatol. 2014;62(5):1008–14. doi:10.1016/j.jhep.2014.11.032.

    Article  PubMed  CAS  Google Scholar 

  179. Morfin F, Thouvenot D, De Turenne-Tessier M, Lina B, Aymard M, Ooka T. Phenotypic and genetic characterization of thymidine kinase from clinical strains of varicella-zoster virus resistant to acyclovir. Antimicrob Agents Chemother. 1999;43(10):2412–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tardif KD, Jorgensen S, Langer J, Prichard M, Schlaberg R. Simultaneous titration and phenotypic antiviral drug susceptibility testing for herpes simplex virus 1 and 2. J Clin Virol. 2014;61(3):382–6. doi:10.1016/j.jcv.2014.08.015.

    Article  CAS  PubMed  Google Scholar 

  181. Bestman-Smith J, Boivin G. Drug resistance patterns of recombinant herpes simplex virus DNA polymerase mutants generated with a set of overlapping cosmids and plasmids. J Virol. 2003;77(14):7820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chou S, Waldemer RH, Senters AE, Michels KS, Kemble GW, Miner RC, Drew WL. Cytomegalovirus UL97 phosphotransferase mutations that affect susceptibility to ganciclovir. J Infect Dis. 2002;185(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  183. Kemble G, Duke G, Winter R, Spaete R. Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J Virol. 1996;70(3):2044–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chou S, Van Wechel LC, Lichy HM, Marousek GI. Phenotyping of cytomegalovirus drug resistance mutations by using recombinant viruses incorporating a reporter gene. Antimicrob Agents Chemother. 2005;49(7):2710–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jabs DA, Martin BK, Forman MS, Dunn JP, Davis JL, Weinberg DV, Biron KK, Baldanti F. Mutations conferring ganciclovir resistance in a cohort of patients with acquired immunodeficiency syndrome and cytomegalovirus retinitis. J Infect Dis. 2001;183(2):333–7.

    Article  CAS  PubMed  Google Scholar 

  186. Weinberg A, Leary JJ, Sarisky RT, Levin MJ. Factors that affect in vitro measurement of the susceptibility of herpes simplex virus to nucleoside analogues. J Clin Virol. 2007;38(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  187. Hayden FG, Cote KM, Douglas Jr RG. Plaque inhibition assay for drug susceptibility testing of influenza viruses. Antimicrob Agents Chemother. 1980;17(5):865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Oh DY, Hurt AC. A review of the antiviral susceptibility of human and avian influenza viruses over the last decade. Scientifica (Cairo). 2014;2014:430629. doi:10.1155/2014/430629.

    Google Scholar 

  189. Okomo-Adhiambo M, Hurt AC, Gubareva LV. The chemiluminescent neuraminidase inhibition assay: a functional method for detection of influenza virus resistance to the neuraminidase inhibitors. Methods Mol Biol. 2012;865:95–113. doi:10.1007/978-1-61779-621-0_6.

    Article  CAS  PubMed  Google Scholar 

  190. Hurt AC, Okomo-Adhiambo M, Gubareva LV. The fluorescence neuraminidase inhibition assay: a functional method for detection of influenza virus resistance to the neuraminidase inhibitors. Methods Mol Biol. 2012;865:115–25. doi:10.1007/978-1-61779-621-0_7.

    Article  CAS  PubMed  Google Scholar 

  191. Buxton RC, Edwards B, Juo RR, Voyta JC, Tisdale M, Bethell RC. Development of a sensitive chemiluminescent neuraminidase assay for the determination of influenza virus susceptibility to zanamivir. Anal Biochem. 2000;280(2):291–300. doi:10.1006/abio.2000.4517.

    Article  CAS  PubMed  Google Scholar 

  192. Potier M, Mameli L, Belisle M, Dallaire L, Melancon SB. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem. 1979;94(2):287–96.

    Article  CAS  PubMed  Google Scholar 

  193. McKimm-Breschkin J, Trivedi T, Hampson A, Hay A, Klimov A, Tashiro M, Hayden F, Zambon M. Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother. 2003;47(7):2264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tisoncik JR, Guo Y, Cordero KS, Yu J, Wang J, Cao Y, Rong L. Identification of critical residues of influenza neuraminidase in viral particle release. Virol J. 2011;8:14. doi:10.1186/1743-422X-8-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Su CY, Wang SY, Shie JJ, Jeng KS, Temperton NJ, Fang JM, Wong CH, Cheng YS. In vitro evaluation of neuraminidase inhibitors using the neuraminidase-dependent release assay of hemagglutinin-pseudotyped viruses. Antivir Res. 2008;79(3):199–205. doi:10.1016/j.antiviral.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  196. Lu Y, Jiang T. Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations. Protein Cell. 2013;4(5):356–63. doi:10.1007/s13238-013-2125-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Smee DF, Sidwell RW, Morrison AC, Bailey KW, Baum EZ, Ly L, Wagaman PC. Characterization of an influenza A (H3N2) virus resistant to the cyclopentane neuraminidase inhibitor RWJ-270201. Antivir Res. 2001;52(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  198. Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis. 2001;183(4):523–31.

    Article  CAS  PubMed  Google Scholar 

  199. Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, McKimm-Breschkin JL. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology. 1998;246(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  200. Bantia S, Ghate AA, Ananth SL, Babu YS, Air GM, Walsh GM. Generation and characterization of a mutant of influenza A virus selected with the neuraminidase inhibitor BCX-140. Antimicrob Agents Chemother. 1998;42(4):801–7.

    Google Scholar 

  201. Martínez-Sobrido L, Cadagan R, Steel J, Basler CF, Palese P, Moran TM, García-Sastre A. Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies. J Virol. 2010;84(4):2157–63. doi: 10.1128/JVI.01433-09. Epub 2009 Nov 25.

  202. WHO Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of influenza (2011). World Health Organization.

    Google Scholar 

  203. Pozo F, Lina B, Andrade HR, Enouf V, Kossyvakis A, Broberg E, Daniels R, Lackenby A, Meijer A, Community Network of Reference Laboratories for Human Influenza in E. Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe. J Clin Virol. 2013;57(1):5–12. doi:10.1016/j.jcv.2013.01.009.

    Article  PubMed  Google Scholar 

  204. Monto AS, McKimm-Breschkin JL, Macken C, Hampson AW, Hay A, Klimov A, Tashiro M, Webster RG, Aymard M, Hayden FG, Zambon M. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother. 2006;50(7):2395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Meijer A, Rebelo-de-Andrade H, Correia V, Besselaar T, Drager-Dayal R, Fry A, Gregory V, Gubareva L, Kageyama T, Lackenby A, Lo J, Odagiri T, Pereyaslov D, Siqueira MM, Takashita E, Tashiro M, Wang D, Wong S, Zhang W, Daniels RS, Hurt AC. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2012–2013. Antivir Res. 2014;110:31–41. doi:10.1016/j.antiviral.2014.07.001.

    Article  CAS  PubMed  Google Scholar 

  206. Takashita E, Meijer A, Lackenby A, Gubareva L, Rebelo-de-Andrade H, Besselaar T, Fry A, Gregory V, Leang SK, Huang W, Lo J, Pereyaslov D, Siqueira MM, Wang D, Mak GC, Zhang W, Daniels RS, Hurt AC, Tashiro M. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013–2014. Antivir Res. 2015;117:27–38. doi:10.1016/j.antiviral.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline D. Reeves Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reeves, J.D., Parkin, N.T. (2017). Viral Phenotypic Resistance Assays. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_35

Download citation

Publish with us

Policies and ethics