Skip to main content

The Macroalgal Ecosystem

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems
  • 1565 Accesses

Abstract

Fungi inhabit living and decomposing marine algae. “Algicolous fungi” are obligate marine, mycetaen species found only in algae. A number of fungi are found as endophytes in them. Many form mutualistic associations, termed mycophycobionts and lichens. Many fungi occur as biotrophic parasites in algae, while others are opportunistic or facultatively parasitic. While some parasites do not cause any symptoms in their algal host, others result in various discolorations. Others cause distinct malformations. Oomycetes are some of the most prevalent among algal parasites. The Red Rot disease caused by Pythium porphyrae in the red alga Porphyra spp. and a disease caused by Petersenia pollagaster in the red alga Chondrus crispus are well known. Endophytic fungi persist upon the death of the algae, which are then colonized by other saprophytic fungi, including obligate and facultative marine mycetaen fungi, as well as the straminipilan fungi, the thraustochytrids. These enzymatically degrade the algae, resulting in decomposition and biochemical transformation of the detritus. Insufficient information is available on the importance of fungi as feed to detritivores in macroalgal ecosystems.

Obtaining all of medicinal plants and, indeed, all of jewels, O gods, churn the ocean, then you will gain the nectar.

Hindu Purana: “Samudramanthana” of Mahabharata,

Adi Parvan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addepalli MK, Fumita Y (2002) Regulatory role of external calcium on Pythium porphyrae (Oomycota) zoospore release, development and infection in causing red rot disease of Porphyra yezoensis (Rhodophyta). FEMS Microbiol Lett 21:253–257

    Article  Google Scholar 

  • Amon JP (1984) Rhizophydium littoreum: a chytrid from siphonaceous marine algae—an ultrastructural examination. Mycologia 76:132–139

    Article  Google Scholar 

  • Apt KE (1988) Galls and tumor-like growths on marine macroalgae. Dis Aquat Org 4:211–217

    Article  Google Scholar 

  • Beakes GW, Honda D, Thines M (2014) Systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW (eds) The Mycota VII. Part A. Systematics and evolution, 2nd edn. Springer, Berlin, Heidelberg, pp 39–96

    Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  CAS  PubMed  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Fletcher K, Uljević A, Tsirigoti A, Antolić B, Katsaros C, Nikolić V, van West P, Küpper FC (2015) New record and phylogenetic affinities of the oomycete Olpidiopsis feldmanni infecting Asparagopsis sp. (Rhodophyta). Dis Aquat Organ 117:45–57

    Article  PubMed  Google Scholar 

  • Gachon CMM, Küpper H, Küpper FC, Šetlik I (2006) Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur J Phycol 41:395–403

    Article  Google Scholar 

  • Genilloud O, Pelaez F, Gonzalez I, Diez MT (1994) Diversity of actinomycetes and fungi on seaweeds from the Iberian coasts. Microbiologia 10:413–422

    CAS  PubMed  Google Scholar 

  • Gleason FH, Frithjof CK, Glöckling SL (2012a) Zoosporic true fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston, pp 101–114

    Google Scholar 

  • Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Hawksworth DL (2000) Freshwater and marine lichen-forming fungi. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium. Fungal Diversity Press, Hong Kong, pp 1–7

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing S, Poonyth ÃD, Vrijmoed L (1998) Role of fungi in marine ecosystem. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the Sea Grass Thalassia testudinum against Zoosporic fungi. Appl Environ Microbiol 64:1490–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Pang K-L, Stanley SJ (2012) Fungi from marine algae. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston, pp 329–344

    Chapter  Google Scholar 

  • Kachalkin AV (2014) Yeasts of the White Sea intertidal zone and description of Glaciozyma litorale sp. nov. Antonie Van Leeuwenhoek 105(6):1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Kawamura Y, Yokoo K, Tojo M, Hishiike M (2005) Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyra spp, in the Ariake Sea, Japan. Plant Dis 89:1041–1047

    Article  Google Scholar 

  • Kim GH, Moo K-H, Kim j-Y, Shim J, Klochkov TA (2014) A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249–265

    Google Scholar 

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community, its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 61–92

    Chapter  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1975) Biology and geographical distribution of Spathulospora species. Mycologia 67:629–637

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobionts of Apophlaea, Ascophyllum and Pelvetia. Systema Ascomycetum 16:1–7

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 46:285–306

    Article  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defence against marine fungi. Proc Natl Acad Sci USA 100:6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389

    Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts-a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang T, Tang X, Wang B (2010) Oomycetes and fungi: important parasites on marine algae. Acta Oceanol Sin 29:74–81

    Article  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari EM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Lucas MI, Newell RC, Velimirov B (1981) Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida) II Differential utilisation of dissolved organic components from kelp mucilage. Mar Ecol Prog Ser 4:43–55

    Article  CAS  Google Scholar 

  • Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano EM, Gachon CMM, Strittmatter M, Gleason FH (2012) Hyphochytriomycota, oomycota and perkinsozoa (Super-group Chromalveolata). In: Jones EBG, Pang K-L (eds) Marine mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin/Boston, pp 167–213

    Google Scholar 

  • Miller DJ, Jones EBG (1983) Observations on the association of thraustochytrid marine fungi with decaying seaweed. Bot Mar 26:345–351

    Article  Google Scholar 

  • Newell RC, Lucas MI, Velimirov B, Setderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser 2:45–59

    Article  CAS  Google Scholar 

  • Newell RC, Field JG, Griffiths CL (1982) Energy balance and significance of micro-organisms in a kelp bed community. Mar Ecol Prog Ser 8:103–113

    Article  Google Scholar 

  • Porter D (1986) Mycoses of marine organisms: an overview of pathogenic fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 141–153

    Google Scholar 

  • Raghukumar C (1987) Fungal parasites of marine algae from Mandapam (South India). Dis Aquat Org 3:137–145

    Article  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–136

    Article  Google Scholar 

  • Raghukumar C (2006) Algal-fungal interactions in the marine ecosystem: symbiosis to parasitism. In: Tewari A (ed) Recent advances on applied aspects of Indian marine algae with reference to global scenario, vol 1. Gujarat, Central Salt & Marine Chemicals Research Institute, pp 366–385

    Google Scholar 

  • Rieper-Kirchner M (1989) Microbial degradation of North Sea macroalgae: field and laboratory studies. Bot Mar 32:241–252

    Article  Google Scholar 

  • Rieper-Kirchner M (1990) Macroalgal decomposition: laboratory studies with particular regard to microorganisms and meiofauna. Helgoländer Meeresun 44:397–410

    Article  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum J Ag. Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Sekimoto S, Hatai K, Honda D (2007) Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48:212–221

    Article  CAS  Google Scholar 

  • Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of the brown alga Sargassum cinereum J Ag. J Exp Mar Biol Ecol 175:217–242

    Article  Google Scholar 

  • Sridhar KR, Karamchand KS, Pascoal C, Cássio F (2012b) Assemblage and diversity of fungi on wood and seaweed litter of seven Norwest Portuguese beaches. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 209–228

    Chapter  Google Scholar 

  • Stanley SJ (1992) Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70:2089–2096

    Article  Google Scholar 

  • Strittmatter M, Gachon CMM, Küpper FC (2009) Ecology of lower oomycetes. In: Lamour KH, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, Hoboken, NJ, pp 25–46

    Chapter  Google Scholar 

  • Strittmatter M, Grenville-Briggs LJ, Breithut L, van West P, Gachon CMM, Küpper FC (2015) Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. Plant Cell Environ 39:259–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuart V, Newell RC, Lucas MI (1982) Conversion of kelp debris and faecal material from the mussel Aulacomya ater by marine micro-organisms. Mar Ecol Prog Ser 7:47–57

    Article  Google Scholar 

  • Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 53–68

    Chapter  Google Scholar 

  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468

    Article  Google Scholar 

  • Van Uden N, Branco RC (1963) Distribution and population densities of yeast species in Pacific water, air, animals, and kelp off Southern California. Limnol Oceanogr 8:323–329

    Article  Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). The Macroalgal Ecosystem. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_8

Download citation

Publish with us

Policies and ethics