Skip to main content

Endophytism in Cupressoideae (Coniferae): A Model in Endophyte Biology and Biotechnology

  • Chapter
  • First Online:
Endophytes: Biology and Biotechnology

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 15))

Abstract

Plants live in a close association with microorganisms in below ground soil and above ground air. Versatile endophytic communities of microorganisms often shape symbiotic relationships with host plants, enter the foliar and root tissues, and promote host’s health. Evidence suggests that Cupressoideae subfamily of Cupressaceae (Coniferae) harbors beneficial distinct fungal and bacterial endophytic communities. Besides, the fungal endophytic community in Cupressoideae harbors endohyphal bacteria which indirectly enhance the host plant’s health through interaction with their endophytic fungal hosts. Moreover, data from different experiments suggest that the endophytic communities of Cupressoideae could find applications in agroforestry for plant protection against biotic and abiotic stresses. The endophytic microorganisms isolated from the cupressaceous plants are also being regarded as a novel source of biomolecules with immediate significance in medicine and agroforestry. Thus, Cupressoideae, as an underexplored niche, exhibits great promises for endophyte biology and chemistry, as well as evolutionary studies, with potential uses in pharmaceutical, agricultural and biotechnological industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Burlington, MA, p 922

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Amaral LS, Rodrigues-Filho E (2010) Two novel Eremophilanes Sesquiterpenes from an endophytic fungus isolated from leaves of Cupressus lusitanica. J Braz Chem Soc 21:1446–1450

    Article  CAS  Google Scholar 

  • Aminov RI (2013) Role of archaea in human disease. Front Cell Infect Microbiol 3:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand R, Chanway C (2013) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fert Soils 49:235–239

    Article  CAS  Google Scholar 

  • Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE (2016) Isolation of endohyphal bacteria from foliar Ascomycota and in vitro establishment of their symbiotic associations. Appl Environ Microbiol 82:2943–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  PubMed  Google Scholar 

  • Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813

    Article  CAS  Google Scholar 

  • Barbieri E, Potenza L, Rossi I, Sisti D, Giomaro G, Rossetti S et al (2000) Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii vittad ectomycorrhizal mycelium. Appl Environ Microbiol 66:5035–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P et al (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246

    Article  PubMed  Google Scholar 

  • Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238 N. Appl Environ Microbiol 69:4243–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bills GF, Polishook JD (1992) Recovery of endophytic fungi from. Chamaecyparis thyoides. Sydowia 44:1–12

    Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: A network of interactions. Ann Rev Microbiol 63:363–383

    Article  CAS  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3032–3043

    Article  Google Scholar 

  • Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M et al (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13

    CAS  Google Scholar 

  • Chandrasekar S, Thiyagarajan S, Sridhar R, Ambethkar B (2013) Diversity of endophytic mycobiota colonizing the aerial tissues of Thuja plicata (Donn ex. D. Don.). Int J Curr Microbiol Applied Sci 2:176–183

    Google Scholar 

  • Chebotar V, Malfanova N, Shcherbakov A, Ahtemova G, Borisov A, Lugtenberg B, Tikhonovich I (2015) Endophytic bacteria in microbial preparations that improve plant development. Appl Biochem Microbiol 51:271–277

    Article  CAS  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics. Pharmacogn Rev 7:11–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A, et al. (2006) Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur J Org Chem 3498–350610

    Google Scholar 

  • Ellsworth KT, Clark TN, Gray CA, Johnson JA (2013) Isolation and bioassay screening of medicinal plant endophytes from eastern Canada. Can J Microbiol 59:761–765

    Article  CAS  PubMed  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Farjon A (2005) Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, p 648

    Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot 87:1044–1105

    Article  CAS  PubMed  Google Scholar 

  • Gherbawy YA, Elhariry HM (2014) Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst 11:1–10

    Google Scholar 

  • Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, Petiti L, Cruveiller S, Bianciotto V, Piffanelli P, Lanfranco L, Bonfante P (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–145

    Article  CAS  PubMed  Google Scholar 

  • Hao SH, Wei Y, Wang J, Zhou YM (2015) Allelopathy and the active metabolites of the endophytic fungus Alternaria J46 from Platycladus orientalis. Weed Biol Manag 15:95–101

    Article  CAS  Google Scholar 

  • Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in Cupressaceous trees. Mycol Res 112:331–334

    Article  CAS  PubMed  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman MT, Gunatilaka M, Wijeratne EMK, Gunatilaka AAL, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8:e73132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseyni Moghaddam, MS (2013) Study on some biological effects of natural products from endophytes of cypress. MSc thesis, Bu-Ali Sina University of Hamedan, Iran, 180pp

    Google Scholar 

  • Hosseyni Moghaddam MS, Soltani J (2013) An Investigation on the effects of photoperiod, aging and culture media on vegetative growth and sporulation of rice blast pathogen Pyricularia oryzae. Prog Biol Sci 3:135–143

    Google Scholar 

  • Hosseyni Moghaddam MS, Soltani J (2014a) Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Ann Microbiol 64:753–761

    Article  CAS  Google Scholar 

  • Hosseyni Moghaddam MS, Soltani J (2014b) Psycrophilic endophytic fungi with bioactivity inhabit Cupressaceae plant family. Symbiosis 63:79–86

    Article  Google Scholar 

  • Hosseyni Moghaddam MS, Soltani J, Babalhavaeji F, Hamzei J, Nazeri S, Mirzaei S (2013) Bioactivities of endophytic Penicillia from Cupressaceae. J Crop Prot 2:421–433

    Google Scholar 

  • Jagel A, Dörken V (2015) Morphology and morphogenesis of the seed cones of the Cupressaceae - part II. Cupressoideae. In: Bulletin of the Cupressus Conservation Project 4:51–78

    Google Scholar 

  • Kobayashi DY, Crouch JA (2009) Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts. Ann Rev Phytopathol 47:63–82

    Article  CAS  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan PH, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 4:438–446

    Article  Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus fresenius an endophytic fungus from Juniperus communis L Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Appl Microbiol 107:1364–5072

    Article  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Lackner G, Moebius N, Partida-Martinez L, Hertweck C (2011) Complete genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus microsporus. J Bacteriol 193:783–784

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumini E, Bianchiotto V, Jargeat P, Noveno M, Salvioli A et al (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Lurie-Weinberger MN, Gophna U (2015) Archaea in and on the Human Body: Health Implications and Future Directions. PLoS Pathog 11(6):e1004833

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768

    Article  PubMed  Google Scholar 

  • Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Nat Acad USA 109:7793–7798

    Article  CAS  Google Scholar 

  • Mirabal-Alonso L, Ortega-Delgado E (2007) Phosphate solubilizing bacteria isolated from the inside of Glomus mosseae spores from Cuba. First international meeting on microbial phosphate solubilization. In: Velazquez E, Rodriguez-Barrueco C (eds) Developments in plant and soil sciences, vol 102 [Reprint of Plant Soil 287:1–84]

    Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira MN, Santos TM, Vale HM, Delvaux JC, Cordero AP, Ferreira AB et al (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230

    Article  CAS  PubMed  Google Scholar 

  • Page M, Landry N (1996) Bacterial mass production of taxanes with Erwinia. US Patent No. 5561055A

    Google Scholar 

  • Page M, Landry N, Boissinot M, Helie MC, Harvey M, Gagne M (2000) Bacterial mass production of taxanes and paclitaxel. US Patent No. 6030818A

    Google Scholar 

  • Pakvaz S, Soltani J (2016) Endohyphal bacteria from fungal endophytes of the Mediterranean cypress (Cupressus sempervirens) exhibit in vitro bioactivity. Forest Pathol 46:569–581

    Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, de Looss CF, Ishida K, Ishida M, Roth M et al (2007a) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007b) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1982) Notes on some species of Chloroscypha endophytic in Cupressaceae of Europe and North America. Sydowia 35:206–222

    Google Scholar 

  • Petrini O, Carroll GC (1981) Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 59:629–636

    Article  Google Scholar 

  • Rodriguez R, White J, Arnold AE, Redman R (2009) Fungal endophytes: diversity and ecological roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ (2014) Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front Microbiol 5:e787

    Google Scholar 

  • Roossinck MJ (2015) A new look at plant viruses and their potential beneficial ropes in crops. Mol Plant Pathol 16:331–333

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano MJ, Bonfante P (1999) Identification of a putative P-transporter operon in the genome of a Burkholderia strain lyving inside the arbuscular mycorrhizal fungus Gigaspora margarita. J Bacteriol 181:4106–4109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Filho FC, Amaral LS, Rodrigues-Filho E (2011) Composition of essential oils from Cupressus lusitanica and a xylariaceous fungus. Biochem Syst Ecol 39:485–490

    Article  CAS  Google Scholar 

  • Scherlach K, Partida-Martinez LP, Dahse H-M, Hertweck C (2006) Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 128:11529–11536

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C (2012) Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew Chem Int Ed Engl 51:9615–9618

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Graupner K, Hertweck C (2013) Molecular bacterial-fungal interactions with impact on the environment, food and medicine. Ann Rev Microbiol 67:375–397

    Article  CAS  Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A et al (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  CAS  PubMed  Google Scholar 

  • Sheikh-Ahmadi A (2016) Exploring the genes involved in taxane diterpenoid biosynthesis pathway in cypress endophytic fungi Alternaria and Trichoderma, and drought stress tolerance induced by those fungi in wheat. MSc thesis, Bu-Ali Sina University of Hamedan, Iran 190 pp

    Google Scholar 

  • Soltani J, Hosseyni Moghaddam MS (2014a) Antiproliferative, antifungal and antibacterial activities of endophytic Alternaria species from Cupressaceae. Curr Microbiol 69:349–356

    Article  CAS  PubMed  Google Scholar 

  • Soltani J, Hosseyni Moghaddam MS (2014b) Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Arch Microbiol 196:635–644

    Article  CAS  PubMed  Google Scholar 

  • Soltani J, Hosseyni Moghaddam MS (2015) Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Curr Microbiol 70:580–586

    Article  CAS  PubMed  Google Scholar 

  • Soltani J, Zaheri-Shoja M, Hamzei J, Hosseyni Moghaddam MS, Pakvaz S (2016) Diversity and bioactivity of endophytic bacterial community of Cupressaceae. Forest Pathol 46: 353–361

    Google Scholar 

  • Stähelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain memorial award lecture. Cancer Res 51:5–15

    PubMed  Google Scholar 

  • Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of Conifers. Nat Prod Commun 10:1671–1682

    PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Hse CY, Shupe T, Sun M, Wang X, Zhao K (2015) Isolation and characterization of an endophytic fungal strain with potent antimicrobial and termiticidal activities from Port-Orford-Cedar. J Econ Entomol 108:962–968

    Article  PubMed  Google Scholar 

  • Tamjid SS A (2015) Exploring the genes involved in taxane diterpenoid biosynthesis pathway in bacterial endophytes of cypress. MSc thesis, Bu-Ali Sina University of Hamedan, Iran, 136 pp

    Google Scholar 

  • Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Vujanovic V, St-Arnaud M (2003) A new species of Pseudorobillarda, an endophyte from Thuja occidentalis in Canada, and a key to the species. Mycologia 95:955–958

    Article  PubMed  Google Scholar 

  • Wang YF, Shi QW, Dong M, Kiyota H, Gu YC, Cong B (2011) Natural taxanes: developments since 1828. Chem Rev 111:7652–7709

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zhang W, Ji Z (2015) Structure and antibacterial activity of ambobactin, a new telomycin-like cyclic depsipeptide antibiotic produced by Streptomyces ambofaciens F3. Molecules 20:16278–16289

    Article  CAS  PubMed  Google Scholar 

  • Wijeratne EM, Xu Y, Arnold AE, Gunatilaka AA (2015) Pulvinulin A, graminin C, and cis-gregatin B–new natural furanones from Pulvinula sp. 11120, a fungal endophyte of Cupressus arizonica. Nat Prod Commun 10:107–11

    Google Scholar 

  • Zhao K, Liu J, Li Z, Chang Z, Shi P, Ping W, Zhou D (2011) Bacillus subtilis subspecies virginiana, a new subspecies of antitermitic compound-producing endophytic bacteria isolated from Juniperus virginiana. J Econ Entomol 104:1502–1508

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Bu-Ali Sina University of Hamedan (BASU), Iran, for its supporting research grants. This work is dedicated to Mohammad-Reza Soltani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Soltani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soltani, J. (2017). Endophytism in Cupressoideae (Coniferae): A Model in Endophyte Biology and Biotechnology. In: Maheshwari, D. (eds) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_6

Download citation

Publish with us

Policies and ethics