Skip to main content

Volatiles in Communication of Agaricomycetes

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Much attention has been given in recent time to communication processes of fungi. Fungi communicate on all organismal levels, within an organism, within the species, with other fungal species, and with other kinds of organisms, both from prokaryotes and eukaryotes. Most of our current knowledge on fungal communication has been collected from Ascomycetes, while the relevance for Agaricomycetes in growth, development, and ecological success is increasingly been recognized. Signals are often volatile organic compounds (VOCs) which can reach receivers on short and longer distances through all elements, air, water, and soil. Fungal VOCs used as signals are of broad chemical nature. Eight-carbon compounds including 1-octen-3-ol as the typical mushroom odor are appointed by many species, in autoregulatory processes and manifold in positive and negative interactions with other organisms. In particular, the rich diversity of terpenoids produced by Agaricomycetes offers ample possibilities to establish species-specific signals defined by an individual compound or, more likely, by unique cocktails of VOCs. In this chapter, we present a comprehensive survey on communication activities of Agaricomycetes on all organismal scales and community levels in which fungal VOC-mediated signaling is recognized. Where information is available, biochemical natures of responsible VOCs are presented. Agaricomycetes send messages out in a fascinating wealth of occasions and purposes, such as for own growth and development, in organismal competitions for food and space, for defense, and for dispersal. With a fungal sender and a potential receiver, experimental research mostly still concentrates on just two players or in best cases a few participants when, e.g., eavesdroppers come into play. However, broader ecological contexts of communication processes of Agaricomycetes are emerging with effects not only for the individual sender of signals or its fungal species and its direct addressees but also for their specific ecological guilds, niches and habitats, and the broad diversity of organisms living in the shared environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A’Bear DA, Boddy L, Jones TH (2012) Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob Chang Biol 18:1823–1832

    Article  Google Scholar 

  • A’Bear AD, Murray W, Webb R, Boddy L, Jones TH (2013) Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi. PLoS One 8:e77610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • A’Bear AD, Jones TH, Boddy L (2014a) Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol 10:34–43

    Article  Google Scholar 

  • A’Bear AD, Jones TH, Boddy L (2014b) Size matters: what have we learnt from microcosm studies of decomposer fungus-invertebrate interactions? Soil Biol Biochem 78:274–283

    Article  CAS  Google Scholar 

  • A’Bear AD, Jones TH, Kandeler E, Boddy L (2014c) Interactive effects of temperature and soil-moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem 70:151–158

    Article  CAS  Google Scholar 

  • A’Bear AD, Boddy L, Kandeler E, Ruess L, Jones TH (2014d) Effects of isopod population density on woodland decomposer microbial community function. Soil Biol Biochem 77:112–120

    Article  CAS  Google Scholar 

  • Aanen DK (2006) As you reap, so shall you sow: coupling of harvesting and inoculation stabilizes the mutualism between termites and fungi. Biol Lett 2:209–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdullah AH, Adom AH, Shakaff AYM, Ahmad MN, Saad MA, Tan ES, Fikri NA, Markom MA, Zakaria A (2011) Electronic nose system for Ganoderma detection. Sens Lett 9:353–358

    Article  CAS  Google Scholar 

  • Abraham J, Opuni-Frimpong E, Weissbecker B, Schütz S, Angeli S (2014) Olfactory cues of mahogany trees to female Hypsipyla robusta. Bull Insect 67:21–30

    Google Scholar 

  • Agger S, Lopez-Gallego F, Schmidt-Dannert C (2009) Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72:1181–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth AM, Rayner ADM, Broxholme SJ, Beeching JR, Pryke JA, Scard PR, Berriman J, Powell KA, Floyd AJ, Branch SK (1990) Production and properties of the sesquiterpene, (+)-torreyol, in degenerate mycelial interaction between strains of Stereum. Mycol Res 94:799–809

    Article  CAS  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almaguer M, Rojas-Flores TI, Rodríguez-Rajo FJ, Aira M-J (2014) Airborne basidiospores of Coprinus and Ganoderma in a Caribbean region. Aerobiologia 30:197–204

    Article  Google Scholar 

  • Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81:1147–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18

    Article  CAS  PubMed  Google Scholar 

  • Anslan A, Bahram M, Tedersoo L (2016) Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biol Biochem 96:152–159

    Article  CAS  Google Scholar 

  • Aprea E, Biasoli F, Carlin S, Versini G, Märk TD, Gasperi F (2007) Rapid white truffle headspace analysis by proton transfer reaction mass spectrometry and comparison with solid-phase microextraction coupled with gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 21:2554–2572

    Article  CAS  Google Scholar 

  • Arora D (1986) Mushrooms demystified: a comprehensive guide to the fleshy fungi. Ten Speed Press, Berkeley, CA

    Google Scholar 

  • Arrarte E, Garmendia G, Rossini C, Wisniewski M, Vero S (2017) Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol Control 109:14–20

    Article  CAS  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Ashmore L, Craske JD, Srzednicki G (2014) Volatile compounds in fresh, cooked fresh, dried and cooked dried Agaricus bisporus using ambient temperature vacuum distillation. Int Food Res J 21:263–268

    Google Scholar 

  • Assaf S, Hadar Y, Dosoretz CG (1995) Biosynthesis of 13-hydroperoxylinoleate, 10-oxo-8-decenioc acid, and 1-octen-3-ol from linoleic acid by a mycelial-pellet homogenate of Pleurotus pulmonarius. J Agric Food Chem 43:2173–2178

    Article  CAS  Google Scholar 

  • Assaf S, Hadar Y, Dosoretz CG (1997) 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzym Microb Technol 21:484–490

    Article  CAS  Google Scholar 

  • Avbelj M, Zupan J, Raspor P (2016) Quorum-sensing in yeast and its potential in wine making. Appl Microbiol Biotechnol 100:7841–7852

    Article  CAS  PubMed  Google Scholar 

  • Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101

    Article  CAS  PubMed  Google Scholar 

  • Baietto M, Wilson AD, Bassi D, Ferrini F (2010) Evaluation of three electronic noses for detecting incipient wood decay. Sensors 10:1062–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan K, Holighaus G, Weissbecker B, Schütz S (2017) Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J Appl Entomol 141:477–486

    Article  CAS  Google Scholar 

  • Ballari SA, Barrios-García MN (2013) A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev 44:124–134

    Article  Google Scholar 

  • Basden EB (1952) Some drosophilids (Diptera) of the British Isles. Entomol Monthly Mag 88:200–201

    Google Scholar 

  • Baubet E, Bonenfant C, Brandt S (2004) Diet of the wild boar in the French Alps. Galemys 16:101–113

    Google Scholar 

  • Beck JJ, Vannette RL (2017) Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28

    Article  CAS  PubMed  Google Scholar 

  • Beck JJ, Torto B, Vannette RL (2017) Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals. J Agric Food Chem 65:5101–5103

    Article  CAS  PubMed  Google Scholar 

  • Bedoya-Pérez MA, Isler I, Banks PB, McArthur C (2014) Roles of volatile terpene, 1,8-cineole, in plant-herbivore interactions: a foraging odor cue as well as a toxin? Oecologia 174:827–837

    Article  PubMed  Google Scholar 

  • Beenken L, Sainge MN, Kocyan A (2016) Lactarius megalopterus, a new angiocarpous species from a tropical rainforest in Central Africa, shows adaptations to endozoochorous spore dispersal. Mycol Prog 15:58

    Article  Google Scholar 

  • Belda I, Ruiz J, Esteban-Fernández A, Navascués E, Marquina D, Santos A, Moreno-Arribas MV (2017) Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22:189

    Article  CAS  Google Scholar 

  • Beltran-Garcia MJ, Estarron-Espinosa M, Ogura T (1997) Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J Agric Food Chem 45:4049–4052

    Article  CAS  Google Scholar 

  • Benjamin DR (1995) Mushrooms: poisons and panaceas. A handbook for naturalist, mycologists and physicians. W.H. Freeman and Company, New York

    Google Scholar 

  • Bennett JW, Inamdar AA (2015) Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins 7:3785–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benucci GMN, Bonito GM (2016) The truffle microbiome: species and geography effects on bacteria associated with fruiting bodies of hypogeous Pezizales. Microb Ecol 72:4–8

    Article  PubMed  Google Scholar 

  • Berendsen RL, Kalkhove SIC, Lugones LG, Wösten HAB, Bakker PAHM (2012) Germination of Lecanicillium fungicola in the mycosphere of Agaricus bisporus. Environ Microbiol Rep 4:227–233

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Kalkhove SIC, Lugones LG, Baars JJP, Wösten HAB, Bakker PAHM (2013) Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol 97:5535–5543

    Article  CAS  PubMed  Google Scholar 

  • Berger KJ, Guss DA (2005a) Mycotoxins revisited: Part I. J Emerg Med 28:53–62

    Article  PubMed  Google Scholar 

  • Berger KJ, Guss DA (2005b) Mycotoxins revisited: Part II. J Emerg Med 28:175–183

    Article  PubMed  Google Scholar 

  • Bernardo D, Cabo AP, Novaes-Ledieu M, Mendoza CG (2004) Verticillium disease or “dry bubble” of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds Verticillium fungicola cell wall glucogalactomannan. Can J Microbiol 50:729–735

    Article  CAS  PubMed  Google Scholar 

  • Bertolino S, Vizzini A, Wauters LA, Tosi G (2004) Consumption of hypogeous and epigeous fungi by the red squirrel (Sciurus vulgaris) in subalpine conifer forests. For Ecol Manag 202:227–233

    Article  Google Scholar 

  • Betancourt DA, Krebs K, Moore SA, Martin SM (2013) Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile. BMC Microbiol 13:283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Blande JD, Glinwood R (eds) (2016) Deciphering chemical language of plant communication. Springer, Cham

    Google Scholar 

  • Blaschke H, Bäumler W (1989) Mycophagy and spore dispersal by small mammals in Bavarian forests. For Ecol Manag 26:237–245

    Article  Google Scholar 

  • Bloomfield BJ, Alexander M (1967) Melanins and resistance of fungi to lysis. J Bacteriol 93:1276–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boa ER (2004) Wild edible fungi – a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/docrep/007/y5489e/y5489e00.htm

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194

    Article  CAS  PubMed  Google Scholar 

  • Boddy L, Coates D, Rayner ADM (1983) Attraction of fungus gnats to zones of intraspecific antagonism on agar plates. Trans Br Mycol Soc 81:149–151

    Article  Google Scholar 

  • Borg-Karlson AK, Englund FO, Unelius CR (1994) Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:321–323

    Article  CAS  Google Scholar 

  • Böroczky K, Zylstra KE, McCartney NB, Mastro VC, Tumlinson JH (2012) Volatile profile differences and associated Sirex noctilio activity in two host tree species in the Northeastern United States. J Chem Ecol 38:213–221

    Article  PubMed  CAS  Google Scholar 

  • Boswell GP (2012) Modelling combat strategies in fungal mycelia. J Theor Biol 304:226–234

    Article  PubMed  Google Scholar 

  • Boustie J, Rapior S, Fortin H, Tomasi S, Besserie JM (2005) Chemotaxonomic interest of volatile components in Lepista inversa and Lepista flaccida distinction. Cryptogam Mycol 26:27–35

    Google Scholar 

  • Bozok F, Zarifikhosroshahi N, Kafkas E, Taşkin H, Büyükalaca S (2015) Comparison of volatile compounds of fresh Boletus edulis and B. pinophilus in Marmara region of Turkey. Not Bot Hort Agrobot Cluj-Naoica 43:192–195

    CAS  Google Scholar 

  • Bozok F, Dogan HH, Taşkin H, Kaskas E, Büyükalaca S (2017) Volatile constituents of the edible Tricholoma terreum in Marmara region of Turkey. J Essent Oil Bear Plants 20:253–258

    Article  CAS  Google Scholar 

  • Braunsdorf C, Mailänder-Sanchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200

    Article  CAS  PubMed  Google Scholar 

  • Bresinsky A, Besl H (1990) A colour atlas of poisonous fungi. Wolfe Publishing, London

    Google Scholar 

  • Bretherton S, Tordoff GM, Jones TH, Boddy L (2006) Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiol Ecol 58:33–40

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Bryant PW (2010) Kairomonal attraction of the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae) to Amylostereum areolatum, an obligate mycosymbiont of the European woodwasp, Sirex noctilio. Master thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY

    Google Scholar 

  • Buller AHR (1909) Researches on fungi, vol I. Longmans, Green, London

    Google Scholar 

  • Buller AHR (1922) Researches on fungi, vol II. Longmans, Green, London

    Google Scholar 

  • Buller AHR (1931) Researches on fungi, vol IV. Longmans, Green, London

    Google Scholar 

  • Burla H, Bächli G, Huber H (1991) Drosophila reared from the stinkhorn, Phallus impudicus, near Zurich, Switzerland. J Zool Syst Evol Res 29:97–107

    Article  Google Scholar 

  • Bruns TD (1984) Insect mycophagy in the Boletales: Fungivore diversity and the mushroom habitat. In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships: perspectives in ecology and evolution. Columbia University Press, New York, pp 91–129

    Google Scholar 

  • Burr B, Barthlott W, Westerkamp C (1996) Staheliomyces (Phallales) visited by Trigona (Apidae): melittophily in spore dispersal of an Amazon stinkhorn? J Trop Ecol 12:441–445

    Article  Google Scholar 

  • Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193

    Article  CAS  PubMed  Google Scholar 

  • Byers JA (1992) Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. J Chem Ecol 18:2385–2402

    Article  CAS  PubMed  Google Scholar 

  • Çağlarirmak N (2008) Determination of nutrient and volatile constituents of Agaricus bisporus (brown) at different stages. J Sci Food Agric 89:634–638

    Article  CAS  Google Scholar 

  • Calderon-Cortes N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K (2012) Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst 43:45–71

    Article  Google Scholar 

  • Caldwell OR, Vernes K, Bärlocher F (2005) The northern flying squirrel (Glaucomys sabrinus) as a vector for inoculation of red spruce (Picea rubens) seedlings with ectomycorrhizal fungi. Sydowia 57:166–178

    Google Scholar 

  • Cale JA, Collignon RM, Klutsch JG, Kanekar SS, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS One 11:e0162197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callac P, Guinberteau J (2005) Morphological and molecular characterization of two novel species of Agaricus section Xanthodermatei. Mycologia 97:416–424

    Article  CAS  PubMed  Google Scholar 

  • Calonje M, Mendoza CG, Cabo AP, Bernardo D, Novaes-Ledieu M (2000) Interaction between the mycoparasite Verticillium fungicola and the vegetative mycelial phase of Agaricus bisporus. Mycol Res 104:988–992

    Article  Google Scholar 

  • Camazine S (1983) Mushroom chemical defense: food aversion learning induced by hallucinogenic toxin, muscimol. J Chem Ecol 9(11):1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Camazine S (1985) Olfactory aposematism: association of food toxicity with naturally occurring odor. J Chem Ecol 11:1289–1285

    Article  CAS  PubMed  Google Scholar 

  • Carazo P, Font E (2013) ‘Communication breakdown’: the evolution of signal unreliability and deception. Anim Behav 87:17–22

    Article  Google Scholar 

  • Cardona ME, Collinder E, Stern S, Tjellström B, Norin E, Midtvedt T (2005) Correlation between faecal iso-butyric and iso-valeric acids in different species. Microb Ecol Health Dis 17:177–182

    Article  CAS  Google Scholar 

  • Carey AB, Colgan W, Trappe JM, Molina R (2002) Effects of forest management on truffle abundance and squirrel diets. Northwest Sci 76:148–157

    Google Scholar 

  • Carlquist M, Gibson B, Yuceer YK, Paraskevopoulou A, Sandell M, Angelov AI, Gotcheva V, Angelov AD, Etschmann M, de Billerbeck GM, Lidén G (2015) Process engineering for bioflavour production with metabolically active yeasts - a mini-review. Yeast 32:123–143

    Google Scholar 

  • Carrau F, Gaggero C, Aguilar PS (2015) Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol 33:148–154

    Article  CAS  PubMed  Google Scholar 

  • Castello JD, Shaw CG, Furnuss MM (1976) Isolation of Cryptoporus volvatus and Fomes pinicola from Dendroctonus pseudotsugae. Phytopathology 66:1431–1434

    Article  Google Scholar 

  • Castillo-Guevara C, Sierra J, Galindo-Flores G, Cuautle M, Lara C (2011) Gut passage of epigeous ectomycorrhizal fungi by two opportunistic mycophagous rodents. Curr Zool 57:283–299

    Article  Google Scholar 

  • Cespedes CL, Aqueveque PM, Avila JG, Alarcon J, Kubo I (2015) New advances in chemical defenses of plants: researches in Calceolariaceae. Phytochem Rev 14:367–380

    Article  CAS  Google Scholar 

  • Chaisaena W (2008) Light effects on fruiting body development of wildtype in comparison to light-insensitive mutant strains of the basidiomycete Coprinopsis cinerea, grazing of mites (Tyrophagus putrescentiae) on the strains and production of volatile organic compounds during fruiting body development. PhD thesis, University of Goettingen, Goettingen, Germany

    Google Scholar 

  • Champavier Y, Pommier MT, Arpin N, Voiland A, Pellon G (2000) 10-Oxo-trans-8-decenoic acid (ODA): production, biological activities, and comparison with other hormone-like substances in Agaricus bisporus. Enzym Microb Technol 26:243–251

    Article  CAS  Google Scholar 

  • Chen J, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Wu CM (1984) Studies on the enzymic reduction of 1-octen-3-one in mushroom Agaricus bisporus. J Agric Food Chem 32:1342–1344

    Article  CAS  Google Scholar 

  • Chen S, Qiu C, Huang T, Zhou W, Qi Y, Gao Y, Shen J, Qiu L (2013) Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecol 6:110–118

    Article  Google Scholar 

  • Chen G, Zhang R-R, Liu Z, Sun W-B (2014) Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects. J Chem Ecol 40:893–899

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhao RL, Psarra LA, Guelly AK, De Kesel A, Rapior S, Hyde KD, Chukeatirote E, Callac P (2015) Agaricus section Brunneopicti: a phylogenetic reconstruction with descriptions of four new taxa. Phytotaxa 192:145–168

    Article  Google Scholar 

  • Chiron N, Michelot D (2005) Mushroom odors, chemistry and role in the biotic interactions – a review. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Cho IH, Kim SY, Choi HK, Kim YS (2006) Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.). J Agric Food Chem 54:6332–6335

    Google Scholar 

  • Cho IH, Namgung HJ, Choi HK, Kim YS (2008) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem 106:71–76

    Google Scholar 

  • Claridge AW, Tanton MR, Seebeck JH, Cork SJ, Cunningham RB (1992) Establishment of ectomycorrhiza on the roots of two species of Eucalyptus from fungal spores contained in the faeces of the long-nosed potoroo (Potorous tridactylus). Aust J Ecol 17:207–217

    Article  Google Scholar 

  • Claridge AW, Tanton MT, Cunningham RB (1993) Hypogeal fungi in the diet of the long-nosed potoroo (Potorous tridactylus) in mixed-species and regrowth eucalypt forest stands in south-eastern Australia. Wildl Res 20:321–337

    Article  Google Scholar 

  • Cloonan KR, Andreadis SS, Baker TC (2016a) Attraction of female fungus gnats, Lycoriella ingenua, to mushroom-growing substrates and the green mold Trichoderma aggressivum. Entomol Exp Appl 159:298–304

    Article  Google Scholar 

  • Cloonan KR, Andreadis SS, Chen H, Jenkins NE, Baker TC (2016b) Attraction, oviposition and larval survival of the fungus gnat, Lycoriella ingenua, on fungal species isolated from adults, larvae, and mushroom compost. PLoS One 11:e0167074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clotuche G, Navajas M, Mailleux AC, Hance T (2013) Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS One 8:e77573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloyd RA, Marley KA, Larson RA, Dickinson A, Arieli B (2011) Repellency of naturally occurring volatile alcohols to fungus gnat Bradysia sp. nr. coprophila (Diptera: Sciaridae) adults under laboratory conditions. J Econ Entomol 104:1633–1639

    Article  PubMed  Google Scholar 

  • Colgan W III, Claridge AW (2002) Mycorrhizal effectiveness of Rhizopogon spores recovered from feacal pellets of small forest-dwelling mammals. Mycol Res 106:314–320

    Article  Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    Article  CAS  Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton K (2009) Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus). J Agric Food Chem 57:3709–3717

    Article  CAS  PubMed  Google Scholar 

  • Cooper T, Vernes K (2011) Mycophagy in the larger bodied skinks of the genera Tiliqua and Egernia: are there implications for ecosystem health? Aust Zool 35:681–684

    Article  Google Scholar 

  • Cope RB (2007) Peer-reviewed – mushroom poisoning in dogs. Vet Med 102:95–100

    Google Scholar 

  • Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115:220–227

    Article  CAS  PubMed  Google Scholar 

  • Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierek R, Mumm R, Carrion VJ, Raaijmakers JM (2017) Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front Plant Sci 8:1262

    Article  PubMed  PubMed Central  Google Scholar 

  • Cork SJ, Kenagy GJ (1989) Rates of gut passage and retention of hypogeous fungal spores in two forest-dwelling rodents. J Mammal 70:512–519

    Article  Google Scholar 

  • Costa R, Tedone L, De Grazia S, Dugo P, Mondello L (2013) Multiple headspace-solid-phase microextraction: an application to quantification of mushroom volatiles. Anal Chim Acta 770:1–6

    Article  CAS  PubMed  Google Scholar 

  • Cottier F, Mühlschlegel FA (2012) Communication in fungi. Int J Microbiol 2012:351832

    Article  PubMed  Google Scholar 

  • Courtney SP, Kibota TT, Singleton TS (1990) Ecology of mushroom-feeding Drosophilidae. Adv Ecol Res 20:225–275

    Article  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011a) Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 14:1134–1142

    Article  PubMed  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2011b) Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167:535–545

    Article  PubMed  Google Scholar 

  • Crowther TW, Jones TH, Boddy L, Baldrian P (2011c) Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biol Biochem 43:2050–2068

    Article  CAS  Google Scholar 

  • Crowther TW, Boddy L, Jones TH (2012) Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J 6:1992–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther TW, Stanton DWG, Thomas SM, A’Bear AD, Hiscox J, Jones TH, Voříškova J, Baldrian P, Boddy L (2013) Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 94:2518–2528

    Article  PubMed  Google Scholar 

  • Cruz C, Noël-Suberville C, Montury M (1997) Fatty acid content and some flavor compound release in two strains of Agaricus bisporus, according to three stages of development. J Agric Food Chem 45:64–67

    Article  CAS  Google Scholar 

  • Cucura DMT (2013) Kairomonal attraction of the native parasitoid, Ibalia leucospoides (Hymenoptera: Ibaliidae), to Amylostereum areolatum, a mycosymbiont of Sirex noctilio. Master thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY

    Google Scholar 

  • Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactory. Food Chem 122:300–306

    Article  CAS  Google Scholar 

  • Culleré L, Ferreira V, Marco P, Venturini ME, Marco P, Blanco D (2013) Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles. Food Chem 141:105–110

    Article  PubMed  CAS  Google Scholar 

  • Culleré L, Ferreira V, Marco P, Venturini ME, Blanco D (2017) Does the host tree exert any influence on the aromatic composition of the black truffle (Tuber melanosporum)? Flavour Fragr J 32:133–140

    Article  CAS  Google Scholar 

  • Dardaillon M (1986) Seasonal variations in habitat selection and spatial distribution of wild boar (Sus scrofa) in the Camargue, Southern France. Behav Process 13:251–268

    Article  CAS  Google Scholar 

  • Das S, Gupta-Bhattacharya S (2012) Monitoring and assessment of airborne fungi in Kolkata, India, by viable and non-viable air sampling methods. Environ Monit Assess 184:4671–4684

    Article  CAS  PubMed  Google Scholar 

  • David JF (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    Article  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • De Pinho PG, Ribeiro B, Goncalves RF, Baptista P, Valentao P, Seabra RM, Andrade PB (2008) Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J Agric Food Chem 56:1704–1712

    Article  PubMed  CAS  Google Scholar 

  • Delaunois B, Jeandet P, Clement C, Bailieul F, Dorey S, Cordelier S (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Francesco A, Ugolini L, Lazzeri L, Mari M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14

    Article  CAS  Google Scholar 

  • Diaz P, Ibanez E, Reglero G, Senorans FJ (2009) Optimization of summer truffle aroma analysis by SPME: comparison of extraction with different polarity fibres. LWT Food Sci Technol 42:1253–1259

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Dicke M, van Lenteren JC, Boskamp GFP, van Dongen-van Leeuwen E (1984) Chemical stimuli in host-habitat location by Leptopilina heterotoma (Thomson) (Hymenoptera: Eucoilidae), a parasite of Drosophila. J Chem Ecol 10:695–712

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS (2014) Capturing volatile natural products by mass spectrometry. Nat Prod Rep 31:836–861

    Article  CAS  Google Scholar 

  • Dickschat JS (2017) Fungal volatiles – a survey from edible mushrooms to moulds. Nat Prod Rep 34:310–328

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra FY, Wikén TO (1976) Studies on mushroom flavors. 1. Organoleptic significance of constituents of the cultivated mushroom, Agaricus bisporus. Z Lebensm Unters-Forsch 160:255–262

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Hou YL (2012) Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins. Biochem Syst Ecol 44:233–239

    Article  CAS  Google Scholar 

  • Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasik H, Miloradovic van Doorn M, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon EF, Hall RA (2015) Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 17:1431–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djekic I, Vunduk J, Tomašević I, Kozarski M, Petrovic P, Niksic M, Pudja P, Klaus A (2017) Application of quality function deployment on shelf-life analysis of Agaricus bisporus Portobello. LWT Food Sci Technol 78:82–90

    Article  CAS  Google Scholar 

  • Donaldson R, Stoddart M (1994) Detection of hypogeous fungi by Tasmanian bettong (Bettongia gaimardi: Marsupialia; Macropodoidea). J Chem Ecol 20:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Donnelly D, Boddy L (1998) Developmental and morphological responses of mycelial systems of Stropharia caerulea and Phanerochaete velutina to soil nutrient enrichment. New Phytol 138:519–531

    Article  Google Scholar 

  • Dressaire E, Yamada L, Song B, Roper M (2015) Mushroom spore dispersal by convectively driven winds. arXiv:1512.07611

    Google Scholar 

  • Dressaire E, Yamada L, Song B, Roper M (2016) Mushrooms use convectively created airflows to disperse their spores. Proc Natl Acad Sci USA 113:2833–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drickamer LC (1972) Experience and selection behavior in food habits of Peromyscus – use of olfaction. Behaviour 41:269–286

    Article  CAS  PubMed  Google Scholar 

  • Drilling K, Dettner K (2009) Electrophysiological responses of four fungivorous Coleoptera to volatiles of Trametes versicolor: implications for host selection. Chemoecology 19:109–115

    Article  CAS  Google Scholar 

  • Drissen G, Hemerik L, van Alphen JJM (1990) Drosophila species, breeding in the stinkhorn (Phallus impudicus Pers.) and their larval parasitoids. Neth J Zool 40:409–427

    Article  Google Scholar 

  • Dyer HC, Boddy L, Preston-Meek CM (1992) Effect of the nematode Panagrellus redivivus on growth and enzyme production by Phanerochaete velutina and Stereum hirsutum. Mycol Res 96:1019–1028

    Article  CAS  Google Scholar 

  • Eastwood D, Burton K (2002) Mushrooms – a matter of choice and spoiling oneself. Microbiol Today 29:18–18

    Google Scholar 

  • Eastwood DC, Herman B, Noble R, Dobrovin-Pennington A, Sreenivasaprasad S, Burton KS (2013) Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO2. Fungal Genet Biol 55:54–66

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Egli S, Gfeller H, Bigler P, Schlunegger U-P (1988) Isolierung und Identifikation des Sesquiterpenalkohols (+/−)-Torreyol aus Reinkulturen des Ektomykorrhizapilzes Cortinarius odorifer Britz. Eur J For Pathol 18:351–356

    Article  Google Scholar 

  • El Ariebi N, Hiscox J, Scriven SA, Müller CT, Boddy L (2016) Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecol 20:144–154

    Article  Google Scholar 

  • Endara L, Grimaldi DA, Roy BA (2010) Lord of the flies: pollination of Dracula orchids. Lankesteriana 10:1–11

    Article  Google Scholar 

  • Epps MJ, Arnold AE (2010) Diversity, abundance and community network structure in sporocarp-associated beetle communities of the central Appalachian mountains. Mycologia 102:785–802

    Article  PubMed  Google Scholar 

  • Erbilgin N, Stein JD, Accivatti RE, Gilette NE, Mori SR, Bischel K, Cale JA, Carvalho CR, Wood DL (2017) A blend of ethanol and (−)-α-pinene were highly attractive to native siricid woodwasps (Siricidae, Siricinae) infesting conifers of the Sierra Nevada and the Allegheny Mountains. J Chem Ecol 43:172–179

    Article  CAS  PubMed  Google Scholar 

  • Esser K (2016) Heterogenic incompatibility in fungi. In: Wendland J (ed) Growth, differentiation and sexuality. The mycota, vol I, 3rd edn. Springer, Cham, pp 103–131

    Chapter  Google Scholar 

  • Evans JA, Eyre CA, Rogers HJ, Boddy L, Müller CT (2008) Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol 1:57–68

    Article  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson AK (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590

    Article  Google Scholar 

  • Fäldt J, Eriksson M, Valterová I, Borg-Karlson AK (2000) Comparison of headspace techniques for sampling volatile natural products in a dynamic system. Z Naturforsch C 55:180–188

    Article  PubMed  Google Scholar 

  • Fantaye CA, Köpke D, Gershenzon J, Degenhardt J (2015) Restoring (E)-β-caryophyllene production in a non-producing maize line compromises its resistance against the fungus Colletotrichum graminicola. J Chem Ecol 41:213–223

    Article  CAS  PubMed  Google Scholar 

  • Farre-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    Article  CAS  PubMed  Google Scholar 

  • Felton J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  Google Scholar 

  • Fernández AA, Martínez AS, Villacide JM, Corley JC (2015) Behavioural responses of the woodwasp Sirex noctilio to volatile emissions of its fungal symbiont. J Appl Entomol 139:654–659

    Article  CAS  Google Scholar 

  • Fiecchi A, Kienle MG, Scala A, Cabella P (1967) Bis-methylthiomethane, an odorous substance from white truffle, Tuber magnatum Pico. Tetrahedron Lett 8:1681–1682

    Article  Google Scholar 

  • Field JA, Verhagen FJM, de Jong E (1995) Natural organohalogen production by basidiomycetes. Trends Biotechnol 13:451–456

    Article  CAS  Google Scholar 

  • Fischbein D, Bettinelli J, Bernstein C, Corley JC (2012) Patch choice from a distance and use of habitat information during foraging by the parasitoid Ibalia leucospoides. Ecol Entomol 37:161–168

    Article  Google Scholar 

  • Fischer GJ, Keller NP (2016) Production of cross-kingdom oxylipins by pathogenic fungi: an update on their role in development and pathogenicity. J Microbiol 54:254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flegg PB (1979) Effect of temperature on sporophore initiation and development in Agaricus bisporus. Mushroom Sci 10:595–602

    Google Scholar 

  • Flegg PB, Wood DA (1985) Growth and fruiting. In: Flegg PB, Spence DM, Wood DA (eds) The biology and technology of the cultivated mushroom. Wiley, Chichester, pp 141–178

    Google Scholar 

  • Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52:1–31

    Google Scholar 

  • Fons F, Rapior S, Eyssartier G, Bessière JM (2003) Volatile compounds in the Cantharellus, Craterellus and Hydnum genera. Cryptogam Mycol 24:367–376

    Google Scholar 

  • Forbes SL, Perrault KA (2014) Decomposing odour profiling in the air and soil surrounding vertebrate carrion. PLoS One 9:e95107

    Article  PubMed  PubMed Central  Google Scholar 

  • Forti L, Di Mauro S, Cramarossa MR, Filipucci S, Turchetti B, Buzzini P (2015) Non-conventional yeasts whole cells as efficient biocatalysators for the production of flavors and fragrances. Molecules 20:10377–10398

    Article  CAS  PubMed  Google Scholar 

  • Fraatz MA, Riemer SJL, Stöber R, Kaspera R, Nimtz M, Berger RG, Zorn H (2009a) A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B Enzym 61:202–207

    Article  CAS  Google Scholar 

  • Fraatz MA, Berger RG, Zorn H (2009b) Nootkatone – a biotechnological challenge. Appl Microbiol Biotechnol 83:35–41

    Article  CAS  PubMed  Google Scholar 

  • Frank JL, Anglin S, Carrington EM, Taylor DS, Viratos N, Southworth D (2009) Rodent dispersal of fungal spores promotes seedling establishment away from mycorrhizal networks on Quercus garryana. Botany 87:821–829

    Article  CAS  Google Scholar 

  • Frazier K, Ligett A, Hines M, Styer E (2000) Mushroom toxicity in a horse with meningioangiomatosis. Vet Hum Toxicol 42:166–167

    CAS  PubMed  Google Scholar 

  • Fuijoka K, Shimizu N, Manome Y, Ikeda K, Yamamoto K, Tomizawa Y (2013) Discrimination method of the volatiles from fresh mushrooms by an electronic nose using a trapping system and statistical standardization to reduce sensor value variation. Sensors 13:15532–15548

    Article  CAS  Google Scholar 

  • Galante TE, Horton TR, Swaney DP (2011) 95% of basidiospores fall within 1 m of the cap: a field- and modelling-based study. Mycologia 103:1175–1183

    Article  PubMed  Google Scholar 

  • Gara RI, Littke WR, Rhoades DF (1993) Emissions of ethanol and monoterpenes by fungal infected lodgepole pine trees. Phytochemistry 34:987–990

    Article  CAS  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014) Volatiles produced by the mycophagus soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alcega S, Nasir ZA, Ferguson R, Whitby C, Dumbrell AJ, Colbeck I, Gomes D, Tyrrel S, Coulon F (2017) Fingerprinting outdoor air environment using microbial volatile organic compounds (MVOCs) – a review. TrAC Trends Anal Chem 86:75–83

    Article  CAS  Google Scholar 

  • García-Estrada C, Martín JF (2016) Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 100:8303–8313

    Article  PubMed  CAS  Google Scholar 

  • Garnica S, Weiss M, Walther G, Oberwinkler F (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol Res 111:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Garibay-Orijel R, Ramírez-Terrazo A, Ordaz-Velázquez M (2012) Woman care about local knowledge, experiences from ethnomycology. J Ethnobiol Ethnomed 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Geervliet JBF, Posthumus MA, Vet LEM, Dicke M (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J Chem Ecol 23:2935–2954

    Article  CAS  Google Scholar 

  • Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M (2016) The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18

    Article  CAS  Google Scholar 

  • Genard M, Lescourret F, Durrieu G (1988) Mycophagie chez le sanglier et hypothèses sur son rôle dans la dissémination des spores de champignons hypogés. Can J Zool 66:2324–2327

    Article  Google Scholar 

  • Genov P (1981) Food composition of wild boar in North-eastern and Western Poland. Acta Theriol 26:185–205

    Article  Google Scholar 

  • Gioacchini AM, Menotta M, Bertini L, Rossi I, Zeppa S, Zambonelli A, Piccoli G, Stocchi V (2005) Solid-phase microextraction gas chromatography/mass spectrometry: a new method for species identification of truffles. Rapid Commun Mass Spectrom 19:2365–2370

    Article  CAS  PubMed  Google Scholar 

  • Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, Barbieri E, Giomoro G, Stocchi V (2008) Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun Mass Spectrom 22:3147–3153

    Article  CAS  PubMed  Google Scholar 

  • Gkatzionis K, Yunita D, Linforth RST, Dickinson M, Dodd CER (2014) Diversity and activities of yeast from different parts of a Stilton cheese. Int J Food Microbiol 177:109–116

    Article  CAS  PubMed  Google Scholar 

  • Gonmori K, Fujita H, Yokoyama K, Watanabe K, Suzuki O (2011) Mushroom toxins: a forensic toxicological review. Forensic Toxicol 29:85–94

    Article  CAS  Google Scholar 

  • Grimaldi D, Jeanike J (1984) Competition in natural populations of mycophagous Drosophila. Ecology 65:1113–1120

    Article  Google Scholar 

  • Grosshauser S, Schieberle P (2013) Characterization of the key odorants in pan-fried white mushrooms (Agaricus bisporus L.) by means of molecular sensory science: comparison with the raw mushroom tissue. J Agric Food Chem 61:3804–3813

    Article  CAS  PubMed  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Grove JF, Blight MM (1983) The oviposition attractant for the mushroom phorid Megaselia halterata: the identification of volatiles present in mushroom house air. J Sci Food Agric 34:181–185

    Article  CAS  Google Scholar 

  • Guevara R, Hutcheson KA, Mee AC, Rayner ADM, Reynolds SE (2000a) Resource partitioning of the host Coriolus versicolor by two ciid beetles: the role of odour compounds and host ageing. Oikos 91:184–194

    Article  CAS  Google Scholar 

  • Guevara R, Rayner ADM, Reynolds SE (2000b) Orientation of specialist and generalist fungivorous ciid beetles to host and non-host odours. Physiol Entomol 25:288–295

    Article  Google Scholar 

  • Guevara R, Rayner ADM, Reynolds SE (2000c) Effects of fungivory by two specialist ciid beetles (Octotemnus glabriculus and Cis boleti) on the reproductive fitness of their host fungus, Coriolus versicolor. New Phytol 145:137–144

    Article  Google Scholar 

  • Günther CS, Goddard MR, Newcomb RD, Buser CC (2015) The context of chemical communication driving a mutualism. J Chem Ecol 41:929–936

    Article  PubMed  CAS  Google Scholar 

  • Hackman W, Meinander M (1979) Diptera feeding as larvae on macrofungi in Finland. Ann Zool Fenn 16:50–83

    Google Scholar 

  • Hågvar S (1999) Saproxylic beetles visiting living sporocarps of Fomitopsis pinicola and Fomes fomentarius. Norw J Entomol 46:25–32

    Google Scholar 

  • Hågvar S, Steen R (2013) Succession of beetles (genus Cis) and oribatid mites (genus Carabodes) in dead sporocarps of the red-banded polypore fungus Fomitopsis pinicola. Scan J For Res 28:436–444

    Article  Google Scholar 

  • Hågvar S, Amundsen T, Økland B (2014) Mites of the genus Carabodes (Acari, Oribatida) in Norwegian coniferous forests: occurrence in different soils, vegetation types and polypore hosts. Scan J For Res 29:629–638

    Article  Google Scholar 

  • Halbwachs H, Bässler C (2015) Gone with the wind – a review on basidiospores of lamellate agarics. Mycosphere 6:78–112

    Article  Google Scholar 

  • Halbwachs H, Brandl R, Bässler C (2015) Spore wall traits of ectomycorrhizal and saprotrophic Agarics may mirror their distinct lifestyles. Fungal Ecol 17:197–204

    Article  Google Scholar 

  • Halbwachs H, Simmel J, Bässler C (2016) Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol Rev 30:36–61

    Article  Google Scholar 

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle: the history, lore, and science of the ultimate mushroom. Timber Press, Portland, Oregon

    Google Scholar 

  • Halpern GM (2007) Healing mushrooms. Square One Publishers, Garden Park City, NY

    Google Scholar 

  • Hammond JBW, Nichols R (1975) Changes in respiration and soluble carbohydrates during the post-harvest storage of mushrooms (Agaricus bisporus). J Sci Food Agric 26:835–842

    Article  CAS  Google Scholar 

  • Hanski I (1989) Fungivory: fungi, insects and ecology. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 25–68

    Chapter  Google Scholar 

  • Hanson AM, Hodge KT, Porter LM (2003) Mycophagy among primates. Mycologist 17:6–1

    Article  Google Scholar 

  • Hanson AM, Hall MB, Porter LM, Lintzenich B (2006) Composition and nutritional characteristics of fungi consumed by Callimico goeldii in Pando, Brazil. Int J Primatol 27:323–346

    Article  Google Scholar 

  • Hartlieb E, Rembold H (1996) Behavioral response of female Helicoverpa (Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanus cajan L.) kairomone. J Chem Ecol 22:821–837

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hayashi N, Honda K, Hara S, Idzumihara H, Mikata K, Komae H (1996) The chemical relationship between fungus and beetles on Ponderosa pine. Z Naturforsch 51c:813–817

    Google Scholar 

  • Hayes WA (1978) Biological nature. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic Press, New York, NY, pp 192–217

    Google Scholar 

  • Hedlund K, Vet LEM, Dicke M (1996) Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77:390–398

    Article  Google Scholar 

  • Heitmann M, Zannini E, Axel C, Arendt R (2017) Correlation of flavor profile to sensory analysis of bread produced with different Saccharomyces cerevisiae originating from the baking and beverage industry. Cereal Chem 94:746–751

    Article  CAS  Google Scholar 

  • Hirst MB, Richter CL (2016) Review of aroma formation through metabolic pathways of Saccharomyces cerevisiae in beverage fermentations. Am J Enol Vitic 67:361–370

    Article  Google Scholar 

  • Hiscox J, Boddy L (2017) Armed and dangerous – chemical warfare in wood decay communities. Fungal Biol Rev 31:169–184

    Article  Google Scholar 

  • Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L (2015a) Priority effects during fungal community establishment in beech wood. ISME J 9:2246–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiscox J, Savoury M, Vaughan IP, Müller CT, Boddy L (2015b) Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecol 14:24–32

    Article  Google Scholar 

  • Hiscox J, Savoury M, Johnston SR, Parfitt D, Müller CT, Rogers HJ, Boddy L (2016a) Location, location, location: priority effects in wood decay communities may vary between sites. Environ Microbiol 18:1954–1969

    Article  CAS  PubMed  Google Scholar 

  • Hiscox J, Clarkson G, Savoury M, Powell G, Savva I, Lloyd M, Shipcott J, Choimes A, Cumbriu XA, Boddy L (2016b) Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecol 21:32–42

    Article  Google Scholar 

  • Hiscox J, Sacoury M, Toledo S, Kingscott-Edmunds J, Bettridge A, Waili NA, Boddy L (2017) Threesomes destabilize certain relationships: multispecies interactions between wood decay fungi in natural resources. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix014

  • Holighaus G (2012) Odour signals relevant to beetles in deadwood habitats. PhD thesis, University of Goettingen, Goettingen, Germany

    Google Scholar 

  • Holighaus G, Rohlfs M (2016) Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 100:5681–5689

    Article  CAS  PubMed  Google Scholar 

  • Holighaus G, Schütz S (2006) Odours of wood decay as semiochemicals for Trypodendron domesticum L. (Col., Scolytidae). Mitt Dtsch Ges Allg Angew Ent 15:161–165

    Google Scholar 

  • Holighaus G, Weißbecker B, von Fragstein M, Schütz S (2014) Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore. Chemoecology 24:57–66

    Article  CAS  Google Scholar 

  • Horton TW, Swaney DP, Galante TE (2013) Dispersal of ectomycorrhizal basidiospores: the long and the short of it. Mycologia 105:1623–1626

    Article  PubMed  Google Scholar 

  • Hosaka K, Uno K (2012) A preliminary survey on larval diversity in mushroom fruit bodies. Bull Natl Mus Nat Sci Ser B 38:77–85

    Google Scholar 

  • Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W III, Domínguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR, Simpson NB, Spatafora JW, Trappe JM (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959

    Article  CAS  PubMed  Google Scholar 

  • Howard WE, Marsh RE, Cole RE (1968) Food detection by deer mice using olfactory rather than visual cues. Anim Behav 16:13–17

    Article  CAS  PubMed  Google Scholar 

  • Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. elife 6:e20023

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Hulcr J, Cognato AL (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 64:3205–3212

    Article  PubMed  Google Scholar 

  • Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3340

    Article  CAS  PubMed  Google Scholar 

  • Husson F, Bompas D, Kermasha S, Belin JM (2001) Biogeneration of 1-octen-3-ol by lipoxygenase and hydroperoxide lyase activities of Agaricus bisporus. Process Biochem 37:177–182

    Article  CAS  Google Scholar 

  • Hutchings ML, Alpha-Cobb CJ, Hiller DA, Berro J, Strobel SA (2017) Mycofumigation through production of the volatile DNA-methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. J Biol Chem 292:7358–7371

    Article  CAS  PubMed  Google Scholar 

  • Hüttermann A, Majcherczyk A (2007) Conversion of biomass to fodder for ruminants or: how to get wood edible? In: Kües U (ed) Wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, Goettingen, Germany, pp 537–554

    Google Scholar 

  • Hynes J, Müller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57

    Article  CAS  PubMed  Google Scholar 

  • Inga B (2007) Reindeer (Rangifer tarandus tarandus) feeding on lichens and mushrooms: traditional ecological knowledge among reindeer-herding Sami in northern Sweden. Rangifer 27:93–106

    Article  Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Clarendon Press, Oxford

    Google Scholar 

  • Isidorov V, Tyszkiewicz Z, Pirožnikow E (2016) Fungal succession in relation to volatile organic compounds emissions from scots pine and Norway spruce leave litter-decomposing fungi. Atmos Environ 131:301–306

    Article  CAS  Google Scholar 

  • Jacobsen RM, Birkemoe T, Sverdrop-Thygeson A (2015) Priority effects of early successional insects influence late successional fungi in dead wood. Ecol Evol 5:4896–4905

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Markussen Bjorbækmo M, Birkemoe T (2017) Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol 29:76–84

    Article  Google Scholar 

  • Jakolev J (2012) Fungal hosts of mycetophilids (Diptera: Sciaroidea excluding Sciaridae): a review. Mycology 3:11–23

    Google Scholar 

  • Janssen A, van Alphen JJM, Sabelis MW, Bakker K (1995a) Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behav Ecol Sociobiol 36:229–235

    Article  Google Scholar 

  • Janssen A, van Alphen JJM, Sabelis MW, Bakker K (1995b) Odour-mediated avoidance of competition in Drosophila parasitoids: the ghost of competition. Oikos 73:356–366

    Article  Google Scholar 

  • Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    Article  PubMed  Google Scholar 

  • Ji T, Kang M, Baik BK (2017) Volatile organic compounds of whole-grain soft winter wheat. Cereal Chem 94:594–601

    Article  CAS  Google Scholar 

  • Jinks A, Laing DG (1999) A limit in the processing of components in odour mixtures. Perception 28:395–404

    Article  CAS  PubMed  Google Scholar 

  • Jinks A, Laing DG (2001) The analysis of odor mixtures by humans: evidence for a configurational process. Physiol Behav 72:51–63

    Article  CAS  PubMed  Google Scholar 

  • Jofré N, Pildain MB, Cirigliano AM, Cabrera GM, Corley JC, Martínez AS (2016) Host selection by Ibalia leucospoides based on temporal variations of volatiles from the hosts’ fungal symbiont. J Appl Entomol 140:736–743

    Article  CAS  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trees 11:503–507

    CAS  Google Scholar 

  • Johnson SD, Jürgens A (2010) Convergent evolution and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S Afr J Bot 76:796–807

    Article  CAS  Google Scholar 

  • Johansson T, Olsson J, Hjältén J, Jonsson BG, Ericson L (2006) Beetle attraction to sporocarps and wood infected with mycelia of decay fungi in old-growth spruce forests of northern Sweden. For Ecol Manag 237:335–341

    Article  Google Scholar 

  • Jones SE, Elliott MA (2017) Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol 25:523–532

    Article  CAS  Google Scholar 

  • Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA (2017) Streptomyces exploration is trigged by fungal interactions and volatile signals. elife 6:e21738

    PubMed  PubMed Central  Google Scholar 

  • Jonsell N, Nordlander G (1995) Field attraction of Coleoptera to odours of the wood-decaying polypores Fomitopsis pinicola and Fomes fomentarius. Ann Zool Fenn 32:391–402

    Google Scholar 

  • Jonsell M, Nordlander G (2002) Insects in polypore fungi as indicator species: a comparison between forest sites differing in amounts of dead wood. For Ecol Manag 157:101–118

    Article  Google Scholar 

  • Jonsell M, Nordlander G (2004) Host selection patterns in insects breeding on bracket fungi. Ecol Entomol 29:697–705

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Johnsson M (1999) Colonization patterns of insects breeding in wood-decaying fungi. J Insect Conserv 3:145–161

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Ehnström B (2001) Substrate associations of insects breeding in sporocarps of wood-decaying fungi. Ecol Bull 49:173–194

    Google Scholar 

  • Jonsell M, Schroeder M, Larson T (2003) The saproxylic beetle Bolitophagus reticulans: its frequency on managed forests, attractive to volatiles and flight period. Ecography 26:421–428

    Article  Google Scholar 

  • Jonsell M, Alonso CG, Forshage M, van Achterberg C, Komonen A (2016) Structure of insect community in the fungus Inonotus radiatus in riparian boreal forests. J Nat Hist 50:1613–1631

    Article  Google Scholar 

  • Jonsson M, Kindvall O, Jonsell M, Nordlander G (2003) Modelling mating success of saproxylic beetles in relation to search behavior, population density and substrate abundance. Anim Behav 65:1069–1076

    Article  Google Scholar 

  • Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odors in stapeliads (Apocybaceae-Asclepiadoideae-Ceropegieae). New Phytol 172:452–468

    Article  PubMed  CAS  Google Scholar 

  • Jürgens A, Wee SL, Shuttleworth A, Johnson SD (2013) Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol Lett 16:1157–1167

    Article  PubMed  Google Scholar 

  • Kadowaki K (2010a) Species coexistence patterns in a mycophagus insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur J Entomol 107:89–99

    Article  Google Scholar 

  • Kadowaki K (2010b) Behavioral observation of two fungivorous beetles (Coleoptera: Tenebrionidae) on wood-decaying bracket fungus Cryptoporus volvatus. Entomol Sci 13:159–161

    Article  Google Scholar 

  • Kadowaki K, Inouye BD (2015) Habitat configuration affects spatial pattern of β diversity of insect communities breeding in oyster mushrooms. Ecosphere 6:72

    Article  Google Scholar 

  • Kadowaki K, Leschen RAB, Beggs JR (2011) Competition-colonization dynamics of spore-feeding beetles on the long-lived bracket fungi Ganoderma in New Zealand native forest. Oikos 120:776–786

    Article  Google Scholar 

  • Kaiser R (1993) On the scent of orchids. In: Teranishi R, Buttery RG, Sugisawa H (eds) Bioactive volatile compounds from plants. American Chemical Society, Washington, DC, pp 240–268

    Chapter  Google Scholar 

  • Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science 311:806–807

    Article  CAS  PubMed  Google Scholar 

  • Kamle M, Bar E, Lewinsohn D, Shavit E, Roth-Bejerano N, Kagan-Zur V, Barak Z, Guy O, Zaady E, Lewinsohn D, Sitrit Y (2017) Characterization of morphology, volatile profile, and molecular markers in edible desert truffles from the Negev desert. J Agric Food Chem 65:2977–2983

    Article  CAS  Google Scholar 

  • Kamra DN, Zadražil F (1986) Influence of gaseous phase, light and substrate pretreatment on fruit-body formation, lignin degradation and in vitro digestibility of wheat straw fermented with Pleurotus spp. Agric Wastes 18:1–17

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015a) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20:206–211

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015b) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998) In vitro effect of Laccaria bicolor S238N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103–111

    Article  PubMed  Google Scholar 

  • Karabaghli-Degron C, Sotta B, Bonnet M, Le Tacon F (1998) The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol 140:723–733

    Article  CAS  Google Scholar 

  • Kasson MT, Wickert KL, Staider CM, Macias AM, Berger MC, Simmons DR, Short DPG, DeVallance DB, Hulcr J (2016) Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecol 23:86–96

    Article  Google Scholar 

  • Kataržyte M, Kutorga E (2011) Small mammal mycophagy in hemiboreal forest communities of Lithuania. Cent Eur J Biol 6:446–456

    Google Scholar 

  • Kearney JN, Shorrocks B (1981) The utilization of naturally occurring yeasts by Drosophila species, using chemically defined substrates. Biol J Linn Soc 15:39–56

    Article  Google Scholar 

  • Kinzner M-C, Tratter M, Bächli G, Kirchmair M, Kaufmann R, Arthofer W, Schlick-Steiner BC, Steiner FM (2016) Oviposition substrate of the mountain fly Drosophila nigrospersa (Diptera: Drosophilidae). PLoS One 11:e165743

    Article  CAS  Google Scholar 

  • Kirchenbauer T, Fartmann T, Bässler C, Löffler F, Müller J, Strätz C, Seibold S (2017) Small-scale positive response of terrestrial gastropods to dear-wood addition is mediated by canopy openness. For Ecol Manag 396:85–90

    Article  Google Scholar 

  • Kleofas V, Popa F, Niedenthal E, Rühl M, Kost G, Zorn H (2015) Analysis of the volatilome of Calocybe gambosa. Mycol Prog 14:93

    Article  Google Scholar 

  • Koban MB, Gossner MM, Müller J, Steidle JLM, Bässler C, Hothorn T, Unsocker SB, Seibold B (2016) Short-distance attraction of saproxylic Heteroptera to olfactory cues. Insect Conserv Div 9:254–257

    Article  Google Scholar 

  • Kobayashi M, Kitabayashi K, Tuno N (2017) Spore dissemination by mycophagus adult drosophilids. Ecol Res 32:621–626

    Article  Google Scholar 

  • Komonen A, Kouki J (2005) Occurrence and abundance of fungus-dwelling beetles (Ciidae) in boreal forests and clearcuts: habitat associations at two spatial scales. Anim Biodic Conserv 28:137–147

    Google Scholar 

  • Komonen A, Jonsell M, Økland B, Sverdrup-Thygeson A, Thunes K (2004) Insect assemblage associated with the polypore Fomitopsis pinicola: a comparison across Fennoscandia. Entomol Fenn 15:102–112

    Google Scholar 

  • Konuma R, Umezawa K, Mizukoshi A, Kawarada K, Yoshida M (2015) Analysis of microbial volatile organic compounds produced by wood-decay fungi. Biotechnol Lett 37:1845–1852

    Article  CAS  PubMed  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kou Y, Naqvi NI (2016) Surface sensing and signaling networks in plant pathogenic fungi. Semin Cell Dev Biol 57:84–92

    Article  CAS  PubMed  Google Scholar 

  • Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    Article  CAS  Google Scholar 

  • Krause K, Henke C, Asiimwe T, Ulbricht A, Klemmer S, Schachtschabel D, Boland W, Kothe E (2015) Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Appl Environ Microbiol 81:7003–7011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krivosheina NP (2008) Macromycete fruit bodies as a habitat for dipterans (Insecta, Diptera). Entomol Rev 88:778–792

    Article  Google Scholar 

  • Krügener S, Krings U, Zorn H, Berger RG (2010) A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specifically allylic hydroperoxidation. Bioresour Technol 101:457–462

    Article  PubMed  CAS  Google Scholar 

  • Kudalkar P, Strobel G, Riyaz-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    Article  CAS  Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Kües U (2015) From two to many: multiple mating types in basidiomycetes. Fungal Biol Rev 29:126–152

    Article  Google Scholar 

  • Kües U, Badalyan SM (2017) Making use of genomic information to explore the biotechnological potential of medicinal mushrooms. In: Agrawal DC, Tsay H-S, Shyur L-F, Wu Y-C, Wang S-Y (eds) Medicinal plants and fungi: recent advances in research and development. Springer, Berlin, pp 397–458

    Chapter  Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    Article  PubMed  Google Scholar 

  • Kües U, Martin F (2011) On the road of understanding truffles in the underground. Fungal Genet Biol 48:555–560

    Article  PubMed  Google Scholar 

  • Kües U, Navarro-Gonzaléz M (2009) Communication of fungi on individual, species, kingdom and above kingdom levels. In: Anke T, Weber S (eds) Physiology and genetics. Selected basic and applied aspects. The mycota, vol XV. Springer, Berlin, pp 79–106

    Google Scholar 

  • Kües U, Navarro-Gonzaléz M (2015) How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. Fungal Biol Rev 29:63–97

    Article  Google Scholar 

  • Kües U, Künzler M, Bottoli APF, Walser PJ, Granado JD, Liu Y, Bertossa RC, Ciardo D, Clergeot P-J, Loos S, Ruprich-Robert G, Aebi M (2003) Mushroom development in higher basidiomycetes: implications for human and animal health. In: Kushwaha RKS (ed) Fungi in human and animal health. Scientific Publishers (India), Jodhpur, pp 431–469

    Google Scholar 

  • Kües U, James TY, Heitman J (2011) Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms. The mycota, vol XIV. Springer, Berlin, pp 97–160

    Google Scholar 

  • Kües U, Badalyan SM, Gießler A, Dörnte B (2016a) Asexual sporulation in Agaricomycetes. In: Wendland J (ed) Growth, differentiation and sexuality. The mycota, vol I, 3rd edn. Springer, Cham, pp 269–328

    Google Scholar 

  • Kües U, Subba S, Yu Y, Sen M, Khonsuntia W, Singhaduang W, Lange K, Lakkireddy K (2016b) Regulation of fruiting body development in Coprinopsis cinerea. Mushroom Sci 19:318–322

    Google Scholar 

  • Kuribayashi T, Kaise H, Uno C, Hara T, Hayakawa T, Joh T (2002) Purification and characterization of lipoxygenase from Pleurotus ostreatus. J Agric Food Chem 50:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Lacy RC (1984) Predictability, toxicity and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol Entomol 9:43–54

    Article  Google Scholar 

  • Laing DG, Francis GW (1989) The capacity of humans to identify odors in mixtures. Physiol Behav 46:809–814

    Article  CAS  PubMed  Google Scholar 

  • Lakkireddy K, Kües U (2017) Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations. AMB Express 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane GA, Fraser K (1999) A comparison of phenol and indole flavor compounds in fat, and of phenols in urine of cattle fed pasture or grain. N Z J Agric Res 42:289–296

    Article  CAS  Google Scholar 

  • Lauchli R, Potzer J, Kitto RZ, Kalbarczyk KZ, Rabe KS (2014) Improved selectivity of an engineered multi-product terpene synthase. Org Biomol Chem 12:4013–4020

    Article  CAS  PubMed  Google Scholar 

  • Launchbaugh KL, Urness PJ (1992) Mushroom consumption (mycophagy) by North American cervids. Great Basin Nat 52:321–327

    Google Scholar 

  • Le Roux C, Tournier E, Lies A, Sanguin H, Chevalier G, Duponnois R, Mousain D, Prin Y (2016) Bacteria of the genus Rhodopseudomonas (Bradyrhizobiaceae): obligate symbionts in mycelial cultures of the black truffles Tuber melanosporum and Tuber brumale. Springerplus 5:1085

    Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596

    Article  CAS  PubMed  Google Scholar 

  • Leather SR, Baumgart EA, Evans HF, Quicke DLJ (2014) Seeing the trees for the wood – beech (Fagus sylvatica) decay fungal volatiles influence the structure of saproxylic beetle communities. Insect Conserv Div 7:314–326

    Article  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia ropo rot on moth orchid. J Appl Microbiol 106:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Lee LW, Cheong MW, Curran P, Yu B, Liu SQ (2016) Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee. Food Chem 211:916–924

    Article  CAS  PubMed  Google Scholar 

  • Lehmann KDS, Goldman BW, Dworkin BW, Bryson DM, Wagner AP (2014) From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system. PLoS One 9:e91783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmkuhl JF, Gould LE, Cázares E, Hosford DR (2004) Truffle abundancy and mycophagy by northern flying squirrels in eastern Washington forests. For Ecol Manag 200:49–65

    Article  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt RH, Plagemann I, Linke D, Zelena K, Berger RG (2013) Orthologous lipoxygenases of Pleurotus spp. a comparison of substrate specificity and sequence homology. J Mol Catal B Enzym 97:189–195

    Article  CAS  Google Scholar 

  • Leschen RAB (1999) Systematics of Nitidulinae (Coleoptera; Nitidulidae): phylogenetic relationships, convexity and the origin of phallalophagy. Invertebr Taxon 13:845–882

    Article  Google Scholar 

  • Li DW (2005) Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration onto a residence. Mycol Res 109:1235–1242

    Article  PubMed  Google Scholar 

  • Li S, Nie Y, Ding Y, Zhao J, Tang X (2015) Effects of pure and mixed koji cultures with Saccharomyces cerevisiae on apple homogenate cider fermentation. J Food Process Preserv 39:2421–2430

    Article  CAS  Google Scholar 

  • Li N, Alfiky A, Vaughan MM, Kang S (2016a) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30:134–144

    Article  Google Scholar 

  • Li Q, Zhang L, Li W, Li X, Huang W, Yang H, Zheng L (2016b) Chemical compositions and volatile compounds of Tricholoma matsutake from geographical areas at different stages of maturity. Food Sci Biotechnol 25:71–77

    Article  CAS  Google Scholar 

  • Li Y, Bateman CC, Skelton J, Jusino MA, Nolen ZJ, Simmons DR, Hulcr J (2017) Wood decay fungus Flavodon ambrosius (Basidiomycota Polyporales) is widely farmed by two genera of ambrosia beetles. Fungal Biol 121:984–989

    Article  PubMed  Google Scholar 

  • Liarzi O, Bar E, Lewinsohn E, Ezra D (2016) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS One 11:e0168242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  PubMed  Google Scholar 

  • Lim TM (1977) Production, germination and dispersal of basidiospores of Ganoderma pseudoferreum on Hevea. J Rubber Res Inst Malays 25:93–99

    Google Scholar 

  • Lin TY, Chen CY, Chien SC, Hsiao WW, Chu FH, Li WH, Lin CC, Shaw JF, Wang SY (2011) Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. J Agric Food Chem 59:7626–7635

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Ma LT, Lee YR, Shaw JD, Wang SW, Chu FH (2017) Differential gene expression network in terpenoid synthesis of Antrodia cinnamomea in mycelia and fruiting bodies. J Agric Food Chem 65:1874–1866

    Article  CAS  PubMed  Google Scholar 

  • Lindelöw Å, Risberg B, Sjödin K (1991) Attraction during night flight of scolytids and other bark- and wood-dwelling beetles to volatiles from fresh and stored spruce wood. Can J For Res 22:224–228

    Article  Google Scholar 

  • Liu C, Li Y (2017) Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS. Nat Prod Res 31:972–975

    Article  CAS  PubMed  Google Scholar 

  • Liu RS, Jin GH, Xiao DR, Li HM, Bai FW, Tang YJ (2015) Screening of the key volatiles organic compounds of Tuber melanosporum fermentation by aroma sensory evaluation combination with principle component analysis. Sci Rep 5:17954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livne-Luzon S, Avidan Y, Weber G, Migael H, Bruns T, Ovadia O, Shemesh H (2017) Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types. Mycorrhiza 27:165–174

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gallego F, Agger SA, Abate-Pella D, Distefano MD, Schmidt-Dannert C (2010a) Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem 11:1093–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Gallego F, Wawrzyn GT, Schmidt-Dannert C (2010b) Selectivity of fungal sesquiterpene synthases: role of the active site’s H-1α loop in catalysis. Appl Environ Microbiol 76:7723–7733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love DE (1976) The activities of various Diptera at the stinkhorn Phallus impudicus. Irish Nat J 18:301–303

    Google Scholar 

  • Łuczaj L, Nieroda Z (2011) Collecting and learning to identify edible fungi in southeastern Poland: age and gender differences. Ecol Food Nutr 50:319–336

    Article  PubMed  Google Scholar 

  • Łuczaj L, Stawarczyk K, Kosiek T, Pietras M, Kujawa A (2015) Wild food plants and fungi used by Ukrainians in the western part of Maramures region in Romania. Acta Soc Bot Pol 84:339–346

    Article  Google Scholar 

  • Lundgren L, Bergström G (1975) Wing scents and scent-released phases in the courtship behavior of Lycaeides argyrognomon (Lepidoptera: Lycaenidae). J Chem Ecol 1:399–412

    Article  CAS  Google Scholar 

  • Lynd ZR, Schlenke TA, Morran LT, de Roode JC (2017) Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster. PLoS One 12:e180182

    Google Scholar 

  • Madden JL (1968) Behavioral responses of parasites to the symbiotic fungus associated with Sirex noctilio. Nature 218:189–190

    Article  Google Scholar 

  • Madelin MF (1956) Studies on the nutrition of Coprinus lagopus Fr., especially as affecting fruiting. Ann Bot 20:307–330

    Article  CAS  Google Scholar 

  • Maga JA (1981) Mushroom flavor. J Agric Food Chem 29:1–4

    Article  CAS  Google Scholar 

  • Magan N, Evans P (2000) Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J Stored Prod Res 36:319–340

    Article  CAS  PubMed  Google Scholar 

  • Mäki M, Heinonsalo J, Hellén H, Bäck J (2017) Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange. Biogeosciences 14:1055–1073

    Article  Google Scholar 

  • Malheiro R, de Ponho PG, Soares S, Ferreira ACD, Baptista P (2013) Volatile biomarkers for wild mushrooms species discrimination. Food Res Int 54:186–194

    Article  CAS  Google Scholar 

  • Manimohan P, Thomas KA, Nisha VS (2007) Agarics on elephant dung in Kerala State, India. Mycotaxon 99:147–157

    Google Scholar 

  • Maraun M, Augustin D, Müller J, Bässler C, Scheu S (2014) Changes in the community composition and trophic structure of microarthropods in sporocarps of the wood decaying fungus Fomitopsis pinicola along an altitudinal gradient. Appl Soil Ecol 84:16–23

    Article  Google Scholar 

  • March RE, Richards DS, Ryan RW (2006) Volatile compounds from six species of truffle – head-space analysis and vapor analysis at high mass resolution. Int J Mass Spectrom 249:60–67

    Article  CAS  Google Scholar 

  • Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81

    Article  CAS  Google Scholar 

  • Martin MM (1991) The evolution of cellulose digestion in insects. Philos Trans R Soc B Biol Sci 333:281–288

    Article  Google Scholar 

  • Martin SH, Steenkamp ET, Wingfield MJ, Wingfield BD (2013) Mate-recognition and species boundaries in the ascomycetes. Fungal Divers 58:1–12

    Article  Google Scholar 

  • Martínez Blanco X, Tejera L, Beri Á (2016) First volumetric record of fungal spores in the atmosphere of Montevideo City, Uruguay: a 2-year survey. Aerobiologia 32:317–333

    Article  Google Scholar 

  • Martínez AS, Fernández-Arhex V, Corley JC (2006) Chemical information from the fungus Amylostereum areolatum and host-foraging behaviour in the parasitoid Ibalia leucospoides. Physiol Entomol 31:336–340

    Article  Google Scholar 

  • Martínez AS, Villacide J, Fernández Ajo AA, Martinson SJ, Corley JC (2014) Sirex noctilio flight behavior: toward improving current monitoring techniques. Entomol Exp Appl 152:135–140

    Article  Google Scholar 

  • Maser C, Maser Z (1988) Interactions among squirrels, mycorrhizal fungi, and coniferous forests in Oregon. Great Basin Nat 48:358–369

    Google Scholar 

  • Maser C, Nussbaum RA, Trappe JM (1978) Fungal small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809

    Article  Google Scholar 

  • Maser Z, Maser C, Trappe JM (1985) Food-habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can J Zool 63:1084–1088

    Article  Google Scholar 

  • Maser C, Maser Z, Witt JW, Hunt G (1986) The northern flying squirrel. A mycophagist in southwestern Oregon. Can J Zool 64:2086–2089

    Article  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807

    Article  CAS  PubMed  Google Scholar 

  • Mathew GM, Ju YM, Lai CY, Mathew DC, Huang CC (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualist. FEMS Microbiol Lett 79:504–517

    Article  CAS  Google Scholar 

  • Mattson DJ, Podruzny SR, Haroldson MA (2002) Consumption of fungal sporocarps by Yellowstone grizzly bears. Ursus 13:95–103

    Google Scholar 

  • Mau JL, Beelman RB (1996) Role of 10-oxo-trans-8-decanoic acid in the cultivated mushroom, Agaricus bisporus. In: Royse DJ (ed) Mushroom biology and mushroom products. Pennsylvania State University, University Park, pp 553–562

    Google Scholar 

  • Mau JL, Beelman RB, Ziegler GR (1992) 1-Octen-3-ol in the cultivated mushroom, Agaricus bisporus. J Food Sci 57:704–706

    Article  CAS  Google Scholar 

  • Mau JL, Beelman RB, Ziegler GR (1993) Factors affecting 1-octen-3-ol in mushrooms at harvest and during postharvest storage. J Food Sci 58:331–334

    Article  CAS  Google Scholar 

  • Mau JL, Chyau CC, Li JY, Tseng YH (1997) Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem 45:4726–4729

    Article  CAS  Google Scholar 

  • Mau JL, Lin YP, Chen PT, Wu YH, Peng JT (1998) Flavor compounds in king oyster mushrooms Pleurotus eryngii. J Agric Food Chem 46:4587–4591

    Article  CAS  Google Scholar 

  • Mau JL, Lin HC, Ma JT, Song SF (2001) Non-volatile taste components of several specialty mushrooms. Food Chem 73:461–466

    Article  CAS  Google Scholar 

  • McQuade DB, Williams EH, Eichenbaum HB (1986) Cues used for localizing food by the gray squirrel (Sciurus carolinensis). Ethology 72:22–30

    Article  Google Scholar 

  • Mehli H, Skuterud L (1998) The influence of fungi on long-term behavior of radiocaesium in Norwegian sheep. Sci Total Environ 224:9–17

    Article  CAS  PubMed  Google Scholar 

  • Meng D, Shen L, Yang R, Zhang X, Sheng J (2014) Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus. Biochim Biophys Acta 1840:1201–1228

    Google Scholar 

  • Meyer RT, Weir A, Horton TR (2015) Small-mammal consumption of hypogeous fungi in the central Adirondacks of New York. Northeast Nat 22:648–651

    Article  Google Scholar 

  • Micheluz A, Manente S, Rovea M, Slanzi D, Varese GC, Ravagnan G, Formenton G (2016) Detection of volatile metabolites of moulds isolated from a contaminated library. J Microbiol Methods 128:34–41

    Article  CAS  PubMed  Google Scholar 

  • Mokkonen M, Lindstedt C (2016) The evolutionary ecology of deception. Biol Rev 91:1020–1035

    Article  PubMed  Google Scholar 

  • Money NP (1998) More g´s than the space shuttle: ballistospore discharge. Mycologia 90:547

    Article  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Morawicki RO, Beelman RB, Peterson D, Ziegler G (2005) Biosynthesis of 1-octen-3-ol and 10-oxi-trans-8-decenoic acid using a crude homogenate of Agaricus bisporus. Optimization of the reaction: kinetic factors. Process Biochem 40:131–137

    Article  CAS  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, LaButti KM, Lapidus A, Lindquist EA, Lucas SM, Murat C, Riley RW, Salamov AA, Schmutz J, Subramanian V, Wösten HAB, Xu J, Eastwood DC, Cullen D, de Vries RP, Lundell T, Hibbett DS, Henrissat B, Burton KS, Kerrigan RW, Challen MP, Grigoriev IV, Martin F (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozuraitis R, Stranden M, Ramirez MI, Borg-Karlson AK, Mustaparta H (2002) (−)-Germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens. Chem Senses 27:505–509

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Faubert P, Hagen M, Castell WZ, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi – chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    Article  PubMed  CAS  Google Scholar 

  • Nagy LG, Walther G, Házi J, Vágvölgyi C, Papp T (2011) Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae. Syst Biol 60:303–317

    Article  PubMed  Google Scholar 

  • Nagy LG, Házi J, Szappanos B, Kocsubé S, Bálint B, Rákhely G, Vágvölgyi C, Papp T (2012) The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi). Syst Bot 61:595–607

    Google Scholar 

  • Nakamori T, Suzuki A (2005) Spore-breaking capabilities of collembolans and their feeding habitat within sporocarps. Pedobiologia 49:261–267

    Article  Google Scholar 

  • Nakamori T, Suzuki A (2007) Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycol Res 111:1345–1351

    Article  PubMed  Google Scholar 

  • Nakamori T, Suzuki A (2008) Surface properties of the mushroom Strobilurus ohshimae result in food differentiation by collembolan species. Eur J Soil Biol 44:478–482

    Article  Google Scholar 

  • Nakamori T, Suzuki A (2010) Spore resistance and gut-passage time of macrofungi consumed by Ceratophysella denisana (Collembola: Hypogastruridae). Fungal Ecol 3:38–42

    Article  Google Scholar 

  • Nakamori T, Suzuki A (2012) Occurrence and gut contents of flatworms on fungal sporocarps. J Nat Hist 46:2763–2767

    Article  Google Scholar 

  • Nakano M, Ochiai A, Kamata K, Nakamori T (2017) The preference of Morulina alata (Collembola: Neanuridae) feeding on some fungal sporocarps and the effects of passage through the gut on spores. Eur J Soil Biol 81:116–119

    Article  Google Scholar 

  • Navarro-Gonzaléz M (2008) Growth, fruiting body development and laccase production of selected coprini. PhD thesis, University of Goettingen, Goettingen

    Google Scholar 

  • Nidiry ESJ (2001) Structure-fungitoxicity relationships of some volatile flavor constituents of the edible mushrooms Agaricus bisporus and Pleurotus florida. Flavour Fragr J 16:245–248

    Article  CAS  Google Scholar 

  • Niederpruem DJ (1963) Role of carbon dioxide in fruiting of Schizophyllum commune. J Bacteriol 85:1300–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemi K, Vuorinen T, Ernstsen A, Häggman H (2002) Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of scots pine hypocotyl cuttings in vitro. Tree Physiol 22:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Nieminen T, Neubauer P, Sivelä S, Vatamo S, Silfverberg P, Salkinoja-Salonen M (2008) Volatile compounds produced by fungi grown in strawberry jam. LWT Food Sci Technol 41:2051–2056

    Article  CAS  Google Scholar 

  • Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101:583–591

    Article  CAS  PubMed  Google Scholar 

  • Noble R, Fermor TR, Lincoln S, Dobrovin-Pennington A, Evered C, Mead A, Li R (2017) Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia 95:620–629

    Article  Google Scholar 

  • Noël-Suberville C, Cruz C, Guinberteau J, Montury M (1996) Correlation between fatty acid content and aromatic release in fresh blewit (Lepista nuda). J Agric Food Chem 44:1180–1183

    Article  Google Scholar 

  • Nosaka S, Miyazawa M (2014) Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas. J Oleo Sci 63:577–583

    Article  CAS  PubMed  Google Scholar 

  • Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8(6):e66832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuske SJ, Vernes K, May TW, Claridge AW, Congdon BC, Krockenberger A, Abell SE (2017a) Redundancy among mammalian fungal dispersers and the importance of declining specialists. Fungal Ecol 27:1–13

    Article  Google Scholar 

  • Nuske SJ, Vernes K, May TW, Claridge AW, Congdon BC, Krockenberger A, Abell SE (2017b) Data on the fungal species consumed by mammal species in Australia. Data Brief 12:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuss I (1982) Die Bedeutung der Proterosporen: Schlußfolgerungen aus Untersuchungen an Ganoderma (Basidiomycetes). Plant Syst Evol 141:53–76

    Article  Google Scholar 

  • Oei P (2003) Mushroom cultivation, 3rd edn. Bakhuys Publishers, Leiden, The Netherlands

    Google Scholar 

  • Oka K, Ishihara A, Sakaguchi N, Nishino S, Parada SY, Nakagiri A, Otani H (2015) Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi. J Phytopathol 163:11–12

    Article  CAS  Google Scholar 

  • Okull DO, Beelman RB, Gourama H (2003) Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J Food Prot 66:1503–1505

    Article  CAS  PubMed  Google Scholar 

  • Olberg S, Andersen J (2000) Field attraction of beetles (Coleoptera) to the polypores Fomes fomentarius and Phellinus spp (Fungi: Aphyllophorales) in Northern Norway. Entomol Gen 24:217–236

    Article  Google Scholar 

  • Oldroyd GED (2013) Speak, friend and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oliveira FC, Barbosa FG, Mafezoli J, Oliveira MCF, Camelo ALM, Longhinotti E, Lima ACA, Camara MPS, Conçalves FJT, Freire FCO (2015) Volatile organic compounds from filamentous fungi: a chemotaxonomic tool of the Botryosphaeriaceae family. J Braz Chem Soc 26:2189–2194

    CAS  Google Scholar 

  • Omarini A, Henning C, Ringuelet J, Zygadlo JA, Albertó E (2010) Volatile composition and nutritional quality of the edible mushroom Polyporus tenuiculus grown on different agro-industrial waste. Int J Food Sci Technol 45:1603–1609

    Article  CAS  Google Scholar 

  • Orledge GM, Reynolds SE (2005) Fungivore host-use groups from cluster analysis: patterns of utilisation of fungal fruiting bodies by ciid beetles. Ecol Entomol 30:620–641

    Article  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Ottosson E, Nordén J, Dahlberg A, Edman M, Jönsson M, Larsson KH, Olsson J, Penttilä R, Stenlid J, Ovaskainen O (2014) Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecol 11:17–28

    Article  Google Scholar 

  • Ouzouni PK, Koller WD, Badeka AV, Riganakos KA (2009) Volatile compounds from the fruiting bodies of the three Hygrophorus mushroom species from Northern Greece. Int J Food Sci Technol 44:854–859

    Article  CAS  Google Scholar 

  • Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J 7:1696–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Överås J, Ulvund MJ, Bakkevig S, Eiken R (1979) Poisoning in sheep induced by the mushroom Cortinarius speciosissimus. Acta Vet Scand 20:148–150

    PubMed  Google Scholar 

  • Paczkowski S, Schütz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paczkowski S, Maibaum F, Paczkowska MH, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506

    Google Scholar 

  • Paczkowski S, Nicke S, Ziegenhagen H, Schütz S (2015) Volatile emission of decomposing pig carcasses (Sus scrofa domesticus L.) as an indication for postmortem interval. J Forensic Sci 60:S130–S137

    Article  CAS  PubMed  Google Scholar 

  • Pan LQ, Zhang W, Zhu N, Mao SB, Tu K (2014) Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Res Int 62:162–168

    Article  CAS  Google Scholar 

  • Pannebakker BA, Garrido NRT, Zwaan BJ, van Alphen JJM (2008) Geographic variation in host-selection behavior in the Drosophila parasitoid Leptopilina clavipes. Entomol Exp Appl 127:48–54

    Article  Google Scholar 

  • Pantoja LDM, do Nascimento RF, de Araújo Nunes AB (2016) Investigation of fungal volatile organic compounds in hospital air. Atmos Pollut Res 7:659–663

    Article  Google Scholar 

  • Papaj DR, Vet LEM (1990) Odor learning and foraging success in the parasitoid, Leptopilina heterotoma. J Chem Ecol 16:3137–3150

    Article  CAS  PubMed  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2017) Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against grey, green and blue postharvest decay. Food Microbiol 63:191–198

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Fong JJ, Lee H, Shin S, Lee S, Lee N, Lim YW (2014) Determination of coleopteran insects associated with spore dispersal of Cryptoporus volvatus (Polyporaceae: Basidiomycota) in Korea. J Asia Pac Entomol 17:647–651

    Article  Google Scholar 

  • Parkinson DR, Churchill TJ, Wady L, Pawliszyn J (2009) Investigation of mold growth in indoor school buildings by monitoring outgassed methyl benzoate as a MVOC biomarker. Indoor Built Environ 18:257–264

    Article  CAS  Google Scholar 

  • Peay KG, Schubert MG, Nouyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    Article  PubMed  Google Scholar 

  • Pei F, Yang W, Ma N, Fang Y, Zhao L, An X, Xin Z, Hu Q (2016) Effect of the two drying approaches on the volatile profile of button mushroom (Agaricus bisporus) by headspace GC-MS and electronic nose. LWT Food Sci Technol 72:343–350

    Article  CAS  Google Scholar 

  • Peiris D, Dunn WB, Brown M, Kell DB, Roy I, Hedger JN (2008) Metabolic profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus. Metabolomics 4:52–62

    Article  CAS  Google Scholar 

  • Pennerman KK, Yin G, Bennett JW (2015) Health effects of small volatile compounds from East Asian medicinal mushrooms. Mycobiology 43:9–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891

    Article  PubMed  CAS  Google Scholar 

  • Pérez F, Castillo-Guevara C, Galindo-Flores G, Cuautle M, Estrada-Torres A (2012) Effect of gut passage by two highland rodent on spore activity and mycorrhiza formation of two species of ectomycorrhizal fungi (Laccaria trichodermophora and Suillus tomentosus). Botany 90:1084–1092

    Article  Google Scholar 

  • Perez-Leanos A, Ramirez Loustalot-Laclette M, Nazario-Yepiz N, Markow TA (2017) Ectoparasite mites and their Drosophila hosts. Fly 11:10–18

    Article  PubMed  Google Scholar 

  • Peris JE, Rodriguez A, Peña L, Fedriani JM (2017) Fungal infestation boots fruit aroma and fruit removal by mammals and birds. Sci Rep 7:5646

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettit GR, Meng Y, Pettit RK, Herald DL, Cichacz ZA, Doubek DL, Richert L (2010a) Antineoplastic agents. 556. Isolation and structure of Coprinastatin 1 from Coprinus cinereus. J Nat Prod 73:388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettit GR, Meng Y, Pettit RK, Herald DL, Hogan G, Cichacz ZA (2010b) Antineoplastic agents. 582. Part 1. Isolation and structure of a cyclobutane-type sesquiterpene cancer cell growth inhibitor from Coprinus cinereus (Coprinaceae). Bioorg Med Chem 18:4879–4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeil RM, Mumma RO (1992) Air sampling of volatiles from Agaricus bisporus in a mushroom facility and from mushroom compost. HortSci 27:416–419

    CAS  Google Scholar 

  • Pfeil RM, Mumma RO (1993) Bioassay for evaluating attraction of the phorid fly, Megaselia halteria to compost colonized by the commercial mushroom, Agaricus bisporus and to 1-octen-3-ol and 3-octanone. Entomol Exp Appl 69:137–144

    Article  CAS  Google Scholar 

  • Piattoni F, Ori F, Morara M, Iotti M, Zambonelli A (2012) The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycol 47:145–153

    Article  Google Scholar 

  • Piattoni F, Amicucci A, Iotti M, Ori V, Stocchi C, Zambonelli A (2014) Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fungal Ecol 9:52–56

    Article  Google Scholar 

  • Piattoni F, Ori F, Amicucci A, Salerni E, Zambonelli A (2016) Interrelationships between wild boars (Sus scrofa) and truffles. Soil Biol 47:375–389

    Article  Google Scholar 

  • Pierce AM, Pierce HD, Borden JH, Oehlschlager AC (1991) Fungal volatiles: semiochemicals for scored-product beetles (Coleoptera, Cucujidae). J Chem Ecol 17:581–597

    Article  CAS  PubMed  Google Scholar 

  • Pimenta L, Ferreira MA, Pedroso MP, Campos VP (2017) Wood-associated fungi produce volatile organic compounds toxic to root-knot nematode. Sci Agric 74:303–310

    Article  Google Scholar 

  • Piovano M, Garbarino JA, Sanchez E, Young ME (2009) Volatile organic components from fresh non-edible Basidiomycetes fungi. Nat Prod Commun 4:1737–1739

    CAS  PubMed  Google Scholar 

  • Pires EJ, Teixeira JA, Brányik T, Vicente AA (2014) Yeast: the soul of beer’s aroma – a review of flavour-active esters and higher alcohols produced by brewing yeast. Appl Microbiol Biotechnol 98:1937–1949

    Article  CAS  PubMed  Google Scholar 

  • Plagemann I, Zelena K, Arendt P, Ringel PD, Krings U, Berger RG (2013) LOX(Psa)1, the first recombinant lipoxygenase from a basidiomycete fungus. J Mol Catal B Enzym 87:99–104

    Article  CAS  Google Scholar 

  • Plagemann I, Krings U, Berger RG (2014) Isolation and characterization of wild-type lipoxygenase LOX(Psa)I from Pleurotus sapidus. Z Naturforsch C 69:148–154

    Article  Google Scholar 

  • Pöggeler S (2011) Function and evolution of pheromones and pheromone receptors in filamentous ascomycetes. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, The mycota, vol XIV. Springer, Berlin, pp 73–96

    Chapter  Google Scholar 

  • Pointelli E, Santa-maria MA, Caretta G (1981) Coprophilous fungi of the horse. Mycopathologia 74:89–105

    Article  CAS  PubMed  Google Scholar 

  • Põldmaa K, Kaasik A, Tammaru T, Kurina O, Jürgenstein S, Teder T (2016) Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology 97:2824–2833

    Article  PubMed  Google Scholar 

  • Policha T, Dacis A, Barnadas M, Dentinger BTM, Raguso RA, Roy BA (2016) Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed flowers. New Phytol 210:1058–1071

    Article  CAS  PubMed  Google Scholar 

  • Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, Picco AM, De Kimpe N (2012) Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol 116:941–953

    Article  CAS  PubMed  Google Scholar 

  • Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R, Hertweck C, Hube B, Jacobsen ID (2017) A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol 103:595–617

    Article  CAS  PubMed  Google Scholar 

  • Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boosma JJ, Zhang G (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005) The captured launch of a ballistospore. Mycologia 97:866–871

    Article  PubMed  Google Scholar 

  • Pringle A, Vellinga E, Peay K (2015) The shape of fungal ecology: does spore morphology give clues to a species´ niche? Fungal Ecol 17:213–216

    Article  Google Scholar 

  • Pudil F, Uvira R, Janda V (2014) Volatile compounds in stinkhorn (Phallus impudicus L. ex Pers.) at different stages of growth. Eur Sci J 10:163–171

    Google Scholar 

  • Puschner B, Wegenast C (2012) Mushroom poisoning cases in dogs and cats: diagnosis and treatment of hepatotoxic, neurotoxic, gasteroenterotoxic, nephrotoxic, and muscarinic mushrooms. Vet Clin North Am Small Anim Pract 42:375–387

    Article  PubMed  Google Scholar 

  • Pyare S, Longland WS (2001) Mechanisms of truffle detection by northern flying squirrels. Can J Zool 79:1007–1015

    Article  Google Scholar 

  • Pyysalo H (1976) Identification of volatile compounds in seven edible fresh mushrooms. Acta Chem Scand B 30:235–244

    Article  Google Scholar 

  • Quin MB, Flynn CM, Wawrzyn GT, Choudhary S, Schmidt-Dannert C (2013) Mushroom hunting by using bioinformatics: application of a predictive framework facilitates selective identification of sesquiterpene synthases in Basidiomycota. Chembiochem 14:2480–2491

    Article  CAS  PubMed  Google Scholar 

  • Radványi D, Gere A, Jókai Z, Fodor P (2015) Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS. Anal Bioanal Chem 407:537–545

    Article  PubMed  CAS  Google Scholar 

  • Radványi D, Gere A, Sipos L, Kovács S, Jókai Z, Fodor P (2016) Discrimination of mushroom disease-related mould species based solely on unprocessed chromatograms. J Chemomet 30:197–202

    Article  CAS  Google Scholar 

  • Rahayu YY, Yoshizaki Y, Yamaguchi K, Okutsu K, Futagami T, Tamaki H, Sameshima Y, Takamine K (2017) Key volatile compounds in red kojishochu, a Monascus-fermented product, and their formation steps during fermentation. Food Chem 224:398–406

    Article  CAS  PubMed  Google Scholar 

  • Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry 99:97–107

    Article  CAS  Google Scholar 

  • Ramsbottom J (1953) Mushrooms and toadstools. Collins, London

    Google Scholar 

  • Rapior S, Breheret S, Talou T, Bessière JM (1997) Volatile flavor constituents of fresh Marasmius alliaceus (garlic Marasmius). J Agric Food Chem 45:820–825

    Article  CAS  Google Scholar 

  • Rapior S, Breheret S, Talou T, Pélissier Y, Milhau M, Bessière JM (1998) Volatile compounds of fresh Agrocybe aegerita and Tricholoma sulfureum. Cryptogam Mycol 19:15–23

    Google Scholar 

  • Rapior S, Fons F, Bessière JM (2000) The fenugreek odor of Lactarius helvus. Mycologia 92:305–308

    Article  Google Scholar 

  • Rapior S, Breheret S, Talou T, Pélssier Y, Bessière JM (2002) The anise-like odor of Clitocybe odora, Lentinellus cochleatus and Agaricus essettei. Mycologia 94:373–376

    Article  CAS  PubMed  Google Scholar 

  • Rapior S, Fons F, Bessière JM (2003) Volatile flavor constituents of Lepista nebularis (clouded Clitocybe). Cryptogam Mycol 24:159–166

    Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Raudaskoski M, Kothe E (2015) Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza 25:243–252

    Article  CAS  PubMed  Google Scholar 

  • Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105:387–402

    Article  Google Scholar 

  • Richardson MJ (2002) The coprophilous succession. Fungal Divers 10:101–111

    Google Scholar 

  • Robertson JA, McHugh JV, Whiting MF (2004) A molecular phylogenetic analysis of the pleasing fungus beetles (Coleoptera: Erotylidae): evolution of colour patterns, gregariousness and mycophagy. Syst Entomol 29:173–187

    Article  Google Scholar 

  • Roháček J, Ševčík J (2013) Diptera associated with sporocarps of Meripilus giganteus in an urban habitat. Cent Eur J Biol 8:143–167

    Google Scholar 

  • Rokni D, Hemmelder V, Kapoor V, Murthy VN (2014) An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat Neurosci 17:1225–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotheray TD, Boddy L, Jones TH (2009) Collembola foraging responses to interacting fungi. Ecol Entomol 34:125–132

    Article  Google Scholar 

  • Rotheray TD, Chanchellor M, Jones TH, Boddy L (2011) Grazing by collembolan affects the outcome of interspecific mycelial interactions of cord-forming basidiomycetes. Fungal Ecol 4:1–14

    Article  Google Scholar 

  • Rouquette J, Davis AJ (2003) Drosophila species (Diptera: Drosophilidae) oviposition patterns of fungi: the effect of allospecifics, substrate toughness, ovipositor structure and degree of specialization. Eur J Entomol 100:351–355

    Article  Google Scholar 

  • Ruan-Soto F, Caballero J, Martorelli C, Cifuentes J, González-Esquinca AR, Garibay-Orijel R (2013) Evaluation of the degree of mycophiliamycophobia among highland and lowland inhabitants from Chiapas, Mexico. J Ethnobiol Ethnomed 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rühl M, Kües U (2007) Mushroom production. In: Kües U (ed) Wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, Goettingen, pp 555–586

    Google Scholar 

  • Ruther J, Meiners T, Steidle JML (2002) Rich in phenomena-lacking terms. A classification of kairomones. Chemoecology 12:161–167

    Article  Google Scholar 

  • Salvador AC, Baptista I, Barros AS, Gomes NCM, Cunha A, Almeida A, Rocha SM (2013) Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans? PLoS One 8:e59338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez Reyes E, Rodríguez de la Cruz D, Sánchez Sánchez J (2016) First fungal spore calendar of the middle-west of the Iberian Peninsula. Aerobiologia 32:529–538

    Article  Google Scholar 

  • Sawada A (2014) Mycophagy among Primates – what has been done and what can be done. Primate Res 30:5–21

    Article  Google Scholar 

  • Sawada A, Sato H, Inoue E, Otani Y, Hanya G (2014) Mycophagy among Japanese macaques in Yakushima: fungal species diversity and behavioral patterns. Primates 55:249–257

    Article  PubMed  Google Scholar 

  • Sawahata T (2006) Hymenial area of agaric fruit bodies consumed by Collembola. Mycoscience 47:91–93

    Article  Google Scholar 

  • Sawahata T, Shimano S, Suzuki H (2008) Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18(2):111–114

    Article  CAS  PubMed  Google Scholar 

  • Sawoszczuk T, Sygula-Cholewińska J, del-Hoyo-Meléndez JM (2015) Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: application to historical objects. J Chromatogr A 1409:30–45

    Article  CAS  PubMed  Google Scholar 

  • Sawoszczuk T, Sygula-Cholewińska J, del-Hoyo-Meléndez JM (2017a) Application of HD-SPME-GC-MS method for the detection of active moulds on historical parchment. Anal Bioanal Chem 409:2297–2307

    Article  CAS  PubMed  Google Scholar 

  • Sawoszczuk T, Sygula-Cholewińska J, del-Hoyo-Meléndez JM (2017b) Application of solid-phase microextraction with gas chromatography and mass spectrometry for the early detection of active moulds on historical woolen objects. J Sep Sci 40:858–868

    Article  CAS  PubMed  Google Scholar 

  • Sbarbati A, Osculati F (2006) Allelochemical communication in vertebrates: Kairomones, allomones and synomones. Cells Tissues Organs 183:206–219

    Article  CAS  PubMed  Google Scholar 

  • Schalchli H, Hormazabal E, Becerra J, Birkett M, Alvear M, Vidal J, Quiroz A (2011) Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chem Ecol 27:503–513

    Article  CAS  Google Scholar 

  • Schalchli H, Tortella GR, Rubilar O, Parra L, Hormazabal E, Quiroz A (2014) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36:144–152

    Article  PubMed  CAS  Google Scholar 

  • Schalchli H, Hormazábal E, Becerra J, Briceño G, Hernández V, Rubilar O, Diez MC (2015) Volatiles from white-rot fungi for controlling plant pathogenic fungi. Chem Ecol 31:754–763

    Article  CAS  Google Scholar 

  • Scheepmaker JWA, Geels FP, van Griensven LJLD, Smits PH (1996) Substrate dependent larval development and emergence of the mushroom pests Lycoriella auripila and Megaselia halterata. Entomol Exp Appl 79:329–334

    Article  Google Scholar 

  • Schickmann S, Urban A, Kräutler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small animals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170:395–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Schigel DS (2012) Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycology 3:258–272

    Google Scholar 

  • Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal-bacterial interactions. Front Microbiol 6:1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Schremmer F (1963) Wechselbeziehungen zwischen Pilzen und Insekten. Beobachtungen an der Stinkmorchel, Phallus impudicus L. ex. Pers. Österr Bot Z 110:380–400

    Article  Google Scholar 

  • Schroeder LM (1992) Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus. J Chem Ecol 18:1583–1593

    Article  CAS  PubMed  Google Scholar 

  • Schuchardt S, Kruse H (2009) Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis. J Basic Microbiol 49:350–362

    Article  CAS  PubMed  Google Scholar 

  • Scott-Phillips TC (2008) Defining biological communication. J Evol Biol 21:387–395

    Article  CAS  PubMed  Google Scholar 

  • Seibold S, Bässler C, Baldrian P, Thorn S, Müller J, Gossner MM (2014) Wood resource and not fungi attract early-successional saproxylic species of Heteroptera – an experimental approach. Insect Conserv Div 7:533–542

    Article  Google Scholar 

  • Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD, Weiß I, Müller J (2016) Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv 204:181–188

    Article  Google Scholar 

  • Seljetun KO, von Krogh A (2017) Acute Inocybe mushroom toxicosis in dogs: 5 cases (2010–2014). J Vet Emerg Crit Care 27:212–217

    Article  Google Scholar 

  • Setsuda K (1995) Ecological study of beetles inhabiting Cryptoporus volvatus (PECK) SHEAR (II): relationship between development of the basidiocarps and life cycles of the five major species of beetle inhabiting the fungus, with discussion of the spore dispersal. Jpn J Entomol 63:609–620

    Google Scholar 

  • Shaw DE, Roberts P (2002) Bees and phalloid exudate. Mycologist 16:109

    Article  Google Scholar 

  • Sherratt TN, Wilkinson DM, Bain RS (2005) Explaining Dioscorides’ “double difference”: why are some mushrooms poisonous, and do they signal unprofitability? Am Nat 166:767–775

    PubMed  Google Scholar 

  • Shorrocks B, Bingley M (1994) Priority effects and species coexistence: experiments with fungal-breeding Drosophila. J Anim Ecol 63:799–806

    Article  Google Scholar 

  • Shorrocks B, Charlesworth P (1982) A field study of the association between the stinkhorn Phallus impudicus Pers. and the British fungal-breeding Drosophila. Biol J Linn Soc 17:307–318

    Article  Google Scholar 

  • Simpson RF (1976) Bioassay of pine oil components as attractants for Sirex noctilio (Hymenoptera: Siricidae) using electroantennogram techniques. Entomol Exp Appl 19:11–18

    Article  CAS  Google Scholar 

  • Simpson JA (2000) More on mycophagous birds. Australasian Mycol 19:49–51

    Google Scholar 

  • Simpson RF, McQuilkin RM (1976) Identification of volatiles from felled Pinus radiata and electroantennograms they elicit from Sirex noctilio. Entomol Exp Appl 19:205–213

    Article  CAS  Google Scholar 

  • Singhadaung W, Navarro-Gonzaléz M, Plašil P, Schütz S, Kües U (2016) Mushroom mites in cultures of Coprinopsis cinerea. Mushroom Sci 19:126–129

    Google Scholar 

  • Sivinski J (1981) Arthropods attracted to luminous fungi. Psyche 88:383–390

    Article  Google Scholar 

  • Sleeman DP, Jones P, Cronin JN (1997) Investigations of an association between the stinkhorn fungus and badger setts. J Nat Hist 31:983–992

    Article  Google Scholar 

  • Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) A review of the genus Amylostereum and its association with woodwasps. S Afr J Sci 99:70–74

    Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex woodwasps: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60:601–619

    Article  CAS  PubMed  Google Scholar 

  • Smith KGV (1956) On the Diptera associated with the stinkhorn (Phallus impudicus Pers.) with notes on other insects and invertebrates found on this fungus. Proc R Ent Soc 31:49–55

    Google Scholar 

  • Sodeikat G, Pohlmeyer K (2002) Temporary home range modifications of wild boar family groups (Sus scrofa L.) caused by drive hunts in Lower Saxony (Germany). Eur J Wildl Res 48:161–166

    Article  Google Scholar 

  • Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23:591–614

    Article  CAS  PubMed  Google Scholar 

  • Solis C, Becerra J, Flores C, Robledo J, Silva M (2004) Antibacterial and antifungal terpenes from Pilgerodendron uviferum (F. Don) Florin. J Chil Chem Soc 49:157–161

    Article  CAS  Google Scholar 

  • Simmons DR, You L, Bateman CC, Hulcr J (2016) Flavodon ambrosius sp. nov., a basidiomycetous mycosymbiont of Ambrosiodmus ambrosia beetles. Mycotaxon 131:277–285

    Article  Google Scholar 

  • Soteras F, Ibarra C, Geml J, Barrios-García MN, Domínguez S, Nouhra ER (2017) Mycophagy by invasive wild boar (Sus scrofa) facilitates dispersal of native and introduced mycorrhizal fungi in Patagonia, Argentina. Fungal Ecol 26:51–58

    Article  Google Scholar 

  • South A (1992) Terrestrial slugs. Biology, ecology and control. Chapman & Hall, London

    Book  Google Scholar 

  • Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99:4943–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JFT, Spencer DM (1997) Ecology: where yeasts live. In: Spencer JFT, Spencer DM (eds) Yeast in natural and artificial habitats. Springer, Berlin, pp 33–58

    Chapter  Google Scholar 

  • Spiteller P (2008) Chemical defense strategies of higher fungi. Chemistry 14:9109–9110

    Article  CAS  Google Scholar 

  • Spiteller P (2015) Chemical ecology of fungi. Nat Prod Rep 32:971–993

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Culleré L (2016) The smell of truffles: from aroma biosynthesis to product quality. Soil Biol 47:393–407

    Article  Google Scholar 

  • Splivallo R, Ebeler SE (2015) Sulfur volatiles of microbial origin are key contributors to human-sense truffle aroma. Appl Microbiol Biotechnol 99:2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007a) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007b) Discrimination by truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P (2015) Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol 17:2647–2660

    Article  PubMed  Google Scholar 

  • Spoerke DG (1994) Mushroom odors. In: Spoerke DG, Rumack BH (eds) Handbook of mushroom poisoning. Diagnosis and treatment. CRC Press, Boca Raton, FL, pp 399–418

    Google Scholar 

  • Spooner B, Roberts R (2005) Fungi. Collins, London

    Google Scholar 

  • Spradbery JP (1974) The responses of Ibalia species (Hymenoptera: Ibaliidae) to the fungal symbionts of siricid woodwasp hosts. J Entomol 48:217–222

    Google Scholar 

  • Spradbery JP (1977) The oviposition biology of siricid woodwasps in Europe. Ecol Entomol 2:225–230

    Article  Google Scholar 

  • Spraker JE, Jewell K, Roze LV, Scherf J, Ndagano D, Beaudry R, Linz JE, Allen C, Keller NP (2014) A volatile relationship: profiling an interkingdom dialogue between two plant pathogens, Ralstonia solanacearum and Aspergillus flavus. J Chem Evol 40:502–513

    CAS  Google Scholar 

  • Stavert JR, Drayton BA, Beggs JR, Gaskett AC (2014) The volatile organic compounds of introduced and native dung and carrion and their role in dung beetle foraging behaviour. Ecol Entomol 39:556–565

    Article  Google Scholar 

  • Sterner O, Bergman R, Kihlberg J, Wickberg B (1985) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J Nat Prod 48:279–288

    Article  CAS  Google Scholar 

  • Stijve T (1998) Odours and pigments in stinkhorns. Aust Mycol Newsl 17:18–22

    Google Scholar 

  • Stoffolano JG Jr, Yin C-M, Zou B-X (1989) Reproductive consequences for female black blowfly (Diptera: Calliphoridae) fed on the stinkhorn fungus, Mutinus caninus. Ann Entomol Soc Am 82:192–185

    Article  Google Scholar 

  • Stoffolano JG Jr, Zou B-X, Yin C-M (1990) The stinkhorn fungus, Mutinus caninus, as a potential food for egg development in the blowfly, Phormia regina. Entomol Exp Appl 55:267–273

    Article  Google Scholar 

  • Straatsma G, Sonnenberg ASM, van Griensven LJLD (2013) Development and growth of fruit bodies and crops of the button mushroom, Agaricus bisporus. Fungal Genet Biol 117:697–707

    Article  Google Scholar 

  • Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life style. FEMS Microbiol Ecol 80:1–8

    Article  PubMed  CAS  Google Scholar 

  • Strid Y, Schroeder M, Lindahl B, Ihrmark K, Stenlid J (2014) Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol 7:47–58

    Article  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2011) Muscodor species – endophytes with biological promise. Phytochem Rev 10:165–172

    Article  CAS  Google Scholar 

  • Strobel G (2014) The story of mycodiesel. Curr Opin Microbiol 19:52–58

    Article  CAS  PubMed  Google Scholar 

  • Sulkowska J, Kaminski E (1974) Effects of different drying methods on quality and content of aromatic volatiles on dried mushrooms. Acta Aliment Pol 3:409–425

    Google Scholar 

  • Susi P, Aktuganov G, Himanen J, Korpela T (2011) Biological control of wood decay against fungal infection. J Environ Manag 92:1681–1689

    Article  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70

    Article  CAS  Google Scholar 

  • Suwannarach N, Kaewyana C, Yodmeeklin A, Kumla J, Matsui K, Lumyong S (2017) Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effects on egg quality. Int J Food Microbiol 244:52–61

    Article  CAS  PubMed  Google Scholar 

  • Swarts HJ, Teunissen PJM, Verhagen FJM, Field JA, Wijnberg JBPA (1997) Chlorinated anisyl metabolites produced by basidiomycetes. Mycol Res 101:372–374

    Article  CAS  Google Scholar 

  • Szumny A, Adamski M, Winska K, Maczka W (2010) Identification of steroid compounds and essential oils from Lycoperdon perlatum. Przemysł Chemiczny 89:550–553

    CAS  Google Scholar 

  • Talou T, Delmas M, Gaset A (1987) Principal constituents of black truffle (Tuber melanosporum) aroma. J Agric Food Chem 35:774–777

    Article  CAS  Google Scholar 

  • Talou T, Delmas M, Gaset A (1989a) Analysis of headspace volatiles from entire black truffle (Tuber melanosporum). J Sci Food Agric 48:57–62

    Article  CAS  Google Scholar 

  • Talou T, Delmas M, Gaset A (1989b) Direct capture of volatiles emitted from entire black Perigord truffle. J Essent Oil Res 1:281–286

    Article  CAS  Google Scholar 

  • Talou T, Gaset A, Delmas A, Kulifaj M, Montant C (1990) Dimethyl sulfide – the secret for black truffle hunting as animals. Mycol Res 94:277–278

    Article  CAS  Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383

    Article  CAS  PubMed  Google Scholar 

  • Taşkin H, Kadkas E, Büyükalaca S (2013) Comparison of various conditions in Agaricus bisporus by gas chromatography mass spectrometry (HS-GC/MS) technique. J Food Agric Environ 11:97–99

    Google Scholar 

  • Teichert H, Dötterl S, Frame D, Kirejtshuk A, Gottsberger G (2012) A novel pollination mode, saprocantharophily, in Duguetia cadaverica (Annonaceae): a stinkhorn (Phallales) flower mimic. Flora 207:522–529

    Article  Google Scholar 

  • Thakeow P (2008) Development of a basic biosensor system for wood degradation using volatile organic compounds. PhD thesis, University of Goettingen, Goettingen, Germany

    Google Scholar 

  • Thakeow P, Holighaus G, Schütz S (2007) Volatile organic compounds for wood assessment. In: Kües U (ed) Wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, Goettingen, pp 197–228

    Google Scholar 

  • Thakeow P, Angeli S, Weißbecker B, Schütz S (2008) Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33:379–387

    Article  CAS  PubMed  Google Scholar 

  • Thompsen BM, Bodart J, McEwen C, Gruner DS (2014) Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann Entomol Soc Am 107:453–460

    Article  Google Scholar 

  • Thorn S, Müller J, Bässler C, Gminder A, Brandl R, Heibl C (2015) Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biol J Linn Soc 114:699–798

    Article  Google Scholar 

  • Thunes KH, Midtgaard F, Gjerde I (2000) Diversity of coleopteran of the bracket fungus Fomitopsis pinicola in a Norwegian spruce forest. Biodivers Conserv 9:833–852

    Article  Google Scholar 

  • Thunes KH, Willassen E (1997) Species composition of beetles (Coleoptera) in the bracket fungi Piptoporus betulinus and Fomes fomentarius (Aphyllophorales: Polyporaceae): an explorative approach with canonical correspondence analysis. J Nat Hist 31:471–486

    Article  Google Scholar 

  • Tibbles LL, Chandler D, Mead A, Jervis M, Boddy L (2005) Evaluation of the behavioural response of the flies Megaselia halterata and Lycoriella castanescens to different mushroom cultivation materials. Entomol Exp Appl 116:73–81

    Article  Google Scholar 

  • Toffano L, Fialho MB, Pascholati SF (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82

    Article  CAS  Google Scholar 

  • Tomberlin JK, Crippen TL, Wu G, Griffin AS, Wood TK, Kilner RM (2017) Indole: an evolutionary conserved influencer of behavior across kingdoms. Bioessays 39:1600203

    Article  Google Scholar 

  • Tory MK, May TW, Keane PJ, Bennett AF (1997) Mycophagy in small mammals: A comparison of the occurrence and diversity of hypogeal fungi in the diet of the long-nosed potoroo Potorous tridactylus and the bush rat Rattus fuscipes from southwestern Victoria, Australia. Aust J Ecol 22:460–470

    Article  Google Scholar 

  • Tranvan H, Habricot Y, Jeannette E, Gay G, Sotta B (2000) Dynamics of symbiotic establishment between an IAA-overproducing mutant of the ectomycorrhizal fungus Hebeloma cylindrosporum and Pinus pinaster. Tree Physiol 20:123–129

    Article  PubMed  Google Scholar 

  • Trappe JM, Claridge AW (2010) The hidden life of truffles. Sci Am 302:78–84

    Article  PubMed  Google Scholar 

  • Tressl R, Bahri F, Engel KH (1982) Formation of 8-carbon and 10-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 30:89–93

    Article  CAS  Google Scholar 

  • Trierveiler-Pereira L, da Silveira RM, Hosaka K (2014) Multigene phylogeny of the Phallales (Phallomycetidae, Agaricomycetes) focusing on some previously unpresented genera. Mycologia 106:904–911

    Article  PubMed  Google Scholar 

  • Trierveiler-Pereira L, Silva HCS, Funez LA, Baltazar JM (2016) Mycophagy by small mammals: new and interesting observations from Brazil. Mycosphere 7:297–304

    Google Scholar 

  • Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892

    Article  CAS  PubMed  Google Scholar 

  • Tuno N (1998) Spore dispersal of Dictyophora fungi (Phallaceae) by flies. Ecol Res 13:7–15

    Article  Google Scholar 

  • Tuno N (1999) Insect feeding on spores of a bracket fungus, Elfvingia applanata (Pers.) Karst. (Ganodermataceae, Aphyllophorales). Ecol Res 14:97–103

    Article  Google Scholar 

  • Tuno N, Osawa N, Tanaka C (2009) Fungal toxins relevant to animals – The case of Amanita. In: Zhang W, Liu H (eds) Behavioral and chemical ecology. Nova Science, Hauppauge, NY, pp 235–250

    Google Scholar 

  • Ugalde U, Rodriguez-Urra AB (2014) The Mycelium Blueprint: insights into the cues that shape the filamentous fungal colony. Appl Microbiol Biotechnol 98:8809–8819

    Article  CAS  PubMed  Google Scholar 

  • Ugalde U, Rodriguez-Urra AB (2016) Autoregulatory signals in mycelial fungi. In: Wendland J (ed) Growth, differentiation and sexuality. The mycota, vol I, 3rd edn. Springer, Cham, pp 185–202

    Chapter  Google Scholar 

  • Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85

    Article  PubMed  Google Scholar 

  • Umar MH, Van Griensven LJLD (1997) Morphogenetic cell death in developing primordia of Agaricus bisporus. Mycologia 89:274–277

    Article  Google Scholar 

  • Urban A (2016) Truffles and small mammals. Soil Biol 47:353–373

    Article  Google Scholar 

  • Usami A, Nakaya S, Nakahashi H, Miyazawa M (2014) Chemical composition and aroma evaluation of volatile oils from edible mushrooms (Pleurotus salmoneostraminus and Pleurotus sajor-caju). J Oleo Sci 63:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Usami A, Motooka R, Nakahashi H, Marumoto S, Miyazawa M (2015) Chemical composition and character impact odorants in volatile oils from edible mushrooms. Chem Biodivers 12:1734–1745

    Article  CAS  PubMed  Google Scholar 

  • Vadatzadeh M, Deveau A, Splivallo R (2015) The role of the microbiome of truffle aroma formation: a meta-analysis approach. Appl Environ Microbiol 81:6946–6952

    Article  CAS  Google Scholar 

  • van Dam NM, Weinhold A, Garbeva O (2016) Calling in the dark: the role of volatiles for communication in the rhizosphere. Signal Commun Plants 26:175–210

    Google Scholar 

  • van’t Padje A, Whiteside MD, Kiers ET (2016) Signals and cues in the evolution of plant-microbe communication. Curr Opin Plant Biol 32:47–52

    Article  CAS  PubMed  Google Scholar 

  • Vander Wall SB (2000) The influence of environmental conditions on cache recovery and cache pilferage by yellow chipmunks (Tamias amoenus) and deer mice (Peromyscus maniculatus). Behav Ecol 11:544–549

    Article  Google Scholar 

  • Vanhealen M, Vanhaelen-Fastré R, Geeraerts J (1980) Occurrence in mushrooms (Homobasidiomycetes) of cis- and trans-octa-1,5-dien-3-ol, attractants to the cheese mite Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae). Experientia 36:406–407

    Article  Google Scholar 

  • Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100:9861–9874

    Article  CAS  PubMed  Google Scholar 

  • Vayssières A, Pěnčik A, Felten J, Kohler A, Ljung K, Martin F, Legué V (2015) Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling and response. Plant Physiol 169:890–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vélez-Pereira AM, De Linares C, Delgado R, Belmonte J (2016) Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 32:23–37

    Article  Google Scholar 

  • Venkateshwarlu G, Chandravadana M, Tewari R (1999) Volatile flavour components of some edible mushrooms (Basidiomycetes). Flavour Fragr J 14:191–194

    Article  CAS  Google Scholar 

  • Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350

    Article  CAS  PubMed  Google Scholar 

  • Verheggen F, Perrault KA, Caparros Medigo R, Dubois LM, Francis F, Haubruge E, Forbes SL, Focant J-F, Stefanuto P-H (2017) The odor of death: an overview of current knowledge on characterization and applications. Bioscience 67:600–613

    Article  Google Scholar 

  • Vernes K, Cooper T, Green S (2015) Seasonal fungal diets of small mammals in an Australian temperate forest ecosystem. Fungal Ecol 18:107–114

    Article  Google Scholar 

  • Vespermann KAC, Paulino BN, Barcelos MC, Pessôa MG, Pastore GM, Molina G (2017) Biotransformation of α- and β -pinene into flavor compounds. Appl Microbiol Biotechnol 101:1805–1817

    Google Scholar 

  • Vet LEM (1982) Host-habitat location through olfactory cues by Leptopilina clavipes (Hartig) (Hym: Eucoilidae), a parasitoid of fungivorous Drosophila: the influence of conditioning. Neth J Zool 33:225–248

    Article  Google Scholar 

  • Vet LEM, de Jong AG, Franchi E, Papaj DR (1998) The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim Behav 55:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Vita F, Taiti C, Pompeiano A, Bazihizina N, Lucarotti V, Mancuso S, Alpi A (2015) Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Sci Rep 5:12629

    Article  PubMed  CAS  Google Scholar 

  • Wallis IR, Claridge AW, Trappe JM (2012) Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biol 116:590–602

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Yang J, Ruan J, Sun C (2016) Microbial volatile organic compounds and their application in microorganisms identification in foodstuff. TRAC 78:1–16

    Google Scholar 

  • Warren JT, Mysterud I (1991) Fungi in the diet of sheep. Rangelands Arch 13:168–171

    Google Scholar 

  • Wąsowicz E (1974) Identification of the volatile flavor compounds in mushroom Agaricus bisporus. Bull Acad Pol Sci 22:143–151

    Google Scholar 

  • Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96

    CAS  PubMed  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  PubMed  Google Scholar 

  • Wawrzyn GT, Bloch SE, Schmidt-Dannert C (2012) Discovery and characterization of terpenoid biosynthetic pathways of fungi. Methods Enzymol 515:83–105

    Article  CAS  PubMed  Google Scholar 

  • Wee SL, Oh HW, Park KC (2016) Antennal sensillum morphology and electrophysiological responses of olfactory receptor neurons in trichoid sensilla of the diamondback moth (Lepidoptera: Plutellidae). Fla Entomol 99:146–158

    Article  Google Scholar 

  • Weiss I, Rössler T, Hofferberth J, Brummer M, Ruther J, Stökl J (2013) A nonspecific defensive compound evolves into a competition avoidance cue and a female sex pheromone. Nat Commun 4:2767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weissbecker B, Holighaus G, Schütz S (2004) Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J Chromatogr A 1056:209–216

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf L, Ryu C-M, Raaijmakers JM, Gerbeva P (2016) Editorial: smelly fumes: volatile-mediated communication between bacteria and other organisms. Front Microbiol 7:2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Weldon PJ (2016) Receiver-error in deception, including mimicry: making the leap from intra- to interspecific domains. Biol J Linn Soc 120:717–728

    Google Scholar 

  • Wende B, Gossner MM, Grass I, Arnstadt T, Hofrichter M, Floren A, Linsenmair KE, Weisser WW, Steffan-Dewenter I (2017) Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proc R Soc Biol Sci 284:1854

    Article  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi of other soil-inhabiting organisms. Appl Microbiol Biotechnol 100:8651–8665

    Article  CAS  PubMed  Google Scholar 

  • Wertheim B, van Alphen JJM (2001) Species diversity in a mycophagous insect community: the case of spatial aggregation vs. resource partitioning. J Anim Ecol 69:335–351

    Article  Google Scholar 

  • Wertheim B, Vet LEM, Dicke M (2003) Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos 100:269–282

    Article  Google Scholar 

  • Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behavior and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226

    Article  Google Scholar 

  • Weslien J, Djupström LB, Schroeder M, Widenfalk O (2011) Long-term priority effects among insects and fungi colonizing decaying wood. J Anim Ecol 86:1155–1162

    Article  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  CAS  PubMed  Google Scholar 

  • Wheatley M (2007) Fungi in summer diets of northern flying squirrels (Glaucomys sabrinus) within managed forests of western Alberta, Canada. Northwest Sci 81:265–273

    Article  Google Scholar 

  • Wihlborg R, Pippitt D, Marsili R (2008) Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods 75:244–250

    Article  CAS  PubMed  Google Scholar 

  • Wiskerke JSC, Dicke M, Vet LEM (1993) Drosophila parasitoid solves foraging problem through infochemical detour: the role of adult fly pheromone. Proc Exp Appl Entomol 4:79–84

    Google Scholar 

  • Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules. Role in fungal morphogenesis and pathogenicity. J Basic Microbiol 56:440–447

    Article  CAS  PubMed  Google Scholar 

  • Wood WF, Largent DL (1999) Benzaldehyde and benzyl alcohol, the odour compounds from Agaricus smithii. Biochem Syst Ecol 27:521–522

    Article  CAS  Google Scholar 

  • Wood WF, Lefreve CK (2007) Changing volatile compounds from mycelium and sporocarps of American matsutake mushroom, Tricholoma magnivelare. Biochem Syst Ecol 35:634–636

    Article  CAS  Google Scholar 

  • Wood WF, Watson RL, Largent DL (1990) The odor of Agaricus augustus. Mycologia 82:276–278

    Article  CAS  Google Scholar 

  • Wood WF, Watson RL, Largent DL (1998) Phenol, the odour compound from Agaricus praeclaresquamosus. Biochem Syst Ecol 26:793–794

    Article  CAS  Google Scholar 

  • Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29:531–533

    Article  CAS  PubMed  Google Scholar 

  • Wood WF, Clark TJ, Bradshaw DE, Foy BD, Largent DL, Thompsen BL (2004) Clitolactone: a banana slug antifeedant from Clitocybe flaccida. Mycologia 96:23–25

    Article  CAS  PubMed  Google Scholar 

  • Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103:121–129

    Article  Google Scholar 

  • Wöstemeyer J, Schimek C, Wetzel J, Burmester A, Voigt J, Schulz E, Ellenberger S, Siegmund L (2016) Pheromone action in the fungal groups Chytridiomycetes and Zygomycetes and in the Oophytes. In: Wendland J (ed) Growth, differentiation and sexuality. The mycota, vol I, 3rd edn. Springer, Cham, pp 203–234

    Chapter  Google Scholar 

  • Wu S, Zorn H, Krings U, Berger RG (2005a) Characteristic volatiles from young and aged fruiting bodies of wild Polyporus sulfureus (Bull.:Fr.) Fr. J Agric Food Chem 53:4525–4528

    Google Scholar 

  • Wu S, Krings U, Zorn H, Berger RG (2005b) Volatile compounds from the fruiting body of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr. Food Chem 92:221–226

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1982) The enzymatic breakdown of linoleic-acid in mushrooms (Psalliota bispora). Z Lebensm Untersuch Forsch 175:186–190

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984a) Origin of the oxygen in the products of the enzymatic cleavage reaction of linoleic acid to 1-octen-3-ol and 10-oxo-trans-8-decenoic acid in mushrooms (Psalliota bispora). Biochim Biophys Acta 794:18–24

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984b) The formation of 1-octen-3-ol from the 10-hydroperoxide dimer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochem Biophys Acta 794:25–30

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984c) Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (Psalliota bispora). Biochim Biophys Acta 795:163–164

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1986) Enzymatic oxidation of linolenic acid to 1,Z-5-octadien-3-ol, Z-2,Z-5-octadien-1-ol and 10-oxo-E8-decenoic acid by a protein fraction from mushrooms (Psalliota bispora). Lipids 21:261–266

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Hijii N (2007a) Resource use pattern of a mycophagous beetle, Neopallodes inermis (Coleoptera, Nitidulidae) of soft fungi, Collybia spp. (Agaricales). Ann Entomol Soc Am 100:222–227

    Article  Google Scholar 

  • Yamashita S, Hijii N (2007b) The role of fungal taxa and developmental stages of mushrooms in determining the compostion of the mycophagous insect community in a Japanese forest. Eur J Entomol 104:225–233

    Article  Google Scholar 

  • Yamashita S, Ando K, Hoshina H, Ito N, Katayama Y, Kawanabe M, Maruyama M, Itioka T (2015) Food web structure of the fungivorous insect community on bracket fungi in a Bornean tropical rain forest. Ecol Entomol 40:390–400

    Article  Google Scholar 

  • Yarden O (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228

    Article  PubMed  PubMed Central  Google Scholar 

  • You L, Simmons DR, Bateman CC, Short DPG, Kasson MT, Rabaglia RJ, Hulcr J (2016) New fungus-insect symbioses: culturing, molecular, and histological methods determine saprotrophic Polyporales mutualist of Ambrosiodmus ambrosia beetles. PLoS One 11:e0147305

    Article  CAS  Google Scholar 

  • Zambonelli A, Ori F, Hall I (2017) Mycophagy and spore dispersal by vertebrates. In: Dighton J, White JF (eds) The fungal community. Its organization and role in ecosystems, 4th edn. CRC Press Taylor & Francis Group, Boca Raton, FL, pp 347–358

    Chapter  Google Scholar 

  • Zawirska-Wojtasiak R (2004) Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem 86:113–118

    Article  CAS  Google Scholar 

  • Zawirska-Wojtasiak R, Siwulski M, Wąsowicz E, Sobieralski K (2007) Volatile compounds of importance in the aroma of cultivated mushrooms Agaricus bisporus at different conditions of cultivation. Pol J Food Nutr Sci 57:367–372

    CAS  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Vieira Gomes E, Tsui CK-M, Nyack SC (2016a) Friends or foe? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40:182–207

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016b) Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A (2004) Determination of specific volatile organic compounds synthesized during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography mass spectrometry. Rapid Commun Mass Spectrom 18:199–205

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    Article  CAS  Google Scholar 

  • Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852

    Article  CAS  Google Scholar 

  • Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal Chem 66:A844–A853

    Article  Google Scholar 

  • Zhang Y, Fraatz MA, Horlamus F, Quitman H, Zorn H (2014) Identification of potent odorants in a novel nonalcoholic beverage produced by fermentation of wort with shiitake (Lentinula edodes). J Agric Food Chem 62:4195–4203

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Huang T, Shen C, Wang X, Qi Y, Shen J, Song A, Qiu L, Yi Y (2016a) Downregulation of ethylene production increases mycelial growth and primordia formation in the button culinary-medicinal mushroom Agaricus bisporus (Agaricomycetes). Int J Med Mushrooms 18:1131–1140

    Article  PubMed  Google Scholar 

  • Zhang N, Chen H, Sun B, Mao X, Zhang Y, Zhou Y (2016b) Comparative analysis of volatile composition in Chinese truffles via GC × GC/HRTOF/MS and electric nose. Int J Mol Sci 17:412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZM, Wu WW, Li GK (2008) A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity. J Chromatogr Sci 46:690–696

    Article  CAS  PubMed  Google Scholar 

  • Zhao GZ, Yao YP, Hao GF, Fang DS, Yin VX, Cao XH, Chen W (2015) Gene regulation in Aspergillus oryzae promotes hyphal growth and flavor formation in soy sauce koji. RCS Adv 5:24224–24230

    CAS  Google Scholar 

  • Zhou JJ, Feng T, Ye R (2015) Differentiation of eight commercial mushrooms by electronic nose and gas chromatography-mass spectrometry. J Sensors 2015:374013

    Article  Google Scholar 

Download references

Acknowledgments

Wolfgang Rohe and Martin Gabriel are thanked for scientific discussions. KW acknowledges a PhD scholarship awarded by the Royal Thai Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Kües .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kües, U., Khonsuntia, W., Subba, S., Dörnte, B. (2018). Volatiles in Communication of Agaricomycetes . In: Anke, T., Schüffler, A. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-71740-1_6

Download citation

Publish with us

Policies and ethics