Skip to main content

Oryza coarctata Roxb

  • Chapter
  • First Online:
The Wild Oryza Genomes

Abstract

Climate change-induced abiotic stresses are major limitations to crop growth and development. Among the various stresses, soil salinity is a major concern, as percentage of soil salinization has increased due to the increase in the level of ocean water and increase in irrigated area. Biotechnology and precision breeding techniques can be efficiently utilized to cope up with this abiotic stress. However, the prerequisite of the utilization of such technique requires suitable genetic resources consisting salt stress responsive genes can be deployed against this stress. Wild relatives are known to be the excellent source of such favorable alleles. Oryza coarctata is the only wild halophyte in the genus Oryza, which can withstand salinity up to 40 ds/m due to presence of distinct anatomical, morphological and physiological characteristics. Several metabolites and their genes had been elucidated in this plant for their role in imparting salt tolerance. In this chapter, we have compiled all the relevant information to understand the mechanism for salinity and waterlogging tolerance of this species. Additionally, we also identified the research gaps that need to be addressed to harness the beneficial genes/QTLs from this important halophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammiraju JS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J (2010) Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J 63:430–442

    Article  CAS  PubMed  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  CAS  PubMed  Google Scholar 

  • Bal AR, Dutt SK (1986) Mechanism of salt tolerance in wild rice (Oryza coarctata Roxb). Plant Soil 92:399–404

    Article  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol 29:1017–1024

    Google Scholar 

  • Bauersfeld P, Kifer RR, Durrant NW, Sykes J (1969) Nutrient contents of turtle grass (Thalassia testudinum). Proc Int Seaweed Symp 6:637–645

    Google Scholar 

  • Bhosale SH, Patil KB, Parameswaran PS, Naik CG, Jagtap TG (2011) Active pharmaceutical ingredient (api) from an estuarine fungus, Microdochium nivale (Fr.). J Environ Biol 32:653–658

    CAS  PubMed  Google Scholar 

  • Chatterjee J, Patra B, Mukherjee R, Basak P, Mukherjee S, Ray S, Bhattacharyya S, Maitra S, Ghosh D, Ghosh S, Sengupta S (2013) Cloning, characterization and expression of a chloroplastic fructose-1, 6-bisphosphatase from Porteresia coarctata conferring salt-tolerance in transgenic tobacco. J Plant Biotech 114:395–409

    CAS  Google Scholar 

  • Chen L, Zhou C, Yang H, Roberts MF (2000) Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochem 39:12415–12423

    Article  CAS  Google Scholar 

  • Dastidar KG, Maitra S, Goswami L, Roy D, Das KP, Majumder AL (2006) An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279–1296

    Article  CAS  Google Scholar 

  • Edwards E, Aliscioni S, Bell H (2011) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. New Phytol 114:675–684

    Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frew PE, Bowen RH (1929) Memoirs: nucleolar behaviour in the mitosis of plant cells. J Cell Sci 2:197–212

    Google Scholar 

  • Garcia A (1992) Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. Ph.D. Thesis, University of Sussex

    Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 8:1–16

    Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Nat Acad Sci 96:14400–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YL, Ge S (2005) Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. Am J Bot 92:1548–1558

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Google Scholar 

  • Iwamoto M, Nagashima H, Nagamine T, Higo H, Higo K (1999) p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theor Appl Genet 98:853–861

    Article  CAS  Google Scholar 

  • Jagtap TG, Bhosale S, Charulata S (2006) Characterization of Porteresia coarctata beds along the Goa coast, India. Aquat Bot 84:37–44

    Article  Google Scholar 

  • Jelodar NB, Blackhall NW, Hartman TP, Brar DS, Khush G, Davey MR, Cocking EC, Power JB (1999) Intergeneric somatic hybrids of rice [Oryza sativa L. (+) Porteresia coarctata (Roxb.) Tateoka]. Theor Appl Genet 99:570–577

    Article  CAS  PubMed  Google Scholar 

  • Jena KK (1994) Production of intergeneric hybrid between Orzya sativa L. and Porteresia coarctata T. Curr Sci 67:744–746

    Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. In Oryza: from molecule to plant, vol 35. Springer Netherlands, pp 25–34

    Google Scholar 

  • Kizhakkedath P, Jegadeeson V, Venkataraman G, Parida A (2015) A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka. Mol Biol Rep 42:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Latha R, Ajith A, Srinivasa RC, Eganathan P, Balakrishna P (1998) In vitro propagation of salt-tolerant wild rice relative, Porteresia coarctata Tateoka. J Plant Growth Regul 17:231–235

    Article  CAS  PubMed  Google Scholar 

  • Latha R, Salekdeh GH, Bennett J, Swaminathan MS (2004) Molecular analysis of a stress-induced cDNA encoding the translation initiation factor, eIF1, from the salt-tolerant wild relative of rice, Porteresia coarctata. Funct Plant Biol 31:1035–1042

    Article  CAS  Google Scholar 

  • Leidi EO, Barragán V, Rubio L, ElHamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li D, Wang Z, Meng F, Li Y, Wu X, Teng W, Han Y, Li W (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tissue Organ Cult 111:277–288

    Article  CAS  Google Scholar 

  • Lu BR, Ge S (2003) Oryza coarctata: the name that best reflects the relationships of Porteresia coarctata (Poaceae: Oryzeae). Nordic J Bot 23:555–558

    Article  Google Scholar 

  • Lu F, Ammiraju JS, Sanyal A, Zhang S, Song R, Chen J, Li G, Sui Y, Song X, Cheng Z, De Oliveira AC (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Nat Acad Sci 106:2071–2076

    Google Scholar 

  • Mahalakshmi S, Christopher GS, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–358

    Article  CAS  PubMed  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279:28539–28552

    Article  CAS  PubMed  Google Scholar 

  • McCubbin T, Bassil E, Zhang S, Blumwald E (2014) Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis, microtubule organization and directional root growth. Plants 3:409–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal TK, Ganie SA, Debnath AB (2015) Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS ONE 10:1–27

    Google Scholar 

  • Mondal TK, Rawal HC, Gaikwad K et al (2017) First de novo draft genome sequence of Oryza coarctata, the only halophytic species in the genus Oryza. F1000Research 6:1750. (https://doi.org/10.12688/f1000research.12414.1)

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parthasarathy N (1938) Cytological studies in Oryzeae and Phalarideae. Cytologia 9:307–318

    Article  Google Scholar 

  • Philip A, Syamaladevi DP, Chakravarthi M, Gopinath K, Subramonian N (2013) 5’ Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Rep 32:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Popova OV, Golldack D (2007) In the halotolerant Lobularia maritima (Brassicaceae) salt adaptation correlates with activation of the vacuolar H+-ATPase and the vacuolar Na+/H+ antiporter. J Plant Physiol 164:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Probert RJ, Longley PL (1989) Recalcitrant seed storage physiology in three aquatic grasses (Zizania palustris, Spartina anglica and Porteresia coarctata). Ann Bot 63:53–63

    Article  Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hort 78:437–442

    Google Scholar 

  • Ramanan BV, Balakrishna P, Suryanarayanan TS (1996) Search for seed borne endophytes in rice (Oryza sativa) and wild rice (Porteresia coarctata). Rice Biotechnol Q 27:7–8

    Google Scholar 

  • Rangan L, Sankararamasubramanian HM, Radha R, Swaminathan MS (2002) Genetic relationship of Porteresia coarctata Tateoka using molecular markers. Plant Biosyst 136:339–348

    Article  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1458

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar P, Jithesh MN, Parani M, Rajalakshmi S, Praseetha K, Parida A (2005) Salt stress effects on the accumulation of vacuolar H+-ATPase subunit c transcripts in wild rice, Porteresia coarctata (Roxb.). Tateoka Curr Sci 89:1386–1393

    CAS  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–928

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Majumder AL (2010) Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt‐stress biology in rice. Plant Cell Environ 33:526–542

    Google Scholar 

  • Shao Q, Han N, Ding T, Zhou F, Wang B (2014) SsHKT1; 1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol 41:790–802

    Article  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) lncreased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum. Plant Physiol 115:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabaei SJ (2006) Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Sci Horticult 108:432–438

    Google Scholar 

  • Tang L, Zou XH, Achoundong G, Potgieter C, Second G, Zhang DY, Ge S (2010) Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. Mol Phylogen Evol 54:266–277

    Article  CAS  Google Scholar 

  • Takemura T, Hanagata N, Suighara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical response to salt stress in the mangrove Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Tateoka T (1964) Notes on some grasses. XVI. Embryo structure of the genus Oryza in relation to the systematics. Am J Bot 1:539–543

    Article  Google Scholar 

  • Vaughan D, Kadowaki KI, Kaga A, Tomooka N (2005) Eco-genetic diversification in the genus Oryza: implications for sustainable rice production. Inter Rice Res Inst 2005:44–46

    Google Scholar 

  • Vernon DM, Bohnert HJ (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 6:2077–2085

    Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteom Res 10:3852–3870

    Article  CAS  Google Scholar 

  • Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152–167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowrasia, S. et al. (2018). Oryza coarctata Roxb. In: Mondal, T., Henry, R. (eds) The Wild Oryza Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-71997-9_8

Download citation

Publish with us

Policies and ethics