Skip to main content

TEM for Atomic-Scale Study: Fundamental, Instrumentation, and Applications in Nanotechnology

  • Chapter
  • First Online:
Handbook of Materials Characterization

Abstract

Today, the transmission electron microscope (TEM) has become the foremost instrument for the microstructural characterization of nanomaterials. Indeed, the diffraction patterns performed by X-ray techniques are more quantitative than electron diffraction pattern, but electrons have a significant advantage over X-rays – electrons can be focused easily. In this chapter, we will begin by introducing some of the historical developments followed by instrumentations, sample preparation, and working and imaging modes of the TEM. The aim of this chapter to firsthand information about different functions of TEM and possible characterizations that can be performed by using TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Manufacturer of instruments and softwares for TEM.

  2. 2.

    TEM manufacturing company.

  3. 3.

    TEM manufacturing company.

References

  1. Zocco, T., & Schwartz, A. (2003). A brief history of TEM observations of plutonium and its alloys. JOM Journal of the Minerals, Metals and Materials Society, 55(9), 24–27.

    Article  CAS  Google Scholar 

  2. Shen, Z., & Wei, C. (2010). TEM tests: Past, present and future [J]. Foreign Language World, 6, 004.

    Google Scholar 

  3. Liu, Z., et al. (2000). TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angewandte Chemie International Edition, 39(17), 3107–3110.

    Article  CAS  Google Scholar 

  4. Pedersen, B. G., et al. (2003). Colonoscopy and multidetector-array computed-tomographic colonography: Detection rates and feasibility. Endoscopy, 35(09), 736–742.

    Article  Google Scholar 

  5. Nakhosteen, C. B., & Jousten, K. (2016). Handbook of vacuum technology. Wiley.

    Google Scholar 

  6. Bertram, F., et al. (2016). Nanoscale imaging of structural and optical properties using helium temperature scanning transmission electron microscopy cathodoluminescence of nitride based nanostructures. Microscopy and Microanalysis, 22(S3), 600–601.

    Article  Google Scholar 

  7. Davoisne, C., et al. (2017). MnO conversion reaction: TEM and EELS investigation of the instability under electron irradiation. Journal of the Electrochemical Society, 164(7), A1520–A1525.

    Article  CAS  Google Scholar 

  8. Nishimura, T., et al. (2016). Structural, electrical, and compositional analysis of surface and grain boundary for Cu (In, Ga) Se2 solar cells by EBSD/SSRM/TEM-EDX. Structural, Electrical, and Compositional Analysis of Surface and Grain Boundary for Cu (In, Ga) Se2 Solar Cells by EBSD/SSRM/TEM-EDX.

    Google Scholar 

  9. Sun, W., et al. (2016). Communication—multi-layer boron nitride nanosheets as corrosion-protective coating fillers. Journal of the Electrochemical Society, 163(2), C16–C18.

    Article  CAS  Google Scholar 

  10. Egerton, R., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35(6), 399–409.

    Article  CAS  Google Scholar 

  11. Jacobsen, C. J., et al. (2000). Mesoporous zeolite single crystals. Journal of the American Chemical Society, 122(29), 7116–7117.

    Article  CAS  Google Scholar 

  12. Talapin, D. V., et al. (2002). Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202(2), 145–154.

    Article  CAS  Google Scholar 

  13. Navarro, J. (2012). A history of the electron: J. J. and G. P. Thomson. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  14. Melissinos, A. C., & Napolitano, J. (2003). Experiments in modern physics. Academic.

    Google Scholar 

  15. Born, M., & Wolf, E. (2013). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Elsevier.

    Google Scholar 

  16. Kleppner, D., & Jackiw, R. (2000). One hundred years of quantum physics. Science, 289(5481), 893–898.

    Article  CAS  Google Scholar 

  17. Gan, Y., & Wang, W. (2007). A self-consistent picture of wave-particle duality of light. In Optical engineering+ applications. International Society for Optics and Photonics.

    Google Scholar 

  18. Logiurato, F. (2012). Relativistic derivations of de Broglie and Planck-Einstein equations. arXiv preprint arXiv:1208.0119.

    Google Scholar 

  19. Yoshimura, N. (2013). Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes. Japan: Springer.

    Google Scholar 

  20. Williams, D. B., & Carter, C. B. (1996). Transmission electron microscopy: A textbook for materials science. Diffraction. II. Springer.

    Google Scholar 

  21. Eichmeier, J. A., & Thumm, M. (2008). Vacuum electronics: Components and devices. Berlin: Springer.

    Book  Google Scholar 

  22. Williams, D. B., & Carter, C. B. (2009). Transmission electron microscopy: A textbook for materials science. New York: Springer.

    Book  Google Scholar 

  23. Reimer, L. (2000). Scanning electron microscopy: Physics of image formation and microanalysis. Bristol: IOP Publishing.

    Google Scholar 

  24. Wiesen, S. J. (2003). West German industry and the challenge of the Nazi Past, 1945–1955. Chapel Hill: University of North Carolina Press.

    Google Scholar 

  25. VanHove, M. A., & Weinberg, W. H., Chan, C.-M. (2012). Low-energy electron diffraction: Experiment, theory and surface structure determination. Vol. 6. Springer Science & Business Media.

    Google Scholar 

  26. Leapman, R. D. (2017). Application of EELS and EFTEM to the life sciences enabled by the contributions of Ondrej Krivanek. Ultramicroscopy, 180, 180.

    Article  CAS  Google Scholar 

  27. Waitz, T., Kazykhanov, V., & Karnthaler, H. (2004). Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Materialia, 52(1), 137–147.

    Article  CAS  Google Scholar 

  28. Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1), 177–196.

    Article  Google Scholar 

  29. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), e329.

    Article  CAS  Google Scholar 

  30. Egerton, R. F. (2011). Electron energy-loss spectroscopy in the electron microscope. Springer Science & Business Media.

    Google Scholar 

  31. Gaietta, G., et al. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science, 296(5567), 503–507.

    Article  CAS  Google Scholar 

  32. Goldstein, J., et al. (2012). Scanning electron microscopy and X-ray microanalysis: A text for biologists, materials scientists, and geologists. Berlin: Springer Science & Business Media.

    Google Scholar 

  33. Goldstein, J. (2012). Practical scanning electron microscopy: Electron and ion microprobe analysis. Springer Science & Business Media.

    Google Scholar 

  34. Zewail, A. H. (2010). Four-dimensional electron microscopy. Science, 328(5975), 187–193.

    Article  CAS  Google Scholar 

  35. Bayram, M., et al. (2005). Light and electron microscope examination of the effects of methotrexate on the endosalpinx. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 120(1), 96–103.

    Article  CAS  Google Scholar 

  36. Zonnevylle, A., et al. (2013). Integration of a high-NA light microscope in a scanning electron microscope. Journal of Microscopy, 252(1), 58–70.

    Article  CAS  Google Scholar 

  37. Amenta, F., et al. (2001). Age-related changes of dopamine receptors in the rat hippocampus: A light microscope autoradiography study. Mechanisms of Ageing and Development, 122(16), 2071–2083.

    Article  CAS  Google Scholar 

  38. Westphal, V., & Hell, S. W. (2005). Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters, 94(14), 143903.

    Article  CAS  Google Scholar 

  39. Gustafsson, M. G. (2005). Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13081–13086.

    Article  CAS  Google Scholar 

  40. Klar, T. A., et al. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences, 97(15), 8206–8210.

    Article  CAS  Google Scholar 

  41. Kawata, S. (2001). Near-field microscope probes utilizing surface plasmon polaritons. In Near-field optics and surface plasmon polaritons (pp. 15–27). Springer.

    Google Scholar 

  42. Chen, B.-C., et al. (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208), 1257998.

    Article  CAS  Google Scholar 

  43. Bolte, S., & Cordelieres, F. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224(3), 213–232.

    Article  CAS  Google Scholar 

  44. Wen, D. (2010). Tungsten-halogen quartz lamp. Google Patents.

    Google Scholar 

  45. Vladar, A. E., Postek Jr, M. T., & Vane, R. (2001). Active monitoring and control of electron-beam-induced contamination. In 26th Annual International Symposium on Microlithography. International Society for Optics and Photonics.

    Google Scholar 

  46. Murphy, D. B. (2002). Fundamentals of light microscopy and electronic imaging. Wiley.

    Google Scholar 

  47. Batson, P., Dellby, N., & Krivanek, O. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature, 418(6898), 617.

    Article  CAS  Google Scholar 

  48. Bajt, S., et al. (2000). Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy, 83(1), 67–73.

    Article  CAS  Google Scholar 

  49. Kaynig, V., et al. (2010). Fully automatic stitching and distortion correction of transmission electron microscope images. Journal of Structural Biology, 171(2), 163–173.

    Article  Google Scholar 

  50. Kumar, S., et al. (2008). A structural resolution cryo-TEM study of the early stages of MFI growth. Journal of the American Chemical Society, 130(51), 17284–17286.

    Article  CAS  Google Scholar 

  51. Tiemeijer, P., et al. (2012). Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy, 114, 72–81.

    Article  CAS  Google Scholar 

  52. Suenaga, K., et al. (2007). Imaging active topological defects in carbon nanotubes. Nature Nanotechnology, 2(6), 358–360.

    Article  CAS  Google Scholar 

  53. Soldati, A. L., et al. (2011). High resolution FIB-TEM and FIB-SEM characterization of electrode/electrolyte interfaces in solid oxide fuel cells materials. International Journal of Hydrogen Energy, 36(15), 9180–9188.

    Article  CAS  Google Scholar 

  54. Takeda, S., & Yoshida, H. (2013). Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. Microscopy, 62(1), 193–203.

    Article  CAS  Google Scholar 

  55. den Dekker, A., et al. (2013). Estimation of unknown structure parameters from high-resolution (S) TEM images: What are the limits? Ultramicroscopy, 134, 34–43.

    Article  CAS  Google Scholar 

  56. Schmolze, D. B., et al. (2011). Advances in microscopy techniques. Archives of Pathology & Laboratory Medicine, 135(2), 255–263.

    Google Scholar 

  57. Meyer, L., et al. (2008). Dual-color STED microscopy at 30-nm focal-plane resolution. Small, 4(8), 1095–1100.

    Article  CAS  Google Scholar 

  58. Benaissa, A., & Messaoudi, S. A. (2002). Blow-up of solutions for the Kirchhoff equation of $ q $-Laplacian type with nonlinear dissipation. In Colloquium Mathematicum. Instytut Matematyczny Polskiej Akademii Nauk.

    Google Scholar 

  59. Hell, S. W., Dyba, M., & Jakobs, S. (2004). Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology, 14(5), 599–609.

    Article  CAS  Google Scholar 

  60. Smith, M. L., et al. (2003). Near-wall μ-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophysical Journal, 85(1), 637–645.

    Article  CAS  Google Scholar 

  61. Sasaki, T., et al. (2010). Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. Journal of Electron Microscopy, 59(S1), S7–S13.

    Article  CAS  Google Scholar 

  62. Suenaga, K., et al. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chemistry, 1(5), 415.

    Article  CAS  Google Scholar 

  63. Walther, T., et al. (2006). First experimental test of a new monochromated and aberration-corrected 200kV field-emission scanning transmission electron microscope. Ultramicroscopy, 106(11), 963–969.

    Article  CAS  Google Scholar 

  64. Terada, S., Taniguchi, Y., & Kaji K. (2011). Electron microscope with electron spectrometer. Google Patents.

    Google Scholar 

  65. Hughes, D., & Hansen, N. (2001). Graded nanostructures produced by sliding and exhibiting universal behavior. Physical Review Letters, 87(13), 135503.

    Article  CAS  Google Scholar 

  66. Watanabe, M., et al. (2002). The pros and cons of apoptosis assays for use in the study of cells, tissues, and organs. Microscopy and Microanalysis, 8(05), 375–391.

    Article  CAS  Google Scholar 

  67. Liu, J., et al. (2013). PEGylation and Zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angewandte Chemie International Edition, 52(48), 12572–12576.

    Article  CAS  Google Scholar 

  68. Porter, S. R. (2004). Pros and cons of paper and electronic surveys. New Directions for Institutional Research, 2004(121), 91–97.

    Article  Google Scholar 

  69. Jin, Z., et al. (2014). Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Physical Review B, 90(4), 045422.

    Article  CAS  Google Scholar 

  70. Yannouleas, C., & Landman, U. (2004). Structural properties of electrons in quantum dots in high magnetic fields: Crystalline character of cusp states and excitation spectra. Physical Review B, 70(23), 235319.

    Article  CAS  Google Scholar 

  71. Mauriz, P., Vasconcelos, M., & Albuquerque, E. (2003). Specific heat properties of electrons in generalized Fibonacci quasicrystals. Physica A: Statistical Mechanics and its Applications, 329(1), 101–113.

    Article  Google Scholar 

  72. Krumeich, F. (2011). Properties of electrons, their interactions with matter and applications in electron microscopy. Laboratory of Inorganic Chemistry, disponível em http://www.microscopy.ethz.ch/downloads/Interactions.pdf, consultado em, (pp. 3–08).

  73. Caldwell, T., et al. (2009) Transport properties of electrons in CF4. arXiv preprint arXiv:0905.2549.

    Google Scholar 

  74. Kim, J. S., et al. (2008). Imaging of transient structures using nanosecond in situ TEM. Science, 321(5895), 1472–1475.

    Article  CAS  Google Scholar 

  75. Betzig, E., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642–1645.

    Article  CAS  Google Scholar 

  76. Midgley, P., & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy, 96(3), 413–431.

    Article  CAS  Google Scholar 

  77. Klein, K. L., Anderson, I. M., & De Jonge, N. (2011). Transmission electron microscopy with a liquid flow cell. Journal of Microscopy, 242(2), 117–123.

    Article  CAS  Google Scholar 

  78. Kolosnjaj-Tabi, J., et al. (2015). The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano, 9(8), 7925–7939.

    Article  CAS  Google Scholar 

  79. Phillips, P., et al. (2011). Diffraction contrast STEM of dislocations: Imaging and simulations. Ultramicroscopy, 111(9), 1483–1487.

    Article  CAS  Google Scholar 

  80. Herzing, A. A., Richter, L. J., & Anderson, I. M. (2010). 3D nanoscale characterization of thin-film organic photovoltaic device structures via spectroscopic contrast in the TEM 1. The Journal of Physical Chemistry C, 114(41), 17501–17508.

    Article  CAS  Google Scholar 

  81. Bai, J., et al. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190.

    Article  CAS  Google Scholar 

  82. Trandafilovic, L. V., et al. (2012). Formation of nano-plate silver particles in the presence of polyampholyte copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 17–25.

    Article  CAS  Google Scholar 

  83. Oshima, C., et al. (1980). Thermionic emission from single-crystal LaB6 tips with [100],[110],[111], and [210] orientations. Journal of Applied Physics, 51(2), 1201–1206.

    Article  CAS  Google Scholar 

  84. Williams, D. B., & Carter, C. B. (2009). Electron sources. In Transmission electron microscopy: A textbook for materials science (pp. 73–89). Boston: Springer US.

    Chapter  Google Scholar 

  85. Baumann, C. E., Carin, L., & Stone, A. P. (2013). Ultra-wideband, short-pulse electromagnetics 3. Springer Science & Business Media.

    Google Scholar 

  86. Williams, D. B., & Carter, C. B. (2009). Lenses, apertures, and resolution. In Transmission electron microscopy: A textbook for materials science (pp. 91–114). Boston: Springer US.

    Chapter  Google Scholar 

  87. Dehm, G., Howe, J. M., & Zweck, J. (2012). In-situ electron microscopy: Applications in physics, chemistry and materials science. Wiley.

    Google Scholar 

  88. Cheng, Q., Ma, H., & Cui, T. (2010). A complementary lens based on broadband metamaterials. Journal of Electromagnetic Waves and Applications, 24(1), 93–101.

    Article  Google Scholar 

  89. Yuan, Y., et al. (2014). Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 5, 3005.

    Article  CAS  Google Scholar 

  90. Binns, C., et al. (2012). Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions. Journal of Nanoparticle Research, 14(9), 1136.

    Article  CAS  Google Scholar 

  91. Somorjai, G. A., & Park, J. Y. (2008). Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chemical Society Reviews, 37(10), 2155–2162.

    Article  CAS  Google Scholar 

  92. Laity, G., et al. (2014). A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy. Journal of Applied Physics, 115(12), 123302.

    Article  CAS  Google Scholar 

  93. Davis, A. B., & Marshak, A. (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(1), 3–34.

    Article  CAS  Google Scholar 

  94. Homma, M., et al. (2006). History of vacuum circuit breakers and recent developments in Japan. IEEE Transactions on Dielectrics and Electrical Insulation, 13(1), 85–92.

    Article  Google Scholar 

  95. Boxman, R. L. (2001). Early history of vacuum arc deposition. IEEE Transactions on Plasma Science, 29(5), 759–761.

    Article  CAS  Google Scholar 

  96. Moniruzzaman, M. (2015). A study on dealers preference towards water pumps with special reference to beacon pump in Chennai City. Global Journal of Management And Business Research, 15(1).

    Google Scholar 

  97. Reinemann, D. J. (2005). The history of vacuum regulation technology. In Proceedings of the 44th Annual meeting of the National Mastitis Council. Citeseer.

    Google Scholar 

  98. Principe, L. M. (2000). The aspiring adept: Robert Boyle and his alchemical quest. Princeton University Press.

    Google Scholar 

  99. Hunter, M. (2003). Robert Boyle reconsidered. Cambridge University Press.

    Google Scholar 

  100. Anstey, P. R. (2002). The philosophy of Robert Boyle. Routledge.

    Google Scholar 

  101. Pisano, R., & Capecchi, D. (2010). On Archimedean roots in Torricelli’s mechanics. In The genius of Archimedes–23 centuries of influence on mathematics, science and engineering (pp. 17–27). Springer.

    Google Scholar 

  102. Palmieri, P. (2009). Radical mathematical Thomism: Beings of reason and divine decrees in Torricelli’s philosophy of mathematics. Studies in History and Philosophy of Science Part A, 40(2), 131–142.

    Article  Google Scholar 

  103. Shapin, S., & Schaffer, S. (2011). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life (New in paper). Princeton University Press.

    Google Scholar 

  104. Hunter, M., Clericuzio, A., & Principe, L. M. (2001). The correspondence of Robert Boyle (Vol. 6). London: Pickering & Chatto.

    Google Scholar 

  105. Brewster, B. D. (2001). Vacuum pumping systems. Google Patents.

    Google Scholar 

  106. Zohuri, B., & McDaniel, P. (2015). Definitions and basic principles. In Thermodynamics in nuclear power plant systems (pp. 1–23). Springer.

    Google Scholar 

  107. Hucknall, D. J. (2013). Vacuum technology and applications. Elsevier.

    Google Scholar 

  108. Dong, L., et al. (2005). Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure. Physical Review E, 72(4), 046215.

    Article  CAS  Google Scholar 

  109. Smith, E. F., et al. (2006). Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques. Langmuir, 22(22), 9386–9392.

    Article  CAS  Google Scholar 

  110. Day, C., & Giegerich, T. (2014). Development of advanced exhaust pumping technology for a DT fusion power plant. IEEE Transactions on Plasma Science, 42(4), 1058–1071.

    Article  CAS  Google Scholar 

  111. Moazami, N., et al. (2013). Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice. The Journal of Heart and Lung Transplantation, 32(1), 1–11.

    Article  Google Scholar 

  112. Houzeaux, G., & Codina, R. (2007). A finite element method for the solution of rotary pumps. Computers & Fluids, 36(4), 667–679.

    Article  Google Scholar 

  113. Holland, L. (2012). Vacuum manual. Springer Science & Business Media.

    Google Scholar 

  114. Bernhardt, K.-H. (2000). Gas ballast system for a multi-stage positive displacement pump. Google Patents.

    Google Scholar 

  115. Hucknall, D. J., & Morris, A. (2003). Vacuum technology: Calculations in chemistry. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  116. Yu, Y.-L., et al. (2007). Coating of a thin layer of NaBH 4 solution for mercury vapor generation coupled to atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 22(7), 800–806.

    Article  CAS  Google Scholar 

  117. Carlisle, C., et al. (2000). Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag {111}. Surface Science, 470(1), 15–31.

    Article  CAS  Google Scholar 

  118. Tanabe, T., et al. (2002). An electrostatic storage ring for atomic and molecular science. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 482(3), 595–605.

    Article  CAS  Google Scholar 

  119. Yamauchi, A. (2002). Turbo molecular pump. Google Patents.

    Google Scholar 

  120. Uhrig, D., & Mays, J. W. (2005). Experimental techniques in high-vacuum anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43(24), 6179–6222.

    Article  CAS  Google Scholar 

  121. Hadjichristidis, N., et al. (2000). Anionic polymerization: High vacuum techniques. Journal of Polymer Science Part A: Polymer Chemistry, 38(18), 3211–3234.

    Article  CAS  Google Scholar 

  122. Spagnol, M. (2001). Sputter ion pump. Google Patents.

    Google Scholar 

  123. Qian, L., et al. (2010). Sputter ion pump. Google Patents.

    Google Scholar 

  124. Glugla, M., et al. (2006). ITER fuel cycle R&D: Consequences for the design. Fusion Engineering and Design, 81(1), 733–744.

    Article  CAS  Google Scholar 

  125. Keefer, B. G., & McLean, C. R. (2000). High frequency rotary pressure swing adsorption apparatus. Google Patents.

    Google Scholar 

  126. Inaguma, Y., & Hibi, A. (2005). Vane pump theory for mechanical efficiency. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(11), 1269–1278.

    Google Scholar 

  127. Sakaguchi, Y., Miwata, T., & Wada, A. (2016). Turbo-molecular pump. Google Patents.

    Google Scholar 

  128. Tsutsui, S. (2017). Turbo-molecular pump. Google Patents.

    Google Scholar 

  129. Tsutsui, S. (2016). Turbo-molecular pump. Google Patents.

    Google Scholar 

  130. Tsutsui, S., & Tsubokawa, T. (2015). Turbo-molecular pump. Google Patents.

    Google Scholar 

  131. Yamaguchi, T. (2013). Turbo-molecular pump. Google Patents.

    Google Scholar 

  132. Jeong, J., Lee, I., & Joo, J. (2015). A destruction pattern analysis of a Turbo-molecular pump according to the Foreline clamp damage in an ICP dry etcher for 300 mm wafers. Applied Science and Convergence Technology, 24(2), 27–32.

    Article  Google Scholar 

  133. Moriya, T., Sugawara, E., & Matsui, H. (2015). Observation and elimination of recoil particles from Turbo molecular pumps. IEEE Transactions on Semiconductor Manufacturing, 28(3), 253–259.

    Article  Google Scholar 

  134. Tsutsui, S. (2015). Turbo molecular pump device. Google Patents.

    Google Scholar 

  135. Dellby, N., et al. (2001). Progress in aberration-corrected scanning transmission electron microscopy. Journal of Electron Microscopy, 50(3), 177–185.

    CAS  Google Scholar 

  136. Gadsby, D. C. (2009). Ion channels versus ion pumps: The principal difference, in principle. Nature Reviews Molecular Cell Biology, 10(5), 344–352.

    Article  CAS  Google Scholar 

  137. Weston, G. F. (2013). Ultrahigh vacuum practice. New York: Elsevier Science.

    Google Scholar 

  138. Shimizu, T. (2004). Construction of a low temperature ultra high vacuum scanning tunneling/atomic force microscope. Berkeley: University of California.

    Google Scholar 

  139. Malyshev, O. B. (2018). Charged particle accelerators – Design and modelling of ultra-high vacuum (Uhv) systems. Wiley-VCH Verlag GmbH.

    Google Scholar 

  140. Chakradhar, A., et al. (2015). Support effects in the adsorption of water on CVD graphene: An ultra-high vacuum adsorption study. Chemical Communications, 51(57), 11463–11466.

    Article  CAS  Google Scholar 

  141. Frankevich, V., et al. (2014). Fluorescence resonance energy transfer of gas-phase ions under ultra high vacuum and ambient conditions. Physical Chemistry Chemical Physics, 16(19), 8911–8920.

    Article  CAS  Google Scholar 

  142. Bora, D. K., et al. (2014). An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study. Review of Scientific Instruments, 85(4), 043106.

    Article  CAS  Google Scholar 

  143. Ren, W., et al. (2015). Development of an ultra-high vacuum system for space cold atom clock. Vacuum, 116, 54–59.

    Article  CAS  Google Scholar 

  144. Miyase, T., et al. (2014). Roles of hydrogen in amorphous oxide semiconductor In-Ga-Zn-O: Comparison of conventional and ultra-high-vacuum sputtering. ECS Journal of Solid State Science and Technology, 3(9), Q3085–Q3090.

    Article  CAS  Google Scholar 

  145. Matthews, G., & Contributors, J. E. (2013). Plasma operation with an all metal first-wall: Comparison of an ITER-like wall with a carbon wall in JET. Journal of Nuclear Materials, 438, S2–S10.

    Article  CAS  Google Scholar 

  146. Williams, D. B., & Carter, C. B. (2009). Pumps and holders. Transmission electron microscopy (pp. 127–140). Boston: Springer US.

    Chapter  Google Scholar 

  147. Quirk, M., & Serda, J. (2001). Semiconductor manufacturing technology (Vol. 1). Upper Saddle River: Prentice Hall.

    Google Scholar 

  148. Lessard, P. A. (2000). Dry vacuum pumps for semiconductor processes: Guidelines for primary pump selection. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 18(4), 1777–1781.

    Article  CAS  Google Scholar 

  149. Ruskin, R. S., Yu, Z., & Grigorieff, N. (2013). Quantitative characterization of electron detectors for transmission electron microscopy. Journal of Structural Biology, 184(3), 385–393.

    Article  CAS  Google Scholar 

  150. McMullan, G., et al. (2014). Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy, 147, 156–163.

    Article  CAS  Google Scholar 

  151. Meyer, R. R., & Kirkland, A. I. (2000). Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microscopy Research and Technique, 49(3), 269–280.

    Article  CAS  Google Scholar 

  152. Gruner, S. M., Tate, M. W., & Eikenberry, E. F. (2002). Charge-coupled device area X-ray detectors. Review of Scientific Instruments, 73(8), 2815–2842.

    Article  CAS  Google Scholar 

  153. Janesick, J. R. (2001). Scientific charge-coupled devices (Vol. 83). Bellingham: SPIE press.

    Book  Google Scholar 

  154. Williams, D. B., & Carter, C. B. (2009). How to see electrons. In Transmission electron microscopy: A textbook for materials science (pp. 115–126). Boston: Springer US.

    Chapter  Google Scholar 

  155. Sermanet, P., et al. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.

    Google Scholar 

  156. Dopita, M., et al. (2007). The wide field spectrograph (WiFeS). Astrophysics and Space Science, 310(3–4), 255–268.

    Article  Google Scholar 

  157. Buechel, R. R., et al. (2010). Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. European Journal of Nuclear Medicine and Molecular Imaging, 37(4), 773–778.

    Article  Google Scholar 

  158. Popovic, Z., et al. (2000). Life extension of organic LED’s by doping of a hole transport layer. Thin Solid Films, 363(1), 6–8.

    Article  CAS  Google Scholar 

  159. Van Oudheusden, T., et al. (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. Journal of Applied Physics, 102(9), 093501.

    Article  CAS  Google Scholar 

  160. Che, W.-Q., et al. (2007). Investigation on the ohmic conductor losses in substrate-integrated waveguide and equivalent rectangular waveguide. Journal of Electromagnetic Waves and Applications, 21(6), 769–780.

    Article  Google Scholar 

  161. Zybtsev, S., et al. (2012). Growth, crystal structure and transport properties of quasi one-dimensional conductors NbS 3. Physica B: Condensed Matter, 407(11), 1696–1699.

    Article  CAS  Google Scholar 

  162. Van Eijk, C. W. (2001). Inorganic-scintillator development. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 460(1), 1–14.

    Article  Google Scholar 

  163. Castillo-Mejía, F., et al. (2001). Small plasma focus studied as a source of hard X-ray. IEEE Transactions on Plasma Science, 29(6), 921–926.

    Article  Google Scholar 

  164. Milazzo, A.-C., et al. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy, 104(2), 152–159.

    Article  CAS  Google Scholar 

  165. Wiedenheft, B., et al. (2011). Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 477(7365), 486–489.

    Article  CAS  Google Scholar 

  166. Hutchison, J. L., et al. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy, 103(1), 7–15.

    Article  CAS  Google Scholar 

  167. Egerton, R., & Malac, M. (2005). EELS in the TEM. Journal of Electron Spectroscopy and Related Phenomena, 143(2), 43–50.

    Article  CAS  Google Scholar 

  168. Poland, C. A., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423.

    Article  CAS  Google Scholar 

  169. Baldwin, C. E., Paratz, J. D., & Bersten, A. D. (2011). Diaphragm and peripheral muscle thickness on ultrasound: Intra-rater reliability and variability of a methodology using non-standard recumbent positions. Respirology, 16(7), 1136–1143.

    Article  Google Scholar 

  170. Mayer, J., et al. (2007). TEM sample preparation and FIB-induced damage. MRS Bulletin, 32(05), 400–407.

    Article  CAS  Google Scholar 

  171. Giannuzzi, L. A. (2006). Introduction to focused ion beams: Instrumentation, theory, techniques and practice. Springer Science & Business Media.

    Google Scholar 

  172. Gant, A., & Gee, M. (2011). A review of micro-scale abrasion testing. Journal of Physics D: Applied Physics, 44(7), 073001.

    Article  CAS  Google Scholar 

  173. Heymann, J. A., et al. (2009). 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. Journal of Structural Biology, 166(1), 1–7.

    Article  CAS  Google Scholar 

  174. Malkin, S., & Guo, C. (2008). Grinding technology: Theory and application of machining with abrasives. New York: Industrial Press.

    Google Scholar 

  175. Kalpakjian, S., Schmid, S. R., & Sekar, K. V. (2014). Manufacturing engineering and technology. Upper Saddle River: Pearson.

    Google Scholar 

  176. Webster, J., & Tricard, M. (2004). Innovations in abrasive products for precision grinding. CIRP Annals – Manufacturing Technology, 53(2), 597–617.

    Article  Google Scholar 

  177. Ersoy, A., Buyuksagic, S., & Atici, U. (2005). Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear, 258(9), 1422–1436.

    Article  CAS  Google Scholar 

  178. Mitchell, D., et al. (2003). Characterisation of PI 3 and RF plasma nitrided austenitic stainless steels using plan and cross-sectional TEM techniques. Surface and Coatings Technology, 165(2), 107–118.

    Article  CAS  Google Scholar 

  179. Mukhopadhyay, S. M. (2003). Sample preparation for microscopic and spectroscopic characterization of solid surfaces and films. Sample Preparation Techniques in Analytical Chemistry, 162(9), 377–411.

    Article  Google Scholar 

  180. Bockris, J. O. M., & Reddy, A. K. (2000). Modern electrochemistry 2B: Electrodics in chemistry, engineering, biology and environmental science. Vol. 2. Springer Science & Business Media.

    Google Scholar 

  181. Greeley, J., & Nørskov, J. K. (2007). Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochimica Acta, 52(19), 5829–5836.

    Article  CAS  Google Scholar 

  182. Bakhsh, T. A., Sadr, A., & Tagami, J. (2015). Focused ion beam processing for transmission electron microscopy of composite/adhesive interfaces. Journal of Adhesion Science and Technology, 29(3), 232–243.

    Article  CAS  Google Scholar 

  183. Perdu, P., Desplats, R., & Beaudoin, F. (2000). A review of sample backside preparation techniques for VLSI. Microelectronics Reliability, 40(8), 1431–1436.

    Article  Google Scholar 

  184. Ayache, J., et al. (2010). Sample preparation handbook for transmission electron microscopy: Techniques. Vol. 2. Springer Science & Business Media.

    Google Scholar 

  185. Alam, S. N., et al. Sample preparation techniques for electron microscopy 50 years of SEM and beyond!

    Google Scholar 

  186. Cooke, K. O. (2016). Parametric analysis of electrodeposited nano-composite coatings for abrasive wear resistance. In Electrodeposition of composite materials. InTech.

    Google Scholar 

  187. Odian, G. (2004). Principles of polymerization. Wiley.

    Google Scholar 

  188. Predel, T., et al. (2007). Ionic liquids as operating fluids in high pressure applications. Chemical Engineering & Technology, 30(11), 1475–1480.

    Article  CAS  Google Scholar 

  189. Chan, L., Hiller, J. M., & Giannuzzi, L. A. (2014). Ex situ lift out of plasma focused ion beam prepared site specific specimens. In ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis. ASM International.

    Google Scholar 

  190. Mahamid, J., et al. (2015). A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. Journal of Structural Biology, 192(2), 262–269.

    Article  CAS  Google Scholar 

  191. Cui, A., et al. (2015). Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1–2 nm by focused ion beam milling. Advanced Materials, 27(19), 3002–3006.

    Article  CAS  Google Scholar 

  192. Villa, E., et al. (2013). Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Current Opinion in Structural Biology, 23(5), 771–777.

    Article  CAS  Google Scholar 

  193. Fukuda, Y., et al. (2014). Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling. Ultramicroscopy, 143, 15–23.

    Article  CAS  Google Scholar 

  194. Hsieh, C., et al. (2014). Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography. Journal of Structural Biology, 185(1), 32–41.

    Article  CAS  Google Scholar 

  195. Schaffer, M., et al. (2015). Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio-protocol, 5(17), e1575.

    Article  Google Scholar 

  196. Buchheim, J., et al. (2016). Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation. Nanoscale, 8(15), 8345–8354.

    Article  CAS  Google Scholar 

  197. Dykstra, M. J., & Reuss, L. E. (2003). Biological electron microscopy: Theory, techniques, and troubleshooting. New York: Springer US.

    Book  Google Scholar 

  198. Munoz-Tabares, J. A., et al. Microstructural changes in 3Y-TZP induced by scratching and indentation. Journal of the European Ceramic Society, 32(15), 3919–3927.

    Article  CAS  Google Scholar 

  199. Mitra, S. (2004). Sample preparation techniques in analytical chemistry. Vol. 237. Wiley.

    Google Scholar 

  200. Smalley, R. E., et al. (2003). Carbon nanotubes: Synthesis, structure, properties, and applications. Vol. 80. Springer Science & Business Media.

    Google Scholar 

  201. Stankovich, S., et al. (2006). Graphene-based composite materials. Nature, 442(7100), 282.

    Article  CAS  Google Scholar 

  202. Joy, D. C., & Romig Jr, A. D. (1986). Principles of analytical electron microscopy. Springer Science & Business Media.

    Google Scholar 

  203. Nellist, P., & Pennycook, S. (1998). Subangstrom resolution by underfocused incoherent transmission electron microscopy. Physical Review Letters, 81(19), 4156.

    Article  CAS  Google Scholar 

  204. Reimer, L., & Kohl, H. (2008). Transmission electron microscopy: Physics of image formation. New York: Springer.

    Google Scholar 

  205. Rosenauer, A., et al. (2014). Conventional transmission electron microscopy imaging beyond the diffraction and information limits. Physical Review Letters, 113(9), 096101.

    Article  CAS  Google Scholar 

  206. Cejka, J., Corma, A., & Zones, S. (2010). Zeolites and catalysis: Synthesis, reactions and applications. Weinheim: Wiley.

    Book  Google Scholar 

  207. Bals, S., et al. (2007). High-quality sample preparation by low kV FIB thinning for analytical TEM measurements. Microscopy and Microanalysis, 13(02), 80–86.

    Article  CAS  Google Scholar 

  208. Sun, B., et al. (2005). Artifacts induced in metallic glasses during TEM sample preparation. Scripta Materialia, 53(7), 805–809.

    Article  CAS  Google Scholar 

  209. Caplovicova, M., et al. (2007). An alternative approach to carbon nanotube sample preparation for TEM investigation. Ultramicroscopy, 107(8), 692–697.

    Article  CAS  Google Scholar 

  210. Carter, C. B., & Williams, D. B. (2016). Transmission electron microscopy: Diffraction, imaging, and spectrometry. Springer International Publishing.

    Google Scholar 

  211. Joo, J. H., & Lee, J.-S. (2013). Library approach for reliable synthesis and properties of DNA–gold nanorod conjugates. Analytical Chemistry, 85(14), 6580–6586.

    Article  CAS  Google Scholar 

  212. Xie, J., et al. (2008). The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano, 2(12), 2473–2480.

    Article  CAS  Google Scholar 

  213. Hugounenq, P., et al. (2012). Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. The Journal of Physical Chemistry C, 116(29), 15702–15712.

    Article  CAS  Google Scholar 

  214. Guardia, P., et al. (2012). Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano, 6(4), 3080–3091.

    Article  CAS  Google Scholar 

  215. Corain, B., Schmid, G., & Toshima, N. (2011). Metal nanoclusters in catalysis and materials science: The issue of size control. Elsevier Science.

    Google Scholar 

  216. Wang, Z. (2000). Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. ACS Publications.

    Google Scholar 

  217. García-Martínez, J., Li, K., & Davis, M. E. (2015). Mesoporous zeolites: Preparation, characterization and applications. Weinheim: Wiley.

    Book  Google Scholar 

  218. Kirkland, A., & Young, N. (2012). Advances in high-resolution transmission electron microscopy for materials science. Microscopy and Analysis, 26(6), 19–24.

    Google Scholar 

  219. Yao, N., & Wang, Z. L. (2006). Handbook of microscopy for nanotechnology. Springer US.

    Google Scholar 

  220. Gusev, E. P., et al. (2000). High-resolution depth profiling in ultrathin Al 2 O 3 films on Si. Applied Physics Letters, 76(2), 176–178.

    Article  CAS  Google Scholar 

  221. 纳米技术中的显微学手册: 电子显微学. 第2卷 . 2005: 清华大学出版社.

    Google Scholar 

  222. Egerton, R. (2011). Physical principles of electron microscopy: An introduction to TEM, SEM, and AEM. Springer US.

    Google Scholar 

  223. Deepak, F. L., Mayoral, A., & Arenal R. (2015). Advanced transmission electron microscopy: Applications to nanomaterials. Springer International Publishing.

    Google Scholar 

  224. LeBeau, J. M., et al. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Physical Review Letters, 100(20), 206101.

    Article  CAS  Google Scholar 

  225. Muller, D. A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials, 8(4), 263–270.

    Article  CAS  Google Scholar 

  226. Pennycook, S. J. (2011). A scan through the history of STEM. In Scanning transmission electron microscopy (pp. 1–90). Springer.

    Google Scholar 

  227. Buban, J. P., et al. (2010). High-resolution low-dose scanning transmission electron microscopy. Journal of Electron Microscopy, 59(2), 103–112.

    Article  CAS  Google Scholar 

  228. Hawkes, P., et al. (2013). Energy-filtering transmission electron microscopy. Vol. 71. Springer.

    Google Scholar 

  229. Torre, B., et al. (2011). Magnetic force microscopy and energy loss imaging of superparamagnetic iron oxide nanoparticles. Scientific Reports, 1, 202.

    Article  CAS  Google Scholar 

  230. Yu, H., et al. (2005). Dumbbell-like bifunctional Au− Fe3O4 nanoparticles. Nano Letters, 5(2), 379–382.

    Article  CAS  Google Scholar 

  231. Esparza, R., et al. (2014). Atomic structure characterization of Au–Pd bimetallic nanoparticles by aberration-corrected scanning transmission electron microscopy. The Journal of Physical Chemistry C, 118(38), 22383–22388.

    Article  CAS  Google Scholar 

  232. Feng, A. L., et al. (2015). Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Scientific Reports, 5, 7779.

    Article  CAS  Google Scholar 

  233. Gatel, C., et al. (2017). Inhomogeneous spatial distribution of the magnetic transition in an iron-rhodium thin film. Nature Communications, 8, 15703.

    Article  CAS  Google Scholar 

  234. Saleh, I. M., et al. (2003). Adhesion of endodontic sealers: Scanning electron microscopy and energy dispersive spectroscopy. Journal of Endodontics, 29(9), 595–601.

    Article  Google Scholar 

  235. Martins, R., Bahia, M., & Buono, V. (2002). Surface analysis of ProFile instruments by scanning electron microscopy and X-ray energy-dispersive spectroscopy: A preliminary study. International Endodontic Journal, 35(10), 848–853.

    Article  CAS  Google Scholar 

  236. Brodowski, S., et al. (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma, 128(1), 116–129.

    Article  CAS  Google Scholar 

  237. d’Alfonso, A., et al. (2010). Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Physical Review B, 81(10), 100101.

    Article  CAS  Google Scholar 

  238. Pascarelli, S., et al. (2006). Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications. Journal of Synchrotron Radiation, 13(5), 351–358.

    Article  CAS  Google Scholar 

  239. Herzing, A. A., et al. (2008). Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions, 138, 337–351.

    Article  CAS  Google Scholar 

  240. Chu, M.-W., et al. (2010). Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Physical Review Letters, 104(19), 196101.

    Article  CAS  Google Scholar 

  241. Ferrari, A. C., et al. (2000). Density, sp 3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Physical Review B, 62(16), 11089.

    Article  CAS  Google Scholar 

  242. Egerton, R. (2008). Electron energy-loss spectroscopy in the TEM. Reports on Progress in Physics, 72(1), 016502.

    Article  CAS  Google Scholar 

  243. Laffont, L., et al. (2006). Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chemistry of Materials, 18(23), 5520–5529.

    Article  CAS  Google Scholar 

  244. Tan, H., et al. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Physical Review Letters, 107(10), 107602.

    Article  CAS  Google Scholar 

  245. Madsen, S. J., et al. (2017). Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS Photonics, 4(2), 268–274.

    Article  CAS  Google Scholar 

  246. Williams, R. P., Hart, R. D., & Van Riessen, A. (2011). Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Journal of the American Ceramic Society, 94(8), 2663–2670.

    Article  CAS  Google Scholar 

  247. Zhao, Y., et al. (2010). In situ electron energy loss spectroscopy study of metallic Co and Co oxides. Journal of Applied Physics, 108(6), 063704.

    Article  CAS  Google Scholar 

  248. Titantah, J., & Lamoen, D. (2005). sp 3/sp 2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques. Carbon, 43(6), 1311–1316.

    Article  CAS  Google Scholar 

  249. Daniels, H., et al. (2003). Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy. Ultramicroscopy, 96(3), 523–534.

    Article  CAS  Google Scholar 

  250. Morello, M., et al. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats: An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29(1), 60–72.

    Article  CAS  Google Scholar 

  251. Holtz, M. E., et al. (2013). In situ electron energy-loss spectroscopy in liquids. Microscopy and Microanalysis, 19(4), 1027–1035.

    Article  CAS  Google Scholar 

  252. Kiely, C. J. (1999). Electron microscopy and analysis 1999: Proceedings of the institute of physics electron microscopy and analysis group conference, University of Sheffield, 24–27 August 1999. Taylor & Francis.

    Google Scholar 

  253. Sardela, M. (2014). Practical materials characterization. New York: Springer.

    Book  Google Scholar 

  254. Zhang, X. F., & Zhang, Z. (2001). Progress in transmission electron microscopy 1: Concepts and techniques. Berlin: Springer.

    Book  Google Scholar 

  255. Jimenez-Villar, E., et al. (2014). TiO2@ Silica nanoparticles in a random laser: Strong relationship of silica shell thickness on scattering medium properties and random laser performance. Applied Physics Letters, 104(8), 081909.

    Article  CAS  Google Scholar 

  256. Ernst, F., & Rühle, M. (2013). High-resolution imaging and spectrometry of materials. Berlin: Springer.

    Google Scholar 

  257. Kirkland, A. I., & Haigh, S. J. (2015). Nanocharacterisation: 2nd edition. Cambridge, UK: Royal Society of Chemistry.

    Book  Google Scholar 

  258. McIntosh, J. R. (2011). Cellular electron microscopy. Elsevier Science.

    Google Scholar 

  259. Lartigue, L., et al. (2013). Biodegradation of iron oxide nanocubes: High-resolution in situ monitoring. ACS Nano, 7(5), 3939–3952.

    Article  CAS  Google Scholar 

  260. Muller, D., et al. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science, 319(5866), 1073–1076.

    Article  CAS  Google Scholar 

  261. Lawrence, J., et al. (2003). Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environmental Microbiology, 69(9), 5543–5554.

    Article  CAS  Google Scholar 

  262. Urban, K. W. (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science, 321(5888), 506–510.

    Article  CAS  Google Scholar 

  263. Bosman, M., et al. (2007). Two-dimensional mapping of chemical information at atomic resolution. Physical Review Letters, 99(8), 086102.

    Article  CAS  Google Scholar 

  264. De Angelis, F., et al. (2010). Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotechnology, 5(1), 67–72.

    Article  CAS  Google Scholar 

  265. Slater, T. J. A., et al. (2014). Correlating catalytic activity of Ag–Au nanoparticles with 3D compositional variations. Nano Letters, 14(4), 1921–1926.

    Article  CAS  Google Scholar 

  266. Midgley, P. A., & Dunin-Borkowski, R. E. (2009). Electron tomography and holography in materials science. Nature Materials, 8(4), 271.

    Article  CAS  Google Scholar 

  267. Koster, A., et al. (2000). Development and application of 3-dimensional transmission electron microscopy (3D-TEM) for the characterization of metal-zeolite catalyst systems. Studies in Surface Science and Catalysis, 130, 329–334.

    Article  Google Scholar 

  268. Shearing, P., et al. (2010). Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochemistry Communications, 12(3), 374–377.

    Article  CAS  Google Scholar 

  269. Chang, L. K., et al. (2008). Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. American Journal of Ophthalmology, 146(1), 121–127.

    Article  Google Scholar 

  270. Kübel, C., et al. (2005). Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microscopy and Microanalysis, 11(05), 378–400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javed, Y. et al. (2018). TEM for Atomic-Scale Study: Fundamental, Instrumentation, and Applications in Nanotechnology. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_5

Download citation

Publish with us

Policies and ethics