Skip to main content

Potential for Adaptation to Climate Change Through Genomic Breeding in Sesame

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Oilseed Crops

Abstract

Sesame is an important oilseed crop with high oil content and oil quality. Abundant unsaturated fatty acids, proteins, and antioxidants in sesame seeds attract the worldwide consumption of sesame products. Sesame is highly tolerant of drought and poor soil condition, even though it is readily affected by diseases and waterlogging stress, thereby leading to reduced seed yield and quality. For sesame, increasing the high and stable yield is requisite and urgent. Meanwhile, it is necessary to increase the mechanization level of its harvest for the world’s sesame production. Sesame, S. indicum, is the sole cultivated species in Sesamum genus. The relatively low genetic diversity limits sesame breeding for new and substantial improved varieties. In this section, we present a review of the key agronomic traits and the breeding methods currently used in the species. We also pinpoint the achievement of the Sesame Genome Project (SGP) and the potential for the genomics-assisted breeding in sesame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136(3):401–417

    Article  PubMed  Google Scholar 

  • Abuja PM, Albertini R (2002) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17

    Article  Google Scholar 

  • Ahmed ME (2008) Evaluation of new sesame (Sesamum indicum L.) genotypes for yield, yield components and stability. Univ Khartoum J Agri Sci 16:380–394

    Google Scholar 

  • Alves-Santos FM, Benito EP, Eslava AP, Díaz-Mínguez J (1999) Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl Environ Microbiol 65(8):3335–3340

    CAS  PubMed  PubMed Central  Google Scholar 

  • An (2009) Adventitious shoot induction and plant regeneration from cotyledon of sesame (Sesamum indicum L.). Thesis, Nanjing Agriculture University, Nanjing, China

    Google Scholar 

  • Anbarasan K, Rajendranmkk R, Sivalingam D (2015) Studies on the mutagenic effectiveness and efficiency of gamma rays, EMS and combined treatment in sesame (Sesamum indicum L.) var.TMV3. Res J Pharmaceut Biol Chem Sci 6(4):589–595

    Google Scholar 

  • Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds—an overview. Agri Conspect Sci 75(4):159–168

    Google Scholar 

  • Armstrong JK, Armstrong GM (1950) A Fusarium wilt of sesame in United States. Phytopathol J 40:785

    Google Scholar 

  • Ashri A (1998) Sesame breeding. In: Janick J (ed) Plant breeding reviews, vol 16, Wiley, Israel, pp 179–228

    Chapter  Google Scholar 

  • Ashri A (2001) Induced mutations in sesame breeding. No. IAEA-TECDOC–1195

    Google Scholar 

  • Ashri A (2006) Sesame (Sesamum indicum L.). In: Signh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, FL, pp 231–280

    Chapter  Google Scholar 

  • Ashri A, Singh RJ (2007) Sesame (Sesamum indicum L.). Genet Resour Chrom Engg Crop Improv: Oilseed Crops 4:231–280

    CAS  Google Scholar 

  • Azeez MA, Morakinyo JA (2011) Genetic diversity of fatty acids in sesame and its relatives in Nigeria. Eur J Lipid Sci Technol 113(2):238–244

    Article  CAS  Google Scholar 

  • Backiyarani S, Devarathinam AA, Shanthi S (1997) Combining ability studies on economic traits in sesame (Sesamum indicum L.). Crop Res (Hisar) 13(1):121–124

    Google Scholar 

  • Bakheit BR, Ismail AA, Elshiemy AA, Sedek FS (2000) Triple test cross analysis in four sesame crosses (Sesamum indicum L.). J Agri Sci 137(2):185–193

    Google Scholar 

  • Balasnse AG, Pawar BB, Dumbre AD (1991) Genetic analysis of some quantitative traits in sesame. J Maha Agri Univ 16:3457–3459

    Google Scholar 

  • Banerjee PP, Kole PC (2009a) Analysis of genetic architecture for some physiological characters in sesame (Sesamum indicum L.). Euphytica 168(1):11–22

    Article  CAS  Google Scholar 

  • Banerjee PP, Kole PC (2009b) Combining ability analysis for seed yield and some of its component characters in sesame (Sesamum indicum L.). Intl J Plant Breed Genet 3(1):11–21

    Article  Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on (Sesamum indicum L.)—an important oil plant. J Agri Technol 2:259–269

    Google Scholar 

  • Baydar H (2005) Breeding for the improvement of the ideal plant type of sesame. Plant Breed 124(3):263–267

    Article  Google Scholar 

  • Bedigian D (1988) Sesamum indicum L. (Pedaliaceae): Ethnobotany in Sudan, crop diversity, lignans, origin, and related taxa. In: Goldblatt P, Lowry PP (eds) Modern systematic studies in African Botany, AETFAT monographs in systematic Botany, Missouri, 25:315–321

    Google Scholar 

  • Bedigian D (2004) Slimy leaves and oily seeds: distribution and use of wild relatives of sesame in Africa. Econ Bot 58(sp1):S3–S33

    Article  Google Scholar 

  • Bedigian D (2010a) Chracterization of sesame (Sesamum indicum L.) germplasm: a critique. Genet Resour Crop Evol 57:641–647

    Article  Google Scholar 

  • Bedigian D (2010b) Cultivated sesame, and wild relatives in the genus Sesamum. CRC Press, Boca Raton, FL, pp 33–77

    Book  Google Scholar 

  • Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40(2):137–154

    Article  Google Scholar 

  • Bedigian D, Seigler DS, Harlan JR (1985) Sesamin, sesamolin and the origin of sesame. Biochem Syst Ecol 13(2):133–139

    Article  CAS  Google Scholar 

  • Begum T, Dasgupta T (2010) A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.). Genet Mol Biol 33(4):761–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Bekhrad H, Mahdavi B, Rahimi A (2016) Effect of seed priming on growth and some physiological characteristics of sesame (Sesamum indicum L.) under salinity stress condition caused by Alkali Salts. Pizhūhishhā-yi zirā̒ī-IĪrān 13 (4): 810-812

    Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–33

    Article  CAS  Google Scholar 

  • Bhattacharyya J, Chakraborty A, Mitra J, Chakraborty S, Pradhan S, Manna A, Sikdar N, Sen SK (2015) Genetic transformation of cultivated sesame (Sesamum indicum, L. cv Rama) through particle bombardment using 5-day-old apical, meristematic tissues of germinating seedlings. Plant Cell Tiss Org Cult 123(3):455–466

    Article  CAS  Google Scholar 

  • Biabani AR, Pakniyat H (2008) Evaluation of seed yield-related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pak J Biol Sci 11(8):1157–1160

    Google Scholar 

  • Bor M, Seckin B, Ozgur R, Yılmaz O, Ozdemir F, Turkan I (2009) Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum, L.). Acta Physiol Plant 31(3):655–659

    Article  CAS  Google Scholar 

  • Boranayaka MB, Gowda RK, Nandini B, Satish RG, Pujer SB (2010) Influence of gamma rays and ethyl methane sulphonate on germination and seedling survival in sesame (Sesamum indicum L.). Intl J Plant Sci 5(2):655–659

    Google Scholar 

  • Cagirgan MI (2001) Mutation techniques in sesame (Sesamum indicum L.) for intensive management: confirmed mutants. In: Sesame improvement by induced mutations, IAEA-TECDOC-1195, Vienna, pp 31–40

    Google Scholar 

  • Chakraborti P, Ghosh A (2009) Variation in callus induction and root-shoot bud formation depend on seed coat of sesame genotypes. Res J Bot 5:14–19

    Google Scholar 

  • Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4(2):173–178

    Article  Google Scholar 

  • Chen Z, Wang X (2005) The mutagenesis improvement of rice strong dominant restorer line 9311 grain weight. Plant Mol Breed 3(3):353–356

    Google Scholar 

  • Chen Z, Wang J, Zhi Y, Yi M (1994) Study of multiple bud induction and shoot regeneration in sesame. J Henan Agri Sci 11(6):10–12

    Google Scholar 

  • Chen Z, Zhi Y, Yi M, Wang J, Liang X, Tu L, Fu R, Cao G, Shi Y, Sun Y (1996) Transformation of engineered male sterile gene and establishment of transgenic plants in sesame (Sesamum indicum L.). Acta Agri Bor-Sin 11(4):33–38

    Google Scholar 

  • Chen JCF, Lin RH, Huang HC, Tzen JTC (1997) Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J Biochem 122(4):819–824

    Article  CAS  PubMed  Google Scholar 

  • Cho EK, Choi SH (1987) Etiology of half stem rot in sesame caused by Fusarium oxysporum. Kor J Plant Protec 26(1):25–30

    Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410

    PubMed  PubMed Central  Google Scholar 

  • Chun JA, Jin UH, Lee JW, Yi YB, Hyung NI, Kang MH, Pyee JH, Suh MC, Kang CW, Seo HY, Lee SW, Chung CH (2003) Isolation and characterization of a myo-inositol 1-phosphate synthase cDNA from developing sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt–induced transcription during germination. Planta 216(5):874–880

    Google Scholar 

  • Chyan CL, Lee TTT, Liu CP, Yang YC, Tzen JTC, Chou WM (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochem 69(12):2319–2325

    Article  CAS  PubMed  Google Scholar 

  • Culp TW (1959) Inheritance and association of oil and protein content and seed coat type in sesame. Sesamum indicum L. Genetics 44(5):897–909

    CAS  PubMed  Google Scholar 

  • Daniya E (2013) Correlation and path analysis between seed yield and some weed and quantitative components in two sesame (Sesamum indicum L.) varieties as influenced by seed rate and nitrogen fertilizer. J Biol Agri Healthcare 3(15):12–16

    Google Scholar 

  • Dinakaran D, Mohammed SEN (2001) Identification of resistant sources to root rot of sesame caused by Macrophomina phaseolina (Tassi.) Goid. Sesame Safflower Newsl 16:68–71

    Google Scholar 

  • Ding X, Wang L, Zhang Y, Li D, Wei W, Zhang X (2012) Evaluation of the waterlogging tolerance of the main sesame cultivars in China. Acta Agri Bor-Sin 27(4):89–93

    Google Scholar 

  • Dixit AA, Jin MH, Chung JW, Yu JW, Chung HK, Ma KH, Park YJ, Cho EG (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738

    Article  CAS  Google Scholar 

  • Dossa K (2016) A physical map of important QTLs, functional markers and genes available for sesame breeding programs. Physiol Mol Biol Plants 22(4):1–7

    Article  CAS  Google Scholar 

  • Dossa K, Diouf D, Cissé N (2016a) Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci 7(190):1522

    PubMed  PubMed Central  Google Scholar 

  • Dossa K, Xin W, Li D, Fonceka D, Zhang Y, Wang L, Yu J, Boshou L, Dioul D, Cissé N, Zhang X (2016b) Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol 16(1):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dossa K, Yu J, Liao B, Cisse N, Zhang X (2017) Development of highly informative genome-wide single sequence repeat markers for breeding applications in sesame and construction of a web resource: SisatBase. Front Plant Sci 8:1470

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Bramawy MAES (2006) Inheritance of resistance to Fusarium wilt in some sesame crosses under field conditions. Plant Protec Sci 42(3):99–105

    Article  Google Scholar 

  • El-Bramawy MAES, Abdul Wahid OA (2006) Field resistance of crosses of sesame (Sesamum indicum L.) to charcoal root rot caused by Macrophomina phaseolina (Tassi.) goid. Plant Protec Sci 42(2):66–72

    Google Scholar 

  • El-Bramawy MAES, Amin Shaban WI (2007) Nature of gene action for yield, yield components and major diseases resistance in sesame (Sesamum indicum L.). Res J Agric & Biol Sci 3(6): 821-826

    Google Scholar 

  • El-Bramawy MAES, El-Hendawy SES, Amin Shaban WI (2008) Assessing the suitability of morphological and phenological traits to screen sesame genotypes for Fusarium wilt and charcoal rot disease resistance. J Plant Protec Res 48(4):397–410

    Google Scholar 

  • El-Shakhess SAM, Khalifa MMA (2007) Combining ability and heterosis for yield, yield components, charcoal-rot and Fusarium wilt diseases in sesame. Egypt J Plant Breeding 11(1):351–371

    Google Scholar 

  • Ercan AG, Taskin M, Turgut K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol 51:599–607

    Article  CAS  Google Scholar 

  • Eshwarappa V (2010) F2 Bulk segregants analysis for Alternaria disease resistance using RAPD markers in sesame (Sesamum indicum L.). Thesis, University of Agricultural Sciences, Dharwad Karnataka, India

    Google Scholar 

  • Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001) Detection and mapping of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41(5):1494–1498

    Article  Google Scholar 

  • Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51(1):98–103

    Article  CAS  Google Scholar 

  • Feng X, Zhang X (1991) Identification and evaluation of sesame germplasm resource to waterlogging. Oil Crops China 3:12–15

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Fuller DQ (2002) Fifty years of archaeobotanical studies in India: laying a solid foundation. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect III. Archaeology and Interactive Disciplines, Manohar, New Delhi, pp 247–363

    Google Scholar 

  • Fuller DQ (2003) Further evidence on the prehistory of sesame. Asian Agri-Hist 7(2):127–137

    Google Scholar 

  • Fuller DQ, Madella M (2001) Issues in Harappan archaeobotany: retrospect and prospect. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect II. Protohistory, Manohar, New Delhi, pp 317–390

    Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler E, Charcosset A, Clarke JD, Graner E, Hansen M, Joets J, Paslier ML, McMullen MD, Montalent P, Rose M, Schön C, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6(12):e28334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadhara K, Prakash JC, Rajesh AM, Gireesh C, Somappa J, Yathish KR (2012). Correlation and path coefficient analysis in sesame (Sesamum indicum L.). BIOINFOLET-A Quart J Life Sci 9(3):303–310

    Google Scholar 

  • Gao TM, Wei SL, Zhang HY, Chun-Ming LI, Zheng YZ, Miao HM (2011) Analysis of the nutritional components of white sesame kernel. Acta Nutri Sin 53(12):565–581

    Google Scholar 

  • George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21

    Article  Google Scholar 

  • Gnanasekaran M, Jebaraj S, Muthuramu S (2008) Correlation and path co-efficient analysis in sesame (Sesamum indicum L.). Plant Arch 8:167–169

    Google Scholar 

  • Gong H, Zhao F, Pei W, Meng Q (2016) Advances in sesame (Sesamum indicum L.) germplasm resources and molecular biology research. J Plant Genet Resour 17(3):517

    Google Scholar 

  • Goudappagoudar R, Lokesha R, Vanishree (2014) Inheritance of Alternaria blight resistance in sesame. Intl J Plant Sci 8(1):110–112

    Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145-161

    Article  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis in bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178(6):510–516

    Article  CAS  Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2012) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot 75(1):212–219

    Article  CAS  Google Scholar 

  • Hsiao ESL, Lin LJ, Li FY, Wang MMC, Liao MY, Tzen JTC (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agri Food Chem 54(25):9544–9550

    Article  CAS  Google Scholar 

  • Ibrahim SE, Khidir MO (2012) Genotypic correlation and path coefficient analysis of yield and some yield components in sesame (Sesamum indicum L.). Intl J Agrisci 2(8):664 –670

    Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178(3):1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPGRI, NBPGR (2004) Descriptors for sesame (Sesamum spp.). International Plant Genetic Resources Institute, Rome, Italy, National Bureau of Plant Genetic Resources, New Delhi, India, SBN92-9043-632-8

    Google Scholar 

  • Jimoh WA, Aroyehun HT (2011) Evaluation of cooked and mechanically defatted sesame (Sesamum indicum) seed meal as a replacer for soybean meal in the diet of African catfish (Clarias gariepinus). Turk J Fisher Aquat Sci 11(2):185–190

    Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161(5):935–941

    Article  CAS  Google Scholar 

  • Joshi AB (1961) Sesamum. Indian Central Oilseed Committee Hyderabad, India, p 109

    Google Scholar 

  • Kang CW, Lee JI, Choi BH (1995) Mutation breeding for disease resistance and high yield of sesame (Sesamum indicum L.) in Korea. Sesame Safflower Newsl 10:21–36

    Google Scholar 

  • Kanu PJ (2011) Biochemical analysis of black and white sesame seeds from china. Amer J Biochem Mol Biol 1(2):145–157

    Article  Google Scholar 

  • Kapadia GJ, Azuine MA, Tokuda H, Takasaki M, Mukainaka T, Konoshima T, Nishino H (2002) Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epstein–barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 45(6):499–505

    Article  CAS  PubMed  Google Scholar 

  • Karunanithi K (1996) Efficacy of fungicides in the control of powdery mildew of sesame caused by Oidium acanthospermi. Indian J Mycol Plant Pathol 26:229–230

    CAS  Google Scholar 

  • Kenoyer JM (1991) The Indus valley tradition of Pakistan and western India. J World Prehist 5(4):331–385

    Article  Google Scholar 

  • Kim DH, Zur G, Danin-Poleg Y, Lee SW, Shim KB, Kang CW, Kashi Y (2002) Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed 121:259–262

    Article  CAS  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5’-UTR intron. Mol Genet Genom 276(4):351–368

    Article  CAS  Google Scholar 

  • Kim KS, Park SH, Jenks MA (2007a) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164(9):1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim JK, Shin JS, Suh MC (2007b) The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E-and G-box elements. Plant Mol Biol 64:453–466

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Go YS, Lee SB, Kim YS, Shin JS, Min MK, Hwang I, Suh MC (2010) Seed-expressed casein kinase I acts as a positive regulator of the SeFAD2 promoter via phosphorylation of the SebHLH transcription factor. Plant Mol Biol 73:425–437

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (1986) Some genetic patterns for the main characteristics of the cultivated sesame. In: Fernandez MJ (ed) Sesame and Safflower Newsletter. CIDA, Cordova, Spain, pp 23–32

    Google Scholar 

  • Kobayashi T (1991) Cytogenetics of sesame (Sesamum indicum). Developments in Plant Genetics and Breeding. 2, part B, pp 581–592

    Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan Ì (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Plant Functional Genomics. Humana Press 236:189–204

    Article  CAS  Google Scholar 

  • Kumar P, Madhusudan K, Nadaf HL, Patil RK, Deshpande SK (2012) Combining ability and gene action studies in inter-mutant hybrids of sesame (Sesamum indicum L.). Karn J Agri Sci 25(1):1–4

    Google Scholar 

  • Kumpatla SP, Chandrasekharan MB, Iyer LM, Li G, Hall TC (2012) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3(3):97–104

    Article  Google Scholar 

  • Langham DG (1946) Genetics of sesame: III. ‘Open sesame’ and mottled leaf. J Hered 37(5):149–152

    Article  CAS  PubMed  Google Scholar 

  • Langham DR (2007) Phenology of sesame. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, VA, pp 144–182

    Google Scholar 

  • Langham DR (2008) Growth and development of sesame, American Sesame Grower Association, San Antonio, TX, p 44

    Google Scholar 

  • Langham DR (2017) VII. Capsule descriptors of sesame (Sesamum indicum L.). Sesame Research LLC, Version: 1, ResearchGate

    Google Scholar 

  • Langham DR (2018) IX. Sesame cycle descriptors (Sesamum indicum L.).Working Paper 1, 10.13140/RG.2.2.30261.58083

    Google Scholar 

  • Langham DG, Rodriguez M (1946) Abrete sesamo: Ajonjoli (Sesamum indicum) que no pierde semillas. Circulation 17:153–159

    Google Scholar 

  • Langham DR, Wiemers T, Janick J, Whipkey A (2002) Progress in mechanizing sesame in the US through breeding. In: Janick J (ed) Trends in new crops and new uses. ASHS Press, Alexandria, VA, pp 157–173

    Google Scholar 

  • Laurentin HE, Petr K (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics 7(1):10

    Google Scholar 

  • Leduc V, Moneret-Vautrin DA, Tzen JTC, Morisset M, Guerin L, Kanny G (2006) Identification of oleosins as major allergens in sesame seed allergic patients. Allergy 61(3):349–356

    Article  CAS  PubMed  Google Scholar 

  • Lee TTT, Chung MC, Kao YW, Wang CS, Chen LJ, Tzen JTC (2005) Specific expression of a sesame storage protein in transgenic rice bran. J Cereal Sci 41:23–29

    Article  CAS  Google Scholar 

  • Li H (2017) Identification of Sesame Fusarium Wilt Pathogen Toxins and the analysis of Sesame seed quality under disease nursery condition. Henan University of Technology, Zhengzhou, China, Thesis

    Google Scholar 

  • Li D, Wang L, Zhang Y, Lv H, Qi X, Wei W, Zhang X (2012a) Pathogenic variation and molecular characterization of Fusarium species isolated from wilted sesame in China. Afr J Microbiol Res 6(1):149–154

    Google Scholar 

  • Li H, Pu X, Zhang J, Huang C, Song K, Jiang J, He P, Li P, Jiang L (2012) Agronomic traits and molecular detection of Brassica napus L. generation induced by EMS. J Nucl Agri Sci 26(2):245–249

    Google Scholar 

  • Li C, Miao H, Wei L, Zhang T, Han X, Zhang H (2014) Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE, 9(8):e105757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Dossa K, Zhang Y, Wei X, Wang L, Zhang Y, Wei X, Wang L, Zhang Y, Liu A, Zhou R, Zhang X (2018) GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes 9(2):87

    Article  CAS  PubMed Central  Google Scholar 

  • Li L (2010) Food color science and optical properties. In: Li L (eds.) Food physics, China agriculture press, Beijing, China, p 115-116

    Google Scholar 

  • Liu X (2014) Progresses on EMS mutagenesis in plant breeding. Acta Laser Biol Sin 23(3):197–201

    Google Scholar 

  • Liu J, Ding F, Tu C (1980) Study on the correlation of sesame yield components. Chin J Oil Crop Sci 2:55–60

    Google Scholar 

  • Liu J, Tu L, Xu R, Zheng Y (1993) The relationship between the waterlogging resistance and the genotypes and the vigor of root system in sesame (Sesamum indicum L.). Acta Agri Bor-Sin 8(3):82–86

    Google Scholar 

  • Liu W, Wei L, Donghua L, Ren G, Zhang Y, Wen F, Han J, Zhang X (2017) Drought resistance of sesame germplasm resources and association analysis at adult stage. Sci Agri Sin 50(4):625–639

    Google Scholar 

  • Magni C, Ballabio C, Restani P, Fuggetta D, Alessandri C, Mari A, Bernardini R, Iacono ID, Ariorio M, Duranti M (2010) Molecular insight into IgE-mediated reactions to sesame (Sesamum indicum L.) seed proteins. Ann Allergy Asthma Immunol 105(6):458–464

    Article  CAS  Google Scholar 

  • Makinde FM, Akinoso R (2013) Nutrient composition and effect of processing treatments on anti nutritional factors of Nigerian sesame (Sesamum indicum Linn) cultivars. Intl Food Res J 20(5):2293–2300

    Google Scholar 

  • Mansouri S, Ahmadi MR (1998) Study of combining ability and gene effect on sesame lines by diallel cross method. Indian J Agri Sci 29(1):47–55

    Google Scholar 

  • Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tiss Org Cult 49:67–70

    Article  CAS  Google Scholar 

  • Mei H, Liu Y, Du Z, Wu K, Cui CQ, Jiang X, Zhang H, Zheng Y (2017) High-density genetic map construction and gene mapping of basal branching habit and number of flowers per leaf axil in sesame. Front Plant Sci 8:636

    Article  PubMed  PubMed Central  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  CAS  PubMed  Google Scholar 

  • Mensah JK, Obadoni BO, Eruotor PG, Onome-Irieguna F (2006) Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L). Afr J Biotechnol 5(13):1249–1253

    CAS  Google Scholar 

  • Miao H (2014) The sesame genome project and sesame genome sequencing. Plant and Animal Genome XXII Conference, 10–15 January, San Diego, USA

    Google Scholar 

  • Miao H, Zhang H (2016) The Genome of Sesamum indicum L. In: Plant and animal genome XXIV conference, 9–13 January, San Diego, USA

    Google Scholar 

  • Miao H, Ju M, Wei L, Ma Q, Zhang H (2012) Establishment of sesame callus induction and shoot regeneration system. Chin Bull Bot 47(2):162–170

    Article  CAS  Google Scholar 

  • Mitsuma S, Ishigaki E, Sugiyama R, Asamizu T, Yamada K, Kurosaki F (2004) Activation of phenylpropanoid metabolism in sesame by over-expression of carrot calmodulin gene. Biol Pharmaceut Bull 27(10):621–1625

    Article  Google Scholar 

  • Muhammad LM, Falusi OA, Daudu OAY, Gado AA, Lateef AA, Yahaya SA (2013) Radiation induced polygenic mutation in two common Nigerian sesame (Sesamum indicum L.) cultivars. Intl J Biotechnol Food Sci 1(2):23–28

    Google Scholar 

  • Muhamman MA, Mohammed SG, Lado A, Belel MD (2010) Interrelationship and path coefficient analysis of some growth and yield characteristics in sesame (Sesamum indicum L.). J Agri Sci 2(4):100–105

    Google Scholar 

  • Murty GSS (1988) Inheritance of three new mutants in sesame. Curr Sci 57(4):204–206

    Google Scholar 

  • Murty GSS, Bhatia CR (1990) Inheritance of polypetalous corolla mutation in sesame. Proc Indian Acad Sci (Plant Sci) 100(1):7–10

    Google Scholar 

  • Murty BR, Oropeza F (1989) An induced leaf differentiation mutant in Sesamum indicum L. Curr Sci 58(8):464–466

    Google Scholar 

  • Nimmakayala P, Perumal R, Mulpuri S, Reddy UK (2011) Sesamum. In: Kole C (ed) Wild corp relatives: genomic and breeding resources, volume: oilseeds. Springer, Berlin, Heidelberg, pp 261–273

    Chapter  Google Scholar 

  • Ogata N, Kato M (2016) Half-diallel analysis for sesamin and sesamolin contents of sesame (Sesamum indicum L.) seeds. Jpn J Crop Sci 85(3):302–308

    Google Scholar 

  • Ono E, Nakai M, Fukui Y, Namino Tomimori, Mizutani MF, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103(26):10116–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkan A, Kulak M (2013) Effects of water stress on growth, oil yield, fatty acid composition and mineral content of Sesamum indicum. J Anim Plant Sci 26(6):1686–1690

    Google Scholar 

  • Pandey SK, Das A, Dasgupta T (2013) Genetics of seed coat color in sesame (Sesamum indicum L.). Afr J Biotechnol 12(42): 6061–6067

    Google Scholar 

  • Pathak N, Bhaduri A, Bhat KV, Rai AK (2015) Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species-a domestication footprint. Plant Biol 17(5):1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Powell MA (1991) Epistemology and Sumerian agriculture: the strange case of sesame and linseed. Aula Orient 9:155–164

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Prakash K, Naik SN (2014) Bioactive constituents as a potential agent in sesame for functional and nutritional application. J Bioresour Engg Technol 1:48–66

    Google Scholar 

  • Qiu C, Zhang H, Chang S, Wei L, Miao H (2014) Laboratory detecting method for pathogenicity of Fusarium oxysporum Schl. f. sp. sesami isolates. Acta Phytopathol Sin 44(1):26–35

    Google Scholar 

  • Rahman MF, Das P (1994) Seed soaking with chemicals for reducing infestation of Meloidogyne graminicola on rice. J Agri Sci Soc North East India 7:107–108

    Google Scholar 

  • Raja A, Jayabalan N (2011) In vitro shoot regeneration and flowering of sesame (Sesamum indicum L.) cv. SVPR-1. J Agri Technol 7(4):1089–1096

    Google Scholar 

  • Rajput MA, Sarwar G, Siddiqui KA, Siddiqui MA (1994) Genetic improvement of sesame for plant architecture and grain yield through nuclear techniques. In: Mutation breeding of oilseed crops, proceedings. Final FAO/IAEA research co-ordination meeting, 11–15 Jan 1993. IAEA, Vienna, Austria, IAEATECDOC-781, pp 89–96

    Google Scholar 

  • Rajput MA, Khan ZH, Jafri KA, Fazal Ali JA (1998) Field screening of sesame germplasm for resistance against charcoal rot (Macrophomina phaseolina). Sesame Safflower Newsl 13:63–66

    Google Scholar 

  • Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 225–228

    Google Scholar 

  • Ramadoss BR, Ganesamurthy K, Angappan K, Gunasekaran M (2014) Mutagenic effectiveness and efficiency of gamma rays in sesame (Sesamum indicum L.). Glob J Mol Sci 9(1):1–6

    Google Scholar 

  • Ramírez R, Gutiérrez D, Villafañe R, Lizaso JI (2005) Salt tolerance of sesame genotypes at germination, vegetative, and maturity stages. Commun Soil Sci Plant Analys 36(17–18):2405–2419

    Article  CAS  Google Scholar 

  • Ravichandran V, Jayakumar S (2015) Mutagenic effectiveness and efficiency of gamma rays and EMS in sesame (Sesamum indicum L.). Intl J Res Bot 5(2):14–19

    Google Scholar 

  • Reddy CDR, Ramachandraiah D, Haripriya S, Reddy KS (1992) Combining ability and heterosis for seed oil and yield in sesame. J Mah Agri Univ 17(1):78–81

    Google Scholar 

  • Saravanan S, Nadarajan N (2005) Effect of media supplements on in vitro response of sesame (Sesamum indicum L) genotypes. Res J Agri Biol Sci 1(1):98–100

    Google Scholar 

  • Sarkar PK, Khatun A, Singha A (2016) Effect of duration of water-logging on crop stand and yield of sesame. Intl J Innov Appl Stud 14(1):1–6

    Google Scholar 

  • Satish RG (2013) Genetic analysis of sesame (Sesamum indicum L.) for traits related to moisture stress tolerance with reference to root traits. Doctoral dissertation, University of Agricultural Sciences, Bengaluru, India

    Google Scholar 

  • Sene B, Sarr F, Sow MS, Diouf D, Niang M (2017) Physico-chemical composition of the sesame variety (Sesamum indicum L.) and characterization of its derived products (seeds, oil and oilcake) in Senegal. Food Sci Qual Manag 65:5–10

    Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. Vitro Cell Dev Biol Plant 43(3):209–214

    Article  CAS  Google Scholar 

  • Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99(3):478–483

    Article  CAS  Google Scholar 

  • Sharma E, Shah TI, Khan F (2014) A review enlightening genetic divergence in Sesamum indicum based on morphological and molecular studies. Intl J Agri Crop Sci 7(1):1–9

    Google Scholar 

  • Sharmila V, Ganesh SK, Gunasekaran M (2007) Generation mean analysis for quantitative traits in sesame (Sesamum indicum L.) crosses. Genet Mol Biol 30(1):80–84

    Article  Google Scholar 

  • Shi S (1991) Application of mutagenesis in improvement of sesame varieties. Chin J Oil Crop Sci 2:93–96

    Google Scholar 

  • Shi S, Cai M (1986) Brief introduction of regenerated plants via stem culture of Congo wild sesame. Chin J Oil Crop Sci (4): 67-68

    Google Scholar 

  • Shi S, Cai M (1989) Factors influencing the callus formation of sesame pollen. Chin J Oil Crop Sci 1:45–49

    Google Scholar 

  • Shittu LAJ, Bankole M, Ahmed T, Bankole MN, Shittu RK, Saalu CL, Ashiru OA (2007) Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran J Pharmacol Therapeut 6(6):165–170

    Google Scholar 

  • Sikka S, Gupta N (1947) Inheritance studies in Sesamum orientale L. Indian J Genet Plant Breed 7:3–52

    Google Scholar 

  • Sìlme RS, Çarğirgan MÌ (2010) Screening for resistance to Fusarium wilt in induced mutants and world collection of sesame under intensive management. Turk J Field Crops 15(1):89–93

    Google Scholar 

  • Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Deynze AV, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7:e40563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Singh SP, Pransad BK, Singh BD (2006) Multiple plantlets regeneration from tissue culture of sesame (Sesamum indicum L.). Res Crops 7:760–764

    Google Scholar 

  • Sinhamahapatra SP, Das SN (1992) Combining ability for resistance to charcoal rot (Macrophomina phaseolina Tassi (Goid)) in sesame. Indian J Genet Plant Breed 52(3):261–263

    Google Scholar 

  • Sorour WAI (1999) Gamma ray induced mutations in sesame (Sesamum indicum L.). I. Selection of useful mutants. Bull Fac Agri Univ Cairo 50:516–531

    Google Scholar 

  • Su Y (2011) A study of the isolation and identification of Fusarium wilt germ in sesame and the characteristics of sesame germplasm anti-Fusarium wilt disease. Nanjing Agricultural University, Nanjing, China, Thesis

    Google Scholar 

  • Su S, Li R, Lang D, Zhang K, Hao X, Liu Y, Wang J, Zhang H, Xu H (2016) Microstructure of glandular trichomes on leaf surface of sesame and changes of trichome secretions under drought condition. Acta Agron Sin 42(2):278–294

    Article  Google Scholar 

  • Subramanian M (2003) Wide crosses and chromosome behavior in Sesamum. Madr Agri J 90:1–15

    Google Scholar 

  • Sumathi P, Muralidharah V (2010) Analysis of genetic variability, association and path analysis in the hybrids of sesame (Sesamum indicum L.) Trop Agri Res Extn 13(3):63–67

    Google Scholar 

  • Sumathi P, Muralidharan V (2014) Gene effects and inheritance of branching and other yield attributing characteristics in sesame (Sesamum indicum L.). Trop Agri Res Extn 16(3):92–101

    Article  Google Scholar 

  • Sun J, Zhang X, Zhang Y, Huang B, Che Z (2008) Comprehensive evaluation of waterlogging tolerance of different sesame varieties. Chin J Oil Crop Sci 38(4):518–521

    Google Scholar 

  • Sun J, Zhang X, Zhang Y, Wang L, Li D (2010) Evaluation of yield characteristics and waterlogging tolerance of sesame germplasm with different plant types after waterlogging. J Plant Genet Resour 11(2):139–146

    Google Scholar 

  • Sun X (2006) The methodological study on taxonomy of the genus Alternaria Nees. Ph D Dissertation, Shangdong Agriculture University, Qingdao, China

    Google Scholar 

  • Supriya K (2007) Genetic variability studies in identified mutants of sesame (Sesamum indicum L.). Master dissertation, Dharwad University of Agricultural Sciences, Dharwad, India

    Google Scholar 

  • Suwimol S, Wiroj JR, Walin WK, Natchapon J, Pathamaporn H, Auranun SU (2012) Effects of sesame seeds consumption on serum cholesterol and oxidative status in hypercholesterolemia. Food Publ Health 2(6):193–196

    Google Scholar 

  • Takada N, Uno T (2001) Japanese Market and Thai black sesame seeds. In: Proceedings of the second national conference on Sesame, Sunflower, Castor and Safflower, Wongree Resort, Nakhon Nayok, Thailand, 16–17

    Google Scholar 

  • Thiyagu K, Kandasamy G, Manivannan N, Muralidharan V, Manoranjitham SK (2007) Identification of resistant genotypes to root rot disease (Macrophomina phaseolina) of sesame (Sesamum indicum L.). Agri Sci Dig 27(1):34–37

    Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, Machita K, Watanabe S, Nishimura M, Yamada N, Mori S, Sasaki H, Kanamori H, Katayose Y, Ishimoto M (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom 16:1014

    Article  CAS  Google Scholar 

  • Uncu AÖ, Gultekin V, Allmer J, Frary A, Doganlar S (2015) Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome 8(2):1–12

    Article  CAS  Google Scholar 

  • Uncu AÖ, Frary A, Karlovsky P, Doganlar S (2016) High-throughput single nucleotide polymorphism (SNP) identification and mapping in the sesame (Sesamum indicum, L.) genome with genotyping by sequencing (GBS) analysis. Mol Breed 36:173

    Google Scholar 

  • Uzo JO (1985) A search for drought resistance in the wild relatives of the cultivated sesame (Sesamum indicum). In: Ashri A (ed) Sesame and Safflower: status and potential. FAO Plant Production and Protection Paper 66, Rome, Italy, pp 163–165

    Google Scholar 

  • Uzun B, Çağırgan Mİ (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384

    Article  CAS  Google Scholar 

  • Van Zanten L (2001) Sesame improvement by induced mutations: Results of the co-ordinated research project and recommendation for future studies. In: Van Zanten L (ed) Sesame improvement by induced mutations 1, Proc Final FAO/IAEA Co-ord. Res. Mtng, IAEA, Vienna, TECDOC-1195, pp 1–12

    Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134

    Article  PubMed  Google Scholar 

  • Venkatachalam P, Geetha N, Rao KS, Jayabalan N (1999) Rapid and high-frequency in vitro plant regeneration from leaflet and petiole explants of groundnut (arachis hypogaea, l.). Appl Biochem Biotechnol 80(3):193–203

    Article  CAS  Google Scholar 

  • Verma ML, Mehta N, Snagwan MS (2005) Fungal and bacterial diseases of sesame. In: Saharan GS, Mehta N (eds) Diseases of Oilseed Crops. Indus Publishing, New Delhi, pp 269–300

    Google Scholar 

  • Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in Lentil (Lens culinaris Medik.). PLoS ONE 10:e0139666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vyas SC (1981) Diseases in Sesamum in India and their control. Pesticides 15:10

    Google Scholar 

  • Wang W, Liu J, Tu L (1993) Study on the inheritance of resistance to Fusarium wilt in sesame. J Henan Agri Univ 27(1):84–89

    Google Scholar 

  • Wang W, Mei H, Zheng Y, Zhang F (1999) Study on response to waterlogging and adaptive change in sesame (Sesamum indicum L.) I. Changes of morphology, biomass and seed yield of different sesame genotypes under artificial flooding condition. Chin J Oil Crop Sci 21(4):29–32

    Google Scholar 

  • Wang W, Zhang Y, Mei H, Zhang F (2000) Studies on response to waterlogging and adaptive change in sesame (Sesamum indicum L.) II. Effects of waterlogging and growth regulators on physiological characteristics of some sesame genotypes. Chin J Oil Crop Sci 22(2):48–52

    Google Scholar 

  • Wang L, Zhang Y, Qi X, Gao Y, Zhang X (2012) Development and characterization of 59 polymorphic cDNA-SSR markers for the edible oil crop Sesamum indicum (Pedaliaceae). Amer J Bot 99(10):394–398

    Article  Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T (2015) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X (2016) Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genom 17:31

    Article  CAS  Google Scholar 

  • Wang H, Zhang H, Ma Q, Wei L, Ju M, Li C, Duan Y, Miao H (2017a) Optimization of EMS mutagenesis condition and screening of mutants in sesame. J Henan Agri Sci 46(1):36–41

    Google Scholar 

  • Wang L, Zhang Y, Zhu X, Zhu X, Li D, Zhang X, Gao Y, Xiao G, Wei X, Zhang X (2017b) Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 7:8349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei L, Zhang H, Zheng Y, Miao H, Zhang T, Guo W (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom 31(2):199–208

    Article  CAS  Google Scholar 

  • Wei L, Ma Q, Ju M, Zhang T, Wang H, Miao H (2011) Establishment of an acceptor system for gene transformation in sesame (Sesamum indicum L.) cotyledon. Mol Plant Breed 9(6):770–778

    Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Google Scholar 

  • Wei W, Zhang Y, Lv H, Wang L, Li D, Zhang X (2012) Population structure and association analysis of oil content in a diverse set of Chinese sesame (Sesamum indicum L.) germplasm. Sci Agri Sin 45(10):1895–1903

    Google Scholar 

  • Wei W, Zhang Y, Lv H, Li D, Wang L, Zhang X (2013) Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm. J Integr Plant Biol 55(8):745–758

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Miao H, Li C, Duan Y, Niu J, Zhang T, Zhao Q, Zhang H (2014) Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Mol Breed 34:2205–2217

    Article  CAS  Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X (2015a) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Wang L, Yu J, Zhang Y, Li D, Zhang X (2015b) Genome-wide identification and analysis of the MADS-box gene family in sesame. Gene 569(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Zhu X, Yu J, Wang L, Zhang Y, Li D, Zhou R, Zhang X (2016) Identification of sesame genomic variations from genome comparison of landrace and variety. Front Plant Sci 7:1169

    PubMed  PubMed Central  Google Scholar 

  • Wei Q, Miao H, Zhang H, Wang X, Li H, Yuan Q (2018) Effects of Fusarium wilt disease stress on the quality of sesame seed and oil product. J Henan Agri Sci 47(12): 70–77

    Google Scholar 

  • Weiss EA (1971) Castor, Sesame and Safflower. Leonard Hill Books, Weiss, London, p 901

    Google Scholar 

  • Weiss EA (1983) Oilseed crops. Longman Inc., New York, p 660

    Google Scholar 

  • Weiss EA (2000) Sesame, oilseed crops. Longman Inc., New York, pp 131–164

    Google Scholar 

  • Were BA, Gudu S, Onkware AO, Carlsson AS, Welander (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org Cult 85:235–239

    Article  Google Scholar 

  • Wessler SR (2005) Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci 10(2):54–56

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y,Zhao Y (2014a) High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol 14:274

    Google Scholar 

  • Wu K, Yang M, Liu H, Ye T, Mei J, Zhao Y (2014b) Genetic analysis and molecular characterization of chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genetics 15(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu K, Wu WX, Yang MM, Liu HY, Hao ZC, Zhao YZ (2017) Qtl mapping for oil, protein and sesamin contents in seeds of white sesame. Acta Agron Sin 43(7):1003–1011

    Article  Google Scholar 

  • Xu LJ, Liang HZ, Yu YL, Yang HQ, Dong W, Niu YG, Lu HL, Cao J, LV AS (2016) Dynamic change regularity of nutritional components during seed development of sesame under saline and alkaline stress. J Henan Agri Sci 45(4):43–48

    Google Scholar 

  • Xu M, Ma H, Zeng L, Cheng Y, Lu G, Xu J, Zhang X, Zou X (2015) The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Res 180:238–245

    Article  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377–386

    Article  CAS  Google Scholar 

  • Yang M, Liu H, Zhou T, Qu H, Yang Y, Wei X, Zuo Y, Zhao Y (2017a) Production and identification of F1 interspecific hybrid between Sesamum indicum and wild relative S. indicatum. Sci Agri Sin 50(10):1763–1771

    Google Scholar 

  • Yang M, Yang W, Gao Y, Zhang Y, Zhu X, Zhou R, Li D, Zhang X, Wu W, Wang L (2017b) Quantitative trait locus mapping for sesame capsule size. Chin J Oil Crop Sci 39(6):785–793

    Google Scholar 

  • Yermanos DM, Hemstreet S, Saleeb W, Huszar CK (1972) Oil content and composition of the seed in the world collection of sesame introductions. J Amer Oil Chem Socy 49(1):20–23

    Article  CAS  Google Scholar 

  • Yi Y, Zhang H, Zuo T, Wang Z (1997) Study on the culture of different explants of black seedcoat sesame in vitro. Acta Agri Bor-Occident Sin 6(4):26–29

    Google Scholar 

  • Yu A, Cai X, Li M, Qiao Z (1996) The influence of the high voltage electrostatic field separating effect on the biotic factors of rice seeds, rape seeds and sesame seeds during their sprouting period. Acta Biophys Sin 12:310–314

    CAS  Google Scholar 

  • Yuan Q (2018) Effects of waterlogging on the quality of sesame seeds and products. Thesis, Henan University of Technology, Zhengzhou, China

    Google Scholar 

  • Yuan Q, Zhang H, Miao H, Duan Y, Wei Q, Wang X (2018) Effects of water logging stress on the quality of sesame seed and oil product. Acta Agri Bor-Sin 33(2):202–208

    Google Scholar 

  • Yue W, Wei L, Zhang T, Li C, Miao H, Zhang H (2012) Genetic diversity and population structure of germplasm resources in sesame (Sesamum indicum L.) by SSR Markers. Acta Agron Sin 38(12):2286–2296

    Google Scholar 

  • Yukawa Y, Takaiwa F, Shoji K, Masuda K, Yamada K (1996) Structure and expression of two seed-specfic cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame. Sesamum indicum L. Plant Cell Physiol 37(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Feng X (2006) Descriptors and Data Standard for Sesame (Sesamum indicum L.). China Agriculture Press, IBN 7-109-11015-X

    Google Scholar 

  • Zhang H, Miao H, Li C, Wei L, Ma Q (2012a) Analysis of sesame karyotype and resemblance-near coefficient. Chin Bull Bot 47(6):602–614

    CAS  Google Scholar 

  • Zhang H, Wei L, Miao H, Wang C (2012b) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genom 13:316

    Article  CAS  Google Scholar 

  • Zhang H, Wang X, Wang H, Wei S (2012b) Sesame production technology. In: Zhang H (ed) Henan People Press, Zhengzhou, China, p 203

    Google Scholar 

  • Zhang Y, Wang L, Li D, Wei W, Gao Y, Zhang X (2012d) Association mapping of sesame (Sesamum indicum L.) resistance to Macrophomina phaseolina and identification of resistant accessions. Sci Agri Sin 45(13):2580–2591

    Google Scholar 

  • Zhang H, Li C, Miao H, Xiong S (2013a) Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS ONE 8(11):e80508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q (2013b) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013c) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C (2013c) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS ONE 8(5):e63898

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Miao H, Zhang T, Wei L, Li C, Wang H, Duan Y, Ju M (2013d) Biological characters of interspecific hybrid progenies between Sesamum indicum L. and wild relatives (Sesamum schinzianum Asch, Sesamum radiatum Schum & Thonn). Sci Agri Sin 46(19):3965–3977

    Google Scholar 

  • Zhang Y, Wang L, Li D, Gao Y, Lv H, Zhang X (2014) Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Sci Agri Sin 47(3):422–430

    CAS  Google Scholar 

  • Zhang H, Miao H, Li C Wei L, Duan Y,Ma Q,Kong J, Xu F, Chang S (2016) Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 6:31556

    Google Scholar 

  • Zhao J, Artemyeva A, Carpio DPD, Basnet RK, Zhang N, Gao J, Li F, Bucher J, Wang X, Visser RG, Bonnema G (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53(53):884–898

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Liu H, Yang X, Liu Y, Ni Y, Wang F, Tang L (2014a) First report of Nigrospora leaf blight on sesame caused by Nigrospora sphaerica in China. Plant Dis 98(6):842

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wang Q, Tian D, Han X (2014b) Effect of fertilizer application rates on dry matter accumulation and distribution in sesame. Chin Agri Sci Bull 30(6):129–134

    Google Scholar 

  • Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L, Teng W, Qiu L, Zheng H, Li W (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J 82:245–255

    Article  CAS  PubMed  Google Scholar 

  • Zhi Y, Jiang W, Yi M, Chen Z (1998) Study on the effect of plant regeneration rate via in vitro culture of sesame cotyledon. J Xinyang Agri Coll 8(3):12–15

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Hongbin Zhang, Prof. Ray D. Langham, and the editor Prof. Chittaranjan Kole for their advices and suggestions on the article edition. This work was financially supported by the earmarked fund for China Agriculture Research System (CARS-14), the National Natural Science Foundation of China (31471537), Henan Province Key Science and Technology Program (151100111200), the Plan for Scientific Innovation Talent of Henan Province (184200510002), the Importing International Agricultural Science and Technology Program (2016-X05), the Henan Province Distinguished Professor Position Program (DPPP2016), the Distinguished Professor Program of Institutions of Higher Learning in Henan Province (DPPIHL2017), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (ISTTCPHP2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Miao, H., Ju, M. (2019). Potential for Adaptation to Climate Change Through Genomic Breeding in Sesame. In: Kole, C. (eds) Genomic Designing of Climate-Smart Oilseed Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93536-2_7

Download citation

Publish with us

Policies and ethics