Skip to main content

Effect of Agricultural Chemicals and Organic Amendments on Biological Control Fungi

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 31

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 31))

Abstract

The demand for food and energy of the rising population and unfavorable climatic changes necessitate yield increase in the reducing cultivable areas. This requires a reduction in environmental pollution that not only exerts hazardous effects on plants but also on poultry, livestock and humankind. Integrated pest and disease management is a solution that not only can lead to the increased crop yield and reduced environmental pollution, but also to the ecofriendly growth of economy in less developed countries. Integrated management requires more precise information on the effects of agricultural inputs on the population and biological activity of biological agents used in biological control of plant pests and diseases, biostimulation, as well as biofertilization. Here, we focus on the effect of pesticides on biological control fungi .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-El Moity TH, Papavizas GC, Shatla MN (1982) Induction of isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot of onion. Phytopathology 72:396–400. https://doi.org/10.1094/Phyto-72-396

    Article  Google Scholar 

  • Adekunle AT, Cardwell KF, Florini DA, Ikotun T (2001) Seed treatment with Trichoderma species for control of damping-off of cowpea caused by Macrophomina phaseolina. Biocontrol Sci Technol 11:449–457. https://doi.org/10.1080/09583150120067481

    Article  Google Scholar 

  • Abdullah HA (2011) Improvement of antagonism and fungicides tolerance in Iraqi Trichoderma harzianum isolates by ultra-violet irradiation. Aust J Basic Appl Sci 5:909–917

    Google Scholar 

  • Agarwal A, Tripathi HS (1999) Biological and chemical control of botrytis grey mold of chickpea. J Mycol Plant Pathol 29:52–56

    Google Scholar 

  • Aguilar C, Pujol I, Sala J, Guarro J (1998) Antifungal susceptibilities of Paecilomyces species. Antimicrob Agents Chemother 42:1601–1604

    Google Scholar 

  • Ahmad SZ, Fazli HKR, Muhammad I (2012) Chemical of biological control of Fusarium root rot of okra. Pak J Bot 44:453–457

    CAS  Google Scholar 

  • Ahmed JB, Baker R (1987) Competitive saprophytic ability and cellulolytic activity of rhizosphere competent mutants of Trichoderma harzianum. Phytopathology 77:358–362

    Article  Google Scholar 

  • Akbar S, Freed S, Hameed A, Gul HT, Akmal M, Malik MN, Naeem M, Khan MB (2012) Compatibility of Metarhizium anisopliae with different insecticides and fungicides. Afr J Microbiol Res 6:3956–3962

    CAS  Google Scholar 

  • Akello J, Dubious T, Coyne D, Gold CS, Kyamanywa S (2007) Colonization and persistence of the entomopathogenic fungus, Beauveria bassiana, in tissue culture of banana. Afr Crop Sci Conf Proc 8:857–861

    Google Scholar 

  • Ali MA, Archer SA (2003) Evaluation of some new fungicide against sheath blight disease of rice caused by Rhizoctonia solani. Bangl J Plant Pathol 19:13–20

    Article  Google Scholar 

  • Alizadeh A, Samih MA, Khezri M, Saberi RR (2007) Compatibility of Beauveria bassiana (Bals.) Vuill. with several pesticides. Intl J Agric Biol 9:31–34

    Google Scholar 

  • Allen PM, Gottlieb D (1970) Mechanism of action of the fungicide thiabendazole 2-(4′-thiazolyl) benzimidazole. Appl Microbiol 20: 919–926. https://www.ncbi.nlm.nih.gov/pubmed/5531164

  • Al-Mazra’awi MS, Al-Abbadi A, Mohamad AS, Mazen A (2009) Effect of application method on the interaction between Beauveria bassiana and neem tree extract when combined for Thrips tabaci (Thysanoptera: Thripidae) control. J Food Agric Environ 7:869–873

    Google Scholar 

  • Altre JA, Vandenberg JD, Cantone FA (1999) Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth, Plutella xylostella: correlation with spore size, germination speed, and attachment to cuticle. J Invertebr Pathol 73:332–338. https://doi.org/10.1006/jipa.1999.4844

    Article  CAS  PubMed  Google Scholar 

  • Alves SB (1998) Fungos entomopatogênicos. In: Alves SB (ed) Controle Microbiano de insetos. Fealq, Piracicaba, pp 289–381

    Google Scholar 

  • Alves SB, Lecuona RE (1998) Epizootiologia aplicada ao controle microbiano de insetos. In: Alves SB (ed) Controle microbiano de insetos. Fealq, São Paulo, pp 97–170

    Google Scholar 

  • Alves MMTA, Orlandelli RCO, Lourenço DAL, Pamphile JA (2011) Toxicity of the insect growth regulator lufenuron on the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin assessed by conidia germination speed parameter. Afr J Biotechnol 10:9661–9667

    Article  CAS  Google Scholar 

  • Ambethgar V (2003) Investigations on the development of mycoinsecticide formulations of an indigenous isolate of Beauveria bassiana (Bals.) Vull. For the management of rice leaffolder, Cnaphalocrocis medinalis Guenee. Ph.D. thesis, Tamil Nadu Agricultural University

    Google Scholar 

  • Ambethgar V (2009) Potential of entomopathogenic fungi in insecticide resistance management (IRM): a review. J Biopestic 2:177–193

    CAS  Google Scholar 

  • Ambethgar V, Swamiappan M, Rabindran R, Rabindra RJ (2008) Joint action of Beauveria bassiana (Bals.) Vuill. With certain synthetic insecticides and neem formulations used for the management of rice leaffolder, Cnaphalocrocis medinalis Guenee. Resist Pest Manag Newslett 17:16–18

    Google Scholar 

  • Ambethgar V, Swamiappan M, Rabindra RJ, Rabindran R (2009) Biological compatibility of Beauveria bassiana (Balsamo) Vuillemin isolate with different insecticides and neem formulations commonly used in rice pest management. J Biol Control 23:11–15

    Google Scholar 

  • Ammon HL, Seymour RJ, Huffman WM, D’Silva TD (1995) Thiodicarb. Acta Cryst C 51:1619–1621. https://doi.org/10.1107/S0108270195000795

    Article  Google Scholar 

  • Amutha M, Gulsar Banu J, Surulivelu T, Gopalakrishnan N (2010) Effect of commonly used insecticides on the growth of white Muscardine fungus, Beauveria bassiana under laboratory Conditions. J Biopestic 3:143–146

    CAS  Google Scholar 

  • Anderson TE, Hajek AE, Roberts DW, Preisler K, Robertson JL (1989) Colorado potato beetle (Coleoptera: Chrysomelidae): Effects of combinations of Beauveria bassiana with insecticides. J Econ Entomol 82:83–89. https://doi.org/10.1093/jee/82.1.83

    Article  CAS  Google Scholar 

  • Anderson TE, Roberts DW (1983) Compatibility of Beauveria bassiana isolate with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. J Entomol 76:1437–1441. https://doi.org/10.1093/76.6.1437

    Article  CAS  Google Scholar 

  • Anita A, Mazinder J, Buragohain S, Islam M (2001) Antagonistic activity of Trichoderma sp. against Sclerotium rolfsii (Sacc.) Curzi. Pestol 1:122–130

    Google Scholar 

  • Anonymous (1985) ‘ANVIL’ fungicide: technical bulletin. Imperial Chemical Industries PLC Plant Protection Division, Fernhurst, Haslemere

    Google Scholar 

  • Anonymous (2008) HC Tech Bulletin. BioWorks, Rawson Rd, Suite 205 Victor, New York, pp 1–2

    Google Scholar 

  • Antony GR, Janarthanan S, Samuel SD, Baskar K, Vincent S (2011) Compatibility of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin isolated from Pulney hills, Western Ghats of Tamil Nadu with insecticides and fungicides. Elixir Agric 40:5563–5567

    Google Scholar 

  • Armando NG, Marfetán JA, Folgarait PJ (2017) Trichoderma species associated with Acromyrmex ant nests from Argentina and first report of Trichoderma lentiforme for the country. Darwiniana 5:72–82. http://dx.doi.org/10.14522/darwiniana.2017.51.724

    Article  Google Scholar 

  • Arun GK, Ramya V (2014) Compatibility of agrochemical with entomopathogenic fungi (Paecilomyces lilacinus)—a biological nematicide. J Glob Biosci 3:406–410

    Google Scholar 

  • Asghari MR, Mayee CD (1991) Comparative efficiency of management practices on stem rot and pod rots of groundnut. Indian Phytopathol 44:328–332

    Google Scholar 

  • Asi MR, Bashir MH, Afzal M, Ashfaq M, Sahi ST (2010) Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pak J Bot 42:4207–4214

    Google Scholar 

  • Babalola O (2008–2009) Asporogenic mutants of Alternaria cassia generated by X-ray irradiation. J Cult Collect 6:85–96

    Google Scholar 

  • Babu MN, Usha J, Padmaja V (2014) In vitro evaluation of the entomopathogenic fungal isolates of Metarhizium anisopliae for compatibility with pesticides, fungicides and botanicals. Int J Appl Biol Pharm Technol 5:102–113

    Google Scholar 

  • Bagwan NB (2010) Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integrated management of soil borne diseases of soybean (Glycine max (L) Merrill). Int J Plant Prot 3:206–209

    Google Scholar 

  • Bahous M, Ouazzani AT, Badoc A, Douira A (2005) Effet de l’azoxystrobine sur la pyriculariose, l’helminthosporiose et la curvulariose du riz. Bull Soc Pharm Bord 144:27–46

    Google Scholar 

  • Bajan C, Kmitowa K, Nowak PE (1998) Reaction of various ecotypes of entomopathogenic fungus Beauveria bassiana to the botanical and pyrethroid Fastak. Preparation EEM Arch Phytopathol Plant Prot 31:369–375

    Article  CAS  Google Scholar 

  • Baker KF, Cooke RJ (1974) Biological control of plant pathogens. Freeman Press, San Francisco, W.H

    Google Scholar 

  • Bakeri SA, Ahmad Ali SA, Mohd Masri MM, Najib MA (2007) Efficacy of Paecilomyces spp. for controlling oil palm lepidopteran defoliators, Metisa plana (Walker) and Pteroma pendula (Joannis). In: International Palm Oil Congress, Palm Oil: Empowering change (PIPOC 2007), Kuala Lampur, 26–30 Aug

    Google Scholar 

  • Bankole SA, Adebanjo A (1996) Biocontrol of brown blotch of cowpea caused by Colletotrichum truncatum with Trichoderma viride. Crop Prot 15:633–636

    Article  Google Scholar 

  • Bapiraju KVVSN, Sujatha P, Ellaiah P, Ramana T (2004) Mutation induced enhanced biosynthesis of lipase. Afr J Biotechnol 3:618–621

    CAS  Google Scholar 

  • Barci LA, Wenzel IM, de Almeida JE, de Campos Nogueira AH, do Prado AP (2009) Compatibility of Beauveria bassiana (Ascomycetes: Clavicipitaceae) with chemicals acaricides used in the control of cattle tick. Rev Bras Parasito Vet 1:63–68. https://www.ncbi.nlm.nih.gov/pubmed/20040194

  • Barron GL (1977) The nematode-destroying fungi. Canadian Biological Publications, Guelph

    Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662. https://doi.org/10.1002/ps.520

    Article  CAS  PubMed  Google Scholar 

  • Batista AF, Almeida JEM, Lamas C (2001) Effect of thiamethoxam on entomopathogenic microorganisms. Neotrop Entomol 30:437–447. https://doi.org/10.1590/S1519-566X2001000300017

    Article  Google Scholar 

  • Becker WF, von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-β methoxyacrylate system as common structured element. FEBS Lett 132:329–333

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane BS, Mahiout D, Benzohra IE, Benkada MY (2012) Antagonism of three Trichoderma species against Botrytis fabae and B. cinerea, the causal agents of chocolate spot of faba bean (Vicea faba L.) in Algeria. World Appl Sci J 17:278–283

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260. https://www.ncbi.nlm.nih.gov/pubmed/15666245

  • Benz G (1971) Synergism of micro-organisms and chemical insecticides. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London, pp 327–355

    Google Scholar 

  • Benz G (1987) Environment. In: Fuxa R, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 177–214

    Google Scholar 

  • Berber F, Ouazzani AT, Badoc A, Douira A (2009) Antagonisme in vitro et in vivo de deux Trichoderma à l’égard de quatre espèces de Bipolaris pathogènes sur le sorgho. Bull Soc Pharm Bord 148:93–114

    Google Scholar 

  • Bhatt N, Singh RR (2000) Chemical and biological management of major fungal pathogens of Agaricus bisporus (Lange) Imbach. Int Soc Mushroom Sci 15:587–593

    CAS  Google Scholar 

  • Bhowmick P, Saikia MK, Kaushik H, Dutta P (2015) Carbendazim tolerant induced Trichoderma viride for integrated management of wire stem of cabbage. Int J Curr Agric Res 4:115–119

    Google Scholar 

  • Bhosale AM, Borade SV (2015) In vitro effect of certain fungicides, insecticide and herbicide on Trichoderma harzianum. Int J Inf Futur Res 3:271–273. https://doi.org/10.3906/biy-0812-4

    Article  CAS  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530. https://doi.org/10.3852/07-202

    Article  CAS  PubMed  Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345. http://www.jastor.org/stable/24106000

  • Błaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jedryczka M (2014) Trichoderma spp.—application and prospects for use in organic farming and industry. J Plant Prot Res 54:309–317. https://doi.org/10.2478/jppr-2014-0047

    Article  Google Scholar 

  • Bokhari AA, Sahi ST, Aslam Khan M, Ahmad R, Din I (2008) In vivo studies on the biological and chemical control of guava decline caused by different soil borne pathogens. Pak J Agric Sci 45:54–56

    Google Scholar 

  • Booth SR, Shanks CH Jr (1998) Potential of a dried rice/mycelium formulation of entomopathogenic fungi to suppress subterranean pests in small fruits. Biocontrol Sci Technol 8:197–206. https://doi.org/10.1080/09583159830261

    Article  Google Scholar 

  • Boucias DG, Meyer JM, Popoonsak S, Breaux SE (2007) The genus Hirsutella: a polyphyletic group of fungal pathogens infecting mites and insects. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest management. Research Signpost, Kerala

    Google Scholar 

  • Boucias DG, Stokes C, Storey G, Pendland JC (1996) The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen, Beauveria bassiana. Pflanzenschutz Nachr Bayer 49:105–151

    Google Scholar 

  • Boyd FM (1950) Induced mutations in molds. Master’s thesis, University of Tennessee. http://trace.tennessee.edu/utk_gradthes/2970

  • Brent KJ, Hollomon DW (1995) Monitoring fungicide resistance in crop pathogens: how can it be managed?. FRAC, Brussels

    Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol Control 32:155–163. https://doi.org/10.1016/j.biocontrol.2004.09.003

    Article  Google Scholar 

  • Bruck DJ (2006) Effect of potting media components on the infectivity of Metarrhizium anisopliae against the black vine veevil (Coleoptera: Curculionidae). J Environ Hort 24:91–94

    Google Scholar 

  • Bruck DJ (2007) Efficacy of Metarhizium anisopliae as a curative application for black vine weevil (Otiorhynchus sulcatus) infesting container-grown nursery crops. J Environ Hort 25:150–156

    Google Scholar 

  • Bruck DJ (2009) Impact of fungicides on Metarhizium anisopliae in the rhizosphere, bulk soil and in vitro. Biocontrol 54:597–606. https://doi.org/10.1007/s10526-009-9213-1

    Article  CAS  Google Scholar 

  • Bruck DJ, Donahue KM (2007) Persistence of Metarhizium anisopliae incorporated into soilless potting media for control of the black vine weevil, Otiorhynchus sulcatus in container-grown ornamentals. J Invertebr Pathol 95:146–150. https://doi.org/10.1016/j.jip.2007.01.004

    Article  PubMed  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungal biological control agents-Appraisal and recommendations. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Wallingford, pp 377–384

    Google Scholar 

  • Butters JA, Devi KU, Mohan CM, Sridevi V (2003) Screening for tolerance to bavistin, a benzimidazole fungicide containing methyl benzimidazol-2-yl carbamate (MBC), in Beauveria bassiana: sequence analysis of the beta-tubulin gene to identify mutations conferring tolerance. Mycol Res 107:260–266. https://doi.org/10.1017/S0953756203007196

    Article  CAS  PubMed  Google Scholar 

  • Cañas G (2004) Identificación de cepas de Mycosphaerella fijiensis resistentes al benomyl usando la reacción en cadena de la polimerasa PCR. Trabajo de grado Magíster of Science en Biotecnología, Universidad Nacionalde Colombia, sede Medellín, Colombia

    Google Scholar 

  • Card SD (2005) Biological control of Botrytis cinerea in lettuce and strawberry crops. PhD thesis, Lincoln University

    Google Scholar 

  • Caron J, Thibodeau PO, Bélanger RR (1994) Sélection d’isolats de Trichoderma comme agent de lute biologique contre la moisissure grise (Botrytis cinerea) dans la production de la tomate de serre. Rapport de Recherché, Club d’Encadrement Technique Pro-Serre, 48 p

    Google Scholar 

  • Cavalcanti RS, Moino A Jr, Souza GC, Arnosti A (2002) Evaluation of the effect of pesticides on the development of the fungus Beauveria bassiana (Bals.) Vuill. Arq Inst Biol 69:17–22

    Google Scholar 

  • Cazorla D, Morales PM (2010) Compatibility of 13 Beauveria bassiana isolates pathogenic to Rhodnius prolixus (Triatominae) with insecticides. Bol Mal Salud Amb 50:261–270

    Google Scholar 

  • Challa MM, Sanivada SK (2014) Compatibility of Beauveria bassiana (Bals.) Vuill isolates with selected insecticides and fungicides at agriculture spray tank dose. Innov J Agric Sci 2:7–10

    Article  Google Scholar 

  • Chan Cupul W, Heredia Abarca G, Rodríguez Vázquez R, Arias Mota RM (2014) Toxicidad in vitro de los herbicidas atrazine y paraquat sobre el crecimiento vegetative y la esporulación de hongos saprobios del suelo. Rev Int Contam Amb 30:393–406

    Google Scholar 

  • Chand P, Aruna A, Maqsood AM, Rao LV (2005) Novel mutation method for increased cellulose production. J Appl Microbiol 98:318–323. https://doi.org/10.1111/j.1365-2672.2004.02453.x

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Davidson G (2005) Evaluation of entomopathogenic fungus Metarhizium anisopliae against soildwelling stages of cabbage maggot (Diptera: Anthomyiidae) in glasshouse and field experiments and effect of fungicides on fungal activity. J Econ Entomol 98:1856–1862. https://doi.org/10.1603/0022-0493-98.6.1856

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Miêtkiewski RT, Davidson G, Pell JK, Smits PH (1998) Impact of habitat type and pesticide application on the natural occurrence of entomopathogenic fungi in UK soils. IOBC SROP Bull 21:81–84

    Google Scholar 

  • Chandra S, Raizada M, Khanna KK (1982) Change in rhizosphere microflora of tomato by foliar application of streptomycin. Indian Phytopathol 35:226–231

    CAS  Google Scholar 

  • Chaparro AP, Carvajal LH, Orduz S (2011) Fungicide tolerance of Trichoderm asperelloides and T. harzianum strains. Agric Sci 2:301–307. https://doi.org/10.4236/as.2011.23040

    Article  CAS  Google Scholar 

  • Chattopadhyay C, Sen B (1996) Integrated management of fusarium wilt of muskmelon caused by Fusarium oxysporum. Indian J Mycol Plant Pathol 26:162–170

    Google Scholar 

  • Chet I (1987) Trichoderma-Application, Mode of action, and potential as biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chet I, Elad Y, Koflan A, Hadar Y, Katan J (1982) Integrated control of soil borne and bulb borne pathogen in Iris. Phytoparasitica 10:229–231

    Article  Google Scholar 

  • Choi IY, Choi JN, Sharma PK, Lee WH (2010) Isolation and identification of mushroom pathogens from Agrocybe aegerita. Mycobiol 38:310–315. https://doi.org/10.4489/MYCO.2010.38.4.310

    Article  Google Scholar 

  • Cilliers AJ, Pretorius ZA, Van Wyk PS, Wyk VPS (2003) Integrated control of Sclerotium rolfsii on groundnut in South Africa. J Phytopathol 151:249–258. https://doi.org/10.1046/j.1439-0434.2003.00715.x

    Article  Google Scholar 

  • Clark RA, Casagrande RA, Wallance DB (1982) Influence of pesticides on Beauveria bassiana, a pathogen of the Colorado potato beetle. Environ Entomol 11:67–70

    Article  CAS  Google Scholar 

  • Claydon N, Allam M, Hanson IR, Avont AG (1987) Antifungal alkylpyrones of Trichoderma harzianum. Trans Brit Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Celar FA, Kos K (2012) Compatibility of selected herbicides with entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. Acta Agric Slov 99:57–63. https://doi.org/10.2478/v10014-012-0007-2

    Article  CAS  Google Scholar 

  • Celar FA, Kos K (2016) Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest Manage Sci 72:2110–2117. https://doi.org/10.1002/ps.4240

    Article  CAS  Google Scholar 

  • Colinese DL, Terry HJ (1968) Phosalone–a wide spectrum organo-phosphorus insecticide. Chem Ind 44:1507–1511

    CAS  PubMed  Google Scholar 

  • Constantinescu F, Sicuia OA, Fǎtu C, Dinu MM, Andrei AM, Mincea C (2014) In vitro compatibility between chemical and biological products used for seed treatment. Sci Pap Ser A Agron LVII: 146–151

    Google Scholar 

  • Csinos AS, Bell DK, Minton NA, Wells HD (1983) Evaluation of Trichoderma spp., fungicides, and chemical combinations for control of southern stem rot on peanuts. Peanut Sci 10:75–79

    Article  CAS  Google Scholar 

  • D’Alessandro CP, Padin S, Urrutia MI, Lopez Lastra CC (2011) Interaction of fungicides with the entomopathogenic fungus Isaria fumosorosea. Biocontrol Sci Technol 21:189–197. https://doi.org/10.1080/09583157.2010.536200

    Article  Google Scholar 

  • Da Silva RZ, Neves PMOJ, Santoro PH (2005) Techniques and parameters used in compatibility studies between entomopathogenic fungi and phytosanitary products. Ciênc Agrár 26:305–312. https://doi.org/10.5433/1679-0359.2005v26n3p305

    Article  Google Scholar 

  • Da Silva RA, Quintela ED, Mascarin GM, Barrigossi JAF, Lião LM (2013) Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Sci Agric 70:152–160. https://doi.org/10.1590/S0103-90162013000300003

    Article  Google Scholar 

  • Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47:534–538. https://doi.org/10.1111/j.1472-765X.2008.02456.x

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2010) Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem 45:129–132. https://doi.org/10.1016/j.procbio.2009.08.008

    Article  CAS  Google Scholar 

  • Davet P (1981) Effets de quelques pesticides sur la colonisation d’un substrat par le Trichoderma harzianum rifai en presence des autres champignons du sol. Soil Biol Biochem 13(6):513–517

    Article  CAS  Google Scholar 

  • Debieu D, Bach J, Hugon M, Malosse C, Leroux P (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Manage Sci 57:1060–1067. https://doi.org/10.1002/ps.394

    Article  CAS  Google Scholar 

  • De Cal A, Pascual S, Melgarejo P (1994) In vitro studies on the effects of fungicides on beneficial fungi of peach twig mycoflora. Mycopathologia 126:15–20. https://doi.org/10.1007/BF01371168

    Article  Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001

    Article  CAS  Google Scholar 

  • Degenkolb T, Kirschbaum J, Brückner H (2007) New sequences, constituents, and producers of peptaibiotics: an updated review. Chem Biodivers 4:1052–1066. https://doi.org/10.1002/cbdv.200790096

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, von Döhren H, Fog KN, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–679. https://doi.org/10.1002/cbdv.200890064

    Article  CAS  PubMed  Google Scholar 

  • Demirci F, Denizhan E (2010) Paecilomyces lilacinus, a potential biocontrol agent on apple rust mite Aculus schlechtendali and interactions with some fungicides in vitro. Phytoparasitica 38:125–132. https://doi.org/10.1007/s12600-010-0082-z

    Article  Google Scholar 

  • Demirci F, Muştu M, Kaydan MB, Ülgentürk S (2011) Effects of some fungicides on Isaria farinosa, and in vitro growth and infection rate on Planococcus citri. Phytoparasitica 39:353–360. https://doi.org/10.1007/s12600-011-0168-2

    Article  CAS  Google Scholar 

  • Demirci F, Ulgentürk S, Kaydan MB (2008) Entomopatojen Paecilomyces farinosus’ un turunçgil unlubiti Planococcus citri ve bağ unlubiti Planococcus ficus üzerine etkinliğivebazı fungisitlerle etkileşimleri [The effectiveness of entomopathogen Paecilomyces farinosus on citrus mealybugs Planococcus citri and vine mealybugs Planococcus ficus and interactions with some fungicides]. The Final Report of TUBİTAK (Turkey) Project No: 104–200

    Google Scholar 

  • De Oliveira RC, Neves PMOJ (2004) Biological control compatibility of Beauveria bassiana with acaricides. Neotrop Entomol 33:353–358. https://doi.org/10.1590/S1519-566X2004000300013

    Article  Google Scholar 

  • De Oliveira CN, Neves PMOJ, Kawazoe LS (2003) Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Sci Agric 60:663–667. https://doi.org/10.1590/S0103-90162003000400009

    Article  Google Scholar 

  • Depieri RA, Martinez SS, Ayres O, Menezes JR (2005) Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotrop Entomol 34:601–606. https://doi.org/10.1590/S1519-566X2005000400010

    Article  Google Scholar 

  • De Romero MGY, Salvatore AR, López G, Willink E (2008) Presencia natural de hongos hyphomycetes en larvas invernantes de Diatraea saccharalis F. en caña de azúcar en Tucumán, Argentina. Rev Ind Agríc Tucumán 85:39–42

    Google Scholar 

  • Desai S, Schlosser E (1993) Comparative sensitivity of isolates of Trichoderma sp. to selected fungicides in vitro. Mededelingen van de Faculteit Landbouw Wetenschappen, Universiteit Gent 58:1365–1372

    Google Scholar 

  • Desai SA, Srikant K (2002) Fungistatic effect of chlorpyriphos on the growth of Trichoderma viride Pers. Karnataka J Agric Sci 15:384–385

    Google Scholar 

  • Desai SA, Thammaiah N, Kunkalikar S (2002) Fungicidal tolerance by Trichoderma harzianum Rifai- a biocontrol agent. Karnataka J Agric Sci 15:397–398

    Google Scholar 

  • Devi UK, Nageswara, Rao Reddy N, Sridevi D, Sridevi V, Murali Mohan C (2004) Esterase-mediated tolerance to a formulation of the organophosphate insecticide monocrotophos in the entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuill—a promising biopesticide. Pest Manag Sci 60:408–412. https://dx.doi.org/10.1002/ps.801

  • De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci 51:271–275

    Article  Google Scholar 

  • Deyle C, Laigret F, Corio-Costet M (1997) A mutation in the 14 α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2966–2970

    Google Scholar 

  • Dhingra OD, Sinclair JB (1985) Basic plant pathology methods. CRC Press, Boca Raton

    Google Scholar 

  • Divya RV, Narayan RP, Uma DG, Sokka RS (2011) Evaluation of biocontrol agents against Rhizoctonia solani f.sp. sasakii causing banded leaf and sheath blight of maize. Indian J Plant Prot 39:208–211

    Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology, 1st edn. Chapman & Hall, London

    Book  Google Scholar 

  • Dłużniewska J (2003) Reaction of fungi of Trichoderma genus to selected abiotic factors. Electron J Pol Agr Univ Agron 6. http://www.ejpau.media.pl/series/volume6/issue2/agronomy/art-04.html

  • Domagalski JL, Munday C (2003) Evaluation of diazinon and chlorpyrifos concentrations and loads, and other pesticide concentrations, at selected sites in the San Joaquin Valley, California, April to August 2001. US Geol Surv Water Resour Invest Rep 03–4088

    Google Scholar 

  • Domondon D, Poppe J (2000) Prevention of yield loss as influenced by Trichoderma in mushroom cultivation. Meded Fac Landbouwkd Toegep Biol Wet Univ Gent 65:771–781

    CAS  Google Scholar 

  • Domsch KH, Gams W (1970) Fungi in agricultural soils. T & A Constable Ltd., Edinburgh

    Google Scholar 

  • Dubey SC (1997) Biological control of web blight of groundnut caused by Thanatephorus cucumeris. Golden jubilee international conference IPS IARI, New Delhi, p 194, 10–15 Nov 1997

    Google Scholar 

  • Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118–127

    Article  Google Scholar 

  • Durán J, Carballo M, Hidalgo YE (2004) Efecto de fungicidas sobre la germinación y el crecimiento de Beauveria bassiana. Manej Integrad Plagas Agroecol Costa Rica 71:73–77

    Google Scholar 

  • Dutta S, Chatterjee NC (2004) Raising of carbendazim-tolerant mutants of Trichoderma and variations in their hydrolytic enzyme activity in relation to mycoparasitic action against Rhizopus stolonifer. J Plant Dis Prot 111:557–565

    CAS  Google Scholar 

  • Easton A, Guven K, de Pomerai DI (2001) Toxicity of the dithiocarbamate fungicide mancozeb to the non-target soil nematode, Caenorhabditis elegans. J Biochem Mol Toxicol 15:15–25. http://www.ncbi.nlm.nih.gov/pubmed/11170311

    Article  CAS  PubMed  Google Scholar 

  • Ehtesham HS, Zaki MJ, Ghaffar A (1990) Biological control of root rot diseases of okra, sunflower, soybean and mungbean. Pak J Bot 22:121–124

    Google Scholar 

  • Elshahawy IE, Haggag KHE, Abd-El-Khair H (2016) Compatibility of Trichoderma spp. with seven chemical fungicides used in the control of soil borne plant pathogens. Res J Pharm Biol Chem Sci 7:1772–1785

    CAS  Google Scholar 

  • Er MK, Gökçe A (2004) Effects of selected pesticides used against glasshouse tomato pests on colony growth and conidial germination of Paecilomyces fumosoroseus. Biol Control 31:398–404. https://doi.org/10.1016/j.biocontrol.2004.06.001

    Article  CAS  Google Scholar 

  • Ericsson JD, Todd JK, Goettel MS, Myers JH (2007) Spinosad interacts synergistically with insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae). J Econ Entomol 100:31–38. https://doi.org/10.1603/0022-0493(2007)100[31:SISWTI]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Evans HC, Hywel-Jones NL (1997) Entomopathogenic fungi. In: Ben Dov Y, Hodgson CJ (eds) Soft scale insects, their biology, natural enemies and control, vol 7B. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Fabrice ECS, Tonussi RL, Orlandelli RC, Lourenco DAL, Alencar JP (2013) Compatibility of entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin with fungicide thiophanate-methyl assessed by germination speed parameter. J Food Agric Environ 11:368–372

    CAS  Google Scholar 

  • Fangsheng N, Zhigiang M, Qiuyan B (2013) The synergism of Trichoderma harzianum interaction with boscalid to Botrytis cinerea. Chin Agric Sci Bull 12:201–205

    Google Scholar 

  • Farenhorst M, Knols BGJ, Thomas MB, Howard AFV, Takken W, Rowland M, N’Guessan R (2010) Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 5:e12081. https://doi.org/10.1371/journal.pone.0012081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fargues J (1975) Elude experimentale dans la nature de l utilisation combine de Beauveria bassiana et d’ insecticides a dose reduite contre Leptinotarsa decemlineata. Ann Zool Ecol Anim 7:247–264

    CAS  Google Scholar 

  • Faria M, Hotchkiss JH, Hajek AE, Wraight SP (2010) Debilitation in conidia of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae and implication with respect to viability determinations and mycopesticide quality assessments. J Invertebr Pathol 105:74–83. https://doi.org/10.1016/j.jip.2010.05.011

    Article  PubMed  Google Scholar 

  • Faruk MI, Rahman ML, Islam MN, Rahman MM, Rahman MA (2014a) Assessment of carrier materials to formulate Trichoderma harzianum bio-fungicide for controlling foot and root rot disease of brinjal in seed bed. Agric Sci 2:21–30. https://dx.doi.org/10.12735/as.v2i2p21

  • Faruk MI, Rahman ML, Mustafa MMH, Rahman MM, Rahman MA (2014b) Screening of carrier materiales to formulate Trichoderma harzianum based bio-fungicide against foot and root rot disease of tomato (Lycopersicon esculentum L.). Bangl J Agric Res 39:197–209. https://doi.org/10.3329/bjar.v3329/bjar.v39i2.20415

    Article  Google Scholar 

  • Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A, Shafir S, Elad Y (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol 110:361–370. https://doi.org/10.1023/B:EJPP.0000021057.93305.d9

    Article  CAS  Google Scholar 

  • Furlong MJ, Groden E (2001) Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid and cyromazine. J Econ Entomol 94:344–356. https://doi.org/10.1603/0022-0493-94.2.344

    Article  CAS  PubMed  Google Scholar 

  • Gabriolotto C, Monchiero M, Nègre M, Spadaro D, Gullino ML (2009) Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations. J Environ Sci Health, Part B 44:389–396. https://doi.org/10.1080/036012309028011117

    Article  CAS  Google Scholar 

  • Gardner WA, Kinard DJ (1998) In vitro germination and growth response of two entomogenous fungi to imidacloprid. J Entomol Sci 33:322–324

    Article  Google Scholar 

  • Gardner WA, Oetting RD, Storey GK (1984) Scheduling of Verticillium lecanii and benomyl applications to maintain aphid (Homoptera: Aphididae) control on chrysanthemums in greenhouses. J Econ Entomol 77:514–518

    Article  CAS  Google Scholar 

  • Gardner W, Storey GW (1985) Sensitivity of Beauveria bassiana to selected herbicides. J Econ Entomol 78:1257–1279. https://doi.org/10.1093/jee/78.6.1275

    Article  Google Scholar 

  • Gatarayiha MC, Laing MD, Miller RM (2010) In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae. Pest Manage Sci 66:773–778. https://doi.org/10.1002/ps.1941

    Article  CAS  Google Scholar 

  • Gaur AC, Misra KC (1978) Dynamics of microbial population in soil as influenced by simazine and ecological factors. Zentbl Bakteriol Parasitenkunde Abt II 133:357–361. https://doi.org/10.1016/S0323-6056(78)80053-6

    Article  CAS  Google Scholar 

  • Gaur RB, Sharma RN (2010) Biocontrol of root rot in cotton and compatibility of potential bioagents with fungicides. Indian J Plant Prot 38:176–182

    CAS  Google Scholar 

  • Gehmann KB, Nyfeler R, Leaedbeater AJ, Nevil D, Sozzi D (1990) CGA 173506: a new phenylpyrrole fungicide for broad spectrum disease control. Proc Brighton Crop Prot Conf Pests Dis 2:399–406

    Google Scholar 

  • Ghewande MP, Savaliya SD (1998) Integrated management of stem rot of groundnut. In: Indian Phytopathological Society, fifth annual meeting and national symposium on present scenario in diseases of oilseeds and pulses, Dr. BAMU Aurangabad and MAU, Aurangabad, 17–19 Feb 1998

    Google Scholar 

  • Girija VK, Umamaheswaran K (2003) Basal rot of balsam and its management through bioagents. Plant Dis Res 18:52–55

    Google Scholar 

  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 11:e0165632. https://doi.org/10.1371/journal.pone.0165632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goettel MS, Inglis GD, Wraight SP (2000) Fungi. In: Lacey LA, Kaya HK (eds) Field manual in invertebrate pathology. Kluwer Academic Press, Dordrecht, pp 255–282

    Chapter  Google Scholar 

  • Goldman G, Temmerman W, Jacobs D, Contreras R, van Montagu M, Herrera-Estrella A (1993) A nucleotide substitution in one of the beta-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole 2-yl-carbamate. Mol Gen Genet 240:73–80. https://doi.org/10.1007/BF00276886

    Article  CAS  PubMed  Google Scholar 

  • González LC, García BLM, Nicao MEL, Fernández AR, Gómez Albernal M (2011) Efecto in vitro de siete fungicidas químicos sobre Beauveria bassiana (Bals.) Vuil. Fitosanidad 15:31–38

    Google Scholar 

  • Goulart ACP, Paiva FDA (1993) Efficiency of wheat seed chemical treatment on the control of Helminthosporium sativum and Pyricularia oryzae. Summa Phytopathol 19:199–202

    CAS  Google Scholar 

  • Gowdar SB, Ramiesh Babu HN, Nargund VB, Krishnappa M (2006) Compatibility of fungicides with Trichoderma harzianum. Agric Sci Digest 26:279–281

    CAS  Google Scholar 

  • Gowrish KR, Ramesh B, Ushakumari R, Santhoshkumar T, Kumar V (2013) Effect of spinosad 45 SC on growth and development of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Entomon 38:155–160

    Google Scholar 

  • Grogan HM, Noble R, Gazo RH, Fletcher JT (1996) Control of Trichoderma harzianum a weed mould of mushroom cultivation. Plant Dis 1:337–342

    Google Scholar 

  • Gupta A, Kerni PN, Gupta A (1995) In vitro evaluation of different chemicals against T. viride isolated from button mushroom. Res Dev Rep 12:44–47

    Google Scholar 

  • Gupta PP, Paul MS, Sharma SN, Gupta P (1999) Studies on compatibility of white muscardine fungus Beauveria bassiana with some neem products. Indian Phytopathol 52:278–280

    CAS  Google Scholar 

  • Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Viet Nam. J Int Soc Southeast Asian Agric Sci 16:17–21

    Google Scholar 

  • Hall RA (1981) Laboratory studies on the effects of fungicides, acaricides and insecticides on the entomopathogenic fungus, Verticillium lecanii. Entomol Exp Appl 29:39–48

    Article  CAS  Google Scholar 

  • Harlapur SI, Kulkarni MS, Wali MC, Kulkarni S (2007) Evaluation of plant extract, bio agents and fungicides against Exserohilum turcicum (Pass) Leonard and Suggs. causing turcicum leaf blight of maize. Karnataka J Agric Sci 20:541–544

    Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194. https://doi.org/10.1094/PHYTO-96-0190

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. https://doi.org/10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  • Hashim I, Chew BH (1997) Effects of integrating Trichoderma and fungicides on control of white root disease. J Nat Rubber Res 12:43–57

    CAS  Google Scholar 

  • Hassan AEM, Charnley AK (1989) Ultra structural study of the penetration by Metarhizium anisopliae through dimilin affected cuticle of Manduca sexta. J Invertebr Pathol 54:117–124

    Article  Google Scholar 

  • Hassan AEM, Dillon RJ, Charnley AK (1989) Influence of accelerated germination of Conidia on the pathogenicity of Metarhizium anisopliae for Manduca sexta. J Invertebr Pathol 54:277–279

    Article  Google Scholar 

  • Hatvani L, Manczinger L, Kredics L, Szekeres A, Antal Z, Vágvölgy C (2006) Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion. Antonie Leeuwenhoek 89:387–393. https://doi.org/10.1007/s10482-005-9042-x

    Article  PubMed  Google Scholar 

  • Hernández AF, Menéndez P (2016) Linking exposure with pediatric leukemia: potential underlying mechanisms. Int J Mol Sci 17:461. https://doi.org/10.3390/ijms17040461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heye U, Speich J, Siegle H, Steinemann A, Forster B, Knauf-Beiter G, Herzog J, Hubele A (1994) CGA 219417: a novel broad spectrum fungicide. Crop Prot 13:541–549

    Article  CAS  Google Scholar 

  • Hilber UW, Hilber-Bodmer M (1998) Genetic basic and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Dis 82:496–500

    Article  CAS  PubMed  Google Scholar 

  • Hirose E, Neves PMOJ, Zequi JAC, Martins LH, Peralta CH, Moino A Jr (2001) Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. Braz Arch Biol Technol 44:419–423. https://doi.org/10.1590/S1516-89132001000400013

    Article  Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harma GE, Kubicek CP (eds) Trichoderma & Gliocladium—enzymes, biological control and commercial applications. Taylor & Francis Ltd., London, pp 131–151

    Google Scholar 

  • Hmouni A, Mouria A, Douira A (2006) Biological control of tomato grey mould with compost water extracts, Trichoderma sp. and Gliocladium sp. Phytopathol Mediterr 45:110–116. https://dx.doi.org/10.14601/Phytopathol_Mediterr-1821

  • Hmouni A, Oihabi L, Badoc A, Douira A (2003) Étude de la résistance de Botrytis cinerea aux benzimidazoles, dicarboximides et dithiocarbamates dans les cultures abritées de tomate de la région du gharb (Maroc). Bull Soc Pharm Bordeaux 142:79–100

    Google Scholar 

  • Ho HL, Ho KF (2015) Fungal strain improvement of Aspergillus brasiliensis for overproduction of xylanase in submerged fermentation through UV irradiation and chemicals mutagenesis. J Adv Biol Biotechnol 3:117–131. https://doi.org/10.9734/JABB/2015/17274

    Article  Google Scholar 

  • Holmes JG, Ecker JW (1995) Relative fitness ofimazalil-resistant and sensitive biotypes of Penicillium digitatum. Plant Dis 79:1068–1073

    Article  Google Scholar 

  • Hongman C, Jie C, Guoshi G, Hemin L (2005) Mutation of {\sl Trichoderma} in tolerance to pyrimethanil and induction of related protein. Acta Phytophylacica Sin 32:77–80

    Google Scholar 

  • Horvath EM, Burgel JL, Messner K (1995) The production of soluble antifungal metabolites by the biocontrol fungus Trichoderma harzianum in connection with the formation of conidiospores. Mat Org 29:1–4

    CAS  Google Scholar 

  • Howell CR (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani and damping-off of cotton seedlings. Phytopathology 74:106

    Google Scholar 

  • Howell CR (2002) Cotton seedling pre-emergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 92:177–180. https://doi.org/10.1094/PHYTO.2002.92.2.177

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant disease; the history and evolution of current concept. Plant Dis 87:4–10. https://doi.org/10.1094/PDIS.2003.87.1.4

    Article  PubMed  Google Scholar 

  • Howell CR (2007) Effect of seed quality and combination fungicide-Trichoderma spp. seed treatments on pre- and postemergence damping-off in cotton. Phytopathology 97:66–71. https://doi.org/10.1094/PHYTO-97-0066

    Article  PubMed  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS, Wheeler MH (2000) Induction of trepanoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252. https://dx.doi.org/PHYTO.2000.90.3.248

    Article  CAS  PubMed  Google Scholar 

  • Hunter DM, Milner RJ, Spurgin PA (2001) Aerial treatment of the Australian plague locust, Chortiocetes terminifera (Orthoptera: Acrididae), with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) in Australia. Bull Entomol Res 91:93–99. https://www.ncbi.nlm.nih.gov/pubmed/11260723

  • Ignoffo CM, Garcia C, Samson RA (1989) Relative virulence of Nomuraea spp. (N. rileyi, N. atypicola, N. anemonoides) originally isolated from an insect, a spider, and soil. J Invertebr Pathol 54(3):373–378

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Useof Hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Wallingford, pp 23–69

    Google Scholar 

  • Inglis PW, Tigano MS, Valadares-Inglis M (1999) Transformation of the entomopathogenic fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus (Deuteromycotina: Hyphomycetes) to benomyl resistance. Gen Mol Biol 22:119–123. https://doi.org/10.1590/S1415-47571999000100023

    Article  Google Scholar 

  • Isaiah A, Jain A, Paul MS (2005) Compatibility of Beauveria bassiana with multineem and chemical pesticides. Ann Plant Prot Sci 13:213–269

    Google Scholar 

  • Islam MS, Ali M, Rahman MS (2011) In vitro studies on the fungicidal effect on Trichoderma species in tea plantation. Bangl J Agric Res 36:677–683. https://doi.org/10.3329/bjar.v36i4.11758

    Article  Google Scholar 

  • Islam MT, Olleka A, Ren SX (2010) Influence of neem on susceptibility of Beauveria bassiana and investigation of their combined efficacy against sweet potato whitefly, Bemisia tabaci on eggplant. Pestic Biochem Physiol 98:45–49. https://doi.org/10.1016/j.pestbp.2010.04.010

    Article  CAS  Google Scholar 

  • Islam MT, Omar DB (2012) Combined effect of Beauveria bassiana with neem on virulence of insect in case of two application approaches. J Anim Plant Sci 22:77–82

    Google Scholar 

  • Isman MB (2007) Botanical insecticides: for richer, for poorer. Pest Manage Sci 64:8–11. https://doi.org/10.1002/ps.1470

    Article  CAS  Google Scholar 

  • Jaffee BA (2004) Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91. https://doi.org/10.3114/sim.2009.63.01

    Article  PubMed  PubMed Central  Google Scholar 

  • James RR, Elzen GW (2001) Antagonism between Beauveria bassiana and imidacloprid when combined for Bemisia argentifolii (Homoptera: Aleyrodidae) control. J Econ Entomol 94:357–361. https://doi.org/10.1603/0022-0493-94.2.357

    Article  CAS  PubMed  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185. https://doi.org/10.1007/s10526-009-9248-3

    Article  Google Scholar 

  • Jaros-Su J, Groden E, Zhang J (1999) Effects of selected fungicides and timing of fungicide application on Beauveria bassiana induced mortality of the Colorado potato beetle (Coleoptera: Chrysomelidae). Biol Control 15:259–269. https://doi.org/10.1006/bcon.1999.0724

    Article  Google Scholar 

  • Javar S, Mohamed R, Said AS, Lau WH (2015) Expression of pathogenesis-related genes in Metarhizium anisopliae when infecting Spodoptera exigua. Biol Control 85:30–36. https://doi.org/10.1016/j.biocontrol.2015.03.006

    Article  CAS  Google Scholar 

  • Jayaraj S (1988) The past, present and future of botanical pest control research in India. Final Workshop of IRRIADB- EWC project on botanical pest control inrice based cropping systems, IRRI, Phillipines, 12–16 Dec

    Google Scholar 

  • Joeniarti E, Ni’matuzahroh, Kusriningrum RS (2014) Tolerance of Trichoderma asperellum isolates to chemical fungicide and their antagonistic activity against Phytophthora infestans. Int J Plant Soil Sci 3:34–46. https://dx.doi.org/10.9734/IJPSS/2014/5589

    Article  Google Scholar 

  • Jhune CS, You CH, Cha DY, Kim GP (1990) Effects of thiabendazole on green mould, Trichoderma spp. during cultivation of oyster mushroom, Pleurotus spp. Korean J Mycol 18:89–95

    Google Scholar 

  • Justin K, Viateur U, Prudentienne M (2010) Use of nitrous acid mutant of Aspergillus niger for citric acid production from local cane-molasses. Afr J Microbiol Res 4:1446–1452

    CAS  Google Scholar 

  • Kaakeh W, Reid BL, Bouhnert TJ, Bennett GW (1997) Toxicity of imidacloprid in the German cockroach (Dictyoptera: Blattellidae) and the synergism between imidacloprid and Metarhizium anisopliae (Imperfect fungi: Hyphomycetes). J Econ Entomol 90:473–482. https://doi.org/10.1093/jee/90.2.473

    Article  Google Scholar 

  • Kava-Cordeiro V, Luna-Alves-Lima EA, Azevedo JL (1995) Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae. Sci Agric 52:548–554. https://doi.org/10.1590/S0103-90161995000300023

    Article  CAS  Google Scholar 

  • Kawchuk LM, Hutchison LJ, Verhaeghe CA, Lynch DR, Bains PS, Holley JD (2002) Isolation of the β-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris. Can J Plant Pathol 24:233–238. https://doi.org/10.1080/07060660309507001

    Article  CAS  Google Scholar 

  • Kay SJ, Stewart A (1994) Evaluation of fungal antagonists for control of onion white rot in soil box trials. Plant Pathol 43:371–377. https://doi.org/10.1111/j.1365-3059.1994.tb02698.x

    Article  Google Scholar 

  • Khan J, Alotaibi A, Deka M (2015) Effect of colchicine induced mutation on cellulose enzyme production by Aspergillus fumigatus. World J Pharmaceutical Res 4:461–471

    Google Scholar 

  • Khan MO, Shahzad S (2007) Screening of Trichoderma species for tolerance to fungicides. Pak J Bot 39:945–951

    Google Scholar 

  • Khanam R, Prasuna G (2014) Strain improvement of white rot fungi Pycnoporus cinnabarinus with the influence of physical and chemical mutagens for enhancing laccase production. J Sci Ind Res 73:331–337

    Google Scholar 

  • Khalil SK, Shah MA, Naeem M (1985) Laboratory studies on the compatibility of the entomopathogenic fungus Verticillium lecanii with certain pesticides. Agric Ecosys Environ 13:329–334. https://doi.org/10.1016/0167-8809(85)90021-0

    Article  CAS  Google Scholar 

  • Khalko S, Pan SK (2009) Phytotoxicity of some fungicides and their compatibility study with a potential biocontrol agent Trichoderma harzianum. J Crop Weed 5:151–153

    Google Scholar 

  • Khattabi N, Ezzahiri B, Louali L, Oihabi A (2001) Effect of fungicides and Trichoderma harzianum on sclerotia of Sclerotium rolfsii. Phytopathol Mediterr 40:143–148. https://doi.org/10.1400/14465

    Article  CAS  Google Scholar 

  • Khazanchi R, Handa SK (1989) Detection and separation of fenpropathrin, flucythrinate, fluvalinate, and PP 321 by thin-layer chromatography. J Assoc Off Anal Chem 72:512–514

    CAS  PubMed  Google Scholar 

  • Khirallah W, Mouden N, Selmanoui K, Achbani EH, Benkirane R, Ouazzani AT, Douira A (2016) Compatibility of Trichoderma spp. With some fungicides under in vitro conditions. Int J Recent Sci Res 7:9060–9067

    Google Scholar 

  • Khosla K, Gupta AK (2008) Integration of fungicides and Trichoderma viride for management of seedling blight disease of apple caused by Sclerotium rolfsii. Indian Phytopathol 61:43–48

    CAS  Google Scholar 

  • Klingen I, Haukeland S (2006) The soil as a reservoir for natural enemies of pest insects and mites with emphasis on fungi and nematodes. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Series: progress in biological control, vol 2. Springer, Heidelberg, pp 145–211

    Google Scholar 

  • Klingen I, Westrum K (2007) The effect of pesticides used in strawberries on the phytophagous mite Tetranychus urticae (Acari: Tetranychidae) and its fungal natrual enemy Neozygites floridana (Zygomycetes: Entomophthorales). Biol Control 43:222–230. https://doi.org/10.1016/j.biocontrol.2007.07.013

    Article  CAS  Google Scholar 

  • Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426. https://doi.org/10.1128/AEM.01059-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos K, Celar FA (2013) Sensitivity of the entomopathogenic fungus Beauveria bassiana (Bals.-Criv.) Vuill. to selected herbicides. Pest Manage Sci 69:717–721. https://doi.org/10.1002/ps.3427

    Article  CAS  Google Scholar 

  • Kosanović D, Potočnik I, Vukojević J, Stajić M, Rekanović E, Stepanović M, Todorović B (2015) Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia. J Environ Sci Health, Part B 50:607–613. https://doi.org/10.1080/03601234.2015.1028849

    Article  CAS  Google Scholar 

  • Kotwal S, Parate RL, Mane SS, Deshmukh VV (2012) Effect of Metarhizium anisopliae on Spodoptera litura and compatibility with chemicals. Int J Sci Environ Technol 1:499–505

    Google Scholar 

  • Kouassi M, Coderre D, Todorova I (2003) Effects of the timing of Applications on the incompatability of three Fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). J Appl Entomol 127:421–426. https://doi.org/10.1046/j.1439-0418.2003.00769.x

    Article  CAS  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potentials. Food Technol Biotechnol 41:37–42

    Google Scholar 

  • Kredics L, Manczinger L, Antal Z, Molnár A, Kevei F, Nagy E (2002) Effects of abiotic and biotic factors on Trichoderma strains with biocontrol potential. In: Elad Y, Köhl J, Shtienberg D (eds) Proceedings of the meeting influence of a-biotic and biotic factors on biocontrol agents at Pine Bay, Kuşadasi (Turkey), p 47, 22–25 May 2002

    Google Scholar 

  • Kruger SR, McCoy CW (1997) Control of citrus root weevil larvae using soil applications of Beauveria bassiana and imidacloprid. In: Abstracts of the 30th annual meeting of the Society of Invertebrate Pathology, Banff, p 38

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Ie Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life stylew of Trichoderma. Genom Biol 12:R40. https://doi.org/10.1186/gb-2011-12-4-r40

    Article  CAS  Google Scholar 

  • Kuhad RC, Kumar M, Singh A (1994) A hypercellulolytic mutant of Fusarium oxysporum. Lett Appl Microbiol 19:397–400. https://doi.org/10.1111/j.1472-765X.1994.tb00486.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar K (1998) Studies on bioefficacy and determination of residues of imidacloprid applied against sucking pests on cotton. Ph D thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Kumar AM, Reddy KN, Sreevathsa R (2008) Influence of pesticides, plant oils and antagonist on entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorokin. Pest Technol 2:28–31

    Google Scholar 

  • Kumar D, Singh KP, Jaiswal RK (2005a) Effect of fertilizers and neem cake amendment in soil on spore germination of Arthrobotrys dactyloides. Mycobiology 33:194–199. https://doi.org/10.4489/MYCO.2005.33.4.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Singh KP, Jaiswal RK (2005b) Screening of Different Media and Substrates for cultural variability and mass culture of Arthrobotrys dactyloides Drechsler. Mycobiology 33:215–222. https://doi.org/10.4489/MYCO.2005.33.4.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Sinha AK, Singh GP, Madhusudhan KN (2011) Efficacy of systemic fungicides for control of white muscardine in tasar silkworm, Antheraea mylitta D. Res J Microbiol 6:805–812. https://doi.org/10.3923/jm.2011.805.812

    Article  CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248. https://doi.org/10.1006/bcon.2001.0938

    Article  Google Scholar 

  • Lacey LA, Horton DR, Chauvin RL, Stocker JM (1999) Comparative efficacy of Beauveria bassiana, Bacillus thuringiensis and aldicarb for control of Colorado potato beetle in an irrigated desert agroecosystem and their effects on biodiversity. Entomol Exp Appl 93:189–200. https://doi.org/10.1046/j.1570-7458.1999.00578.x

    Article  Google Scholar 

  • Latorre BA, Agosin E, San Martin R, Vásquez GS (1997) Effectiveness of conidia of Trichoderma harzianum produced by liquid fermentation against Botrytis bunch rot of table grape in Chile. Crop Prot 16:209–214. https://doi.org/10.1016/S0261-2194(96)00102-0

    Article  Google Scholar 

  • Lee YS, Kim J, Lee SG, Oh E, Shin SC, Park IK (2009) Effects of plant essential oils and components from Oriental sweetgum (Liquidambar orientalis) on growth and morphogenesis of three phytopathogenic fungi. Pesticide Biochem Physiol 93:138–143. https://doi.org/10.1016/j.pestbp.2009.02.002

    Article  CAS  Google Scholar 

  • Lee YS, Kim J, Shin SC, Lee SG, Park IK (2008) Antifungal activity of Myrtaceae essential oils and their components against three phytopathogenic fungi. Flavour Fragr J 23:23–28. https://doi.org/10.1002/ffj.1850

    Article  CAS  Google Scholar 

  • Lee SK, Sohn HB, Kim GG, Chung YR (2006) Enhancement of biological control of Botrytis cinerea on cucumber by foliar sprays and bed potting mixes of Trichoderma harzianum YC459 and its application of tomato in the greenhouse. Plant Pathol J 22:283–288. https://doi.org/10.5423/PPJ.2006.22.3.283

    Article  Google Scholar 

  • Lee S, Kim TH, Shin YW, Jeon Y, Kim J (2013) Amitraz. Acta Crystallographica Section E Structure Rep Online E69(Pt 8):o1300. https://doi.org/10.1107/S1600536813019764

    Article  CAS  Google Scholar 

  • Leipelt M, Warnecke D, Zӓhringer U, Ott C, Müller F, Hube B, Heinz E (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants and fungi. J Biol Chem 276:33621–33629. https://doi.org/10.1074/jbc.M104952200

    Article  CAS  PubMed  Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Leroux P (1996) Recent developments in the mode of action of fungicides. Pesticide Sci 47:191–197

    Article  CAS  Google Scholar 

  • Leroux P (2003) Mode of action of agrochemicals towards plant pathogens. Comptes Rendus de Biologie 326:9–21. https://www.ncbi.nlm.nih.gov/pubmed/12741178

  • Lewis JA, Lumsden RD (2001) Biocontrol of damping off of green house-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot 20:49–56. https://doi.org/10.1016/S0261-2194(00)00052-1

    Article  Google Scholar 

  • Li DP, Holdom DG (1994) Effects of pesticides on growth and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). J Invertebr Pathol 63:209–211. https://doi.org/10.1006/jipa.1994.1038

    Article  Google Scholar 

  • Liang ZQ, Liu AY, Liu JL (1991) A new species of the genus Cordyceps and its Metarhizium anamorph. Acta Mycol Sin 10:257–262

    Google Scholar 

  • Lifshitz R, Lifshitz S, Baker R (1985) Decrease in incidence of Rhizoctonia preemergence damping-off by use of integrated chemical and biological controls. Plant Dis 69:431–434. https://doi.org/10.1094/PD-69-431

    Article  Google Scholar 

  • Lisboa BB, Bochese CC, Vargas LK, Silveira JRP, Radin B, Oliveira AMR (2007) Eficiência de Trichoderma harzianum e Gliocladium viride na reduçío da incidência de Botrytis cinerea em tomateiro cultivado sob ambiente protegido. Ciênc Rural 37:1255–1260. https://doi.org/10.1590/S0103-84782007000500006

    Article  Google Scholar 

  • Litterick AM, Holmes SJ, Williams GH (1993) Development of fungicide programmes for control of Rhizoctonia diseases of heathers. In: Proceedings of the conference held at Dundee University, pp 283–288, 23–25 Mar 1993

    Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359. https://doi.org/10.1080/10934520903467873

    Article  CAS  PubMed  Google Scholar 

  • Locke JC, Marois JJ, Papavizas GC (1985) Biological control of Fusarium wilt of greenhouse-grown chrysanthemums. Plant Dis 69:167–169. https://doi.org/10.1094/PD-69-167

    Article  Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702. https://doi.org/10.1146/annurev.ento.46.1.667

    Article  CAS  PubMed  Google Scholar 

  • Lomer CJ, LUBILOSA Project Staff and Collaborators (1997) Metarhizium flavoviride: recent results in the control of locusts and grasshoppers. In: Krall S, Peveling R, Ba Diallo D (eds) New strategies in locus control, Birkhäuser, Basel, pp 159–169

    Google Scholar 

  • Lopes RB, Pauli G, Mascarin GM, Faria M (2011) Protection of fungal conidia afforded by an oil-based formulation against non-compatible fungicides. Biocontrol Sci Technol 21:125–137. https://doi.org/10.1080/09583157.2010.534548

    Article  Google Scholar 

  • Loria R, Galaini S, Roberts DW (1983) Survival on inoculum of the entomopathogenic fungus Beauveria bassiana influenced by fungicides. Environ Entomol 12:1724–1726. https://doi.org/10.1093/ee/12.6.1724

    Article  Google Scholar 

  • Loureiro ES, Moino A Jr, Arnosti A, Souza GC (2002) Effect of chemical products used in lettuce and chrysanthemum on entomopathogenic fungi. Neotrop Entomol 31:263–269. https://doi.org/10.1590/S1519-566X2002000200014

    Article  CAS  Google Scholar 

  • Lovkesh BJ, Pahil VS (2006) Physiological and fungistatic interaction studies between Pleurotus spp. and Trichoderma viride. Crop Res Hisar 32:499–503

    Google Scholar 

  • Lutchmeah RS, Cooke RC (1985) Pelleting of seed with the antagonist Pythium oligandrum for biological control of damping-off. Plant Pathol 34:528–531. https://doi.org/10.1111/j.1365-3059.1985.tb01403.x

    Article  Google Scholar 

  • Luz C, Netto MC, Rocha LF (2007) In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164:39–47. https://doi.org/10.1007/s11046-007-9020-0

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Michailides J (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863. https://doi.org/10.1016/j.croppro.2005.01.011

    Article  CAS  Google Scholar 

  • Madhavi GB, Bhattiprolu SL, Reddy VB (2011) Compatibility of biocontrol agent Trichoderma viride with various pesticides. J Hortic Sci 6:71–73

    Google Scholar 

  • Maeno S, Miura I, Masuda K, Nagata T (1990) Mepanipyrim (KIF-3535), a new pyrimidine fungicide. Brighton Crop Protection Conference, Pests and Diseases, vol 2, pp 415–422

    Google Scholar 

  • Maimala S, Boucias D (2004) Hirsutella. 1076–1076. http://dx.doi.org/10.1007/0-306-48380-7_2027

  • Majchrowicz I, Poprawski TJ (1993) Effects in vitro of nine fungicides on growth of entomopathogenic fungi. Biocontrol Sci Technol 3:321–336. https://doi.org/10.1080/09583159309355287

    Article  Google Scholar 

  • Makawi AA, Abdel-Nasser M, Abdel-Moneim AA (1979) Effect of some pesticides on certain micro-organisms, contributing to soil fertility. Zentralblatt Bakteriol, Parasitenkunde. Infektionskrankheiten Hygiene. Zweite naturwissenschaftliche Abteilung 134:5–12. https://doi.org/10.1016/S0323-6056(79)80057-9

    Article  CAS  Google Scholar 

  • Mani M, Sushil SN, Krishnamoorthy A (1995) Influence of some selective pesticides on the longevity and progeny production of Leptomastix dactylopii How, a parasitoid of citrus mealybug, Planococcus citri (Risso). Pest Manag Hortic Ecosyst 1:81–86

    Google Scholar 

  • Manoranjitham SK, Prakasam V, Rajappan K (1999) Effect of antagonists on Pythium aphanidermatum (Edson) Fitz and the growth of chilli seedlings. J Biol Control 13:101–106. https://dx.doi.org/10.18311/jbc/1999/4057

  • Maribel Y, France A (2010) Effects of fungicides on the development of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Chilean J Agric Res 70:390–398

    Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321. https://doi.org/10.1007/s00294-006-0091-0

    Article  CAS  PubMed  Google Scholar 

  • Martins F, Soares ME, Oliveria I, Pererira JA, Bastos ML, Baptista P (2012) Tolerance and bioaccumulation of copper by the entomopathogen Beauveria bassiana (Bals.-Criv.) Vuill. exposed to various copper-based fungicides. Bull Environ Contam Toxicol 89:53–60. https://doi.org/10.1007/s00128-012-0628-5

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Toledo MV, Salmeron V, Gonzalez-Lopez J (1992) Effect of the insecticides methylpyrimifos and chlorpyrifos on soil microflora in an agricultural loam. Plant Soil 147(1):25–30

    Article  CAS  Google Scholar 

  • Massachusetts Institute of Technology (2017) Climate change: extreme rainfall will vary between regions: intensification of extreme rainfall varies from region to region, study shows. Science Daily, 15 May 2017. https://www.sciencedaily.com/releases/2017/05/170515122204.htm

  • Masarat H (2009) Compatibility of Beauveria bassiana (Balls.) Vuill. with pesticides. Ann Plant Prot Sci 17:36–42

    Google Scholar 

  • Masner P, Muster P, Schmid J (1994) Possible biosynthesis inhibition by pyrimidinamine fungicides. Pestic Sci 42:163–166. https://doi.org/10.1002/ps2780420304

    Article  CAS  Google Scholar 

  • Matei GM, Matei S (2010) The comparative structure of fungal communities in rhizosphere of soybean treated with chemical and biological agents for pathogens control. Res J Agric Sci 42:81–85

    Google Scholar 

  • Matuo Y, Nishijima S, Hase Y, Sakamoto A, Tanaka A, Shimizu K (2006) Specificity of mutations induced bycarbon ions in budding yeast Saccharomyces cerevisiae. Mutat Res 602:7–13. https://doi.org/10.1016/j.mrfmmm.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Mclean KL, Hunt J, Stewart A (2001) Compatibility of the biocontrol agent Trichoderma harzianum C52 with selected fungicides. N Z Plant Prot 54:84–88

    Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155. https://doi.org/10.1016/j.biocontrol.2007.07.007

    Article  Google Scholar 

  • Miêtkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 7:565–575. https://doi.org/10.1080/09583159730622

    Article  Google Scholar 

  • Milling RJ, Richardson CJ (1995) Mode of action of the aniline-pyrimidine fungicide pyrimethanil. 2. Eeffects on enzyme secretion in Botrytis cinerea. Pest Manage Sci 45:43–48. https://doi.org/10.1002/ps.2780450107

    Article  CAS  Google Scholar 

  • Milner RJ (1997) Metarhizium flavoviride (FI985) as a promising mycoinsecticide for Australian acridids. Mem Entomol Soc Can 129(S171):287–300

    Article  Google Scholar 

  • Milner RJ, Pereire RM (2000) Microbial control of urban pest-cockroaches, ants and termites. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Academic Publishers, Boston, pp 721–740

    Chapter  Google Scholar 

  • Miura I, Kamakura T, Maeno S, Hayashi S, Yamaguchi I (1994) Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pestic Biochem Physiol 48:222–228. https://doi.org/10.1006/pest.1994.1023

    Article  Google Scholar 

  • Miura I, Maeno S (2007) Effect of culture age on mepanipyrim-mediated inhibition of pectinase secretion in Botrytis cinerea. J Pestic Sci 32:106–111. https://doi.org/10.1584/jpestics.G06-26

    Article  CAS  Google Scholar 

  • Mizuno M (1988) Triflumizole (Trifmine®): a new broad spectrum fungicide. Jpn Pestic Inf 52:27–30

    CAS  Google Scholar 

  • Mochi DA, Monteiro AC, Barbosa JC (2005) Action of pesticides to Metarhizium anisopliae in soil. Neotrop Entomol 34:961–971. https://doi.org/10.1590/S1519-566X2005000600013

    Article  CAS  Google Scholar 

  • Mochi DA, Monteiro AC, De Bortoli SA, Doria HOS, Barbosa JC (2006) Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in soil with different pesticides. Neotrop Entomol 35:382–389. https://doi.org/10.1590/S1519-566X2006000300014

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi A, Amini Y (2015) The influence of pesticides and herbicides on the growth and spore germination of Trichoderma harzianum. Agric Sci Dev 4:41–44

    Google Scholar 

  • Mohammadi Goltapeh E, Sham-Bakhsh M, Pakdaman BS (2008) Sensitivity of the nematophagous fungus Arthrobotrys oligospora to fungicides, insecticides and crop supplements used in the commercial cultivation of Agaricus bisporus. J Agric Sci Technol 10:383–389

    Google Scholar 

  • Mohan MC, Narasimha P, Reddy NP, Devi UK, Kongara R, Sharma HC (2007) Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Sci Technol 17:1059–1069. https://doi.org/10.1080/09583150701714551

    Article  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4:1–4. https://doi.org/10.1007/s101230100001

    Article  CAS  PubMed  Google Scholar 

  • Montesinos R, Ayala-Zermeño MA, Berlanga-Padilla A, Gallou A, Arredondo-Bernal HC (2015) Crioconservación de differentes especies de hongos entomopatógenos. XXXVIII Congreso Nacional de Control Biológico, Sociedad Mexicana de Control Biológico, AC León, Guanajuato, 5–6 de Novimebre de 2015, pp 469–473

    Google Scholar 

  • Moorhouse ER, Charnely AK, Gillespie AT (1992) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121:431–454. https://doi.org/10.1111/j.1744-7348.1992.tb03455.x

    Article  Google Scholar 

  • Moorhouse ER, Easterbrook MA, Gillespie AT, Charnley AK (1993a) Control of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae) larvae on a range of hardy ornamental nursery stock species using the entomogenous fungus Metarhizium anisopliae. Biocontrol Sci Technol 1:63–72. https://doi.org/10.1080/09583159355260

    Article  Google Scholar 

  • Moorhouse ER, Gillespie AT, Charnley AK (1993b) Application of Metarhizium anisopliae (Metsch.) Sor. conidia to control Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae) larvae on glasshouse pot plants. Ann Appl Biol 122:623–636. https://doi.org/10.1111/j.1744-7348.1993.tb04063.x

    Article  Google Scholar 

  • Moturi B, Charya MAS (2010) Influence of physical and chemical mutagens on dye decolourising Mucor mucedo. Afr J Microbiol Res 4:1808–1813

    CAS  Google Scholar 

  • Mouria A, Ouazzani AT, Douira A (2003) Etude de certains facteures favorisant le maintien de l’activité antagoniste de Trichoderma harzianum à l’égard de Helminthosporium oryzae sur les feuilles de riz. Cah Rech. Univ Hassan II Casablanca, Sér A 5:50–66

    Google Scholar 

  • Mukherjee M, Hadar R, Mukherjee PK, Horwitz BA (2003) Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens. J Appl Microbiol 95:861–867. https://www.ncbi.nlm.nih.gov/pubmed/12969302

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Sherkhane PD, Murthy NB (1999) Induction of stable benomyl-tolerant phenotypic mutants of Trichodermapseudokoningii MTCC 3011, and their evaluation for antagonistic and biocontrol potential. Indian J Exp Biol 37:710–712

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Tripathi HS (2000) Biological and chemical control of wilt complex of French bean. J Mycol Plant Pathol 30:380–385

    CAS  Google Scholar 

  • Mukhopadhyay AN, Kaur NP (1990) Biological control of chickpea wilt complex by Trichoderma harzianum. In”: Proceedings of the third international conference on plant protection in the tropics, Malaysia, pp 20–23

    Google Scholar 

  • Mukhopadhyay AN, Birambhatt A, Patel GJ (1986) Trichoderma harzianum- a potential bio-control agent for tobacco damping-off. Tobacco Res 12:26–35

    Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soil-born plant pathogens. FAO Plant Prot Bull 40:21–30

    Google Scholar 

  • Muthamilan M, Jeyarajan R (1996) Integrated management of Sclerotium root rot of groundnut involving Trichoderma harzianum and carbendazim. Indian J Mycol Plant Pathol 26:204–209

    Google Scholar 

  • Naár Z, Kecskés M (1998) Factors influencing the competitive saprophytic ability of Trichoderma species. Microbiol Res 153:119–129. https://doi.org/10.1016/S0944-5013(98)80029-3

    Article  Google Scholar 

  • Nagata T, Masuda K, Maeno S (2004) Synthesis and structure-activity study of fungicidal anilinopyrimidines leading to mepanipyrim (KIF-3535) as an anti-botrytis agent. Pest Manag Sci 60:399–407. https://doi.org/10.1002/ps.828

    Article  CAS  PubMed  Google Scholar 

  • Nandeesha BS, Reddi Kumar M, Eswara Reddy NP (2013) Evaluation of different fungicides and their compatibility with potential Trichoderma spp. For the management of Aspergillus niger, incitant of collar rot of groundnut. Asian J Biol Life Sci 2:59–63

    CAS  Google Scholar 

  • Narayana BM, Srivastava LS (2003) Evaluation of some fungicides and neem formulations against six soil-borne pathogens and three Trichoderma sp. in vitro. Plant Dis Res 18:56–59

    Google Scholar 

  • Nelson ME, Powelson ML (1988) Biological control of grey mold of snap beans by Trichoderma hamatum. Plant Dis 72:727–729

    Article  Google Scholar 

  • Nene YL, Thapliyal PN (1993) Fungicides in plant disease control. Oxford & IBH Publishing Company (P) Limited, New Delhi

    Google Scholar 

  • Neves PMOJ, Hirose E, Tchujo PT, Moino A Jr (2001) Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotrop Entomol 30:263–268. https://doi.org/10.1590/S1519-566X2001000200009

    Article  CAS  Google Scholar 

  • Nongmaithem N (2015) Compatibility of pesticides with Trichoderma spp. and their antagonistic potential against some pathogenic soil borne pathogens. Indian J Agric Res 49:193–196. https://doi.org/10.5958/0976-058X.2015.00030.X

    Article  Google Scholar 

  • Nyfeler R, Ackermann P (1992) Phenylpyrroles, a new class of agricultural fungicides related to the natural antibiotic pyrrolnitrin. In: Baker DR, Fenyes JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals. American Chemical Society, Washington DC, pp 395–440

    Chapter  Google Scholar 

  • Olmert I, Kenneth RG (1974) Sensitivity of the entomopathogenic fungi, Beauveria bassiana, Verticillium lecanii, and Verticillium sp. to fungicides and insecticides. Environ Entomol 3:33–38. https://doi.org/10.1093/ee/3.1.33

    Article  CAS  Google Scholar 

  • Omar P (2006) Agricultural use of Trichoderma. Technical revision by Gonzalo Bernaza, Eng. and Miguel Acosta, Grad. http://www.soil-fertility.com/Trichoderma/english/index.shtml

  • Onofre SB, Kasburg CR, de Freitas D, Damin S, Vilani A, Queiroz JA, Kagimura FY (2011) Fungicide toxicity against the growth of lineages of the fungus Metarhizium anisopliae var. anisopliae (Metsch.) Sorokin. J Yeast Fungal Res 2:88–92. https://dx.doi.org/10.13140/RG.2.1.4594.9286

  • Paccola-Meirelles LD, Azevedo JL (1991) Parasexuality in Beauveria bassiana. J Invertebr Pathology 57:172–176. https://doi.org/10.1016/0022-2011(91)90113-5

    Article  Google Scholar 

  • Pachamuthu P, Kamble ST (2000) In vivo study on combined toxicity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) strain ESC-1 with sublethal doses of chlorpyrifos, propetamphos, and cyfluthrin against German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 93:60–70. https://www.ncbi.nlm.nih.gov/pubmed/14658513

  • Pachamuthu P, Kamble ST, Yuen G (1999) Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) strain ESC-1 to German cockroach (Dictyoptera: Blattellidae) and its compatibility with insecticides. J Econ Entomol 92:340–346. https://doi.org/10.1093/jee/92.2.340

    Article  Google Scholar 

  • Pakdaman BS (2013) Study on the entomopathogenicity of Trichoderma species and the generation of a transgenic Trichoderma for the effective control of insect and fungal pests. Dissertation, Department of Plant Pathology, Tarbiat Modares University

    Google Scholar 

  • Pakdaman BS, Mohammadi EG, Soltani BM, Talebi AA, Naderpoor M, Kruszewska JS, Piłsyk S, Sarrocco S, Vannacci G (2013a) Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. J Biofert Biopestic 4:137. https://doi.org/10.4172/2155-6202.1000137

    Article  Google Scholar 

  • Pakdaman BS, Mohammadi EG, Varma A (2013b) An introduction to bioremediation. In: Mohammadi EG, Rezaee Danesh Y, Varma A (eds) Fungi as bioremediators. Springer, Heidelberg, pp 3–27

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: Biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54. https://doi.org/10.1146/annurev.py.23.090185.000323

    Article  Google Scholar 

  • Papavizas GC, Lewis JA, Abd-El Moity TH (1982) Evaluation of new biotype of T. harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology 72:126–132. https://doi.org/10.1094/Phyto-72-126

    Article  CAS  Google Scholar 

  • Parakhia AM, Akbari LF (2001) Effect of weedicides on fungal bioagents. J Mycol Plant Pathol 31:106

    Google Scholar 

  • Park JH, Hong SJ, Han EJ, Shim CK, Lee M, Kim MJ, Kim JJ, Kim YK (2012) Influence of pesticides and environmentally friendly agricultural materials used in tomato cultivation on the pathogenicity of the entomopathogenic fungus, Beauveria bassiana. Korean J Appl Entomol 51:357–364. https://doi.org/10.5656/KSAE.2012.09.0.046

    Article  Google Scholar 

  • Pervez Z, Bhuiyan MKA, Islam MS (2009) In vitro control of associated mycoflora of oyster mushroom substrates by the application of fungicides. Bangl Res Pub J 2:737–711

    Google Scholar 

  • Patibanda AK, Upadhyay JP, Mukhopadhya AN (2002) Efficacy of Trichoderma harzianum Rifai alone or in combination with fungicides against sclerotium wilt of groundnut. J Biol Control 16:57–63. https://dx.doi.org/10.18311/jbc/2002/4014

  • Patil RK, Bhagat YS, Halappa B, Bhat RS (2014) Evaluation of entomopathogenic fungus, Nomuraea rileyi (Farlow) Samson for the control of groundnut Spodoptera litura (F.) and its compatibility with synthetic and botanical pesticides. J Biopest 7:106–115

    Google Scholar 

  • Pell JK, Hannam JJ, Steinkraus DC (2010) Conservation biological control using fungal entomopathogens. In: Roy HE, Vega FE, Chander D, Goettel MS, Pell JK, Wajnberg E (eds) The ecology of fungal entomopathogens. Springer, London, pp 187–198

    Google Scholar 

  • Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change. https://doi.org/10.1038/nclimate3287

    Article  Google Scholar 

  • Pfeifer TA, Khachatourians GG (1992) Beauveria bassiana protoplast regeneration and transformation using electroporation. Appl Microbiol Biotechnol 38:376–381. https://doi.org/10.1007/BF00170089

    Article  CAS  Google Scholar 

  • Pillonel C, Meyer T (1997) Effect of phenylpyrroles on glycerol accumulation and protein kinase activity on Neurospora crassa. Pestic Sci 49:229–236

    Article  CAS  Google Scholar 

  • Quintela ED, Mascarin GM, da Silva RA, Barrigossi JAF, da Silva Martins JF (2013) Enhanced susceptibility of Tibraca limbativentris (Heteroptera: Pentatomidae) to Metarhizium anisopliae with sublethal doses of chemical insecticides. Biol Control 66:56–64. https://doi.org/10.1016/j.biocontrol.2013.03.018

    Article  CAS  Google Scholar 

  • Quintela ED, McCoy CW (1997) Pathogenicity enhancement of Metarhizium anisopliae and Beauveria bassiana to the first instar of Diaprepes abreviatus (Coleoptera: Curculionidae) with sub-lethal doses of imidacloprid. Environ Entomol 26:1173–1182. https://doi.org/10.1093/ee/26.5.1173

    Article  CAS  Google Scholar 

  • Quintela ED, McCoy CW (1998a) Conidial attachment of Metarhizium anisopliae and Beauveria bassiana to the larvae cuticle of Diaprepes abreviatus (Coleoptera: Curculionidae) treated with imidacloprid. J Invertebr Pathol 72:220–230. https://www.ncbi.nlm.nih.gov/pubmed/9784344

  • Quintela ED, McCoy CW (1998b) Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J Econ Entomol 91:110–122. https://doi.org/10.1093/jee/91.1.110

    Article  CAS  Google Scholar 

  • Rachappa V, Lingappa S, Patil RK (2007) Effect of agrochemicals on growth and sporulation of Metarhizium anisopliae (Metschnikoff) Sorokin. Karnataka J Agric Sci 20:410–413

    Google Scholar 

  • Ragsdale NN, Sisler HD (1991) The nature, modes of action and toxicity of fungicides. In: Pimentol D (ed) Handbook of pest management in agriculture, vol 2. CRC Press, Boca Raton, pp 461–496

    Google Scholar 

  • Rahman A, Begum MF, Rahman M, Bari MA (2011) Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turk J Biol 35:183–194

    Google Scholar 

  • Rai RD, Vijay B (1992) Effect of carbendazim on mycelial growth and extracellular enzymes of Pleurotus sajor caju and Trichoderma viride. Indian Phytopathol 45:207–212

    CAS  Google Scholar 

  • Ram P, Mathur K, Lodha BC (1999) Integrated management of rhizome rot of ginger involving biocontrol agents and fungicides. J Mycol Plant Pathol 29:416–420

    Google Scholar 

  • Ram D, Mathur K, Lodha BC, Webster J (2000) Evaluation of resident biocontrol agents as seed treatments against ginger rhizome rot. Indian Phytopathol 53:450–454

    Google Scholar 

  • Ramakrishnan R, Suiter DR, Nakatsu CH, Humber RA, Bennett GW (1999) Imidacloprid-enhanced Reticulitermes flavipes (Isoptera: Rhinotermitidae) susceptibility to the entomopathogen Metarhizium anisopliae. J Econ Entomol 92:1125–1132. https://doi.org/10.1093/jee/92.5.1125

    Article  CAS  Google Scholar 

  • Ramanujam B, Prasad RD, Sriram S, Rangeswaran R (2010) Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. J Plant Prot Sci 2:1–8

    Google Scholar 

  • Ramarethinam S, Murugesan NV, Marimuthu S (2001) Compatibility studies of fungicides with Trichoderma viride used in the commercial formulation- Bio-cure-F. Pestol 25:2–6

    Google Scholar 

  • Rampelotti-Ferreira FT, Ferreira A, Prando HF, Tcacenco FA, Grützmacher AD, Martins JFS (2010) Selectivity of chemical pesticides used in rice irrigated crop at fungus Metarhizium anisopliae, microbial control agent of Tibraca limbativentris. Ciênc Rural 40:745–751

    Article  CAS  Google Scholar 

  • Ranganathswamy M, Patibanda AK, Chandrashekhar GS, Sandeep D, Mallesh SB, Kumar HBH (2012) Compatibility of Trichoderma isolates with selected fungicides in vitro. Int J Plant Prot 5:12–15

    Google Scholar 

  • Rangel DEN, Alston DG, Roberts DW (2008) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361. https://doi.org/10.1016/j.mycres.2008.04.011

    Article  PubMed  Google Scholar 

  • Rao PRM (1989) Studies on culture techniques, safety and control potential of certain entomopathogenic fungi of rice pests. Ph.D. thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Rashid M, Baghdadi A, Sheikhi A, Pourian HR, Gazavi M (2010) Compatibility of Metarhizium anisopliae (Ascomycota: Hypocreales) with several Insecticides. J Plant Prot Res 50:22–27. https://doi.org/10.2478/v10045-010-0004-6

    Article  CAS  Google Scholar 

  • Rashid M, Sheikhi Garjan A, Naseri B, Ghazavi M, Barari H (2012) Compatibility of the entomopathogenic fungus Beauveria bassiana with the insecticides fipronil, pyriproxyfen and hexaflumuron. J Entomol Soc Iran 31:29–37

    Google Scholar 

  • Rather TR, Razdan VK, Tewari AK, Shanaz E, Bhat ZA, Hassan MG, Wani TA (2012) Integrated management of wilt complex disease in bell pepper (Capsicum annuum L.). J Agric Sci 4:141–147. https://doi.org/10.5539/jas.v4n7p141

    Article  Google Scholar 

  • Reddi MP, Janardhan A, Praveen Kumar A, Narasimha G (2012) Induction of chemical mutations in Aspergillus niger to enhance cellulase production. Int J Environ Biol 2:129–132

    Google Scholar 

  • Reddy KRK, Praveen Kumar D, Reddy KRN (2013) Entomopathogenic fungi: a potential bioinsecticide. Kavaka 41:23–32

    Google Scholar 

  • Remmen LN, Su NY (2005) Tunneling and mortality of eastern and Formosan Subterranean termites (Isoptera: Rhinotermitidae) in sand treated with thiamethoxam or fipronil. J Econ Entomol 98(3):906–910

    Article  CAS  PubMed  Google Scholar 

  • Rinker DL, Alm G (2008) Management of casing Trichoderma using fungicides. Int Soc Mushroom Sci 17:496–509

    CAS  Google Scholar 

  • Roberts DW, Campbell AS (1977) Stability of entomopathogenic fungi. Miscellaneous Publ Entomol Soc Am 10:19–76

    Google Scholar 

  • Roberts DW, Yendol GW (1971) Use of fungi for microbial control of insects. In: Burgess HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London

    Google Scholar 

  • Rodriguez-Lagunes DA, Tajada AL, Diaz DR, Maciel CR, Mendoza JV, Roamn EB, Colorado SR, Velasco EP (1997) Compatibility of Beauveria bassiana and aqueous extracts of neem (Azadirachta indica) to control coffee borer (Hypothenemus hampei). Manej Integrad Plagas 44:14–19

    Google Scholar 

  • Rossi-Zalaf LS, Alves SB, Lopes RB, Silveira Neto S, Tanzini MR (2008) Interação de microorganismo com outros agentes de controle de pragas e doenças. In: Alves SB, Lopes RB (eds) Controle microbiano de pragas na América Latina: avanços e desafios, Fealq, Piracicaba, pp 279–302

    Google Scholar 

  • Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea- history of chemical control and novel fungicides for its management. Crop Prot 19:557–561. https://doi.org/10.1016/S0261-2194(00)00072-7

    Article  CAS  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interact 22:291–301. https://doi.org/10.1094/MPMI-22-3-0291

    Article  CAS  PubMed  Google Scholar 

  • Russell-Manning B (1991) Malathion: toxic time bomb. Greensward Press, San Francisco

    Google Scholar 

  • Saikia MK (2000) Integrated management of stem rot of cauliflower caused by Rhizoctonia solani Kuhn. Ph.D. thesis, CCS Haryana Agricultural University

    Google Scholar 

  • Saito T, Yabuta M (1996) Laboratory studies on effect of pesticides on entomopathogenic fungus, Verticillium lecanii. Jpn J Appl Entomol Zool 40:71–76

    Article  CAS  Google Scholar 

  • Samson AR, Hoekstra RSE (1988) Introduction to food borne fungi. CBS Netherlands

    Google Scholar 

  • Samson PR, Milner RJ, Sander ED, Bullard GK (2005) Effect of fungicides and insecticides applied during planting of sugarcane on viability of Metarhizium anisopliae and its efficacy against white grubs. Biocontrol 50:151–163. https://doi.org/10.1007/s10526-004-0419-y

    Article  CAS  Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935. https://doi.org/10.1016/S0953-7562(96)80043-8

    Article  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castleburry LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170. https://www.ncbi.nlm.nih.gov/pubmed/21156486

    Article  PubMed  Google Scholar 

  • Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133. https://doi.org/10.3114/sim.2006.56.03

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966. https://doi.org/10.3852/09-243

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha P, Jeyarajan R, Panicker S (1993) Mass multiplication of bio-control agent Trichoderma spp. Indian J Mycol Plant Pathol 23:328–330

    Google Scholar 

  • Sapieha-Waszkiewicz A, Marjanska-Cichon B, Miêtkiewski R (2004) The effect of fungicides applied in apple orchards on entomopathogenic fungi in vitro. Electron J Pol Agric Univ Hortic. http://www.ejpau.media.pl/volume7/issue1/horticulture/art-04.html

  • Sarkar S, Narayanan P, Divakaran A, Balamurugan A, Premkumar R (2010) The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turk J Biol 34:399–403

    CAS  Google Scholar 

  • Saued AAHH, Abd Al-Rahman MA, Zedan AMG, El-Hafnawy SFM (2013) Effect of chemical mutagens on some bacteria and fungi strains to induce para-nodules in wheat plants. Alex J Agric Res 58:209–217

    Google Scholar 

  • Sawant IS, Mudhopadhay AN (1990) Integration of metaxyl with Trichoderma harzianum for the control of Pythium damping-off in sugar beet. Indian Phytopathol 43:535–541

    CAS  Google Scholar 

  • Saxena D, Tewari AK, Rai D (2014) The in vitro effect of some commonly used fungicides, insecticides and herbicides for their compatibility with Trichoderma harzianum PBT23. World Appl Sci J 31:444–448. https://doi.org/10.5829/idos.wasj.2014.31.04.78

    Article  Google Scholar 

  • Scholte E-J (2005) An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308(5728):1641–1642

    Article  CAS  PubMed  Google Scholar 

  • Schumacher V, Poehling HM (2012) In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae. Fung Biol 116:121–132. https://doi.org/10.1016/j.funbio.2011.10.007

    Article  CAS  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939. https://doi.org/10.1111/j.1742-4658.2005.04994.x

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genom 10:567. https://doi.org/10.1186/1471-2164-10-567

    Article  CAS  Google Scholar 

  • Sepũlveda M, Vargas M, Gerding M, Ceballos R, Oyarzúa (2016) Molecular, morphological and pathogenic characterization of six strains of Metarhizium spp. (Deuteromycotina: Hyphomycetes) for the control of Aegorhinus superciliosus (Coleoptera: Curculionidae). Chilean J Agric Res 76:77–83. http://dx.doi.org/10.4067/S0718-58392016000100011

    Article  Google Scholar 

  • Sesan TE, Oprea M (1999) The in vitro action of fungicides and insecto-fungicides on the antagonistic fungi used as biocontrol agents. Bull Pol Acad Sci-Biol Sci 47:183–195

    CAS  Google Scholar 

  • Seymour NP, Thompson JP, Fiske ML (1994) Phytotoxicity of fosetyl-Al and phosphonic acid to maize during production of vesicular arbuscular mycorrhizal inoculum. Plant Dis 78:441–446. https://doi.org/10.1094/PD-78-0441

    Article  CAS  Google Scholar 

  • Shafa K, Bagwan NB, Sumia F, Iqbal MA (2012) In vitro compatibility of two entomopathogenic fungi with selected insecticides, fungicides and plant growth regulators. Libyan Agric Res Cent J Int 3:36–41

    Google Scholar 

  • Shah FA, Ansari MA, Prasad M, Butt TM (2007) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol Control 40:246–252. https://doi.org/10.1016/j.biocontrol.2006.10.005

    Article  CAS  Google Scholar 

  • Shah FA, Ansari MA, Watkins J, Phelps Z, Cross J, Butt TM (2009) Influence of commercial fungicides on the germination, growth and virulence of four species of entomopathogenic fungi. Biocontrol Sci Technol 19:743–753. https://doi.org/10.1080/09583150903100807

    Article  Google Scholar 

  • Shah FA, Gaffney M, Ansari MA, Prasad M, Butt TM (2008) Neem seed cake enhances the efficacy of the insect pathogenic fungus Metarhizium anisopliae for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biol Control 44:111–115. https://doi.org/10.1016/j.biocontrol.2007.09.009

    Article  Google Scholar 

  • Shah S, Nasreen S, Kousar S (2013) Efficacy of fungicides against Trichoderma spp. causing green mold disease of oyster mushroom (Pleurotus sajor-caju). Res J Microbiol 8:13–24. https://doi.org/10.3923/jm.2013.13.24

    Article  CAS  Google Scholar 

  • Sahayaraj K, Karthick R, Namasivayam S, Martin Rathi J (2011) Compatibility of entomopathogenic fungi with extracts of plants and commercial botanicals. Afr J Biotechnol 10:933–938

    Google Scholar 

  • Shabir R, Rubina L (2010) Biological control of damping-off disease of cabbage caused by Rhizoctonia solani Kuehn. Appl Biol Res 12:38–41

    Google Scholar 

  • Shandliya TR, Guloria DS (1984) Control of green mold (Trichoderma viride) during the cultivation of Agaricus bitorquis. Indian J Plant Pathol 2:7–12

    Google Scholar 

  • Shapiro-Ilan DI, Reilly CC, Hotchkiss MW (2011) Comparative impact of artificial selection for fungicide resistance on Beauveria bassiana and Metarhizium brunneum. Environ Entomol 40:59–65. https://doi.org/10.1603/EN10214

    Article  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Reilly CC, Hotchkiss MW, Wood BW (2002) The potential for enhanced fungicide resistance in Beauveria bassiana through strain discovery and artificial selection. J Invertebr Pathol 81:86–93. https://www.ncbi.nlm.nih.gov/pubmed/12445792

    Article  CAS  PubMed  Google Scholar 

  • Sharma SD, Mishra A (1995) Tolerance of Trichoderma harzianum to agrochemicals. In: Global conference on advances in research on plant diseases and their management, Rajasthan College of Agriculture, India, 12–17 Feb 1995

    Google Scholar 

  • Sharma SD, Mishra A, Pandey RN, Patel SJ (2001) Sensitivity of Trichoderma harzianum to fungicides. J Mycol Plant Pathol 31:251–253

    CAS  Google Scholar 

  • Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T (2013) Enhanced fungicide resistance in Isaria fumosorosea following ionizing radiation-induced mutagenesis. FEMS Microbiol Lett 349:54–60. https://doi.org/10.1111/1574-6968.12295

    Article  CAS  PubMed  Google Scholar 

  • Shovan LR (2012) Characterization of Botrytis cinerea, Trichoderma species and other fungi, including studies on inhibitory effects of chitosan and fungicides. Master thesis. Nor J Agric Sci, http://www.nb.no/idtjeneste/URN:NBN:no-bibsys_brage29945, http://hdl.handle.net/11250/186353

  • Shukla HS (2011) Compatibility of Trichoderma viride with botanical and synthetic pesticide/ insecticide fungicide. Asian J Chem Environ Res 4:62–63

    CAS  Google Scholar 

  • Shukla AK, Tiwari BK, Misra RR (1987) Effect of benomyl, copper oxychloride and maneb on rhizosphere microflora of potato. Proc Indian Nat Sci Acad B 53:273–278

    CAS  Google Scholar 

  • Singh RS (2001) Plant disease management. Science Publishers,

    Google Scholar 

  • Singh RS, Jindal A, Singh D, Singh T (1995) Selection of Trichoderma isolates against common fungicides for their use in integrated plant disease management. In: Special issue of the global conference on advances in research on plant disease and their management, Udaipur, pp 127–128

    Google Scholar 

  • Singh M, Mersie W, Brlansky RH (2003) Phytotoxicity of the fungicide metalaxyl and its optical isomers. Plant Dis 87:1144–1147. https://doi.org/10.1094/PDIS.2003.87.9.1144

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Srivastav S, Shrivastava SK, Singh HB (2012) Compatibility of different insecticides with Trichoderma harzianum under in vitro conditions. Plant Pathol J 11:73–76. https://doi.org/10.3923/ppj.2012.73.76

    Article  CAS  Google Scholar 

  • Small CLN, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313. https://doi.org/10.1017/S0953756204001856

    Article  CAS  PubMed  Google Scholar 

  • Song TT, Ying SH, Feng MG (2011) High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation. J Appl Microbiol 112:175–184. https://doi.org/10.1111/j.1365-2672.2011.05188.x

    Article  CAS  PubMed  Google Scholar 

  • Sosa-Gómez DR, Delpin KE, Moscardi F, Nozaki MH (2003) The impact of fungicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop Entomol 32:287–291. https://doi.org/10.1590/S1519-566X2003000200014

    Article  Google Scholar 

  • Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp., as a biocontrol agent against soil borne fungi and plant-parasitic nematodes in Israel. Integr Pest Manage Rev 3:169–175. https://doi.org/10.1023/A:1009625831128

    Article  Google Scholar 

  • Srinivas P, Ramakrishnan G (2002) Use of native microorganisms and commonly recommended fungicides in integrated management of rice seed borne pathogens. Ann Plant Prot Sci 10:260–264

    Google Scholar 

  • Srinivasulu M, Mohiddin GJ, Subramanyam K, Rangaswamy V (2012) Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. Environ Geochem Health 34:365–374. https://doi.org/10.1007/s10653-011-9399-x

    Article  CAS  PubMed  Google Scholar 

  • Srisukchayakul P, Wiwat C, Pantuwatana S (2005) ScienceAsia 31(3):273

    Google Scholar 

  • Srivastava LS, Dayal R (1981) Studies on rhizosphere microflora of Ablemoschus esculentus—effect of fungicidal spray on rhizosphere and rhizoplane microflora. Indian Phytopathol 34:426–429

    Google Scholar 

  • Stanley J, Chandrasekaran S, Preetha G, Kuttalam S (2010) Physical and biological compatibility of diafenthiuron with micro/ macro nutrients, fungicides and biocontrol agents used in cardamom. Arch Phytopathol Plant Prot 43:1396–1406. https://doi.org/10.1080/03235400802476617

    Article  CAS  Google Scholar 

  • Sterk G, Heuts F, Merck N, Bock J (2002) Sensitivity of non-target arthropods and beneficial fungal species to chemical and biological plant protection products: results of laboratory and semi-field trials. In: First international symposium on biological control of arthropods. Honolulu, pp 306–313

    Google Scholar 

  • Storey GK, Gardner WA (1986) Sensitivity of the entomogenous fungus Beauveria bassiana to selected plant growth regulators and spray additives. Appl Environ Microbiol 52:1–3. https://www.ncbi.nlm.nih.gov/pubmed/16347095

  • Sudha M (1979) Rhizosphere and rhizoplane mycoflora of three potato varieties. Indian Phytopathol 32:51–54

    Google Scholar 

  • Sun MH, Liu XZ (2006) Carbon requirements of some nematophagous, entomophathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents. Mycopathol 161:295–305. https://doi.org/10.1007/s11046-006-0249-9

    Article  CAS  Google Scholar 

  • Sundar AR, Das ND, Krishnaveni D (1995) In vitro antagonism of Trichoderma spp. against two fungal pathogens of castor. Indian J Plant Prot 23:152–155

    Google Scholar 

  • Suseela B, Thomas J (2010) Compatibility of Trichoderma harzianum (Ritai.) with fungicides, insecticides and fertilizers. Indian Phytopathol 63:145–148

    Google Scholar 

  • Sushir MA, Pandey RN (2001) Tolerance of Trichoderma harzianum (Refai) to insecticides and weedicides. J Mycol Plant Pathol 31:106

    Google Scholar 

  • Sushir MA, Suryawanshi KK, Patole SP (2015) Sensitivity of Trichoderma harzianum Rifai against systemic fungicides. Int J Appl Res 1:403–405

    Google Scholar 

  • Tamai MA, Alves SB, Lopes RB, Faion M, Padulla LFL (2002) Toxicidade de produtos fitossanitóríos para Beauveria bassiana (Bals.) Vuill. Arq Inst Biol 69:89–96

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233. https://www.ncbi.nlm.nih.gov/pubmed/20505261

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Hou RF (1998) Potential application of entomopathogenic fungus, Nomuraea rileyi for control of corn earworm, Helicoverpa armigera. Entomol Exp Appl 88:25–30. https://doi.org/10.1046/j.1570-7458.1998.00342.x

    Article  Google Scholar 

  • Thapa CD, Seth PK (1977) Occurrence of green mold (Trichoderma viride) in mushroom beds causing Trichoderma spot or blotch of mushroom (Agaricus bisporus (Lange)). Indian J Mushrooms 3:26–30

    Google Scholar 

  • Tapwal A, Kumar R, Gautam N, Pandey S (2012) Compatibility of Trichoderma viride for selected fungicides and botanicals. Int J Plant Pathol 3:89–94

    Article  Google Scholar 

  • Tedders WL (1981) In vitro inhibition of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae by six fungicides used in pecan. Environ Entomol 10:346–349. https://doi.org/10.1093/ee/10.3.346

    Article  CAS  Google Scholar 

  • Thomson WT (1997) Agricultural chemicals. In: Thomson WT (ed) Book IV—fungicides. Thomson Publications, Fresno

    Google Scholar 

  • Thriveni T, Kumar JR, Lee JY, Sreedhar NY (2009) Study of the voltammetric behaviour of the ethalfluralin and methalpropalin and its determination in environmental matrices at hanging mercury drop electrode. Environ Monit Assess 151:9–18. https://www.ncbi.nlm.nih.gov/pubmed/18386143

    Article  PubMed  CAS  Google Scholar 

  • Tiwari RKS, Rajput ML, Singh A, Thakur BS (2004) Non-target effect of insecticides on the mycelial growth of Trichoderma harzianum (Rifai). Indian J Plant Prot 32:140–141

    Google Scholar 

  • Tkaczuk C, Majchrowska-Safaryan A, Miętkiewski R (2013) The influence of selected fungicides and soil extracts on the growth of entomopathogenic fungus Metarhizium anisopliae. Prog Plant Prot 53:751–756

    Google Scholar 

  • Todorova SI, Coderre D, Duchesne RM, Cote JC (1998) Compatibility of Beauveria bassiana with selected fungicides and herbicides. Biol Control 27:427–433. https://doi.org/10.1093/ee/27.2.427

    Article  CAS  Google Scholar 

  • Toghueo RMK, Eke P, González IZ, de Aldana BRV, Nana LW, Boyom FF (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biol Control 96:2–8. https://doi.org/10.1016/j.biocontrol.2016.01.008

    Article  Google Scholar 

  • Toyoshima Y, Takahashi A, Tanaka H, Watanabe J, Moqi Y, Yamazaki T, Hamada R, Iwashita K, Satoh K, Narumi I (2012) Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae. Mutat Res 740:43–49. https://doi.org/10.1016/j.mrfmmm.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  • Unger TA (1996) Binapacryl. In: Unger TA (ed) Pesticide synthesis handbook. William Andrew Publishing, Park Ridge

    Google Scholar 

  • Usha J, Naren Babu M, Padmaja V (2014) Detection of compatibility of entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. with pesticides, fungicides and botanicals. Int J Plant Anim Environ Sci 4:613–624

    CAS  Google Scholar 

  • Valarmathi P, Pareek SK, Priya V, Rabindran R, Chandrasekar G (2013) Compatibility of copper hydroxide (Kocide 3000) with biocontrol agents. IOSR J Agric Vet Sci 3:28–31

    Article  Google Scholar 

  • Vӓnninen I, Hokkanen H (1988) Effect of pesticides on four species of entomopathogenic fungi in vitro. Ann Agric Fenn 27:345–353

    Google Scholar 

  • Vargas WA, Mandawe JC, Kenerly CM (2009) Plant-derived sucrose id a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. https://doi.org/10.1104/pp.109.141291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas LRB, Rossato M, Silva Ribeiro RTD, de Barros NM (2003) Characterization of Nomuraea rileyi strains using polymorphic DNA, virulence and enzyme activity. Braz Arch Biol Technol 46(1):13–19

    Article  CAS  Google Scholar 

  • Vasundara P, Rangaswamy V, Johnson M (2015) Compatibility studies with fungicides, insecticides and their combinations on Trichoderma viride in in vitro conditions. Int J Sci Eng Res 6:310–316

    Google Scholar 

  • Von Jagow G, Link TA (1986) Use of specific inhibitors on the mitochondrial bc1 complex. Methods Enzymol 126:253–271. https://doi.org/10.1016/S0076-6879(86)26026-7

    Article  Google Scholar 

  • Vu VH, Pham TA, Kim K (2009) Fungal strain improvement for cellulose production using repeated and sequential mutagenesis. Mycobiology 37:267–271. https://doi.org/10.4489/MYCO.2009.37.4.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas RV, Jani II, Yadav DN (1992) Effect of some natural pesticides on entomogenous muscardine fungi. Indian J Exp Biol 30:435–436

    CAS  PubMed  Google Scholar 

  • Wang G, Liu Z, Lin R, Li E, Mao Z, Ling J, Yang Y, Yin WB, Xie B (2016) Biosynthesis of antibiotic leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on Phytophthora revealed by genome mining. PLoS Pathog 12:e1005685. https://doi.org/10.1371/journal.ppat.1005685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westrum K, Duarte VS, Humber RA, Delalibera I, Klingen I (2014) Confirmation of Neozygites floridana azygospore formation in two-spotted spider mite (Tetranychus urticae) in strains from tropical and temperate regions. J Invertebr Pathol 122:1–5. https://doi.org/10.1016/j.jip.2014.07.008

    Article  PubMed  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126. https://doi.org/10.2174/1874437001408010071

    Article  Google Scholar 

  • Woodward JE (2002) Evaluating the influence of fungicides on the nematophagous fungus Arthrobotrys oligospora in putting green soils. M Sc thesis, Faculty of the Graduate College, Oklahoma State University. https://dc.library.okstate.edu/digital/collection/theses/id/4535/

  • Xu F, Tao W, Cheng L, Guo L (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73. https://doi.org/10.1016/j.bej.2006.05.024

    Article  CAS  Google Scholar 

  • Yamamoto E, Baird V (1999) Molecular characterizationof fourbeta-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica. Plant Mol Biol 39:45–61. https://www.ncbi.nlm.nih.gov/pubmed/10080708

  • Yáñez M, France A (2010) Effects of fungicides on the development of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Chilean J Agric Res 70(3)

    Google Scholar 

  • Yan K, Dickman M (1996) Isolation of a β-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Appl Environ Microbiol 62:3053–3056. https://www.ncbi.nlm.nih.gov/pubmed/8702300

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yil JE, Bong CFJ, King JHP, Kadir J (2016) Synergism of entomopathogenic fungus, Metarhizium anisopliae incorporated with fipronil against oil palm subterranean termite, Coptotermes curvignathus. Plant Protect Sci 52:35–44. https://dx.doi.org/10.17221/82/2015-PPS

  • Ying SH, Feng MG, Xu ST (2003) Field efficacy of emulsifiable suspensions of Beauveria bassiana conidia for control of Myzus persicae population on cabbage in China. J Appl Ecol 14:545–548. https://www.ncbi.nlm.nih.gov/pubmed/12920898

  • Yuan S, Zuo G, Chen H (2007) Studies on the induction of biocontrol drug-resistant factor from Trichoderma and its biochemical characteristics. J Anhui Agric Sci 24:7523–7524

    Google Scholar 

  • Zaldúa S, Sanfuentes E (2010) Control de Botrytis cinerea en miniestacas de Eucalyptus globulus Utilizando Cepas de Clonostachys y Trichoderma. Chilean J Agric Res 70:576–582. https://doi.org/10.4067/S0718-58392010000400007

    Article  Google Scholar 

  • Zare R, Gams W (2001) A revision of Verticillium section Prostrata IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

    Google Scholar 

  • Zeilinger S, Schuhmacher R (2013) Volatile organic metabolites of Trichoderma spp.: biosynthesis, biology and analytics. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma biology and applications. Wallingford, Cab International, pp 110–127

    Chapter  Google Scholar 

  • Zhang H, Tweel B, Tong L (2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci USA 101:5910–5915. https://doi.org/10.1073/pnas.0400891101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Olaya G, Koller W (2000) Characterization of laboratory mutants of Venturia inaequalis resistant to strobilurin-related fungicide kresoxim-methyl. Curr Genet 38:148–155. https://www.ncbi.nlm.nih.gov/pubmed/11057448

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G (1975) Uber die Wirkung systemischer Fungizide auf verschiedene insektenoathogene fungi imperfecti in vitro. Nachrbl Dtsch Pflanzenschutzd 27:113–117

    Google Scholar 

  • Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 18:865–901. https://doi.org/10.1080/09583150802471812

    Article  Google Scholar 

  • Zou G, Ying SH, Shen ZC, Feng MG (2006) Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ Microbiol 8:2096–2105. https://www.ncbi.nlm.nih.gov/pubmed/17107551

    Article  CAS  PubMed  Google Scholar 

  • Zurek L, Watson DW, Schal C (2002) Synergism between Metarhizium anisopliae (Deuteromycota: Hyphomycete) and boric acid against the German cockroach (Dictyoptera: Blattellidae). Biol Control 23:296–302. https://doi.org/10.1006/bcon.2001.1012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Pakdaman Sardrood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pakdaman Sardrood, B., Mohammadi Goltapeh, E. (2018). Effect of Agricultural Chemicals and Organic Amendments on Biological Control Fungi. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 31. Sustainable Agriculture Reviews, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-94232-2_5

Download citation

Publish with us

Policies and ethics