Skip to main content

Diversity, Ecology, and Conservation of Fungal and Bacterial Endophytes

  • Chapter
  • First Online:
Microbial Resource Conservation

Abstract

Every plant present on the earth is accompanied by internal association of microbes generally pronounced as endophytes. Bacterial and fungal endophytic microbes are among one of them. Their presence was noted in various niches ranging from mountain to sea, from forest to desert, and, moreover, in cold and in hot spring, copper mine wasteland, agronomic crops, prairie plants, deepwater rice, and grass ecosystem. These endophytic microbes are agriculturally important because of their various plant growth-promoting traits. They are found to inhabit the seeds, roots, stems, and leaves and even the periderm. These endophytic microbes generally enter the plant tissues via several “hotspots” like root system and mitigate with biotic and abiotic stresses, help to cure human diseases by producing several secondary metabolites, help in the induction and expression of plant immunity, exclude plant pathogens by niche competition, as well as actively participate in phenylpropanoid metabolism and antioxidant activities. The discoveries of novel bioactive compound and defense activator like antifungal, antibacterial, antiviral, and antitumor compounds, antibiotics, secondary metabolites, and volatile insecticides attributed to these endophytes are utilized as therapeutic agents in the field of pharmaceutical, medicine, agriculture, and industries. The conservation of endophytic microbes and their gene pools is an emerging and vital issue, even though the development is scary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahl P, Voisarad C, Defago G (1986) Iron siderophores, cyanic acid and antibiotics involved in suppression of Thielaviopsis basicola by Pseudomonas fluorescens strain. J Phytopathol 116:121–134

    Article  CAS  Google Scholar 

  • Akbari DL, Akbari LF (2017) Detection of GFP expression and colonization of wheat by two endophytic bacteria tagged with GFP gene. Int J Pure App Biosci 5:844–848

    Article  Google Scholar 

  • Algam SA, Guan-lin X, Coosemans J (2005) Delivery methods for introducing endophytic Bacillus into tomato and their effect on growth promotion and suppression of tomato wilt. Plant Pathol J 4:69–74

    Article  Google Scholar 

  • Ambrose KV, Tian Z, Wang Y, Smith J, Zylstra G, Huang B, Belanger FC (2015) Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Sci Rep 5:10939. https://doi.org/10.1038/srep10939

    Article  PubMed  PubMed Central  Google Scholar 

  • Anu Ranjan S (2012) Microbial endophytes of crop plants and their role in plant growth promotion. Ph.D. Thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Armando CFD, Francisco ECC, Fernando DA, Paulo TL, Manoel AT, Laura CA, Welington LA, Joao LA, Itamar SM (2009) Isolation of micro propagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  • Bacilio-JimeÂnez M, Aguilar-Flores S, del Valle MV, Péreze A, Zepedae A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Bacon CW (1990) Isolation, culture and maintenance of endophytic fungi of grasses. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. McGraw-Hill, New York, pp 259–282

    Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  CAS  PubMed  Google Scholar 

  • Balsanelli E, Serrato RV, de Baura V Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244

    CAS  PubMed  Google Scholar 

  • Barakat RM, Al-Masri MI (2005) Biological control of gray mold disease (Botrytis cinerea) on tomato and bean plants by using local isolates of Trichoderma harzianum. Dirasat Agric Sci 32:145–156

    Google Scholar 

  • BCCM (2017) Belgian Coordinated Collections of Microorganisms. http://bccm.belspo.be/. Accessed 27 May 2017

  • Berger RG (2009) Biotechnology of flavours-the next generation. Biotechnol Lett 31:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedlings vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bodhankar S, Grover M, Hemanth S, Reddy G, Rasul S, Yadav SK, Desai S, Mallappa M, Mandapaka M, Srinivasarao C (2017) Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 7:1–13

    Article  Google Scholar 

  • Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64:965–967

    Article  CAS  PubMed  Google Scholar 

  • BRC (2016) Biological Resource Centre. https://www.brc.a-star.edu.sg/. Accessed 27 May 2017

  • Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the Paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdsall HH Jr, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280

    Article  Google Scholar 

  • Cannon PF (1995) An ATBI-how to find one and what to do with it. Inoculum 46:1–4

    Google Scholar 

  • Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robinson R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183–190

    Article  CAS  PubMed  Google Scholar 

  • Castillo U, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide spectrum antibiotics produced by Streptomyces munumbi, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen-fixing bacterium associated with sugar cane. Plant Soil 108:23–31

    Article  Google Scholar 

  • CCM (2017) Czech Collection of Microorganism. http://www.sci.muni.cz/ccm/. Accessed 27 May 2017

  • Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, Xu K (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13:4918–4931

    Article  CAS  PubMed  Google Scholar 

  • Chincholkar SB, Choudhari BL, Talegaenkar SK, Kothari RM (2000) Microbial chelators, a sustainable tool for the biocontrol of plant diseases. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture, Crop disease, weeds and nematodes, vol I. Kluwen Academic/Plenum, New York

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Abreu CS, Figueiredo JEF, Oliveira CA, dos Santos VL, Gomes EA, Ribeiro VP, Barros BA, Lana UGP, Marriel IE (2017) Maize endophytic bacteria as mineral phosphate solubilizers. Genet Mol Res 16:gmr16019294

    Article  CAS  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten, Hofmeister’s handbook of physiological botany, vol II. W. Engelmann, Leipzig, Germany

    Google Scholar 

  • De Melo FMP, Fiore MF, de Moraes LAB, Silva-Stenico ME, Scramin S, de Araújo Teixeira M, de Melo IS (2009) Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4A. Sci Agric 66:583–592

    Article  Google Scholar 

  • De Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg B (1989) Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharides are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plant-microbe interactions. Springer, Berlin, Germany, pp 197–202

    Chapter  Google Scholar 

  • Dekkers LC, Phoelich CC, Fits LV, Lugtenberg BJJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Maier A, Fiebig H-H, Lin W-H, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski JE, Hollenbeck VG, Martin RC (2017) Isolation and identification of bacterial endophytes from grasses along the Oregon coast. Am J Plant Sci 8:574–601

    Article  CAS  Google Scholar 

  • Dorr J, Hurek T, Reinhold- Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    Article  CAS  PubMed  Google Scholar 

  • ECCO (1981) European Culture Collections’ Organisation. https://www.eccosite.org/. Accessed 27 May 2017

  • Edwards CL, Maguire RO, Alley MM, Thomason WE, Whitehurst GB (2016) Plant-available phosphorus after application of synthetic chelating agents. Commun Soil Sci Plant Anal 47:433–446

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess W, Porter H, Jensen J, Condron M (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  • Fontaine MS, Young PH, Torrey JG (1986) Effects of long-term preservation of Frankia strains on infectivity, effectivity, and in vitro nitrogenase activity. Appl Environ Microbiol 51:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Freeman EM (1904) The seed fungus of Lolium temulentum L. Phil Trans R Soc Lond (Biol) 196:1–27

    Article  Google Scholar 

  • Gaiero JR, Mccall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2009) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 52:9–15

    Article  CAS  PubMed  Google Scholar 

  • Gautam AK (2013) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Protect 47:537–544. https://doi.org/10.1080/03235408.2013.813678

    Article  CAS  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Germaine K, Keogh E, Garcia-cabellos G (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Gherna RL (1981) Preservation. In: Gerhardt P, Murray RGE, Costilow RN et al (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 208–217

    Google Scholar 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2-fixation in cereals and grasses: a hypothetical and experimental framework. Symbiosis 35:3–17

    CAS  Google Scholar 

  • Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Z, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89:295–311

    Article  Google Scholar 

  • GRBio (2017) The global registry of biodiversity repositories. http://grbio.org/non-institutional-collection/fungal-endophytes-collection-research-group-agronomy. Accessed 27 May 2017

  • Gurikar C, Naik MK, Sreenivasa MY (2016) Azotobacter: PGPR activities with special reference to effect of pesticides and biodegradation. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: research perspectives. Springer, New Delhi

    Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Hallmann A, Quandt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91:415–421

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee IJ (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686. https://doi.org/10.3389/fmicb.2017.00686

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamayun M, Khan SA, Iqbal I, Na CI, Khan AL, Hwang YH, Lee BH, Lee IJ (2009) Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J Microbiol 47:425–430

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Overbeek LSV, Elsas JDV (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world with in plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39:187–200

    Article  Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Tomer DP, Grant DM, Porco J, Oneill K (2003) Pestacin: a 1,3- dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    Article  CAS  Google Scholar 

  • Hastuti RD, Lestari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19:155–162

    Article  Google Scholar 

  • He R-L, Wang G-P, Liu X-H, Zhang C-L, Lin F (2009) Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. Afr J Biotechnol 8:191–195

    CAS  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43

    Article  CAS  Google Scholar 

  • Hong CE, Jo SH, Moon JY, Lee J-S, Kwon S-Y, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytopathogens. Plant Biotechnol Rep 9:451–458

    Article  Google Scholar 

  • Hu H-J, Chen Y-L, Wang Y-F, Tang Y-Y, Chen S-L, Yan S-Z (2017) Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Dis 101:448–455

    Article  PubMed  Google Scholar 

  • ITCC (2010) Indian Type Culture Collection. http://www.iari.res.in/?option=com_content&view=article&id=1251&Itemid=1809. Accessed 27 May 2017

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars? Microbiol Res 169:83–98

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:1–22

    Article  CAS  Google Scholar 

  • Johri BN (2006) Endophytic to the rescue of plant. Curr Sci 90:1315–1316

    Google Scholar 

  • KACC (1995) Korean Agricultural Culture Collection – Rural Development Administration. http://genebank.rda.go.kr/eng/mic/itr/GeneInfo.do. Accessed 27 May 2017

  • Karthik M, Pushpakanth P, Krishnamoorthy R, Senthilkumar M (2017) Endophytic bacteria associated with banana cultivars and their inoculation effect on plant growth. J Hortic Sci Biotechnol 92:1–9. https://doi.org/10.1080/14620316.2017.1310600

    Article  CAS  Google Scholar 

  • Katoch M, Pull S (2017) Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm Biol 55:1528–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • KCTC (1985) Korean Collection for Type Cultures. http://kctc.kribb.re.kr/English/ekctc.aspx. Accessed 27 May 2017

  • Kelemu S, Fory P, Zuleta C, Ricaurte J, Rao I, Lascano C (2011) Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotechnol 10:965–976

    Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. https://doi.org/10.1186/1471-2180-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 105–132

    Chapter  Google Scholar 

  • Khan R, Shahzad S, Choudhary MI, Khan SA, Ahmad A (2010) Communities of endophytic fungi in medicinal plant Withania somnifera. Pak J Bot 42:1281–1287

    Google Scholar 

  • Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidby DK (1977) Culture maintenance and productivity. In: Sandford PA, Laskin A (eds) Extracellular microbial polysaccharides. American Chemical Society, Washington DC, pp 1–13

    Google Scholar 

  • Kirsop BE, Snell JJS (eds) (1984) Maintenance of microorganisms. Academic, London

    Google Scholar 

  • Kittiwongwattana C (2015) Biodiversity of endophytic bacteria isolated from duckweed (Landoltia punctata) and their IAA production. Thammasat Int J Sci Tech 20:1–11

    Google Scholar 

  • Kogel K-H, Franken P, Huckelhoven R (2006) Endophyte or parasite- what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22:5370–5382

    Article  CAS  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60. https://doi.org/10.1007/s13205-016-0393-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar PMP, Ramesh S, Thipeswamy T, Sivaprasad V (2015) Antagonistic and growth promotion potential of endophytic bacteria of mulberry (Morus spp.). Int J Ind Entomol 31:107–114

    Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8:438–446

    Article  CAS  Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigates Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AVC, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa sub sp. Pauca. Pesq agropec bras, Brasília 43:521–528

    Article  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lanna-Filho R, Souza RM, Magalhães MM, Villela L, Zanotto E, Ribeiro-Júnior PM, Resende MLV (2013) Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Trop Plant Pathol 38:295–302

    Article  Google Scholar 

  • Lee J, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A & B: immunosuppressive compounds from the endophytic fungus- Fusarium subglutinans. J Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sinkko H, Montonen L, Wei G, Lindström K, Räsänen LA (2012) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol 79:46–68

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Q, Wang L, He LY, Sheng XF (2016) Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicol Environ Saf 124:163–168

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cheng C, An D (2017) Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L. Plant Prot Sci 53:32–43. https://doi.org/10.17221/14/2016-PPS

    Article  CAS  Google Scholar 

  • Liu B, Huang L, Buchenauer H, Kang Z (2010a) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol 98:305–311

    Article  CAS  Google Scholar 

  • Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX (2004) Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114:279–287

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2010b) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminate. Biotechnol Lett 32:689–693

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino- 4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247

    Article  CAS  PubMed  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F (2002) Endophytic bacteria and their potential applications. Crit Rev. Plant Sci 21:583–606

    Article  Google Scholar 

  • Logeshwaran P, Thangaraju M, Rajasundari K (2009) Hydroxamate siderophores of endophytic bacteria Gluconacetobacter Diazotrophicus isolated from sugarcane roots. Aust J Basic App Sci 3:3564–3567

    CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defence responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Annu Rev. Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Meneses CHSG, Rouws LFM, Simoes-Araujo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389. https://doi.org/10.1007/s10482-007-9167-1

    Article  PubMed  Google Scholar 

  • Miche L, Battistoni F, Gemmer S (2006) Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19:502–511

    Article  CAS  PubMed  Google Scholar 

  • Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija 57:98–102

    Article  Google Scholar 

  • Miliute I, Buzaite O, Gelvonauskiene D, Sasnauskas A, Stanys V, Baniulis D (2016) Plant growth promoting and antagonistic properties of endophytic bacteria isolated from domestic apple. Zemdirbyste-Agriculture 103:77–82

    Article  Google Scholar 

  • Miller SH, Browne P, Prigent-Cambaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilisation in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Mocali S, Fabiani A, Chiellini C, Gori G, Gonnelli C (2017) Endophytic and rhizospheric bacteria associated with Silene paradoxa grown on metal-contaminated soils are selected and transferred to the next generation of plants as seed endophytes. GRA 19:EGU2017–EGU9137

    Google Scholar 

  • Montalbán B, Thijs S, Lobo MC, Weyens N, Ameloot M, Vangronsveld J, Pérez-Sanz A (2017) Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int J Mol Sci 18:2026. https://doi.org/10.3390/ijms18102026

    Article  PubMed Central  Google Scholar 

  • Monteiro MCP, Alves NM, de Queiroz MV, Pinho DB, Pereira OL, de Souza SMC, Cardoso PG (2017) Antimicrobial activity of endophytic fungi from coffee plants. Biosci J 33:381–389

    Article  Google Scholar 

  • Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN (2015) Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front Plant Sci 6:805. https://doi.org/10.3389/fpls.2015.00805

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210:657–668

    Article  CAS  PubMed  Google Scholar 

  • MTCC (2017) The Microbial Type Culture Collection and Gene Bank. https://www.mtccindia.res.in/. Accessed 27 May 2017

  • Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26:41–51

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Bhattacharjee P, Das R, Pal A, Paul AK (2017) Endophytic bacteria with plant growth promoting abilities from Ophioglossum reticulatum L. AIMS Microbiol 3:596–612. https://doi.org/10.3934/microbiol.2017.3.596

    Article  PubMed  PubMed Central  Google Scholar 

  • NAIMCC (2017) National Agriculturally Important Microbial Culture Collection. http://nbaim.org.in/pages/services-culture-collectionnaimccculture-collectionnaimcc. Accessed 27 May 2017

  • Nakasone KK, Peterson SW, Jong SC (2004) Preservation and distribution of fungal cultures. Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 37–47

    Book  Google Scholar 

  • Nascimento MA, Nascimento CV, Antunes JE, Figueiredo MV, Tabosa JN, Martínez CR (2014) Selection of plant growth promoting bacteria in sweet sorghum (Sorghum bicolor (L.) Moench) under the effects of salinity. BMC Proc 8:P113

    Article  PubMed Central  Google Scholar 

  • Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422

    CAS  Google Scholar 

  • Nielson TH, Christopheresen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    Article  Google Scholar 

  • Nielson TH, Tharne C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin-a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  Google Scholar 

  • Oliveira CA, Alves VM, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res 31:137–143

    Article  CAS  PubMed  Google Scholar 

  • Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB (2012) Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J Phytopathol 160:532–539

    Article  Google Scholar 

  • Pandey PK, Singh AK, Singh S, Chandrakumar Singh M (2013) Bacterial Endophytes: current status and future prospects. In: Tiwari SP, Sharma R, Singh RK (eds) Recent advances in microbiology, vol 1. Nova Science, New York, pp 495–518

    Google Scholar 

  • Pandey PK, Singh S, RNS Y, Singh AK, MCk S (2014) Fungal endophytes: promising tools for pharmaceutical science. Inter J Pharm Sci Rev Res 25:128–138

    Google Scholar 

  • Pandey PK, MCk S, Singh AK, Singh S, Pandey AK, Pathak M, Kumar M, Shakywar RC, Patidar RK, Devi MB (2016) Arsenal of endophytic actinobacterial microbes. Int J Curr Microbiol App Sci 5:62–66

    Article  CAS  Google Scholar 

  • Pandey PK, MCk S, Singh S, Singh AK, Kumar M, Pathak M, Shakywar RC, Pandey AK (2017) Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. Int J Curr Microbiol App Sci 6:11–21

    Article  CAS  Google Scholar 

  • Pandi M, Manikandan R, Muthumary J (2010) Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., An endophytic fungus, against 7, 12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague dawley rats. Biomed Pharmacother 64:48–53

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW, Jang KS, Cho KY, Kim J-C (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Park M, Lee H, Hong SG, Kim O-S (2013) Endophytic bacterial diversity of an Antarctic moss, Sanionia uncinata. Antarct Sci 25:51–54

    Article  Google Scholar 

  • PCC (2015) Pastuer cutlure collection of cyanobacteria. Web site – Institut Pasteur. http://cyanobacteria.web.pasteur.fr/. Accessed 27 May 2017

  • Pathak KV (2011) Purification and characterization of antifungal compounds produced by banyan endophytic Bacilli. PhD Thesis, Sardar Patel University, Gujarat

    Google Scholar 

  • Paul NC, Ji SH, Deng JX, Yu SH (2013) Assemblages of endophytic bacteria in chili pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics J 6:441–448

    Google Scholar 

  • Pavithra N, Sathish L, Ananda K (2012) Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. J Pharm Biomed Sci 16:1–6

    Google Scholar 

  • Perez-Rosales E, Alcaraz-Meléndez L, Puente ME, Vázquez-Juárez R, Quiroz-Guzmán E, Zenteno-Savín T, Morales-Bojórquez E (2017) Isolation and characterization of endophytic bacteria associated with roots of jojoba (Simmondsia chinensis (Link) Schneid). Curr Sci 112:396–401

    Article  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes in the tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaro J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27(A):69–77

    Article  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:8. https://doi.org/10.1186/2193-1801-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A (2013) Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol Microbiol 89:179–188

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858

    Article  Google Scholar 

  • Ratul N, Sharma GD, Barooah M (2013) Screening of endophytic bacterial isolates of tea (Camellia sinensis L.) roots for their multiple plant growth promoting activities. IJAEB 6:211–215

    Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19:181–188

    Article  CAS  PubMed  Google Scholar 

  • Reva ON, Smirnov VV, Pattersson B, Priest FG (2002) Bacillus endophyticus sp. Nov isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Bacteriol 52:101–107

    Article  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2015) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 4:1–6. https://doi.org/10.1007/s11104-015-2495-4

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Tansley review; fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Mcdonald K, Muehlbauer MF (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. Glob Change Biol Bioenergy 4:364–370

    Article  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martinez Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  CAS  PubMed  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R (2012) Plant growth enhancing effects by a siderophore producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:83. https://doi.org/10.3389/fpls.2015.00083

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloter M, Kirchhof G, Heinzmann U, Döbereiner J, Hartmann A (1994) Immunological studies of the wheat root colonization by the Azospirillum brasilense strains Sp7 and Sp 245 using strain specific monoclonal antibodies. In: Hegazi N, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. The American University in Cairo Press, Cairo, Egypt, pp 290–295

    Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Govindasamy V (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293. https://doi.org/10.1007/s00284008-9329-z

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant–growth–promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sev TM, Khai AA, Aung A, Yu SS (2016) Evaluation of endophytic bacteria from some rice varieties for plant growth promoting activities. JSIR 5:144–148

    Google Scholar 

  • Shaanker RU, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of N. nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Ramawat KG, Merillion J (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Germany, pp 198–210

    Google Scholar 

  • Shankar NB, Shashikala J (2010) Diversity and structure of fungal endophytes in some climbers and grass species of Malnad region, Western Ghats, Southern India. Mycosphere 1:265–274

    Google Scholar 

  • Sharma PK, Sarita S, Prell J (2005) Isolation and characterization of an endophytic bacterium related to Rhizobium/Agrobacterium from wheat (Triticum aestivum L) roots. Curr Sci 89:608–610

    Google Scholar 

  • Sharma S, Roy S (2015) Isolation and identification of a novel endophyte from a plant Amaranthus spinosus. Int J Curr Microbiol App Sci 4:785–798

    CAS  Google Scholar 

  • Sharma SK, Saini S, Verma A, Sharma PK, Lal R, Roy M, Singh UB, Saxena AK, Sharma AK (2017) National Agriculturally Important Microbial Culture Collection in the global context of microbial culture collection centres. Proc Natl Acad Sci India, Sect B Biol Sci. https://doi.org/10.1007/s40011-017-0882-8

  • Shcherbakov AV, Bragina AV, Kuzmina EY, Berg C, Muntyan AN, Makarova NM, Malfanova NV, Cardinale M, Berg G, Chebota VK, Tikhonovich IA (2013) Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology 82:306–315

    Article  CAS  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water Dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sikora RA, Schäfer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Pathol 36:124–134

    Article  Google Scholar 

  • Silva-Froufe LG, Boddey RM, Reis VM (2009) Quantification of natural populations of Gluconaceto bacterdiazo trophicus and Herbaspirillum spp. in sugar cane (Saccharum spp.) using different polyclonal antibodies. Braz J Microbiol 40:866–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons M, van der Bij AJ, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh MJ, Padmavathy S (2015) Hydrocarbon biodegradation by endophytic bacteria from neem leaves. LS: An Int J Life Sci 4:33–36

    Google Scholar 

  • Sly LI, Lijima T, Kirsop B (eds) (1990) 100 years of culture collections proceedings of the Kral Symposium to celebrate the centenary of the first recorded service culture collection. International House, Osaka

    Google Scholar 

  • Smith D (2003) Culture collections over the world. Int Microbiol 6:95–100

    Article  PubMed  Google Scholar 

  • Smith D, Onions AH (1983) A comparison of some preservation techniques for fungi. Trans Br Mycol Soc 81:535–540

    Article  Google Scholar 

  • Souza A, Cruz JC, Sousa NR, Procópio AR, Silva GF (2014) Endophytic bacteria from banana cultivars and their antifungal activity. Genet Mol Res 12:8661–8670

    Article  Google Scholar 

  • Stintzi AC, Barnes JX, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. PNAS 97:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Ming Wah Chau R (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X (1996) Taxol from fungal endophytes and issue of biodiversity. J Ind Microbiol 17:417–423

    CAS  Google Scholar 

  • Strobel GA, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev. Plant Sci 19:1–30

    Article  Google Scholar 

  • Sutjaritvorakul T, Whalley AJS, Sihanonth P, Roengsumran S (2011) Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpous forest at Viengsa district Nan province, Thailand. J Agric Tech 7:115–121

    Google Scholar 

  • Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90

    Article  CAS  PubMed  Google Scholar 

  • Swarnalatha Y, Saha B, Lokeswara Choudary Y (2015) Bioactive compound analysis and antioxidant activity of endophytic bacterial extract from Adhatoda beddomei. Asian J Pharm Clin Res 8:70–72

    Google Scholar 

  • Tenguria RK, Khan FN, Quereshi S (2011) Endophytes- mines of pharmacological therapeutics. World J Sci Tech 1:127–149

    CAS  Google Scholar 

  • Tervet IW, Holli JP (1948) Bacteria in the storage organs of healthy plants. J Phytopathol 38:960–967

    Google Scholar 

  • Thamizhvendan R, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    Article  CAS  Google Scholar 

  • TNCAGR (2017) The North Carolina Arboretum Germplasm Repository. http://www.ncarboretum.org/impact/germplasm-repository/. Accessed 27 May 2017

  • Tommerup IC, Kidby DK (1979) Preservation of spores of vesicular-arbuscular endophytes by L-drying. Appl Environ Microbiol 37:831–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upreti R, Thomas P (2015) Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:255. https://doi.org/10.3389/fmicb.2015.00255

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev. Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Vetrivelkalai P, Sivakumar M, Jonathan EI (2010) Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in bhendi. J Biopest 3:452–457

    Google Scholar 

  • Villacieros M, Power B, S’anchez-Contreras M, Lloret J, Oraezabal RI, Martin M, Fernandez-pinas F, Bonilla I, Whelan C, Dowling DN, Rivilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    Article  CAS  Google Scholar 

  • Vinale FK, Sivasithamparam EL, Ghisalberti R, Marra R, Woo SL, Lorito M (2008) Trichoderma plant pathogens interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vitorino LC, Silva FG, Soares MA, Souchie EL, Costa AC, Lima WC (2012) Solubilization of calcium and iron phosphate and in vitro production of Indole acetic acid by endophytic isolates of Hyptismar rubioides Epling (Lamiaceae). Inter Res J Biotechnol 3:47–54

    Google Scholar 

  • Vogl AE (1898) Mehl und die anderen mehlprodukte der cerealien und leguminosen. Nahrungsm Unters Hyg Warenk 12:25–29

    Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. W J Microbiol Biotech 23:79–83

    Article  CAS  Google Scholar 

  • Wang H, Wen K, Zhao X, Wang X, Li A, Hong H (2009) The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant Pathogenic fungi and its plant growth-promoting effect. Crop Prot 28:634–639

    Article  Google Scholar 

  • Wang X, Liang G (2014) Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum. Biomed Res Int 465435:1–11

    Google Scholar 

  • Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S (2016) Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: an insight into the microbiome of Crocus sativus Linn. Fungal Biol 120:1509–1524

    Article  PubMed  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo CJ (2004) Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina crista galli. J Antibiot 57:559–563

    Article  CAS  Google Scholar 

  • Weyens N, van’derLelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • WFCC (2011) World Federation for Culture Collection. http://www.wfcc.info/. Accessed 27 May 2017

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6(4):00221. https://doi.org/10.15406/apar.2017.06.00221

    Article  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol 49:90–92

    Google Scholar 

  • Yonebayashi K, Katsumi N, Nishi T, Okazaki M (2014) Activation of nitrogen-fixing endophytes is associated with the tuber growth of sweet potato. Mass Spectrom (Tokyo) 3(1):A0032. https://doi.org/10.5702/massspectrometry.A0032

    Article  Google Scholar 

  • Yonghong L, Jianwei G, Li L, Asem MD, Yongguang Z, Mohamad OA, Salam N, Wenjun L (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis K. M. Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9:432–445

    Article  Google Scholar 

  • Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:124–135

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, George A, Bailey MJ, Rainey PB (2006) The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Microbiology 152:1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, Spain, pp 567–576

    Google Scholar 

  • Zhao LF, Xu YJ, Zheng A, Lai XH (2017) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278. https://doi.org/10.1016/j.bjm.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhenhua X, Dongmei G, Xiuli S, Ying X (2012) A review of endophyte and its use and function. In: Proceedings of the International Conference on Environmental Engineering and Technology, Advances in Biomedical Engineering (ICEET’12), vol 8. Environmental Engineering and Technology, Zhangjiaji, China, pp 124–130

    Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the honorable Vice-Chancellor of the Central Agricultural University for encouraging and providing the necessary facilities. The financial grant (BT/04/NE/2009) from the Department of Biotechnology (DBT) Govt. of India for the Project “Establishment of Institutional Biotechnology Hub” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, P.K. et al. (2018). Diversity, Ecology, and Conservation of Fungal and Bacterial Endophytes. In: Sharma, S., Varma, A. (eds) Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_15

Download citation

Publish with us

Policies and ethics