Skip to main content

Life and the Need for a Solvent

  • Chapter
  • First Online:
Life in the Universe

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

Life as we know it consists of chemical interactions that take place in the liquid state, yet the requirement that life be liquid-based is not normally part of anyone’s definition of a living system. Thus, we cannot state categorically that life in either a solid or gaseous state is impossible. There are, however, compelling theoretical advantages for the complex chemical interactions that compose the living state to occur in a liquid medium. These include (1) an environment that allows for the stability of some chemical bonds to maintain macromolecular structure, while (2) promoting the dissolution of other chemical bonds with sufficient ease to enable frequent chemical interchange and energy transformations from one molecular state to another; (3) the ability to dissolve many solutes while enabling some macromolecules to resist dissolution, thereby providing boundaries, surfaces, interfaces, and stereochemical stability; (4) a density sufficient to maintain critical concentrations of reactants and constrain their dispersal; (5) a medium that provides both an upper and lower limit to the temperatures and pressures at which biochemical reactions operate, thereby funneling the evolution of metabolic pathways into a narrower range optimized for multiple interactions; and (6) a buffer against environmental fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, O., and D. Schulze-Makuch. 2002. Acetyle-based pathways for prebiotic evolution on Titan. pp. 349-352. 2nd European Workshop on Exo-Astrobiology (EANA/ESA), Graz, Austria.

    Google Scholar 

  • Anders, E., and N. Grevesse. 1989. Abundances of the elements; meteoritic and solar Geochim. Cosmochim. Acta 53: 197-214.

    Article  ADS  Google Scholar 

  • Aspinall, G.M., Copsey M.C, A.P. Ledham, et al. 2002. Imido analogues of p-block oxoanions. Coord. Chem. Rev. 227: 217-232.

    Article  Google Scholar 

  • Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiology 4: 137-167.

    Article  ADS  Google Scholar 

  • Baross, J.A., S.A. Benner, G.D Cody, S.D. Copley, N.R. Pace, and et al. 2007. The Limits of Organic Life in Planetary Systems. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Benner, S.A. 2002. Weird life: chances vs. necessity (alternative biochemistries). In “Weird Life” Planning Session for the Committee on the Origins and Evolution of Life, at Washington, DC, USA.

    Google Scholar 

  • Benner, S.A., A. Ricardo and M.A. Carrigan. 2004. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8: 672-689.

    Article  Google Scholar 

  • Benner, S.A. and H.-J. Kim. 2015. The case for a Martian origin for Earth life. SPIE Proc 9606: doi: https://doi.org/10.1117/12.2192890.

  • Bragger, J.M., R.V. Dunn and R.M. Daniel. 2000. Enzyme activity down to –100oC. Biochim. Biophys. Acta 1480: 278-282.

    Google Scholar 

  • Brown, R.D. 1984. Prebiotic matter in interstellar molecules. pp. 123-137 in Papagiannis MD, ed. The Search for Extraterrestrial Life: Recent Development. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Budavari, S., M.J. O’Neill, A. Smith, et al., eds. 1996. The Merck Index. Merck and Co., Whitehouse Station, NJ.

    Google Scholar 

  • Budisa, N. and D. Schulze-Makuch. 2014. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life (Basel) 4: 331-340.

    Google Scholar 

  • Budisa, N., V. Kubyshkin, and D. Schulze-Makuch. 2014. Fluorine-rich planetary environments as possible habitats for life. Life (Basel) 4: 374-85.

    Google Scholar 

  • Cabral, J.M.S. 2001. Biotransformations. pp. 471-502 in C. Ratledge and B. Kristiansen, eds. Basic Biotechnology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Carrea, G., G. Ottolina and S. Riva. 1995. Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 13: 63-70.

    Article  Google Scholar 

  • Cavicchioli, R. 2002. Extremophiles and the search for extraterrestrial life. Astrobiology 2: 281-292.

    Article  ADS  Google Scholar 

  • Chaplin, M.F. 2003. http://www.sbu.ac.uk/water/phase.html, web site accessed 22 May 2003. School of Applied Science, London South Bank University.

    Google Scholar 

  • Cleaves, C., G. Cody, J.P. Dworkin, M. Fogel, and R.M. Hazen. 2008. Recent insights into the prebiotic chemistry of HCN. Astrobiology 8: 3.

    Article  Google Scholar 

  • CRC. 2001. Handbook of chemistry and physics. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Daniel, R.M., J.L. Finney and M. Stoneham. 2004a. Introduction to discussion meeting issue on “The molecular basis of life: Is life possible without water?” Phil. Trans. Roy. Soc. Lond. B 359: 1143.

    Article  Google Scholar 

  • Eisch, J.J., P.R. Munson, and J.N. Gitua. 2004. The potential of photochemical transition metal reactions in prebiotic organic synthesis. I. Observed conversion of methanol into ethylene glycol as possible prototype for sugar alcohol formation Orig. Life Evol. Biosph. 34: 441-454.

    Article  ADS  Google Scholar 

  • Feinberg, G., and R. Shapiro. 1980. Life beyond Earth: The Intelligent Earthling’s Guide to Life in the Universe. William Morrow and Company, Inc, New York.

    Google Scholar 

  • Ferus, M., D. Nesvorny, J. Sponer, P. Kubelik, et al. 2015. High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA 112: 657-62.

    Article  ADS  Google Scholar 

  • Firsoff, V.A. 1963. Life beyond the Earth. Basic Books, Inc., New York.

    Google Scholar 

  • Foley, W.T., and P.A. Giguère. 1951. Hydrogen peroxide and its analogues: II. Phase equilibrium in the system hydrogen peroxide-water. Can. J. Chem. 29: 123-132.

    Article  Google Scholar 

  • Fortes, A.D. 2000. Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146: 444-452.

    Article  ADS  Google Scholar 

  • Giguère, P.A., and E.A. Secco. 1954. Hydrogen peroxide and its analogues: V. Phase equlibria in the system D2O-D2O2. Can. J. Chem. 32: 550-556.

    Article  Google Scholar 

  • Goldsmith, D., and T. Owen. 2003. The Search for Life in the Universe University Science Books, Sausalito.

    Google Scholar 

  • Grinspoon, D.H. 1997. Venus revealed: a new look below the clouds of our mysterious twin planet. Perseus Publishing, Cambridge, Massachusetts.

    Google Scholar 

  • Gusev, V.A. 2002. Chemical and prebiotic synthesis in the droplets of thunderstorm cloud. pp. 205-208. 2nd European Workshop on Exo-Astrobiology.

    Google Scholar 

  • Haldane, J.B.S. 1954. The origin of life Penguin Books, Harmondsworth.

    Google Scholar 

  • Hammond, C., R.L. Jenkins, N Dimitratos, J.A. Lopez-Sanchez, et al. 2012. Catalytic and Mechanistic Insights of the Low-Temperature Selective Oxidation of Methane over Cu-Promoted Fe-ZSM-. Chemistry 518: 15735-15745.

    Article  Google Scholar 

  • Houtkooper, J.M. and D. Schulze-Makuch. 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. Astrobiol. 6: 147–152.

    Google Scholar 

  • House, K.Z., D.P. Schrag, C.F. Harvey, et al. 2006. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. USA 103: 12291-12295.

    Article  ADS  Google Scholar 

  • Ikushima, Y. 1997. Supercritical fluids: an interesting medium for chemical and biochemical processes. Adv. Colloid Interface Sci. 71-72: 259-280.

    Article  Google Scholar 

  • Inagaki, F., M.M.M. Kuypers, U. Tsunogai, J.-I. Ishibashi, K.-I. Nakamura, et al. 2006. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa through hydrothermal system. Proc. Natl. Acad. Sci. USA 103: 14164-14169.

    Article  ADS  Google Scholar 

  • Irwin, L.N., and D. Schulze-Makuch. 2011. Cosmic Biology: How Life Could Evolve on Other Worlds. New York: Praxis.

    Book  Google Scholar 

  • Isken, S., and J.A.M. de Bont. 1998. Bacteria tolerant to organic solvents. Extremophiles 2: 229-238.

    Article  Google Scholar 

  • Jakosky, B. 1998. The search for life on other planets Cambridge University Press.

    Google Scholar 

  • Klibanov, A.M. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241-246.

    Article  ADS  Google Scholar 

  • J. Kreuzwieser, J.-P. Schnitzler, R. Steinbrecher, (1999) Biosynthesis of Organic Compounds Emitted by Plants. Plant Biology 1 (2):149-159

    Article  Google Scholar 

  • Leliwa-KopystyĹ„ski, J., M. Maruyama, and T. Nakajima. 2002. The water-ammonia phase diagram up to 300 MPa: application to icy satellites. Icarus 159: 518-528.

    Article  ADS  Google Scholar 

  • Lorenz, R.D., and J.I. Lunine. 1997. Titan’s surface reviewed: the nature of bright and dark terrain. Planet. Space Sci. 45: 981-992.

    Article  ADS  Google Scholar 

  • Lorenz, R.D. 2000. Post-Cassini exploration of Titan: science rationale and mission concepts. JBIS 53: 218-234.

    ADS  Google Scholar 

  • Lunine, J.I., D.J. Stevenson and Y.L. Yung. 1983. Ethane ocean on Titan. Science 222: 1229-1230.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Y.L. Yung and R.D. Lorenz. 1999. On the volatile inventory of Titan from isotopic substances in nitrogen and methane. Planetary Space and Science 47: 1291-1303.

    Article  ADS  Google Scholar 

  • Marcano, V., P. Benitez and E. Palacios-Pru. 2002. Growth of a lower eukaryote in non-aromatic hydrocarbon media > C-12 and its exobiological significance. Planet. Space Sci. 50: 693-709.

    ADS  Google Scholar 

  • Matthews, C.N., and R.E. Moser. 1966. Prebiological protein synthesis. Proc. Natl. Acad. Sci. USA 56: 1087-1094.

    Article  ADS  Google Scholar 

  • Mee, A.J. 1934. Physical chemistry. William Heinemann, London, UK.

    Google Scholar 

  • Merck-Research-Labs. 1996. The Merck index. Whitehousestation, New Jersey.

    Google Scholar 

  • Moeller, T. 1957. Inorganic chemistry. Wiley, New York.

    Google Scholar 

  • Morawietz, T., A. Singraber, C. Dellago, J. Behler. 2016. How van der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. USA 113: 8368-8373.

    Article  ADS  Google Scholar 

  • Nealson, K. 2006. Lakes of liquid CO2 in the deep sea. Proc. Natl. Acad. Sci. USA 103: 13903-13904.

    Article  ADS  Google Scholar 

  • Nilsson, A. and L. G. Pettersson. 2015. The structural origin of anomalous properties of liquid water. Nat. Commun. 6: 8998; doi: https://doi.org/10.1038/ncomms9998.

    Article  ADS  Google Scholar 

  • Pace, C.N., S. Treviño, E. Prabhakaran, et al. 2004. Protein structure, stability and solubility in water and other solvents. Phil. Trans. Roy. Soc. Lond. B. 359: 1225-1235.

    Article  Google Scholar 

  • Perakis, F., K. Amann-Winkel, F. Lehmkuhler, M. Sprung, et al. 2017. Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc. Natl. Acad. Sci. USA 114: 8193-8198.

    Article  ADS  Google Scholar 

  • Raulin, F., P. Bruston, P. Paillous, et al. 1995. The low temperature organic chemistry of Titan’s geofluid. Adv. Space Res. 15: 321-333.

    Article  ADS  Google Scholar 

  • Raveendran, P., Y. Ikushima and S.L. Wallen. 2005. Polar attributes of super-critical carbon dioxide. Acc. Chem. Res. 38: 478-485.

    Article  Google Scholar 

  • Ricardo, A., M. A. Carrigan, A. N. Olcott, and S. A. Benner. (2004) Borate minerals stabilize ribose. Science 303 (5655):196-196

    Article  Google Scholar 

  • Sagan, C. 1961. The planet Venus. Science 133: 849-858.

    ADS  Google Scholar 

  • Saladino, R., C. Crestini, S. Pino, G. Costanzo, and E. Di Mauro. 2012. Formamide and the origin of life. Phys. Life Rev. 9: 84-104.

    Article  ADS  Google Scholar 

  • Schoffstall, A.M., R.J. Barto and D.L. Ramo. 1982. Nucleoside and deoxynucleoside in formamide solutions. Orig. Life Evol. Biosph. 12: 143-151.

    Article  Google Scholar 

  • Schoffstall, A.M., and E.M. Liang. 1985. Phosphorylation mechanisms in chemical evolution. Orig. Life Evol. Biosph. 15: 141-150.

    Article  Google Scholar 

  • Schulze-Makuch, D. 2010. Io: Is Life Possible Between Fire and Ice? Cosmology 5: 912-919.

    Google Scholar 

  • Schulze-Makuch, D., and D.H. Grinspoon. 2005. Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5: 560-567.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., L.N. Irwin and T. Irwin. 2002b. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus. pp. 247-250. 2nd European Workshop on Exo-Astrobiology (EANA/ESA),

    Google Scholar 

  • Schulze-Makuch, D., D.H. Grinspoon, O. Abbas, et al. 2004. A sulfur-based UV adaptation strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4: 11-18.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2006. Exotic forms of life in the universe. Naturwissenschaften 93: 155-172.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. and J. M. Houtkooper. 2015. Is methanol the missing ingredient for the origin of life? In EANA Astrobiology Meeting. ESTEC, Netherlands.

    Google Scholar 

  • Sellberg, J. A., C. Huang, T. A. McQueen, N. D. Loh, et al. 2014. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510: 381-384.

    Article  ADS  Google Scholar 

  • Shkrob, I.A., and M.C. Sauer. 2001. Solvent anions in supercritical carbon dioxide: formation of complexes with polar solutes. J. Phys. Chem. B 105: 7027-7032.

    Article  Google Scholar 

  • Stofan, E.R., C. Elachi, J.I. Lunine, R.D. Lorenz, B. Stiles, et al. 2007. The lakes of Titan. Nature 445: 61-64.

    Article  ADS  Google Scholar 

  • Tanenbaum, S.W. 1956. The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21: 335-342.

    Google Scholar 

  • Tang, Y., Q. Chen, and Y. Huang. 2006. Early Mars may have had a methanol ocean. Icarus 180: 88-92.

    Article  ADS  Google Scholar 

  • Thompson, W.R., J.A. Zollweg and D.H. Gabis. 1992. Vapor-liquid equilibrium thermodynamics of N2 + CH4: model and Titan applications Icarus 97: 187-199.

    Google Scholar 

  • Wernet, P., D. Nordlund, U. Bergmann, M. Cavalleri, et al. 2004. The structure of the first coordination shell in liquid water. Science 304: 995-999.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Life and the Need for a Solvent. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_7

Download citation

Publish with us

Policies and ethics