Skip to main content

Agropyron and Psathyrostachys

  • Chapter
  • First Online:
Wild Crop Relatives: Genomic and Breeding Resources

Abstract

Wheatgrass encompasses five genera, and wildrye species belong to three genera of the tribe Triticeae. These grasses have wide distribution in the temperate regions of the world. Thus, they are highly variable in morphological traits, ecological adaptation, geographic distribution, and genomic constitutions. Consequently, wheatgrass and wildrye grasses possess valuable traits, such as resistance to biotic stresses (diseases and insect pests), tolerance to abiotic stresses (cold, heat, drought, salinity, and toxic minerals, etc.), and nutritional contents (grain proteins). Species of various known genome constitutions (P, St, Ns, E, ESt, StH, StY, StHY, StWY, NsXm, and StHNsXm) in the perennial Triticeae have been successfully crossed with wheat. Some perennial Triticeae grasses were intentionally being used as tertiary genetic resources for wheat improvement via chromosome engineering techniques since 1950s. However, from this review, it is evident that, due to their closer genome relationships with the ABD genomes of wheat, the genomes E and St in the genus Thinopyrum are more likely involved in gene transfers from perennial Triticeae to wheat. Furthermore, linkage drags are limiting the usefulness of many early-day alien gene transfers. With the advent of new molecular techniques to clone targeted desirable functional genes and precision chromosomal manipulation to enhance gene recombination, we may overcome this major problem in utilizing alien genes in wheat breeding. But before that time comes, many tasks need to be done. The preservation and evaluation of the biodiversity in wheatgrass and wildrye species should be an ongoing effort. Molecular research on perennial Triticeae grasses needs to be accelerated to catch up with that on annual cereal crops. New uses of wheatgrasses and wildryes, such as perennial wheat and biofuel crops, should be exploited. The scientific knowledge and tools developed from the fundamental research will benefit both cereal and forage breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    CAS  Google Scholar 

  • Ahmad E, Comeau A (1991) Production, morphology, and cytogenetics of Triticum aestivum (L.) Thell x Elymus scabrus (R. Br.) Love intergeneric hybrids obtained by in ovulo embryo culture. Theor Appl Genet 81:833–839

    Google Scholar 

  • Alonso LC, Kimber G (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23:221–234

    Google Scholar 

  • Anamthawat-Jónsson K (1996) Wide-hybrids between wheat and lymegrass: breeding and agricultural potential. Buvusindi 10:101–113

    Google Scholar 

  • Anamthawat-Jónsson K (1999) Variable genome composition in Triticum-Leymus amphiploids. Theor Appl Genet 99:1087–1093

    Google Scholar 

  • Anamthawat-Jónsson K, Bödvarsdóttir SK (2001) Genomic and genetic relationships among species of Leymus (Poaceae: Triticeae) inferred from 18S-26S ribosomal genes. Am J Bot 88:553–559

    PubMed  Google Scholar 

  • Anamthawat-Jónsson K, Bödvarsdóttir SK, Bragason BTh, Gudmundsson J, Martin PK, Koebner RMD (1997) Wide-hybridization between species of Triticum L. and Leymus Hochst. Euphytica 93:293–300

    Google Scholar 

  • Asay KH, Dewey DR (1979) Bridging ploidy differences in crested wheatgrass with hexaploid × diploid hybrids. Crop Sci 19:519–523

    Google Scholar 

  • Asay KH, Jensen KB (1996a) Wheatgrasses. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses. Agronomy Monograph no. 34, Chap. 22. ASA-CSSA-SSSA, Madison, WI, USA, pp 691–724

    Google Scholar 

  • Asay KH, Jensen KB (1996b) Wildryes. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses. Agronomy Monograph no. 34, Chap. 23. ASA-CSSA-SSSA, Madison, WI, USA, pp 725–748

    Google Scholar 

  • Asay KH, Dewey DR, Horton WH, Jensen KB, Currie PO, Chatterton NJ, Hansen WT Jr, Carlson JR (1991) Registration of ‘NewHy’ RS hybrid wheatgrass. Crop Sci 31:1384–1385

    Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    PubMed  CAS  Google Scholar 

  • Ayala L, Henry M, González-de-León D, van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M (2001) A diagnostic molecular marker allowing the study of Th. intermedium derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet 102:942–949

    CAS  Google Scholar 

  • Ayala-Navarrete L, Bariana HS, Singh RP, Gibson JM, Mechanicos AA, Larkin PJ (2007) Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor Appl Genet 116:63–75

    PubMed  CAS  Google Scholar 

  • Ayala-Navarrete L, Tourton E, Mechanicos AA, Larkin PJ (2009) Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome 52:537–546

    PubMed  CAS  Google Scholar 

  • Banks PM, Xu SJ, Wang RRC, Larkin PJ (1993) Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome 36:207–215

    PubMed  CAS  Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Appels R, Waterhouse PM, Brettell RIS, Chen X, Xu HJ, Xin ZY, Qian YT, Zhou XM, Cheng ZM, Zhou GH (1995) The use of cell cultures for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum imtermedium to wheat. Genome 38:395–405

    PubMed  CAS  Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2007) Magnoliophyta: Commelinidae (in part): Poaceae, part 1. Flora of North America North of Mexico, vol 24. Oxford University Press, New York, Oxford, pp 238–378

    Google Scholar 

  • Barloy D, Etienne C, Lemoine J, Saint Ouen Y, Jahier J, Banks PM, Trottet M (2003) Comparison of TAF46 and Zhong 5 resistances to barley yellow dwarf virus from Thinopyrum intermedium in wheat. Euphytica 129:361–369

    CAS  Google Scholar 

  • Baum BR, Edwards T, Johnson DA (2008) Loss of 5S rDNA units in the evolution of Agropyron, Pseudoroegneria, and Douglasdeweya. Genome 51:589–598

    PubMed  CAS  Google Scholar 

  • Bentham G (1882) Notes on Gramineae. Bot J Linn Soc 18:14–134

    Google Scholar 

  • Bödvarsdóttir SK, Anamthawat-Jónsson K (2003) Isolation, characterization, and analysis of Leymus-specific DNA sequences. Genome 46:673–682

    PubMed  Google Scholar 

  • Bowden WM (1965) Cytotaxonomy of the species and interspecific hybrids of the genus Agropyron in Canada and neighboring areas. Can J Bot 43:1421–1448

    Google Scholar 

  • Bushman BS, Larson SR, Mott IW, Cliften PF, Wang RRC, Chatterton NJ, Hernandez AG, Ali S, Kim RW, Thimmapuram J, Gong G, Liu L, Mikel MA (2008) Development and annotation of perennial Triticeae ESTs and SSR markers. Genome 51:779–788

    PubMed  CAS  Google Scholar 

  • Cai X, Jones SS, Murray TD (2001) Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breed 120:21–26

    CAS  Google Scholar 

  • Cai X, Chen PD, Xu SS, Oliver RE, Chen X (2005) Utilization of alien genes to enhance Fusarium head blight resistance in wheat – a review. Euphytica 142:309–318

    Google Scholar 

  • Carman JG, Wang RRC (1992) Apomixis in the Triticeae: present knowledge, current research and future plans. In: Elgin JH Jr, Miksche JP (eds) Proceedings of apomixis workshop, Atlanta, GA, 11–12 Feb 1992, USDA-ARS, ARS-104, pp 26–29

    Google Scholar 

  • Cauderon Y, Saigne B (1961) New interspecific and intergeneric hybrids involving Agropyrum. Wheat Inf Serv 12:13–14

    Google Scholar 

  • Charpentier A (1992) Production of disomic addition lines and partial amphiploids of Thinopyrum junjeum on wheat. C R Acad Sci Paris 315:551–557

    Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586

    PubMed  CAS  Google Scholar 

  • Chen Q, Conner RL, Li HJ, Sun SC, Ahmad F, Laroche A, Graf RJ (2003) Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat – Thinopyrum intermedium partial amphiploids. Genome 46:135–145

    PubMed  Google Scholar 

  • Chen SY, Xia GM, Quan TY, Xiang FN, Jin Y, Chen HM (2004) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    CAS  Google Scholar 

  • Chen PD, Liu W, Yuan J, Wang X, Zhou B, Wang S, Zhang S, Feng Y, Yang B, Liu G, Liu D, Qi L, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium head blight. Theor Appl Genet 111:941–948

    PubMed  Google Scholar 

  • Chen FG, Luo Z, Zhang ZG, Xia GM, Min HX (2007) Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol Breed 20:141–152

    CAS  Google Scholar 

  • Clayton WD, Harman KT, Williamson H (2006) GrassBase – The Online World Grass Flora: http://www.kew.org/data/grasses-db.html. Accessed 29 Oct 2009

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    PubMed  CAS  Google Scholar 

  • Cox CM, Murray TD, Jones SS (2002a) Perennial wheat germplasm lines resistant to eyespot, Cephalosporium stripe, and wheat streak mosaic. Plant Dis 86:1043–1048

    Google Scholar 

  • Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer EC, Zoeller BE, Paterson AH, Jackson W (2002b) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Google Scholar 

  • Crasta OR, Francki MG, Bucholtz DB, Sharma HC, Zhang J, Wang RRC, Ohm HW, Anderson JM (2000) Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance. Genome 43:698–706

    PubMed  CAS  Google Scholar 

  • Dedryver F, Jubier MF, Thouvenin J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835

    PubMed  CAS  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization in the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, USA, pp 209–279

    Google Scholar 

  • Dewey DR (1986) Taxonomy of the crested wheatgrasses. In: Johnson KL (ed) Crested wheatgrass: its values, problems and myths. Utah State University Symposium, Logan, UT, USA, 3–7 Oct 1983, pp 31–44

    Google Scholar 

  • Dewey DR, Asay KH (1975) The crested wheatgrasses of Iran. Crop Sci 15:844–849

    Google Scholar 

  • Dubcovsky J, Galvez AF, Dvořák J (1994) Comparison of the genetic organization of the early salt stress response gene system in salttolerant Lophopyrum elongatum and salt- sensitive wheat. Theor Appl Genet 87:957–964

    CAS  Google Scholar 

  • Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549

    CAS  Google Scholar 

  • Dvořák J (1981) Genome relationships among Elytrigia (=Agropyron) elongata, E. stipifolia, “E. elongata 4x,” E. caespitosa, E. Intermedia and “E. elongata 10x”. Can J Genet Cytol 23:481–492

    Google Scholar 

  • Dvořák J, McGuire PE, Mendlinger S (1984) Inferred chromosome morphology of the ancestral genome of Triticum. Plant Syst Evol 144:209–220

    Google Scholar 

  • Dvořák J, Edge M, Ross K (1988) On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proc Natl Acad Sci USA 85:3805–3809

    PubMed  Google Scholar 

  • Eizenga GC (1987) Locating the Agropyron segment in wheat-Agropyron transfer no. 12. Genome 29:365–366

    Google Scholar 

  • Endo TR, Gill BS (1984) The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. Can J Genet Cytol 26:669–678

    Google Scholar 

  • Fahleson J, Okori P, Åkerblom-Espeby L, Dixelius C (2008) Genetic variability and genomic divergence of Elymus repens and related species. Plant Syst Evol 271:143–156

    Google Scholar 

  • Fan X, Zhang HQ, Sha LN, Zhang L, Yang RW, Ding CB, Zhou YH (2007) Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of a gene encoding plastid acetyl-CoA carboxylase. Plant Sci 172:701–707

    CAS  Google Scholar 

  • Fan X, Sha LN, Yang RW, Kang HY, Zheng YL, Zhou YH (2009) Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol 9:247

    PubMed  Google Scholar 

  • Fedak G (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591

    CAS  Google Scholar 

  • Fedak G, Chen Q, Conner RL, Laroche A, Comeau A, St.-Pierre CA (2001) Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica 120:373–378

    Google Scholar 

  • Feng DS, Xia GM, Zhao SY, Chen FG (2004) Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor Appl Genet 110:136–144

    PubMed  CAS  Google Scholar 

  • Forster BP, Miller TE (1989) Genome relationship between Thinopyrum bessarabicum and Thinopyrum elongatum. Genome 32:930–931

    Google Scholar 

  • Francki MG, Crasta OR, Sharma HC, Ohm HW, Anderson JM (1997) Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat. Genome 40:716–722

    PubMed  CAS  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of wheat-Agropyron intermedium derivatives carrying resistance against leaf, stripe and stem rust by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    CAS  Google Scholar 

  • Friebe B, Jiang JM, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149

    Google Scholar 

  • Friebe B, Jiang JM, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Google Scholar 

  • Friebe B, Jiang JM, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Friebe B, Wilson DL, Raupp WJ, Gill BS, Brown-Guedira GL (2005) Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm. Annu Wheat Newsl 51:188–189

    Google Scholar 

  • Garcίa P, Monte J-V, Casanova C, Soler C (2002) Genetic similarities among Spanisch populations of Agropyron, Elymus and Thinopyrum, using PCR-based markers. Genet Resour Crop Evol 49:103–109

    Google Scholar 

  • Griffin LC, Rowlett RM (1981) A “lost” Viking cereal grain. J Ethnobiol 1:200–207

    Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113:1027–1036

    PubMed  CAS  Google Scholar 

  • Hackel E (1887) Gramineae. In: Engler A, Prantl K (eds) Die naturlichen Pflanzenfamilien. Leipzig, Germany, pp 1–197

    Google Scholar 

  • Hagras AAA, Kishii M, Sato K, Tanaka H, Tsujimoto H (2005) Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed Sci 55:335–341

    CAS  Google Scholar 

  • Han F, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T (2003) Characterization of six wheat × Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495

    PubMed  CAS  Google Scholar 

  • Heneen WK, Runemark H (1972) Chromosomal polymorphism in isolated populations of Elymus (Agropyron) in the Aegean. I. Elymus striatulus sp.nov. Bot Not 125:419–429

    Google Scholar 

  • Hitchcock AS (1971) Manual of grasses of the United States, 2nd edn. Dover, New York, 525 p

    Google Scholar 

  • Hohmann V, Badaeva K, Busch W, Friebe B, Gill BS (1996) Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39:336–347

    PubMed  CAS  Google Scholar 

  • Hsiao C, Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol 28:109–120

    Google Scholar 

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–223

    PubMed  CAS  Google Scholar 

  • Hu ZM, Wu XL, Larson SR, Wang RRC, Jones TA, Chatterton NJ, Palazzo AJ (2005) Detection of linkage disequilibrium QTLs controlling low-temperature growth and metabolite accumulations in an admixed breeding population of Leymus wildryes. Euphytica 141:263–280

    CAS  Google Scholar 

  • Islam AKMR, Shepherd KW (1992) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor Appl Genet 83:489–494

    Google Scholar 

  • Jackson W, Jackson LL (1999) Developing high seed yielding perennial polycultures as a mimic of mid-grass prairie. In: Lefroy EC, Hobbs RJ, O'Connor MH, Pate JS (eds) Agriculture as a mimic of natural systems. Kluwer, Dordrecht, The Netherlands, pp 1–37

    Google Scholar 

  • Jarvie JK, Barkworth ME (1992) Morphological variation and genome constitution in some perennial Triticeae. Bot J Linn Soc 108:167–180

    Google Scholar 

  • Jauhar PP (1988) A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae. Genome 30:903–914

    Google Scholar 

  • Jauhar PP (1990a) Multidisciplinary approach to genome analysis in the diploid species, Thinopyrum bessarabicum and Th. elongatum (Lophopyrum elongatum), of the Triticeae. Theor Appl Genet 80:523–536

    Google Scholar 

  • Jauhar PP (1990b) Dilemma of genome relationship in the diploid species Thinopyrum elongatum (Triticeae: Poaceae). Genome 33:944–946

    Google Scholar 

  • Jauhar PP (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859

    CAS  Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583

    CAS  Google Scholar 

  • Jauhar PP, Doğramaci M, Peterson TS (2004) Synthesis and cytological haracterization of trigeneric hybrids of durum wheat with and without Ph1. Genome 47:1173–1181

    PubMed  CAS  Google Scholar 

  • Jensen KB, Wang RRC (1997) Cytological and molecular evidence for transferring Elymus coreanus and Elymus californicus from the genus Elymus to Leymus (Poaceae: Triticeae). Int J Plant Sci 158:872–877

    CAS  Google Scholar 

  • Jensen KB, Hatch SL, Wipff JK (1992) Cytology and morphology of Pseudoroegneria deweyi (Poaceae: Triticeae): a new species from the foot hills of the Caucasus Mountains (Russia). Can J Bot 70:900–909

    Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994a) Chromosome painting of Amigo wheat. Theor Appl Genet 89:811–813

    CAS  Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994b) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Jiang SM, Zhang L, Hu J, Shi R, Zhou GH, Chen YH, Yin WB, Wang RRC, Hu ZM (2004) Screening and analysis of differentially expressed genes from an alien addition line of wheat-Thinopyrum intermedium induced by barley yellow dwarf virus infection. Genome 47:1114–1121

    PubMed  CAS  Google Scholar 

  • Jiang SM, Hu J, Yin WB, Chen YH, Wang RRC, Hu ZM (2005) Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium. Theor Appl Genet 111:923–931

    PubMed  CAS  Google Scholar 

  • Jiang SM, Yin WB, Hu J, Shi R, Zhou RN, Chen YH, Zhou GH, Wang RRC, Song LY, Hu ZM (2009) Isolation of expressed sequences from a specific chromosome of Thinopyrum intermedium infected by BYDV. Genome 52:68–76

    PubMed  CAS  Google Scholar 

  • Jones TA, Redinbaugh MG, Zhang YT (2000) The western wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Sci 40:43–47

    CAS  Google Scholar 

  • Kellogg EA (2006) Beyond taxonomy: prospects for understanding morphological diversity in the grasses (Poaceae). Darwiniana 44:7–17

    Google Scholar 

  • Khan IA (2000) Molecular and agronomic characterization of wheat-Agropyron intermedium recombinant chromosomes. Plant Breed 119:25–29

    CAS  Google Scholar 

  • Kibirige-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol 25:215–221

    Google Scholar 

  • Kim NS, Armstrong K, Knott DR (1993) Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theor Appl Genet 85:561–567

    CAS  Google Scholar 

  • Kirk LE (1932) Crested wheatgrass. Univ Saskatchewan Agric Ext Bull 54

    Google Scholar 

  • Kishii M, Wang RRC, Tsujimoto H (2005) GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. In: Hulubec V, Barkworth M, von Bothmer R (eds) Proceedings of 5th international Triticeae symposium, Prague, 6–10 June 2005. Czech J Genet Plant Breed (spl issue) 41:92–95

    Google Scholar 

  • Knott DR (1989) The wheat rusts – breeding for resistance. Theorertical and Applied Genetics Monograph No. 12. Springer, Berlin, Germany

    Google Scholar 

  • Koebner RMD, Shepherd KW (1985) Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor Appl Genet 71:208–215

    Google Scholar 

  • Kosina R, Heslop-Harrison JS (1996) Molecular cytogenetics of an amphiploid trigeneric hybrid between Triticum durum, Thinopyrum distichum and Lophopyrum elongatum. Ann Bot 78:583–589

    Google Scholar 

  • Lammer DL, Cai X, Arterburn M, Chatelain J, Murray TD, Jones SS (2004) A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot 55:1715–1720

    PubMed  CAS  Google Scholar 

  • Larkin PJ, Baeva K, Banks PM, Lagudah ES, Appels R, Chen X, Xin ZY, Ohm HW, McIntosh RA (1995) Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394

    PubMed  CAS  Google Scholar 

  • Larkin P, Kleven S, Banks PM (2002) Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. In: Henry M, Mcnab A (eds) Barley yellow dwarf disease: recent advances and future strategies. CIMMYT, Mexico, pp 60–63

    Google Scholar 

  • Larson SR, Mayland HF (2007) Comparative mapping of fiber, protein, and mineral content QTLs in two interspecific Leymus wildrye full-sib families. Mol Breed 20:331–347

    CAS  Google Scholar 

  • Larson SR, Wu X, Jones TA, Jensen KB, Chatterton NJ, Waldron BL, Robins JG, Bushman BS, Palazzo AJ (2006) Comparative mapping of growth habit, plant height, and flowering QTLs in two interspecific families of Leymus. Crop Sci 46:2526–2539

    CAS  Google Scholar 

  • Larson SR, Scheuring C, Bushman BS, Mott IW, Dong JJ, Zhang Y, Zhang X, Zhang HB, Wang RRC (2007) Construction of a BAC library of the Leymus cinereus X L. triticoides hybrid. In: Annual meeting abstracts (CD-ROM) ASA-CSSA-SSSA, Madison, WI, USA

    Google Scholar 

  • Larson SR, Scheuring C, Kaur P, Cliften PF, Mott IW, Bushman BS, Dong JJ, Zhang Y, Zhang X, Kiani M, Wu Y-H, Liu Y-H, Zhang H-B, Chatterton NJ, Wang RRC (2009) BAC library development for allotetraploid Leymus (Triticeae) wildryes enable comparative genetic analysis of lax-barrenstalk1 orthogene sequences and growth habit traits. Plant Sci 177:427–438

    CAS  Google Scholar 

  • Li HJ, Chen Q, Conner RL, Guo B, Zhang Y, Graf RJ, Laroche A, Jia X, Liu G, Chu C (2003) Molecular characterization of a wheat –Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome 46:906–913

    PubMed  CAS  Google Scholar 

  • Li HJ, Conner RL, Chen Q, Laroche A, Graf RJ, Kuzyk AD (2004) The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome 47:215–223

    PubMed  CAS  Google Scholar 

  • Li HJ, Conner RL, Chen Q, Graf RJ, Laroche A, Ahmad F, Kuzyk AD (2005) Promising genetic resources for resistance to wheat streak mosaic virus and the wheat curl mite in wheat-Thinopyrum partial amphiploids and their derivatives. Genet Res Crop Evol 51:827–835

    Google Scholar 

  • Li XM, Lee BS, Mammadov AC, Koo BC, Mott IW, Wang RRC (2007) CAPS markers specific to E b , E e and R genomes in the tribe Triticeae. Genome 50:400–411

    PubMed  CAS  Google Scholar 

  • Liang GH, Wang RRC, Niblett CL, Heyne EG (1979) Registration of B-6-37-1 wheat germplasm. Crop Sci 19:421

    Google Scholar 

  • Lin ZS, Huang DH, Du LP, Ye XG, Xin ZY (2006) Identification of wheat-Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Plant Breed 125:114–119

    CAS  Google Scholar 

  • Lin ZS, Cui ZF, Zeng XY, Ma YZ, Zhang ZY, Nakamura T, Ishikawa G, Nakamura K, Yoshida H, Xin ZY (2007) Analysis of wheat-Thinopyrum intermedium derivatives with BYDV-resistance. Euphytica 158:109–118

    Google Scholar 

  • Liu ZW, Wang RRC (1993a) Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica, and Thinopyrum intermedium. Genome 36:102–111

    PubMed  CAS  Google Scholar 

  • Liu ZW, Wang RRC (1993b) Genome constitutions of Thinopyrum curvifolium, T. scirpeum, T. distichum, and T. junceum (Triticeae: Gramineae). Genome 36:641–651

    PubMed  CAS  Google Scholar 

  • Liu ZW, Wang RRC, Carman JG (1994) Hybrids and backcross progenies between wheat (Triticum aestivum L.) and apomictic Australian wheatgrass [Elymus rectisetus (Nees in Lehm.) A. Löve & Connor]: karyotypic and genomic analyses. Theor Appl Genet 89:599–605

    Google Scholar 

  • Liu QL, Ge S, Tang HB, Zhang XL, Zhu GF, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170:411–420

    PubMed  CAS  Google Scholar 

  • Liu Z, Li DY, Zhang XY (2007) Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization. J Integr Plant Biol 49:1080–1086

    CAS  Google Scholar 

  • Liu ZP, Chen ZY, Pan J, Li XF, Su M, Wang LJ, Li HJ, Liu GS (2008) Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed space and chloroplast trnL-F sequences. Mol Phylogenet Evol 46:278–289

    PubMed  CAS  Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Feddes Rep 95:425–521

    Google Scholar 

  • Lyubimova VF (1991) Mechanism of incorporation of separate couch grass genomes into the genome complex of durum wheat. Sov Genet 27:717–728

    Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    PubMed  CAS  Google Scholar 

  • Marais GF, Marais AS, Groenewald JZ (2001) Evaluation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat. Euphytica 121:289–295

    CAS  Google Scholar 

  • Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45:991–1002

    PubMed  CAS  Google Scholar 

  • McGuire PE (1984) Chromosome pairing in triploid and tetraploid hybrids in Elytrigia (Triticeae; Poaceae). Can J Genet Cytol 26:519–522

    Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust J Agric Res 28:37–45

    Google Scholar 

  • Mott IW, Wang RRC (2007) Comparative transcriptome analysis of salt-tolerant wheat germplasm lines using wheat genome arrays. Plant Sci 173:327–339

    CAS  Google Scholar 

  • Mujeeb-Kazi A, Wang RRC (1995) Perennial and annual wheat relatives in the Triticeae. Chapter 2. In: Mujeeb-Kazi A, Hettel GP (eds) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT Res Rep No 2, CIMMYT, Mexico, DF, pp 5–13

    Google Scholar 

  • Murphy KM, Carter A, Zemetra RS, Jones SS (2007) Karytype and ideogram analyses of four wheatgrass cultivars for use in perennial wheat breeding. J Sustain Agric 31:137–149

    Google Scholar 

  • Ohm HW, Anderson JM, Sharma HC, Ayala NL, Thompson N, Uphaus JJ (2005) Registration of yellow dwarf virus resistant wheat germplasm line P961341. Crop Sci 45:805–806

    Google Scholar 

  • Okito P, Mott IW, Wu Y, Wang RRC (2009) A Y-genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52:391–400

    PubMed  CAS  Google Scholar 

  • Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-Alien species derivatives: a novel source of resistance to Fusarium Head Blight in Wheat. Crop Sci 45:1353–1360

    Google Scholar 

  • Oliver RE, Cai X, Wang RRC, Xu SS, Friesen TL (2008) Resistance to tan spot and Stagonospora nodorum blotch derived from relatives of wheat. Plant Dis 92:150–157

    Google Scholar 

  • Peel MD, Carman JG, Liu ZW, Wang RRC (1997) Meiotic anomalies in hybrids between wheat (Triticum aestivum L.) and apomictic Elymus rectisetus (Nees in Lehm.) A. Löve & Connor. Crop Sci 37:717–723

    Google Scholar 

  • Petersen G, Seberg O (2002) Molecular evolution and phylogenetic application of DMC1. Mol Phylogenet Evol 22:43–50

    Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    PubMed  CAS  Google Scholar 

  • Pienaar RV (1988) Hexaploid ‘wheats’ with novel third genomes. In: Proceedings of 7th international wheat genet symposium, Cambridge, UK, pp 403–407

    Google Scholar 

  • Pienaar RV (1990) Wheat and Thinopyrum hybrids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer, Berlin, pp 167–217

    Google Scholar 

  • Piper JK (1993) A grain agriculture fashioned in nature's image: the work of The Land Institute. Great Plains Res 3:249–272

    Google Scholar 

  • Prabhu KV, Gupta SK, Charpe A, Koul S (2004) SCAR marker tagged to the alien leaf rust resistance gene Lr19 uniquely marking the Agropyron elongatum gene Lr24 in wheat: a revision. Plant Breed 123:417–420

    CAS  Google Scholar 

  • Prins R, Marais GF (1998) An extended deletion map of the Lr19 translocation and modified forms. Euphytica 103:95–102

    CAS  Google Scholar 

  • Prins R, Marais GF, Janse BJH, Pretorius ZA, Marais AS (1996) A physical map of the Thinopyrum- derived Lr19 translocation. Genome 39:1013–1019

    PubMed  CAS  Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    CAS  Google Scholar 

  • Procunier JD, Townley-Smith TF, Fox S, Prashar S, Gray M, Kim WK, Czarnecki E, Dyck PL (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J Genet Breed 49:97–92

    Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chrom Res 15:3–19

    PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    PubMed  CAS  Google Scholar 

  • Quattrocchi U (2006) CRC world dictionary of grasses. CRC, Baton Rouge, LA, USA, pp 1847–1849

    Google Scholar 

  • Redinbaugh MG, Jones TA, Zhang YT (2000) Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43:846–852

    PubMed  CAS  Google Scholar 

  • Repellin A, Baga M, Jauhar PP, Chibbar RN (2001) Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tiss Organ Cult 64:159–183

    CAS  Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–1168

    CAS  Google Scholar 

  • Scheinost PL, Lammer DL, Cai X, Murray TD, Jones SS (2001) Perennial wheat: the development of a sustainable cropping system for the U.S. Pacific Northwest. Am J Altern Agric 16:147–151

    Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetics symposium. University of Missouri, Columbia, pp 191–199

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  • Shang HY, Baum BR, Wei YM, Zheng YL (2007) The 5S rRNA gene diversity in the genus Secale and determination of its closest haplomes. Genet Resour Crop Evol 54:793–806

    CAS  Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Google Scholar 

  • Sharma HC, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413

    PubMed  CAS  Google Scholar 

  • Shen XR, Ohm H (2007) Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol Breed 20:131–140

    CAS  Google Scholar 

  • Soreng RJ, Davidse G, Peterson PM, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Morrone O (2000) Catalogue of New World grasses (Poaceae). http://mobot.mobot.org/W3T/Search/nwgc.html. Accessed 29 Oct 2009

  • Suneson CA, El-Sharkawy A, Hall WE (1963) Progress in 25 years of perennial wheat development. Crop Sci 3:437–439

    Google Scholar 

  • Talbert LE, Bruckner PL, Smith LY, Sears R, Martin TJ (1996) Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet 93:463–467

    CAS  Google Scholar 

  • The TT, Gupta RB, Dyck PL, Appels R, Hohmann U, McIntosh RA (1992) Characterization of stem rust resistant derivatives of wheat cultivar Amigo. Euphytica 58:245–252

    Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Google Scholar 

  • Tsitsin NV (1960) Wide hybridization of plants. Israel Program for Scientific Translation, Jerusalem

    Google Scholar 

  • Tsvelev NN (1976) Zlaki CCCR [Grasses of the Soviet Union]. Nauka Publ, Leningrad (St. Petersburg), Russia

    Google Scholar 

  • Vogel KP, Arumuganathan K, Jensen KB (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39:661–667

    Google Scholar 

  • Wagoner P (1990) Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci 9:381–408

    Google Scholar 

  • Wagoner P (1995) Wild triga intermediate wheatgrass: www.hort.purdue.edu/newcrop/cropfactsheets/triga.html. Accessed 29 Oct 2009

  • Wang RRC (1985) Genome analysis of Thinopyrum bessarabicum and T. elongatum. Can J Genet Cytol 27:722–728

    Google Scholar 

  • Wang RRC (1989a) Intergeneric hybrids involving perennial Triticeae. Genetics 8:57–64

    Google Scholar 

  • Wang RRC (1989b) An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae. Genome 32:179–189

    Google Scholar 

  • Wang RRC (1990) Understanding the effect of the Ph gene of wheat on chromosome pairing and its implications. In: Kimber G (ed) Proceedings of the 2nd international symposium on chromium engineering in plants. University of Missouri, Columbia, Mo, USA, pp 259–263

    Google Scholar 

  • Wang RRC (1992) Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas 116:133–136

    Google Scholar 

  • Wang RRC (1993) Intergeneric and interspecific genome analysis in Triticeae. In: Li ZS, Xin ZY (eds) Proceedings of 8th international wheat genetics symposium, 20–25 July 1993, Beijing, China, AgriScientech Press, Beijing (published March 1995), pp 57–64

    Google Scholar 

  • Wang RRC (2006) Registration of TBTE001 and TBTE002 Thinopyrum amphidiploid genetic stocks differing for leaf glaucousness. Crop Sci 46:1013–1014

    Google Scholar 

  • Wang RRC, Hsiao CT (1989) Genome relationship between Thinopyrum bessarabicum and T. elongatum: revisited. Genome 32:802–809

    Google Scholar 

  • Wang RRC, Jensen KB (1994) Absence of the J genome in Leymus species (Poaceae: Triticeae): evidence from DNA hybridization and meiotic pairing. Genome 37:231–235

    PubMed  CAS  Google Scholar 

  • Wang RRC, Jensen KB (2009) Wheatgrasses and wildryes, Chap. 3. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 5, Forage Crop. CRC, Boca Raton, FL, USA, pp 42–79

    Google Scholar 

  • Wang RRC, Zhang XY (1996) Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. Chrom Res 4:583–587

    PubMed  CAS  Google Scholar 

  • Wang RRC, Liang GH, Heyne EG (1977) Effectiveness of ph gene in inducing homoeologous chromosome pairing in Agrotricum. Theor Appl Genet 51:139–142

    Google Scholar 

  • Wang RRC, Barnes EE, Cook LL (1980) Transfer of wheat streak mosaic virus resistance from Agropyron to homoeologous chromosome of wheat. Cereal Res Commun 8:335–339

    Google Scholar 

  • Wang RRC, Dewey DR, Hsiao C (1986) Genome analysis of the tetraploid Pseudoroegneria tauri. Crop Sci 26:723–727

    Google Scholar 

  • Wang RRC, Liu ZW, Carman JG (1993) The introduction and expression of apomixis in hybrids of wheat and Elymus rectisetus. In: Li ZS, Xin ZY (eds) Proceedings of 8th international wheat genetics symposium, 20–25 July 1993, Beijing, China, China AgriScientech, Beijing, pp 317–319

    Google Scholar 

  • Wang RRC, von Bothmer R, DvořáK J, Fedak G, Linde-Laursen I, Muramatsu M (1995) Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of 2nd international Triticeae symposium, 20–24 June 1994, Logan, Utah, Utah State University Publiations on Design and Production, Logan, UT, USA, pp 29–34

    Google Scholar 

  • Wang RRC, Larson SR, Horton WH, Chatterton NJ (2003a) Registration of W4909 and W4910 bread wheat germplasm lines with high salinity tolerance. Crop Sci 43:746

    Google Scholar 

  • Wang RRC, Li XM, Hu ZM, Zhang JY, Larson SR, Zhang XY, Grieve CM, Shannon MC (2003b) Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int J Plant Sci 164:25–33

    Google Scholar 

  • Wei JZ, Wang RRC (1995) Genome- and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analyses. Genome 38:1230–1236

    PubMed  CAS  Google Scholar 

  • Whelan EDP (1988) Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome 30:293–298

    Google Scholar 

  • Whelan EDP, Hart GE (1988) A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30:289–292

    Google Scholar 

  • William MDHM, Mujeeb-Kazi A (1995) Biochemical and molecular diagnostics of Thinopyrum bessarabicum chromosomes in Triticum aestivum germplasm. Theor Appl Genet 90:952–956

    CAS  Google Scholar 

  • Wu Z, Raven PH (2004) Flora of China, vol 22. Science, Beijing and Missouri Botanical Garden, St. Louis. Available on-line 5/21/2004 at http://www.efloras.org/flora_page.aspx?flora_id=2 . Accessed 29 Oct 2009

  • Wu XL, Larson SR, Hu ZM, Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus (Triticeae). Genome 46: 627–646

    PubMed  CAS  Google Scholar 

  • Xin ZY, Zhang ZY, Chen X, Lin ZS, Ma YZ, Xu HJ, Banks PM, Larkin PJ (2001) Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica 119:161–165

    CAS  Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang RRC, Cai X (2009) Evaluation and characterization of seedling resistance to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Google Scholar 

  • Xue XZ, Wang RRC (1999) Detection of Elymus rectisetus chromosome segments added to wheat by RAPD and genomic in situ hybridization. Acta Genet Sin 5:539–545

    Google Scholar 

  • Yang RW, Zhou YH, Ding CB, Zheng YL, Zhang L (2008) Relationships among Leymus species assessed by RAPD markers. Biol Planta 52:237–241

    CAS  Google Scholar 

  • Yen C, Yang JL, Baum BR (2005a) Douglasdeweya: a new genus, with a new species and a new combination (Triticeae: Poaceae). Can J Bot 83:413–419

    Google Scholar 

  • Yen C, Yang JL, Yen Y (2005b) Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxon Sin 43:82–93

    Google Scholar 

  • You MS, Li BY, Tian ZH, Tang ZH, Liu SB, Liu GT (2004) Development of specific SSR marker for E e genome of Thinopyrum spp. using wheat microsatellites. Chin J Agric Biotechnol 1:143–148

    CAS  Google Scholar 

  • Yu HQ, Fan X, Zhang C, Ding CB, Wang XL, Zhou YH (2008) Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia 63:498–505

    CAS  Google Scholar 

  • Zhang HB, Dvořák J (1991) The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot 78:871–884

    Google Scholar 

  • Zhang XY, Koul A, Petroski R, Ouellet T, Fedak G, Dong YS, Wang RRC (1996) Molecular verification and characterization of BYDV-resistant germplasm derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet 93:1033–1039

    CAS  Google Scholar 

  • Zhang ZY, Xin ZY, Chen X, Qian YT, Lin ZS, Ma YZ (2000) Molecular cytogenetic characterization of a new wheat line Yw243 with resistance to barley yellow dwarf virus (in Chinese). Acta Genet Sin 27:614–620

    PubMed  CAS  Google Scholar 

  • Zhang JY, Li XM, Wang RRC, Cortes A, Rosas V, Mujeeb-Kazi A (2002) Molecular cytogenetic characterization of E b-genome chromosomes in Thinopyrum bessarabicum disomic addition lines of bread wheat. Int J Plant Sci 163:167–174

    CAS  Google Scholar 

  • Zhang ZY, Xu JS, Xu QJ, Larkin P, Xin ZY (2004) Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker assisted selection. Theor Appl Genet 109:433–439

    PubMed  CAS  Google Scholar 

  • Zhang WJ, Lukaszewski AJ, Kolmer J, Soria A, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    PubMed  CAS  Google Scholar 

  • Zhang HQ, Yang RW, Dou QW, Tsujimoto H, Zhou YH (2006) Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chrom Res 14:595–604

    PubMed  CAS  Google Scholar 

  • Zhang ZY, Lin ZS, Xin ZY (2009) Research progress in BYDV resistance genes derived from wheat and its wild relatives. J Genet Genomics 36:567–573

    PubMed  Google Scholar 

  • Zhong GY, Dvořák J (1995) Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L., genomes. Theor Appl Genet 90:229–236

    Google Scholar 

  • Zhou RH, Zhu ZD, Kong XY, Huo NX, Tian QZ, Li P, Jin CY, Dong YC, Jia JZ (2005) Development of wheat near- isogenic lines for powdery mildew resistance. Theor Appl Genet 110:640–648

    PubMed  CAS  Google Scholar 

  • Zhou RN, Shi R, Jiang SM, Yin WB, Wang HH, Chen YH, Hu J, Wang RRC, Zhang XQ, Hu ZM (2008) Rapid EST isolation from chromosome 1R of rye. BMC Plant Biol 8:28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R.-C. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, R.RC. (2011). Agropyron and Psathyrostachys . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_2

Download citation

Publish with us

Policies and ethics