Skip to main content

Plants Used in Folk Medicine of Bangladesh for Treatment of Tinea Infections

  • Chapter
  • First Online:
Antifungal Metabolites from Plants

Abstract

Tinea (often known as ringworm) is a fungal infection caused by various fungi like Trichophyton rubrum, T. tonsurans, T. interdigitale, Microsporum canis, and Epidermophyton floccosum. These fungi are known as dermatophyte fungi. Tinea can affect any age group but usually is seen in children. Patients suffering from tinea versicolor are quite common in the occasional rural clinics or even city hospitals of Bangladesh. The rural people of Bangladesh depend on folk medicinal practitioners, otherwise known as Kavirajes for treatment of various ailments, including tinea infections. The main characteristic of Kavirajes is that they depend on administration (topical or oral) of various medicinal plants for treatment of tinea infections. Ethnomedicinal surveys were carried out among the Kavirajes of Bangladesh, as well as tribal medicinal practitioners of more than 20 indigenous communities of the country to document the use of medicinal plants used for treatment of tinea infections by these healers. A total of 26 plants distributed into 23 families were found in the various surveys to be used by the Kavirajes. Although various plant parts were used, leaves constituted the majority of uses. The present review focuses on the medicinal plants used by Kavirajes and tribal medicinal practitioners for treatment of tinea diseases in Bangladesh along with any relevant scientific findings on the anti-fungal activities of the plants, which can validate the plants’ traditional uses. The need for novel, efficacious, safer, and broader spectrum antifungal agents cannot be over emphasized. From this perspective, the above-mentioned medicinal plants may lend themselves to systematic modern scientific explorations in pursuit of novel antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham A, Mohapatra LN, Kandhari KC, Pandhi RK, Bhutani LK (1975) The effects of some hair oils and unsaturated fatty acids on experimentally induced dermatophysis. Dermatologica 151:144–148

    Article  PubMed  CAS  Google Scholar 

  • Abu-Taleb AM, El-Deeb K, Al-Otibi FO (2011) Assessment of antifungal activity of Rumex vesicarius L. and Ziziphus spina-christi (L.) Willd. extracts against two phytopathogenic fungi. Afr J Microbiol Res 5:1001–1011

    CAS  Google Scholar 

  • Acharya TK, Chatterjee IB (1975) Isolation of chrysophanic acid-9-anthrone, the major antifungal principle of Cassia tora. Lloydia 38:218–220

    PubMed  CAS  Google Scholar 

  • Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives of Rheum emodi. J Ethnopharmacol 72:43–46

    Article  PubMed  CAS  Google Scholar 

  • Agnese AM, PĂ©rez C, Cabrera JL (2001) Adesmia aegiceras: antimicrobial activity and chemical study. Phytomedicine 8:389–394

    Article  PubMed  CAS  Google Scholar 

  • Agrawal A, Srivastava S, Srivastava JN, Srivastava MM (2004) Evaluation of inhibitory effect of the plant Phyllanthus amarus against dermatophytic fungi Microsporum gypseum. Biomed Environ Sci 17:359–365

    PubMed  Google Scholar 

  • Ahmad MU, Hai MA, Rahman MA (1998) Non-polar constituents of the leaves of Ipomoea fistulosa. J Bangladesh Acad Sci 22:167–171

    CAS  Google Scholar 

  • Ahmad A, Khan A, Yousuf S, Khan LA, Manzoor N (2010a) Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 81:1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Khan A, Khan LA, Manzoor N (2010b) In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J Med Microbiol 59(Pt 10):1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Khan A, Manzoor N, Khan LA (2010c) Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb Pathog 48:35–41

    Article  PubMed  CAS  Google Scholar 

  • Ajose FO (2007) Some Nigerian plants of dermatologic importance. Int J Dermatol 46(Suppl 1):48–55

    Article  PubMed  Google Scholar 

  • Ali MI, Shalaby NM, Elgamal MH, Mousa AS (1999) Antifungal effects of different plant extracts and their major components of selected aloe species. Phytother Res 13:401–407

    Article  PubMed  CAS  Google Scholar 

  • Ali I, Khan FG, Suri KA, Gupta BD, Satti NK, Dutt P, Afrin F, Qazi GN, Khan IA (2010) In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann Clin Microbiol Antimicrob 9:7

    Article  PubMed  CAS  Google Scholar 

  • Ambikapathy V, Gomathi S, Panneerselvam A (2011) Effect of antifungal activity of some medicinal plants against Pythium debaryanum (Hesse). Asian J Plant Sci Res 1:131–134

    Google Scholar 

  • Anisimov MM, Shcheglov VV, Strigina LI, Chetyrina NS, Uvarova NI, Oshitok GI, Alad’ina NG, Vecherko LP, Zorina AD, Matyukhina LG, Saltykova IA (1979) Chemical structure and antifungal activity of a number of triterpenoids. Biol Bull Acad Sci USSR 6:464–468

    PubMed  CAS  Google Scholar 

  • Bamba Y, Yun S, Kunugi A, Inoue H (2011) Compounds isolated from Curcuma aromatica Salisb. Inhibit human P450 enzymes. J Nat Med 65:583–587

    Article  PubMed  CAS  Google Scholar 

  • Becker H, Scher JM, Speakman JB, Zapp J (2005) Bioactivity guided isolation of antimicrobial compounds from Lythrum salicaria. Fitoterapia 76:580–584

    Article  PubMed  CAS  Google Scholar 

  • Bernardes I, Felipe Rodrigues MP, Bacelli GK, Munin E, Alves LP, Costa MS (2012) Aloe vera extract reduces both growth and germ tube formation by Candida albicans. Mycoses 55:257–261

    Article  PubMed  Google Scholar 

  • Bhadauria S, Kumar P (2012) Broad spectrum antidermatophytic drug for the control of tinea infection in human beings. Mycoses 55:339–343

    Article  PubMed  CAS  Google Scholar 

  • Brusotti G, Cesari I, Gilardoni G, Tosi S, Grisoli P, Picco AM, Caccialanza G (2012) Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excell essential oil. J Ethnopharmacol 142:657–662

    Article  PubMed  CAS  Google Scholar 

  • Campaniello D, Corbo MR, Sinigaglia M (2010) Antifungal activity of eugenol against Penicillium, Aspergillus, and Fusarium species. J Food Prot 73:1124–1128

    PubMed  Google Scholar 

  • Castro A, Lemos C, FalcĂŁo A, Fernandes AS, Glass NL, Videira A (2010) Rotenone enhances the antifungal properties of staurosporine. Eukaryot Cell 9:906–914

    Article  PubMed  CAS  Google Scholar 

  • Cavaliero C, Gonçalves MJ, Serra D, Santoro G, Tomi F, Bighelli A, Salgueiro L, Casanova J (2011) Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. LaĂ­nz) M. LaĂ­nz, signalised by the antifungal activity. J Pharm Biomed Anal 54:619–622

    Article  CAS  Google Scholar 

  • Chaieb K, Zmantar T, Ksouri R, Hajlaoui H, Mahdouani K, Abdelly C, Bakhrouf A (2007) Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50:403–406

    Article  PubMed  Google Scholar 

  • Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A (2005) Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol 20:106–111

    Article  PubMed  CAS  Google Scholar 

  • Chen YT, Hsu LH, Huang IP, Tsai TC, Lee GC, Shaw JF (2007) Gene cloning and characterization of a novel recombinant antifungal chitinase from papaya (Carica papaya). J Agric Food Chem 55:714–722

    Article  PubMed  CAS  Google Scholar 

  • Coma V, Portes E, Gardrat C, Richard-Forget F, Castellan A (2011) In vitro inhibitory effect of tetrahydrocurcuminoids on Fusarium proliferatum growth and fumonisin B1 biosynthesis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:218–225

    Article  PubMed  CAS  Google Scholar 

  • Crockett CO, Guede-Guina F, Pugh D, Vangah-Manda M, Robinson TJ, Olubadewo JO, Ochillo RF (1992) Cassia alata and the preclinical serach for therapeutic agents for the treatment of opportunistic infections in AIDS patients. Cell Mol Biol (Noisy-le-grand) 38:799–802

    CAS  Google Scholar 

  • Cruz EA, Da-Silva SA, Muzitano MF, Silva PM, Costa SS, Rossi-Bergmann B (2008) Immunomodulatory pretreatment with Kalanchoe pinnata extract and its quercitrin flavonoid effectively protects mice against fatal anaphylactic shock. Int Immunopharmacol 8:1616–1621

    Article  PubMed  CAS  Google Scholar 

  • Cruz EA, Reuter S, Martin H, Dehzad N, Muzitano MF, Costa SS, Rossi-Bergmann B, Buhl R, Stassen M, Taube C (2012) Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine 19:115–121

    Article  PubMed  CAS  Google Scholar 

  • Dambolena JS, LĂłpez AG, Cánepa MC, Theumer MG, Zygadlo JA, Rubinstein HR (2008) Inhibitory effects of cyclic terpenes (limonene, menthol, menthone athymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon 51:37–44

    Article  PubMed  CAS  Google Scholar 

  • Damodaran S, Venkataraman S (1994) A study on the therapeutic efficacy of Cassia alata Linn. leaf extract against Pityriasis versicolor. J Ethnopharmacol 42:19–23

    Article  PubMed  CAS  Google Scholar 

  • Daneshtalab M (2008) Discovery of chlorogenic acid-based peptidomimetics as a novel class of antifungals. A success story in rational drug design. J Pharm Pharm Sci 11:44s–55s

    PubMed  CAS  Google Scholar 

  • Das S, Mishra B, Gill K, Ashraf MS, Singh AK, Sinha M, Sharma S, Xess I, Dalal K, Singh TP, Dey S (2011) Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel. Int J Biol Macromol 48:38–43

    Article  PubMed  CAS  Google Scholar 

  • D′Auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, Mazzanti G (2005) Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelia form. Med Mycol 43:391–396

    Google Scholar 

  • DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 4:241–247

    Article  PubMed  Google Scholar 

  • Dharmaratne HR, Napagoda MT, Tennakoon SB (2009) Xanthones from roots of Calophyllum thwaitesii and their bioactivity. Nat Prod Res 23:539–545

    Article  PubMed  CAS  Google Scholar 

  • Dovigo LN, Pavarina AC, Carmello JC, Machado AL, Brunetti IL, Bagnato VS (2011a) Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg Med 43:927–934

    Article  PubMed  Google Scholar 

  • Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP, Bagnato VS, Kurachi C (2011b) Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 87:895–903

    Article  PubMed  CAS  Google Scholar 

  • Duraipandiyan V, Ignacimuthu S (2007) Antibacterial and antifungal activity of Cassia fistula L.: an ethnomedicinal plant. J Ethnopharmacol 112:590–594

    Article  PubMed  CAS  Google Scholar 

  • Duraipandiyan V, Gnanasekar M, Ignacimuthu S (2010) Antifungal activity of triterpenoid isolated from Azima tetracantha leaves. Folia Histochem Cytobiol 48:311–313

    Article  PubMed  CAS  Google Scholar 

  • Fakhoury AM, Woloshuk CP (2001) Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin like protein from Lablab purpureus. Mol Plant Microbe Interact 14:955–961

    Article  PubMed  CAS  Google Scholar 

  • Fernand VE, Dinh DT, Washington SJ, Fakayode SO, Losso JN, van Ravenswaay RO, Warner IM (2008) Determination of pharmacologically active compounds in root extracts of Cassia alata L. by use of high performance liquid chromatography. Talanta 74:896–902

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Ocaña AM, GĂłmez-RodrĂ­guez MV, Velasco-Negueruela A, Camacho-Simarro AM, Fernández-LĂłpez C, Altarejos J (2004) In vivo antifungal activity of the essential oil of Bupleurum gibraltarium against Plasmopara halstedii in sunflower. J Agric Food Chem 52:6414–6417

    Article  PubMed  CAS  Google Scholar 

  • Fukai T, Yonekawa M, Hou AJ, Nomura T, Sun HD, Uno J (2003) Antifungal agents from the roots of Cudrania cochinchinensis against Candida, Cryptococcus, and Aspergillus species. J Nat Prod 66:1118–1120

    Article  PubMed  CAS  Google Scholar 

  • Gertsch J, Tobler RT, Brun R, Sticher O, Heilmann J (2003) Antifungal, antiprotozoal, cytotoxic and piscicidal properties of Justicidin B and a new arylnaphthalide lignan from Phyllanthus piscatorum. Planta Med 69:420–424

    Article  PubMed  CAS  Google Scholar 

  • Giordani R, Siepaio M, Moulin-Traffort J, RĂ©gli P (1991) Antifungal action of Carica papaya latex: isolation of fungal cell wall hydrolyzing enzymes. Mycoses 34:469–477

    Article  PubMed  CAS  Google Scholar 

  • Giordani R, Cardenas ML, Moulin-Traffort J, RĂ©gli P (1996) Fungicidal activity of latex sap from Carica papaya and antifungal effect of D(+)-glucosamine on Candida albicans growth. Mycoses 39:103–110

    Article  PubMed  CAS  Google Scholar 

  • Giordani R, Gachon C, Moulin-Traffort J, RĂ©gli P (1997) A synergistic effect of Carica papaya latex sap and fluconazole on Candida albicans growth. Mycoses 40:429–437

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan C, Shankaranarayanan D, Nazimudeen SK, Viswanathan S, kameswaran L (1980) Antiinflammatory and CNS depressant activities of xanthones from Calophyllum inophyllum and Mesua ferrea. Ind J Pharmacol 12:181–191

    CAS  Google Scholar 

  • Goun E, Cunningham G, Chu D, Nguyen C, Miles D (2003) Antibacterial and antifungal activity of Indonesian ethnomedicinal plants. Fitoterapia 74:592–596

    Article  PubMed  CAS  Google Scholar 

  • Habbal OA, Al-Jabri AA, El-Hag AH, Al-Mahrooqi ZH, Al-Hashmi NA (2005) In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study of the Omani henna. Saudi Med J 26:69–72

    PubMed  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt FJ, Clark AM, Soliman FM, el-Kashoury ES, Abd el-Kawy MM, el-Fishawy AM (1993) Chemical composition and antimicrobial activity of essential oils of Jasonia candicans and Jasonia montana. Planta Med 59:68–70

    Google Scholar 

  • Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY (2008) Phytochemical constituents from Cassia alata with inhibition against methicillin-resistant Staphylococcus aureus (MRSA). Planta Med 74:1802–1805

    Article  PubMed  CAS  Google Scholar 

  • He M, Du M, Fan M, Bian Z (2007) In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia 163:137–143

    Article  PubMed  CAS  Google Scholar 

  • Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB (2004) Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull 27:863–866

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim D, Osman H (1995) Antimicrobial activity of Cassia alata from Malaysia. J Ethnopharmacol 45:151–156

    Article  PubMed  CAS  Google Scholar 

  • Jabeen K, Javaid A, Ahmad E, Athar M (2011) Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 25:264–276

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Chitale G, Sharma P, Jain SC (2010) Phytochemical and antimicrobial investigations of Cassia alata Linn. roots. J Med Arom Plant Sci 32:13–15

    CAS  Google Scholar 

  • Jang DS, Lee GY, Kim YS, Lee YM, Kim CS, Yoo JL, Kim JS (2007) Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol Pharm Bull 30:2207–2210

    Article  PubMed  CAS  Google Scholar 

  • Jardim CM, Jham GN, Dhingra OD, Freire MM (2008) Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J Chem Ecol 34:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Jasicka-Misiak I, Lipok J, Swider IA, Kafarski P (2010) Possible fungistatic implications of betulin presence in betulaceae plants and their hymenochaetaceae parasitic fungi. Z Naturforsch C 65:201–206

    PubMed  CAS  Google Scholar 

  • Javaid A, Amin M (2009) Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina. Nat Prod Res 23:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Kamal R, Mathur N (2010) Rotenoids from Lablab purpureus L. and their bioefficacy against human disease vectors. Parasitol Res 107:1481–1488

    Article  PubMed  Google Scholar 

  • Kang K, Fong WP, Tsang PW (2010) Novel antifungal activity of purpurin against Candida species in vitro. Med Mycol 48:904–911

    Article  PubMed  CAS  Google Scholar 

  • Kanwal Q, Hussain I, Latif Siddiqui H, Javaid A (2010) Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat Prod Res 24:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Kaomongkolgit R, Jamdee K, Chaisomboon N (2009) Antifungal activity of α-mangostin against Candida albicans. J Oral Sci 51:401–406

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Ahmad A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2010a) Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res Microbiol 161:816–823

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Ahmad A, Manzoor N, Khan LA (2010b) Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat Prod Commun 5:345–349

    PubMed  CAS  Google Scholar 

  • Khan MS, Ahmad I (2012) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Shreaz S, Bhatia R, Ahmad SI, Muralidhar S, Manzoor N, Khan LA (2012) Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia 83:434–440

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Woloshuk CP, Cho EH, Bae JM, Song YS, Huh GH (2007) Cloning and functional expression of the gene encoding an inhibitor against Aspergillus flavus α-amylase, a novel seed lectin from Lablab purpureus (Dolichos lablab). Plant Cell Rep 26:395–405

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Lee CH, Kim HG, Lee HS (2004) Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem 52:6096–6100

    Article  PubMed  CAS  Google Scholar 

  • Kiraz N, Metintas S, Oz Y, Koc F, Koku Aksu EA, Kalyoncu C, Kasifoglu N, Cetin E, Arikan I (2010) The prevalence of tinea pedis and tinea manuum in adults in rural areas in Turkey. Int J Environ Health Res 20:379–386

    Article  PubMed  CAS  Google Scholar 

  • Kishore N, Mishra AK, Chansouria JP (1993) Fungitoxicity of essential oils against dermatophytes. Mycoses 36:211–215

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Yanai T, Toyota A (1998) Essential oil constituents from Japanese and Indian Curcuma aromatica rhizomes. Planta Med 64:380–381

    Article  PubMed  CAS  Google Scholar 

  • Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 99:8788–8795

    Article  PubMed  CAS  Google Scholar 

  • Kuiate JR, Mouokeu S, Wabo HK, Tane P (2007) Antidermatophytic triterpenoids from Syzygium jambos (L.) Alston (Myrtaceae). Phytother Res 21:149–152

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Mishra AK, Dubey NK, Tripathi YB (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115:159–164

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Hong YK, park C, Choi YH, Yun HJ, Lee EW, Kim BW (2010a) Widdrol induces cell cycle arrest, associated with MCM down-regulation, in human colon adenocarcinoma cells. Cancer Lett 290:96–103

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Lee EW, Hong YK, Yun HJ, Kim BW (2010b) Widdrol from Juniperus chinensis induces apoptosis in human colon adenocarcinoma HT29 cells. Biotechnol Bioprocess Eng (BBE) 15:167–172

    Article  CAS  Google Scholar 

  • Lamidi M, Rondi ML, Ollivier E, Faure R, Ekekang L, Nze Balansard G (2000) Constituents of Ipomoea fistulosa leaves. Fitoterapia 71:203–204

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Han JI, Lee GS, Park MJ, Choi IG, Na KJ, Jeung EB (2007) Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull 30:184–188

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Park JH, Kim YS, Han Y (2008) Chlorogenic acid, a polyphenolic compound, treats mice with septic arthritis caused by Candida albicans. Int Immunopharmacol 8:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Park JM, Song HY, Jeong EY, Lee HS (2009) Acaricidal activities of major constituents of essential oil of Juniperus chinensis leaves against house dust and stored food mites. J Food Prot 72:1686–1691

    PubMed  CAS  Google Scholar 

  • Lemos Jde A, Passos XS, Fernandes Ode F, Paula JR, Ferri PH, Souza LK, Lemos Ade A, Silva Mdo R (2005) Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem Inst Oswaldo Cruz 100:55–58

    Article  PubMed  Google Scholar 

  • Lim JP, Song YC, Kim JW, Ku CH, Eun JS, Leem KH, Kim DK (2002) Free radical scavengers from the heartwood of Juniperus chinensis. Arch Pharm Res 25:449–452

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhao M, Luo W, Yang B, Jiang Y (2009) Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity. J Med Food 12:423–428

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-H , Zhang Z, Shi G-X, Meng J-C, Tan R-X (2002) A new antifungal flavonol glycoside from Hypericum perforatum. Acta Botan Sin 44:743–745

    Google Scholar 

  • Ma CM, Kully M, Khan JK, Hattori M, Daneshtalab M (2007) Synthesis of chlorogenic acid derivatives with promising antifungal activity. Bioorg Med Chem 15:6830–6833

    Article  PubMed  CAS  Google Scholar 

  • Machado KE, Cechinel Filho V, Cruz RC, Meyre-Silva C, Cruz AB (2009) Antifungal activity of Eugenia umbelliflora against dermatophytes. Nat Prod Commun 4:1181–1184

    PubMed  CAS  Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S, Milosev M (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 76:244–246

    Article  PubMed  CAS  Google Scholar 

  • Marcos-Arias C, Eraso E, Madariaga L, QuindĂłs G (2011) In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med 11:119

    Article  PubMed  CAS  Google Scholar 

  • Mishra BB, Kishore N, Tiwari VK, Singh DD, Tripathi V (2010) A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia 81:104–107

    Article  PubMed  CAS  Google Scholar 

  • Morel C, SĂ©raphin D, Teyrouz A, Larcher G, Bouchara JP, Litaudon M, Richomme P, Bruneton J (2002) New and antifungal xanthones from Calophyllum caledonicum. Planta Med 68:41–44

    Article  PubMed  Google Scholar 

  • Muhammad N, Kamal M, Islam T, Islam N, Shafiquzzaman M (2009) A study to evaluate the efficacy and safety of oral fluconazole in the treatment of tinea versicolor. Mymensingh Med J 18:31–35

    PubMed  CAS  Google Scholar 

  • Muzitano MF, Cruz EA, de Almeida AP, Da Silva SA, Kaiser CR, Guette C, Rossi-Bergmann B, Costa SS (2006) Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Plant Med 72:81–83

    Article  CAS  Google Scholar 

  • Muzitano MF, Bergonzi MC, De Melo GO, Lage CL, Bilia AR, Vincieri FF, Rossi-Bergmann B, Costa SS (2011) Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. J Ethnopharmacol 133:132–137

    Article  PubMed  CAS  Google Scholar 

  • Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA (2011) Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 57:204–210

    Article  PubMed  CAS  Google Scholar 

  • Nuñez YO, Salabarria IS, Collado IG, Hernandez-Galan R (2006) The antifungal activity of widdrol and its biotransformation by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. and Botrytis cinerea Pers.: Fr. J Agric Food Chem 54:7517–7521

    Article  PubMed  CAS  Google Scholar 

  • Nuñez YO, Salabarria IS, Collado IG, Hernández-Gálan R (2007) Sesquiterpenes from the wood of Juniperus lucayana. Phytochemistry 68:2409–2414

    Article  PubMed  CAS  Google Scholar 

  • Ogunwande IA, Flamini G, Cioni PL, Omikorede O, Azeez RA, Ayodele AA, Kamil YO (2010) Aromatic plants growing in Nigeria: essential oil constituents of Cassia alata (Linn.) Roxb. and Helianthus annuus L. Rec Nat Prod 4:211–217

    CAS  Google Scholar 

  • Ohashi H, Asai T, Kawai S (1994) Screening of main Japanese conifers for antifungal leaf components. Sesquiterpenes of Juniperus chinensis pyramidalis. Holzforschung 48:193–198

    Article  CAS  Google Scholar 

  • Oku H, Ishiguro K (2001) Antipruritic and antidermatitic effect of extract and compounds of Impatiens balsamina L. in atopic dermatitis model of NC mice. Phytother Res 15:506–510

    Article  PubMed  CAS  Google Scholar 

  • Okwu DE, Nnamdi FU (2011a) A novel antimicrobial phenanthrene alkaloid from Bryophyllum pinnatum. J Chem Pharmaceut Res 3:27–33

    CAS  Google Scholar 

  • Okwu DE, Nnamdi FU (2011b) Cannabinoid dronabinol alkaloid with antimicrobial activity from Cassia alata Linn. Chemica Sinica 2:247–254

    CAS  Google Scholar 

  • Ozcan MM, Chalchat JC (2008) Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr 59:691–698

    Article  PubMed  CAS  Google Scholar 

  • Palá-PaĂşl J, Usano-Alemany J, Granda E, Soria AC (2009) Chemical composition, antifungal and antibacterial activity of the essential oil of Chamaecyparis nootkatensis from Spain. Nat Prod Commun 4:1007–1010

    PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46

    PubMed  CAS  Google Scholar 

  • Pina-Vaz C, Gonçalves Rodrigues A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L, Cavaleiro C, Gonçalves MJ, Martinez-de-Oliveira J (2004) Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol 18:73–78

    Article  PubMed  CAS  Google Scholar 

  • Ponnusamy K, Petchiammal C, Mohankumar R, Hopper W (2010) In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br. J Ethnopharmacol 132:349–354

    Article  CAS  Google Scholar 

  • Potduang B, Meeploy M, Giwanon R, Benmart Y, Kaewduang M, Supatanakul W (2008) Biological activities of Asparagus racemosus. Afr J Tradit Complement Altern Med 5:230–237

    PubMed  CAS  Google Scholar 

  • Prakash B, Shukla R, Singh P, Kumar A, Mishra PK, Dubey NK (2010) Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int J Food Microbiol 142:114–119

    Article  PubMed  CAS  Google Scholar 

  • Prasad CS, Shukla R, Kumar A, Dubey NK (2010) In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 53:123–129

    Article  PubMed  CAS  Google Scholar 

  • Rahman MS, Hasan AJMM, Ali MY, Ali MU (2006) Studies on the isolation of parahydroxy benzoic acid from the leaves of Cassia alata. Bangladesh J Sci Ind Res 41:89–92

    CAS  Google Scholar 

  • Rahmatullah M, Ferdausi D, Mollik MAH, Jahan R, Chowdhury MH, Haque WM (2010a) A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med 7:91–97

    Google Scholar 

  • Rahmatullah M, Khatun MA, Morshed N, Neogi PK, Khan SUA, Hossan MS, Mahal MJ, Jahan R (2010b) A randomized survey of medicinal plants used by flok medicinal healers of Sylhet Division, Bangladesh. Adv Nat Appl Sci 4:52–62

    Google Scholar 

  • Rahmatullah M, Kabir AABT, Rahman MM, Hossan MS, Khatun Z, Khatun MA, Jahan R (2010c) Ethnomedicinal practices among a minority group of Christians residing in Mirzapur village of Dinajpur District, Bangladesh. Adv Nat Appl Sci 4:45–51

    Google Scholar 

  • Rahmatullah M, Momen MA, Rahman MM, Nasrin D, Hossain MS, Khatun Z, Jahan FI, Khatun MA, Jahan R (2010d) A randomized survey of medicinal plants used by folk medicinal practitioners in Daudkandi sub-district of Comilla district, Bangladesh. Adv Nat Appl Sci 4:99–104

    Google Scholar 

  • Rahmatullah M, Mollik MAH, Ahmed MN, Bhuiyan MZA, Hossain MM, Azam MNK, Seraj S, Chowdhury MH, Jamal F, Ahsan S, Jahan R (2010e) A survey of medicinal plants used by folk medicinal practitioners in two villages of Tangail district, Bangladesh. Am.-Eur J Sustain Agric 4:357–362

    Google Scholar 

  • Rahmatullah M, Mollik MAH, Islam MK, Islam MR, Jahan FI, Khatun Z, Seraj S, Chowdhury MH, Islam F, Miajee ZUM, Jahan R (2010f) A survey of medicinal and functional food plants used by the folk medicinal practitioners of three villages in Sreepur Upazilla, Magura district, Bangladesh. Am.-Eur J Sustain Agric 4:363–373

    Google Scholar 

  • Rahmatullah M, Jahan R, Khatun MA, Jahan FI, Azad AK, Bashar ABM, Miajee ZUM, Ahsan S, Nahar N, Ahmad I, Chowdhury MH (2010g) A pharmacological evaluation of medicinal plants used by folk medicinal practitioners of Station Purbo Para Village of Jamalpur Sadar Upazila in Jamalpur district, Bangladesh. Am.-Eur J Sustain Agric 4:170–195

    Google Scholar 

  • Rahmatullah M, Biswas KR (2012) Traditional medicinal practices of a sardar healer of the Sardar (Dhangor) community of Bangladesh. J Altern Complement Med 18:10–19

    Article  PubMed  Google Scholar 

  • Rahmatullah M, Hasan A, Parvin W, Moniruzzaman M, Khatun A, Khatun Z, Jahan FI, Jahan R (2012a) Medicinal plants and formulations used by the Soren clan of the Santal tribe in Rajshahi district, Bangladesh for treatment of various ailments. Afr J Tradit Complement Altern Med 9:342–349

    Google Scholar 

  • Rahmatullah M, Khatun Z, Hasan A, Parvin W, Moniruzzaman M, Khatun A, Mahal MJ, Bhuiyan MSA, Mou SM, Jahan R (2012b) Survey and scientific evaluation of medicinal plants used by the Pahan and Teli tribal communities of Natore district, Bangladesh. Afr J Tradit Complement Altern Med 9:366–373

    Google Scholar 

  • Rahmatullah M, Azam MNK, Khatun Z, Seraj S, Islam F, Rahman MA, Jahan S, Aziz MS, Jahan R (2012c) Medicinal plants used for treatment of diabetes by the Marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. Afr J Tradit Complement Altern Med 9:380–385

    Google Scholar 

  • Raina VK, Srivastava SK, Syamsundar KV (2005) Essential oil composition of Juniperus chinensis from the plains of northern India. Flavour Frag J 20:57–59

    Article  CAS  Google Scholar 

  • Ranganathan S, Balajee SA (2000) Anti-Cryptococcus activity of combination of extracts of Cassia alata and Ocimum sanctum. Mycoses 43:299–301

    Article  PubMed  CAS  Google Scholar 

  • Rocha AD, de Oliveira AB, de Souza Filho JD, Lombardi JA, Braga FC (2004) Antifungal constituents of Clytostoma ramentaceum and Mansoa hirsuta. Phytother Res 18:463–467

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli C, Andreotti E, Maietti S, Mahendra R, Mares D (2010) Antifungal activity of essential oil from fruits of Indian Cuminum cyminum. Pharm Biol 48:834–838

    Article  PubMed  CAS  Google Scholar 

  • Rosca-Casian O, Parvu M, Vlase L, Tamas M (2007) Antifungal activity of Aloe vera leaves. Fitoterapia 78:219–222

    Article  PubMed  Google Scholar 

  • Rukayadi Y, Yong D, Hwang JK (2006) In vitro anticandidal activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. J Antimicrob Chemother 57:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Rukayadi Y, Hwang JK (2007a) In vitro anti-Malassezia activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. Lett Appl Microbiol 44:126–130

    Article  PubMed  CAS  Google Scholar 

  • Rukayadi Y, Hwang JK (2007b) In vitro antimycotic activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. against opportunistic filamentous fungi. Phytother Res 21:434–438

    Article  PubMed  CAS  Google Scholar 

  • Rukayadi Y, Lee K, Lee MS, Yong D, Hwang JK (2009) Synergistic anticandidal activity of xanthorrhizol in combination with ketoconazole or amphotericin B. FEMS Yeast Res 9:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Rukayadi Y, Han S, Yong D, Hwang JK (2011) In vitro activity of xanthorrhizol against Candida glabrata, C. guilliermondii, and C. parapsilosis biofilms. Med Mycol 49:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sabulal B, Dan M, J AJ, Kurup R, Pradeep NS, Valsamma RK, George V (2006) Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 67:2469–2473

    Google Scholar 

  • Sadeque JB, Shahidullah M, Shah OR, Kamal M (1995) Systemic ketoconazole in the treatment of tinea versicolor. Int J Dermatol 34:504–505

    Article  PubMed  CAS  Google Scholar 

  • Safaei-Ghomi J, Ahd AA (2010) Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn Mag 6:172–175

    Article  PubMed  CAS  Google Scholar 

  • Sakunphueak A, Panichayupakaranant P (2012) Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina. Nat Prod Res 26:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Sattar EA, Gala A, Rashwan O (1995) Caffeoyl derivatives from the seeds of Ipomoea fistulosa. Int J Pharmacognosy 33:155–158

    Article  CAS  Google Scholar 

  • Sekine T, Sugano M, Majid A, Fujii Y (2007) Antifungal effects of volatile compounds from black zira (Bunium persicum) and other spices and herbs. J Chem Ecol 33:2123–2132

    Article  PubMed  CAS  Google Scholar 

  • Shah VH, Mehta DS (2006) Phytochemical investigation of Ipomoea fistulosa, Jacq.: part I—isolation and structure determination of an alkaloid—ergosine. Chemistry: Indian J 3:8–10

    Google Scholar 

  • Shai LJ, McGaw LJ, Aderogba MA, Mdee LK, Eloff JN (2008) Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm Leave J Ethnopharmacol 119:238–244

    Article  CAS  Google Scholar 

  • Shanker KS, Kanjilal S, Rao BV, Kishore KH, Misra S, Prasad RB (2007) Isolation and antimicrobial evaluation of isomeric hydroxyl ketones in leaf cuticular waxes of Annona squamosa. Phytochem Anal 18:7–12

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Manoharlal R, Puri N, Prasad R (2010a) Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 30:391–404

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Manoharlal R, Negi AS, Prasad R (2010b) Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 10:570–578

    PubMed  CAS  Google Scholar 

  • Sharma M, Dhamgaye S, Singh A, Prasad R (2012) Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Front Biosci (Elite Ed) 4:1195–1209

    Google Scholar 

  • Shikha P, Latha PG, Suja SR, Anuja GI, Shyamal S, Shine VJ, Sini S, Krishna Kumar NM, Rajasekharan S (2010) Anti-inflammatory and antinociceptive activity of Justicia gendarussa Burm.f. leaves. IJNPR 1:456–461

    Google Scholar 

  • Singh O, Ali M, Akhtar N (2011) New antifungal xanthones from the seeds of Rhus coriaria L. Z Naturforsch C 66:17–23

    PubMed  CAS  Google Scholar 

  • Singh RK (2005) Fungitoxicity of some higher plants and synergistic activity of their essential oils against Sclerotium rolfsii Sacc. causing foot-rot disease of barley. Hindustan Antibiot Bull 47–48:45–51

    PubMed  Google Scholar 

  • Singh VK, Pandey DK (1989) Fungitoxic studies on bark extract of Lawsonia inermis against ringworm fungi. Hindustan Antibiot Bull 31:32–35

    PubMed  CAS  Google Scholar 

  • Soković MD, Vukojević J, Marin PD, Brkić DD, Vajs V, van Griensven LJ (2009) Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14:238–249

    Article  PubMed  CAS  Google Scholar 

  • Somchit MN, Reezal I, Nur IE, Mutalib AR (2003) In vitro antimicrobial activity of ethanol and water extracts of Cassia alata. J Ethnopharmacol 84:1–4

    Article  PubMed  CAS  Google Scholar 

  • Sritrairat N, Nukul N, Inthasama P, Sansuk A, Prasirt J, Leewatthanakorn T, Piamsawad U, Dejrudee A, Panichayupakaranant P, Pangsomboon K, Chanowanna N, Hintao J, Teanpaisan R, Chaethong W, Yongstar P, Pruphetkaew N, Chongsuvivatwong V, Nittayananta W (2011) Antifungal activity of lawsone methyl ether in comparison with chlorhexidine. J Oral Pathol Med 40:90–96

    Article  PubMed  Google Scholar 

  • Teh SS, Cheng Lian Ee G, Rahmani M, Taufiq-Yap YH, Go R, Mah SH (2011) Pyranoxanthones from Mesua ferrea. Molecules 16:5647–5654

    Article  CAS  Google Scholar 

  • Thevissen K, François IE, Sijtsma L, van Amerongen A, Schaaper WM, Meloen R, Posthuma-Trumpie T, Broekaert WF, Cammue BP (2005) Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 26:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91:977–987

    Google Scholar 

  • Trakranrungsie N, Chatchawanchonteera A, Khunkitti W (2008) Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro. Res Vet Sci 84:80–84

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RD, Srivastava HS, Dixit SN (1978) A fungitoxic principle from the leaves of Lawsonia inermis Lam. Experientia 34:51–52

    Article  PubMed  CAS  Google Scholar 

  • Tuntiwachwuttikul P, Butsuri Y, Sukkoet P, Prawat U, Taylor WC (2008) Anthraquinones from the roots of Prismatomeris malayana. Nat Prod Res 22:962–968

    Article  PubMed  CAS  Google Scholar 

  • Uma B, Prabhakar K, Rajendran S (2009) Anticandidal activity of Asparagus racemosus. Indian J Pharm Sci 71:342–343

    Article  PubMed  CAS  Google Scholar 

  • Vale-Silva LA, Gonçalves MJ, Cavaleiro C, Salgueiro L, Pinto E (2010) Antifungal activity of the essential oil of Thymus x viciosoi against Candida, Cryptococcus, Aspergillus and dermatophyte species. Planta Med 76:882–888

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman S, Ramanujam TR, Venkatasubbu VS (1980) Antifungal activity of the alcoholic extract of coconut shell—Cocos nucifera Linn. J Ethnopharmacol 2:291–293

    Article  PubMed  CAS  Google Scholar 

  • Villaroya MLE, Bernal-Santos R (1976) A chemical investigation of Cassia alata L. (fam. Leguminosae). Asian J Pharm 3:10–24

    Google Scholar 

  • Villaseñor IM, Canlas AP, Pascua MP, Sabando MN, Soliven LA (2002) Bioactivity studies on Cassia alata Linn. leaf extracts. Phytother Res 16(Suppl 1):S93–96

    Google Scholar 

  • Wang HX, Ng TB (2005) An antifungal peptide from the coconut. Peptides 26:2392–2396

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Hou AJ, Zhu GF, Chen DF, Sun HD (2005) Cytotoxic and antifungal isoprenylated xanthones and flavonoids from Cudrania fruticosa. Planta Med 71:273–274

    Article  PubMed  CAS  Google Scholar 

  • Xiaoli L, Naili W, Sau WM, Chen AS, Xinsheng Y (2006) Four new isoflavonoids from the stem bark of Erythrina variegata. Chem Pharm Bull (Tokyo) 54:570–573

    Article  Google Scholar 

  • Yin H, Zhao H, Zhang Y, Zhang H, Xu L, Zou Z, Yang W, Cheng J, Zhou Y (2006) Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent. Biotechnol Lett 28:99–105

    Article  PubMed  CAS  Google Scholar 

  • Yordanov M, Dimitrova P, Patkar S, Saso L, Ivanovska N (2008) Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Can J Microbiol 54:435–440

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Zong G, Zhang J, Wang D, Liang X (2011) Synthesis and anti-fungal activity of several oleanolic acid glycosides. Molecules 16:1113–1128

    Article  PubMed  CAS  Google Scholar 

  • Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and the arrest of cell cycle. Phytomedicine 18:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Zuzarte M, Gonçalves MJ, Cavaliero C, Canhoto J, Vale-Silva L, Silva MJ, Pinto E, Salgueiro L (2011) Chemical composition and antifungal activity of the essential oils of Lavandula viridis L′Her. J Med Microbiol 60(Pt 5):612–618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rahmatullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jahan, R., Rahman, T., Rahmatullah, M. (2013). Plants Used in Folk Medicine of Bangladesh for Treatment of Tinea Infections. In: Razzaghi-Abyaneh, M., Rai, M. (eds) Antifungal Metabolites from Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_12

Download citation

Publish with us

Policies and ethics