Skip to main content

Antifungal Metabolites of Endophytic Fungi

  • Chapter
  • First Online:
Antifungal Metabolites from Plants

Abstract

Not only medicinal plants, but also the endophytic fungi that colonize them are excellent sources of antifungal metabolites. In some cases, the substances detected in plants have been shown to be secondary metabolites synthesized by their fungal inhabitants. As we have shown, most endophytic fungi produce biologically active metabolites, many of which are antifungal. We speculate that in situ these antifungal metabolites protect the endophytic fungi from competitors within the plant host. The metabolites belong to diverse structural groups and include many unprecedented carbon skeletons, but also derivatives of known structural groups: the benzofuranes, biaryl ethers, botryanes, coniothyriomycins, dinemasones, epoxydon derivatives, fusidilactones, isocoumarins, massarilactones, palmarumycins, pestalotheols, pyranocines, pyrenocines, naphthalenes, oblongolides and xanthones. The chemical diversity of the fungal metabolites by functional group transformation and the quality of diversity by ring closure of open-chain compounds and dimerization is demonstrated with examples from our research. We conclude that endophytic fungi are creative masters of chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed I, Hussain H, Schulz B, Draeger S, Padula D, Pescitelli G, van Ree T, Krohn K (2011) Three new antimicrobial metabolites from the endophytic fungus, Phomopsis sp. Eur J Org Chem, pp 2867–2873

    Google Scholar 

  • Anke T, Oberwinkler F, Steglich W, Schramm G (1977) J Antibiot 30:806–810

    Article  PubMed  CAS  Google Scholar 

  • Aslan A, Altun S, Ahmad I, Flörke U, Schulz B, Krohn K (2011) Synthesis of biologically active nonnatural palmarumycin derivatives. Eur J Org Chem 6:1176–1188

    Google Scholar 

  • Baer H, Hanna ZS (1980) Palladium-catalyzed, allylic aminations and alkylations of an unusual sugar acetate. Carbohydr Res 78:C11–C14

    Article  CAS  Google Scholar 

  • Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244

    Article  PubMed  CAS  Google Scholar 

  • Barrett AGM, Blaney F, Campbell AD, Hamprecht D, Meyer T, White AJP, Witty D, Williams DJ (2002) A unified route to the palmarumycin and preussomerin natural products: an enantioselective synthesis of (-)-preussomerin G. J Org Chem 67:2735–2750

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Zeeck A (2000) UV mutagenesis and enzyme inhibitors as tools to elucidate the late biosynthesis of the spirobisnaphthalenes. Phytochemistry 55:311–316

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Wegner B, Zeeck A (2000) Biosynthesis of cadospirone bisepoxide, a member of the spirobisnaphthalene family. J Antibiot 53:153–157

    Article  PubMed  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  PubMed  CAS  Google Scholar 

  • Cai Y-s, Guo Y-W, Krohn K (2010) Structure, bioactivities, biosynthetic relationships and chemical synthesis of the spirodioxynaphthalenes. Nat Prod Rev 27:1840–1870

    Article  CAS  Google Scholar 

  • Chu M, Truumees I, Patel MG, Gullo VP, Puar MS, McPhail AT (1994) Structure of Sch 49209: a novel antitumor agent from the fungus Nattrassia mangiferae. J Org Chem 59:1222–1223

    Article  CAS  Google Scholar 

  • Chu M, Truumees I, Patel MG, Blood C, Das PR, Puar MS (1995) Sch 50673 and Sch 50676, two novel antitumor fungal metabolites. J Antibiot 48:329–331

    Article  PubMed  CAS  Google Scholar 

  • Chu M, Patel MG, Pai J-K, Das J-K, Puar MS (1996) Sch 53823 and Sch 53825, Novel fungal metabolites with phospholipase D inhibitory activity. Bioorg Med Chem Lett 6:579–584

    Article  CAS  Google Scholar 

  • Coutts IGC, Allcock RW, Scheeren HW (2000) Novel synthetic approaches to the palmarumycin skeleton. Tetrahedron Lett 41:9105–9107

    Article  CAS  Google Scholar 

  • Dai J, Krohn K, Flörke U, Gehle D, Aust H-J, Draeger S, Schulz B, Rheinheimer K (2005) Novel highly substituted biaryl ethers, phomosines D-G, isolated from the endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. Eur J Org Chem, pp 5100–5105

    Google Scholar 

  • Dai J, Krohn K, Elsässer B, Flörke U, Draeger S, Schulz B, Pescitelli G, Salvadori P, Antus S, Kurtán T (2007) Metabolic products of the endophytic fungus Microsphaeropsis sp. from Larix decidua. Eur J Org Chem, pp 4845–4854

    Google Scholar 

  • Dai J, Krohn K, Draeger S, Schulz B (2009) New naphthalen-chroman coupling products from the endophytic fungus Nodulisporium sp. from Erica arborea. Eur J Org Chem, pp 1564–1569

    Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel low-molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential, vol 3. Butterworth-Heinemann Butterworth-Heinemann, Boston, pp 49–80

    Google Scholar 

  • Gao X, Snider BB (2004) Syntheses of (-)-TAN-2483A, (-)-Massarilactone B, and the fusidilactone B ring system. Revision of the structures of and syntheses of (±)-Waol A (FD-211) and (±)-Waol B (FD-212). J Org Chem 69:5517–5527

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Nakadai M, Snider BB (2003) Synthesis of (-)-TAN-2483A. Revision of the structures and syntheses of (±)-FD-211 (Waol A) and (±)-FD-212 (Waol B). Org Lett 5:451–454

    Article  PubMed  CAS  Google Scholar 

  • Hill RA (1986) Naturally occurring isocoumarins. Prog Chem Nat Prod 49:1–78

    Article  CAS  Google Scholar 

  • Hussain H, Krohn K, Ullah Zia, Draeger S, Schulz B (2007) Bioactive chemical constituents of two endophytic fungi. Biochem Syst Ecol 35:898–900

    Article  CAS  Google Scholar 

  • Hussain H, Akhtar N, Draeger S, Schulz B, Pescitelli G, Salvadori P, Antus S, Kurtán T, Krohn K (2009a) New bioactive 2,3-epoxycyclohexenes and isocoumarins from the endophytic fungus Phomopsis sp. from Laurus azorica. Eur J Org Chem, pp 749–756

    Google Scholar 

  • Hussain H, Krohn K, Draeger S, Meier K, Schulz B (2009b) Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Rec Nat Prod 3:114–117

    CAS  Google Scholar 

  • Hussain H, Ahmed I, Schulz B, Draeger S, Flörke U, Pescitelli G, Krohn K (2011a) Solid-state circular dichroism and hydrogen bonding: absolute configuration of Massarigenin A from Microsphaeropsis sp. Chirality 23:617–623

    Article  PubMed  CAS  Google Scholar 

  • Hussain H, Krohn K, Ahmed I, Draeger S, Schulz B, Di Pietro S, Pescitelli G (2011b) Phomopsinones A-D: four new pyranocines from endophytic fungus Phomopsis sp. J Nat Prod 74:365–373

    Article  PubMed  Google Scholar 

  • Hussain H, Krohn K, Tichimene MK, Ahmed I, Meier K, Steinert M, Draeger S, Schulz B (2011c) Antimicrobial chemical constituents from the endophytic fungus Phomopsis sp. from Notobasis syriaca. Nat Prod Commun 6:1905–1909

    PubMed  CAS  Google Scholar 

  • Hussain H, Schulz B, Draeger S, Krohn K (2011d) Two new antimicrobial metabolites from the endophytic fungus, Seimatosporium sp. Nat Prod Commun 7:293–294

    Google Scholar 

  • Hussain H, Ahmed I, Schulz B, Draeger S, Krohn K (2012) Four new antimicrobial pyranocines from the endophytic fungus, Phomopsis sp. Fitoterapia 83:523–526

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Nabatame K, Hirama M (2003) A novel route to 1,8-dihydroxynaphthalene-derived natural products: synthesis of (+-)-CJ-12,372. Heterocycles 59:87–92

    Article  CAS  Google Scholar 

  • Jiao P, Swenson DC, Gloer JB, Campbell J, Shearer CA (2006) Decaspirones A-E, bioactive spirodioxynaphthalenes from the freshwater aquatic fungus Decaisnella thyridioides. J Nat Prod 69:1667–1771

    Article  PubMed  CAS  Google Scholar 

  • Kock I, Draeger S, Schulz B, Elsässer B, Kurtán T, Kenéz Á, Antus S, Pescitelli G, Salvadori P, Speakman J-B, Rheinheimer J, Krohn K (2009) Pseudoanguillosporin A and B, two new isochromans isolated from the endophytic fungus Pseudoanguillospora sp. Eur J Org Chem, pp 1427–1434

    Google Scholar 

  • Kock I, Krohn K, Egold H, Draeger S, Schulz B and Rheinheimer J (2007) New massarilactones, massarigenins and coniothyrenol, isolated from the endophytic fungus Coniothyrium sp. from Carpobrotus edulis. Eur J Org Chem 2186–2190

    Google Scholar 

  • Krohn K (2003) Natural products derived from naphthalenoid precursors by oxidative dimerization. In: Herz W, Falk H, Kirby GW, Moore RE, Tamm Ch (eds) Progress in the chemistry of organic natural products, vol 85., SpringerWien, New York, pp 1–49

    Google Scholar 

  • Krohn K, Aslan A (2009) Synthesis of daldinol and nodulisporin A by oxidative dimerisation of 8-methoxynaphthalen-1-ol. Nat Prod Commun 4:87–88

    PubMed  CAS  Google Scholar 

  • Krohn K, Schulz B (2011) Isolation of metabolites from the fungal culture broth: structural diversity of bioactive secondary metabolites from fungi. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes. A laboratory manual, Part B: Fungi, pp 113–117, 237–254

    Google Scholar 

  • Krohn K, Franke C, Jones PG, Aust H-J, Draeger S, Schulz B (1992) Wirkstoffe aus Pilzen, I. Isolierung, synthese und biologische Wirkung von Coniothyriomycin und analogen offenkettigen Imiden. Liebigs Ann Chem 1992:789–798

    Article  Google Scholar 

  • Krohn K, Michel A, Flörke U, Aust H-J, Draeger S, Schulz B (1994a) Biologically active metabolites from fungi, 4. Palmarumycins CP1 to CP4 from Coniothyrium palmarum: isolation, structure elucidation and biological activity. Liebigs Ann Chem 1994:1093–1097

    Article  Google Scholar 

  • Krohn K, Michel A, Flörke U, Aust H-J, Draeger S, Schulz B (1994b) Biologically active metabolites from fungi, 5. Palmarumycins C1 to C16 from Coniothyrium sp.: isolation, structure elucidation, and biological activity. Liebigs Ann Chem 1994:1099–1108

    Article  Google Scholar 

  • Krohn K, Ludewig K, Aust H-J, Draeger S, Schulz B (1994c) Biologically active metabolites from fungi, 3. Sporothriolide, discosiolide, and 4-epi-ethiosolide: new furofuranones from Sporothrix sp., Discosia sp. and Pezzicula livida. J Antibiot 46:113–118

    Article  Google Scholar 

  • Krohn K, Michel A, Roemer E, Flörke U, Aust H-J, Draeger S, Schulz B, Wray V (1995) Biologically active metabolites from fungi, 6. Phomosines A-C: three new biaryl ethers from Phomopsis sp. Nat Prod Lett 9:309–314

    Article  Google Scholar 

  • Krohn K, Beckmann K, Aust H-J, Draeger S, Schulz B, Busemann S, Bringmann G (1997a) Biologically active metabolites from fungi, 10: generation of the palmarumycin spiroacetal framework by oxidative cyclization of an open chain metabolite from Coniothyrium palmarum. Liebigs Ann Chem 1997:2531–2534

    Article  Google Scholar 

  • Krohn K, Beckmann K, Flörke U, Aust H-J, Draeger S, Schulz B, Busemann S, Bringmann G (1997b) Biologically active metabolites from fungi, 9. New palmarumycins CP4a and CP5 from Coniothyrium palmarum: structure elucidation, crystal structure analysis and determination of the absolute configuration by CD-calculations. Tetrahedron 53:3101–3110

    Article  CAS  Google Scholar 

  • Krohn K, Bahramsari R, Flörke U, Ludewig K, Kliche-Spory C, Michel A, Aust H-J, Draeger S, Schulz B, Antus S (1997c) Biologically active metabolites from fungi, 8. dihydroisocoumarins from fungi: isolation, structure elucidation, circular dichroism, enantioselective synthesis, and biological activity. Phytochemistry 45:313–320

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Flörke U, John M, Root N, Steingröver K, Aust H-J, Draeger S, Schulz B, Antus S, Simonyi M, Zsila F (2001a) Biologically active metabolites from fungi, 16. New preussomerins J, K and L from an endophytic fungus: structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron 57:4343–4348

    Article  CAS  Google Scholar 

  • Krohn K, Flörke U, Rao MS, Steingröver K, Aust H-J, Draeger S, Schulz B (2001b) Metabolites from fungi 15. New isocoumarins from an endophytic fungus isolated from the Canadian thistle Cirsium arvense. Nat Prod Lett 15:353–361

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, John M, Aust H-J, Draeger S, Schulz B (2001c) Biologically active metabolites from fungi 14: new antibacterial agent from a soil fungus. Nat Prod Lett 15:9–12

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Biele C, Drogies K-H, Steingröver K, Aust H-J, Draeger S, Schulz B (2002) Biologically active secondary metabolites from fungi, 18. Fusidilactones, a new group of polycyclic lactones from an endophyte, Fusidium sp. Eur J Org Chem, pp 2331–2336

    Google Scholar 

  • Krohn K, Elsässer B, Antus S, Kónya K, Ammermann E (2003) Synthesis and structure-activity relationship of antifungal coniothyriomycin analogues. J Antibiot 56:296–305

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Sohrab MH, Aust H-J, Draeger S, Schulz B (2004) Biologically active metabolites from fungi 19: new isocoumarins and highly substituted benzoic acids from the endophytic fungus Scytalidium sp. Nat Prod Res 18:277–285

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Dai J, Flörke U, Aust H-J, Draeger S, Schulz B (2005) Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J Nat Prod 68:400–405

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Kock I, Elsässer B, Flörke U, Schulz B, Draeger S, Pescitelli G, Antus S, Kurtán T (2007a) New natural products from the endophytic fungus Ascochyta sp. from Meliotus dentatus: configurational assignment by solid-state CD and TDDFT calculations. Eur J Org Chem, pp 1123–1129

    Google Scholar 

  • Krohn K, Zia-Ullah Hussain H, Floerke U, Schulz B, Draeger S, Pescitelli G, Salvadori P, Antus S, Kurtán T (2007b) Massarilactones E-G, new bioactive metabolites from the endophytic fungus Coniothyrium sp., associated with the plant Artimisia maritima. Chirality 19:464–470

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Kouam SF, Cludius-Brandt S, Draeger S and Schulz B (2008a) Bioactive nitronapthalenes from an endophytic fungus, Coniothyrium sp. and their chemical synthesis. Eur J Org Chem 3615–3618

    Google Scholar 

  • Krohn K, Sohrab MH, Draeger S, Schulz B (2008b) New pyrenocines from an endophytic fungus. Nat Prod Commun 3:1689–1692

    CAS  Google Scholar 

  • Krohn K, Sohrab MH, van Ree T, Draeger S, Schulz B, Antus S, Kurtán T (2008c) Dinemasones A, B and C, new bioactive metabolites from the endophytic fungus, Dinemasporium strigosum. Eur J Org Chem, pp 5638–5646

    Google Scholar 

  • Krohn K, Kouam SF, Kuigoua GM, Hussain H, Cludius-Brand S, Flörke U, Kután T, Pescitelli G, Di Bari L, Draeger S, Schulz B (2009) Xanthones and new oxepino[2,3-b]chromones from three endophytic fungi. Chem Eur J 15:12121–12132

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Wang S, Ahmed I, Altun S, Aslan A, Flörke U, Kock I, Schlummer S (2010) A new flexible route to palmarumycins CP1, CP2, and CJ-12.371 methyl ether. Eur J Org Chem, pp 4476–4481

    Google Scholar 

  • Krohn K, Farooq U, Hussain H, Rheinheimer J, Draeger S, Schulz B, van Ree T (2011) Phomosines H-J, novel highly substituted biraryl ethers, isolated from the endophytic fungus Phomopsis sp. from Ligustrum vulgare. Nat Prod Commun 6:1907–1912

    PubMed  CAS  Google Scholar 

  • Krohn K, Hussain H, Egold H, Schulz B, Green I (2012) Chemical derivisation of phomosine A, a highly antifungal metabolite of Phomopsis sp. Arkivoc 2012:71–89

    Article  Google Scholar 

  • Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008) Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668

    Article  PubMed  CAS  Google Scholar 

  • Masters K-S, Bräse S (2012) Xanthones from fungi, lichens and bacteria: the natural products and their synthesis. Chem Rev 112:3717–3776

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. Nat Prod Rep 70:461–477

    Article  CAS  Google Scholar 

  • Oh H, Swenson DC, Gloer JB, Shearer CA (2001) Massarilactones A and B: novel secondary metabolites from the freshwater aquatic fungus Massarina tunicata. Tetrahedron Lett 42:975–977

    Article  CAS  Google Scholar 

  • Oh H, Swenson DC, Gloer JB, Shearer CA (2003) New bioactive rossigenin analogues and aromatic polyketide metabolites from the freshwater aquatic fungus Massarina tunica. J Nat Prod 66:73–79

    Article  PubMed  CAS  Google Scholar 

  • Pearce C, Eckard P, Gruen-Wollny I, Hanske FG (2010) Microorganisms: their role in the discovery and development of medicines. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. The Royal Society of Chemistry, Cambridge, pp 215–244

    Google Scholar 

  • Pescitelli G, Kurtán T, Flörke U, Krohn K (2009) Absolute structural elucidation of natural products: a focus on quantum-mechanical calculations of solid-state CD spectra. Chirality 21:S181–S201

    Article  Google Scholar 

  • Pontius A, Mohamed I, Krick A, Kehraus S, König GM (2008) Aromatic polyketides from marine algicolous fungi. J Nat Prod 71:272–274

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Krohn K, Flörke U, Schulz B, Draeger S, Pescitelli G, Salvadori P, Antus S, Kurtán T (2009a) Two new fusidilactones from a fungal endophyte, Fusidium sp. Eur J Org Chem, pp 3279–3284

    Google Scholar 

  • Qin S., Krohn K, Schulz B (2009b) Two new metabolites, epoxydine A and B, from Phoma sp. Helv Chim Acta, pp 169–174

    Google Scholar 

  • Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2011) Pestalotheols E-H: antimicrobial metabolites from an endophytic fungus, from the tree Arbutus unedo. Eur J Org Chem, pp 5163–5166

    Google Scholar 

  • Ragot JP, Steeneck C, Alcaraz M-L, Taylor RJK (1999) The synthesis of 1,8-dihydroxynaphthalene-derived natural products: palmarumycin CP1 and CP2, CJ-12,371, deoxypreussomerin A and novel analogues. J Chem Soc Perkin Trans 1:1073–1082

    Article  Google Scholar 

  • Rodríguez S, Wipf P (2004) Oxidative spiroacetalizations and spirolactonizations of arenes. Syntheis, pp 2767–2783

    Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurine: evolution einer neuen Wirkstoffklasse. Angew Chem 111:1416–1438

    Article  Google Scholar 

  • Schlingmann G, West RR, Milne L, Pearce CJ, Carter GT (1993) Diepoxins, novel fungal metabolites with antibiotic activity. Tetrahedron Lett 34:7225–7228

    Article  CAS  Google Scholar 

  • Schulz B, Sucker J, Aust H-J, Krohn K, Ludewig K, Jones PG, Doering D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    Article  CAS  Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Draeger S, delaCruz T, Rheinheimer J, Siems K, Loesgen S, Bitzer J, Schloerke O, Zeeck A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Botanica Marina 51:219–234

    Article  CAS  Google Scholar 

  • Siddiqui IN, Zahoor A, Hussain H, Ahmed I, Ahmad VU, Padula D, Draeger S, Schulz B, Meier K, Steinert M, Kurtan T, Flörke U, Pescitelli G, Krohn K (2011) Two new diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: absolute configuration of diversonol. J Nat Prod 74:365–373

    Article  PubMed  CAS  Google Scholar 

  • Weber HA, Gloer JB (1991) The preussomerins: novel antifungal metabolites from the coprophilous fungus Preussia isomera Cain. J Org Chem 56:4355–4360

    Article  CAS  Google Scholar 

  • Weber HA, Baenziger NC, Gloer JB (1990) Structure of preussomerin A: an unusual new antifungal metabolite from the coprophilous fungus Preussia isomera. J Am Chem Soc 112:6718–6719

    Article  CAS  Google Scholar 

  • Wipf P, Jung J-K (1998) Total synthesis of palmarumycin CP1 and (+-)-deoxypreussomerin A. J Org Chem 63:3530–3531

    Article  CAS  Google Scholar 

  • Wipf P, Lynch SM (2003) Synthesis of highly oxygenated dinaphthyl ethers via SNAr reactions promoted by Barton’s base. Org Lett 5:1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Krohn K, Draeger S, Schulz B (2008a) Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod 71:1078–1081

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Krohn K, Zia-Ullah, Flörke U, Pescitelli G, Di Bari L, Antus S, Kurtán T, Rheinheimer J, Draeger S and Schulz B (2008) New mono- and dimerc members of the secalonic acid family, blennolides A-G, isolated from fungus Blennoria sp. Chem Eur J 14: 4913–4923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karsten Krohn or Barbara Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krohn, K., Schulz, B. (2013). Antifungal Metabolites of Endophytic Fungi. In: Razzaghi-Abyaneh, M., Rai, M. (eds) Antifungal Metabolites from Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_8

Download citation

Publish with us

Policies and ethics