Skip to main content

Symbioses

  • Chapter
  • First Online:
Biology of Algae, Lichens and Bryophytes
  • 243 Accesses

Abstract

This chapter treats the various forms of symbioses between several organism groups with cyanobacteria and algae. A separate sub-chapter highlights the lichen symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A number of lichen genera can have two mycobiont species. Thus the term “tripartite” is not necessarily correct for lichens with two photobionts. However, we do refrain here from introducing the new term “tetrapartite” as long as it is not known how widespread a second mycobiont is among the “tripartite” lichens. For the sake of convenience the term “tripartite” is used here, knowing well that it might be outdated soon.

  2. 2.

    Formerly named „heterocysts “, but these cells are not „cysts “ in the sense of resting cells. Instead they are specialized active cells that fix nitrogen from the air.

References

  • Acharius E (1803) Methodus qua omnes detectos lichens secundum organa catrpomorpha ad genera, species et varietates redigere atque observationibus illustrare tentavit. Ulrich, Stockholm, 394 p

    Google Scholar 

  • Acharius E (1814) Synopsis methodica lichenum. Svanborg et Soc., Lund, pp 1–390

    Google Scholar 

  • Adams DG (2002) Cyanobacteria in symbiosis with hornworts and liverworts. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, The Netherlands, pp 117–135

    Google Scholar 

  • Ahmadjian V (1965) Lichens. Ann Rev Microbiol 19:455–473

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. John Wiley, New York

    Google Scholar 

  • Ainsworth TD, Wasmund K, Ukani L, Seneca F, Yellowlees D, Miller D, Leggat W (2011) Defining the tipping point. A complex cellular life/death balance in corals in response to stress. Scientific Reports 1: doi: https://doi.org/10.1038/srep00160

  • Allen JL, Lendemer JC (2022) A call to reconceptualize lichen symbioses. Trends Ecol Evol 37(7):582–589. https://doi.org/10.1016/j.tree.2022.03.004

  • Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the paleogene inferred by bayesian analysis. PLoS ONE 6(12):e28161. https://doi.org/10.1371/journal.pone.0028161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aptroot A, Schumm F (2010) Chimeras occur on the pantropical Lichinomycete Phyllopeltula corticola. Lichenologist 42:307–310

    Google Scholar 

  • Arcadia L (2013) Lichen biogeography at the largest scales. Lichenologist 45(4):565–578

    Article  Google Scholar 

  • Armaleo D, Clerc P (1991) Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Exp Mycol 15:1–10

    Google Scholar 

  • Armstrong EJ, Roa JN, Stillman JH, Tresguerres M (2018) Symbiont photosynthesis in giant clams is promoted by V-type H+-ATPase from host cells. J ExperBiol 221. https://doi.org/10.1242/jeb.177220

  • Arróniz-Crespo M, Pérez-Ortega S, De los Rios A, Green TGA, Ochoa-Hueso R, Casermeiro MA, de la Cruz MT, Pintado A, Palacios D, Rozzi R, Tysklind N, Sancho LG (2014) Bryophyte-cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLoS ONE 9(5):e96081. https://doi.org/10.1371/journal.pone.0096081

  • Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00180

  • Bailly X, Laguerre L, Correc G, Dupont S, Kurth T, Pfannkuchen A, Entzeroth R, Probert I, Vinogradov S, Lechauve C, Garet-Delmas M-J, Reichert H, Hartenstein V (2014) The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Frontiers in Microbiology 5: article 498, pp 1–13

    Google Scholar 

  • Baniya CB, Solhøy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species in Nepal. Lichenologist 42(1):83–96

    Google Scholar 

  • Bay G (2013) Symbioses between cyanobacterial communities and feather mosses in boreal forests and consequences for dinitrogen fixation. Doctoral thesis no. 2013:71 Faculty of Forest Sciences Umeå, 80 p

    Google Scholar 

  • Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, Nilsson M-C, Rasmussen U (2013) Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol 200:54–60

    Google Scholar 

  • Becking JH (1987) Endophyte transmission and activity in the Anabaena-Azolla association. Plant Soil 100:183–212

    Article  Google Scholar 

  • Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfulla LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398

    Google Scholar 

  • Bellèmere A (1994) Asci and ascospores in ascomycete systematics. In: Hawksworth DL (ed) Ascomycete systematics. NATO ASI Series, vol 269. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9290-4_10

  • Bergman B (2002) The Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, The Netherlands, pp 207–232

    Google Scholar 

  • Bergmann B, Johansson C, Söderbäck E (1992) The Nostoc-Gunnera symbiosis. Tansley review no. 42. New Phytol 122:379–400

    Article  Google Scholar 

  • Bhattacharya D, Soon HS, Hedges SB, Hackett JD (2009) Eukaryotes (Eukaryota). In: Hedges SB, Kumar S (eds) The Timetree of Life. Oxford Univ. Press, New York, pp 116–120

    Chapter  Google Scholar 

  • Bilger W, Büdel B, Mollenhauer R, Mollenhauer D (1994) Photosynthetic activity of two developmental stages of a Nostoc strain (Cyanobacteria) isolated from Geosiphon pyriforme (Mycota). J Phycol 30:225–230

    Article  CAS  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Google Scholar 

  • Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS ONE 6(4):e18770. https://doi.org/10.1371/journal.pone.0018770

  • Bonthond G, Shalygin S, Bayer T, Weinberger T (2021) Draft genome and description of Waterburya agarophytonicola gen. nov. sp. nov. (Pleurocapsales, Cyanobacteria): a seaweed symbiont. Antonie van Leeuwenhoek, https://doi.org/10.1007/s10482-021-01672-x(0123456789().,-volV() 0123458697().,-volV)

  • Bowker MA, Belnap J, Büdel B, Sannier C, Pietasiak N, Eldridge DJ, Rivera-Aguilar V (2016) Controls on distribution patterns of biological soil crusts at micro- to global scales. In: Weber B, Büdel B. Belnap J (eds) Biological soil crusts: an organizing principle in drylands. Ecol Stud 226:173–197

    Google Scholar 

  • Brenner ED, Stevenson DW, Twigg RW (2003) Cycads: evolutionary innovations and the role of plant-drived neurotoxins. Trends Plant Sci 8:446–452

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE, Shimamura M, Villarreal JC, Renzaglia KS (2015) Spores of relictual bryophytes: diverse adaptations to life on land. Rev Palaeobot Palynol 216:1–17

    Article  Google Scholar 

  • Buck KR, Bentham WN (1998) A novel symbiosis between a cyanobacterium, Synechococcus sp., an aplastidic protist, Solenicola setigera, and a diatom, Leptocylindrus mediterraneus, in the open Ocean. Mar Biol 132:349–355

    Article  Google Scholar 

  • Büdel B, Henssen (1988) Trebouxia aggregata and Gloeocapsa sanguinea, Phycobionten in Euopsis granatina (Lichinaceae). Plant Syst Evol 158:235–241

    Google Scholar 

  • Büdel B, Rebuelta Vivas M, Lange OL (2013) Lichen species dominance and the resulting photosynthetic behavior of Sonoran Desert soil crust types (Baja California, Mexico). Ecol Proc 2:6. https://doi.org/10.1186/2192-1709-2-6

  • Büdel B, Bendix J, Bicker F, Green TGA (2008) Dewfall as a water source frequently activates the endo-lithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  PubMed  Google Scholar 

  • Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366

    Google Scholar 

  • Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogam Bot 4:262–269

    Google Scholar 

  • Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco lowlands and the Guayana Uplands, Venezuela. Botanica Acta 107:422–431

    Article  Google Scholar 

  • Büdel B, Rhiel E (1987) Studies on the ultrastructure of some cyanolichen haustoria. Protoplasma 139:145–152

    Google Scholar 

  • Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash T III (ed) Lichen Biology 3rd ed. Cambridge University Press, pp 40–68

    Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Bungartz F, Dután-Patiño VL, Elix JA (2013) The lichen genera Cryptothecia, Herpothallon and Helminthocarpon (Arthoniales) in the Galapagos Islands, Ecuador. Lichenologist 45(6):739–762

    Google Scholar 

  • Burns JA, Zhang H, Hill E, Kim E, Kerney R (2017) Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 6:e22054. https://doi.org/10.7554/eLife.22054

  • Calvert HE, Pence MK, Peters GA (1985) Ultrastructural ontogeny of leaf cavity trichomes in Azolla implies a functional role in metabolite exchange. Protoplasma 129:10–27

    Article  Google Scholar 

  • Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, Reinsch S, Wang X, Allison SD, Bamminger C, Bridgham S, Collins SL, de Dato G, Eddy WC Enquist BJ, Estiarte M, Harte J, Henderson A, Johnson BR, Larsen KS, Luo Y, Marhan S, Melillo JM, Peñuelas J, Pfeifer-Meister L, Poll C, Rastetter E, Reinmann AB, Reynolds LL, Schmidt IK, Shaver GR, Strong AL, Suseela V, Tietema A (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proc Natl Acad Sci USA, 113:13797–13802

    Google Scholar 

  • Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum. J Phycol 36:540–544

    Article  PubMed  Google Scholar 

  • Chang ACG, Chen T, Li N, Duan J (2019) Perspectives on endosymbiosis in coralloid roots: association of cycads and cyanobacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01888

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman RL, Waters DA (2002) Lichenization of Trentepohliales. In: Seckbach J (ed) Symbiosis: mechanisms and model systems, pp 359–371

    Google Scholar 

  • Chavarria-Pizarro T, Resl P, Janij A, Werth S (2021) Gene expression responses to thermal shifts in the endangered lichen Lobaria pulmonaria. Mol Ecol. https://doi.org/10.1111/mec.16281

    Article  PubMed  Google Scholar 

  • Chernogor L, Denikina N, Kondratov I, Solovarov I, Kahanaev I, Belikov S, Ehrlich H (2013) Isolation and Identification of the microalgal symbiont from primmorphs of the endemic freshwater sponge Lubomirskia baicalensis (Lubomirskiidae, Porifera). Eur J Phycol 48(4):497–508

    Article  Google Scholar 

  • Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    Google Scholar 

  • Cohen MF, Meeks JC (1997) A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol Plant Microbe Interact 10:280–289

    Article  CAS  PubMed  Google Scholar 

  • Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat-stress initiates changes in composition, CO2 gas exchange, and C-allocation as life traits in biological soil crusts. ISME J 10:2104–2115

    Article  Google Scholar 

  • Colesie C, Büdel B, Hurry V, Green TGA (2018) Can Antarctic lichens acclimatize to changes in temperature? Glob Change Biol 24:1123–1135

    Google Scholar 

  • Condamine FL, Nagalingum NS, Marshall CR, Morlon H (2015) Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 15:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114:471–492

    Google Scholar 

  • Coppins AM, Coppins BJ (2002) Indices of ecological continuity for woodland epiphytic lichen habitats in the British Isles. British Lichen Society, London, 37 p

    Google Scholar 

  • Cornejo C, Scheidegger C (2016) Cyanobacterial gardens: the liverwort Frullania asagrayana acts as a reservoir of lichen photobionts. Environ Microb Rep 8(3):352–357

    Article  CAS  Google Scholar 

  • Cornejo C, Scheidegger C (2018) Estimating the timescale of Lobaria diversification. Lichenologist 50:113–121

    Google Scholar 

  • Costa J-L, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67(9):4393–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coste C, Chauvet E, Grieu P, Lamaze T (2016) Photosynthetic traits of freshwater lichens are consistent with the submersion conditions of their habitat. Ann Limnol Int J Limnol 52:235–242

    Google Scholar 

  • Cowan I, Lange O, Green T (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187:282–294. https://doi.org/10.1007/BF00201952

  • Crespo A, Divakaar P, Lumbsch T (2014) Fungi. Hyperdiversity closer to animals than to plants. In: Vargas P, Zardoya R (eds) The tree of life. Sinauer Associates, US, pp 168–181

    Google Scholar 

  • Cubas P, Lumbsch HT, Del Prado R, Ferencova Z, Hladun NL, Rico VJ, Divakar PK (2018) Historical biogeography of the lichenized fungal genus Hypotrachyna (Parmeliaceae, Ascomycota): insights into the evolutionary history of a pantropical clade. Lichenologist 50(3):283–298

    Google Scholar 

  • Dahlberg A, Bültmann H (2013) Fungi. In: Meltofte H (ed) 2013. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri pp 354–371

    Google Scholar 

  • Dalton DA, Chatfield JM (1985) A new nitrogen-fixing cyanophyte-hepatic association: Nostoc and Porella. Am J Bot 72(5):781–784

    Article  Google Scholar 

  • Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–470

    Google Scholar 

  • Dal Grande F, Shama R, Meiser A, Rolshausen G, Büdel B, Mishra B, Thines M, Otte J, Pfenniger M, Schmitt I (2017) Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol Biol 17:93. https://doi.org/10.1186/s12862-017-0929-8

  • Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytol 217:277–289

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, Albemarle Street, London

    Google Scholar 

  • Davydov EA, Peršoh D, Rambold G (2017) Umbilicariaceae (lichenized Ascomycota) – trait evolution and a new generic concept. Taxon 66(6):1282–1303

    Google Scholar 

  • De Bary HA (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Wilhelm Eneglmann Verlag, Leipzig, pp 1–335

    Google Scholar 

  • De los Rios A, Wierzchos J, Sancho LG, Green A, Ascaso C (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 37(5):383–395

    Google Scholar 

  • de Vries S, de Vries J (2018) Azolla: a model system for symbiotic nitrogen fixation and evolutionary developmental biology. In: Fernández H (ed) Current Advances in Fern Research. Springer, Cham, pp 21–46

    Chapter  Google Scholar 

  • Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Ceška O, Hawksworth DL, Huereca A, Knudsen K, Kocourková J, Lücking R, Resl P, Spribille T (2022) Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Current Biol.https://doi.org/10.1016/j.cub.2022.11.014

  • DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  PubMed  Google Scholar 

  • Demidov ED, Borodin VB, Stom DI (1993) Photosynthesis of zoochlorella cells isolated from fresh-water Baikal sponge Lubomirskia baicalensis. Russ J Plant Physiol 40(5):698–703

    Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibliotheca Lichenologica 75:171–182

    Google Scholar 

  • Dijkhuizen LW, Brouwer P, Bolhuis H, Reichart G-J, Koppers N, Huettel B, Bolger AM, Li F-W, Cheng S, Liu X, Wong GK-S, Pryer K, Weber A, Bräutigam A, Schluepmann H (2018) Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveal endopyhtes that do not fix N2 but may denitrify. New Phytol 217:453–466

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J (2014) Syntrophy in microbial fuel cells. ISME J (1):4–5. https://doi.org/10.1038/ismej.2013.198

  • Domaschke S, Fernández-Mendoza F, Garcia MA, Martín MP, Printzen C (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Res 31:17353. https://doi.org/10.3402/polar.v31i0.17353

  • Dymytrova L, Brändli U-B, Ginzler C, Scheidegger C (2018) Forest history and epiphytic lichens: testing indicators for assessing forest autochthony in Switzerland. Ecol Indic 84:847–857

    Google Scholar 

  • Edwards D, Morris JL, Richardson JB, Kenrick P (2014) Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytol 202(1):50–78

    Article  PubMed  Google Scholar 

  • Eriksson OE (1981) The families of bitunicate ascomycetes. Opera Botanica 60:1–220

    Google Scholar 

  • Eriksson OE (2006) Outline of Ascomycota—2006. Myconet 12:1–82

    Google Scholar 

  • Ertl L (1951) Über die Lichtverhältnisse in Laubflechten. Planta 39:245–270

    Google Scholar 

  • Ertz D, Guzow-Kruzemińska B, Thor G, Łubeck A, Kukwa M (2018a) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep 8:4952. https://doi.org/10.1038/s41598-018-23219-3

  • Ertz D, Tehler A, Irestedt M, Frisch A, Thor G, van den Boom P (2015) A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Divers 70:31–53

    Google Scholar 

  • Ertz D, Sanderson N, Łubeck A, Kukwa M (2018b) Two new species of Arthoniaceae from old-growth European forests, Arthonia thoriana and Inoderma sorediatum, and a new genus for Schismatomma niveum. Lichenologist 50:161–172

    Google Scholar 

  • Escalera L, Reguera B, Takishita K, Yoshimatsu S, Koike K, Koike K (2011) Cyanobacterial endosymbionts in the benthic dinoflagellates Sinophysis canaliculata (Dinophysiales, Dinophyceae). Protist 162:304–311

    Article  PubMed  Google Scholar 

  • Eymann C, Lassek C, Wegner U, Bernhardt J, Fritsch OA, Fuchs S, Otto A, Albrecht D, Schiefelbein U, Cernava T, Aschenbrenner I, Berg G, Grube M, Riedel K (2017) Symbiotic interplay of fungi, algae, and bacteria within the lung lichen Lobaria pulmonaria L. Hoffm. As assessed by state-of-the-art metaproteomics. J Proteome Res 16:2160–2173

    Google Scholar 

  • Farrar JF (1978) Ecological physiology of the lichen Hypogymnia physodes, 4. Carbon allocation at low temperatures. New Phytol 81:65–69

    Google Scholar 

  • Farrar JF (1988) Physiological buffering. In: Galun M (ed) Handbook of Lichenology, vol 2. CRC, Boca Raton, pp 101–105

    Google Scholar 

  • Famincyn AS (1889) Beitrag zur Symbiose von Algen und Thieren. Mémoires de l’Académie Impérial des Sciences de St. Petersbourg, Sér. VII. 36(16):1–36

    Google Scholar 

  • Famincyn AS (1907) Die Symbiose als Mittel der Synthese von Organismen. Biologisches Centralblatt 27:353–364

    Google Scholar 

  • Feige GB (1976) Untersuchungen zur Physiologie der Cephalodien der Flechte Peltigera aphthosa (L.) Willd. II. Das photosynthetische 14C-Markierungsmuster und der Kohlenhydrattransfer zwischen Photobiont und Mycobiont. Zeitschrift für Pflanzenphysiologie 80:386–394

    Google Scholar 

  • Fernández-Martínez MA, de los Rios A, Sancho LG, Pérez-Ortega S (2013) Diversity of endosymbiotic Nostoc in Gunnera magellanica (L) from Tierra del Fuego, Chile. Microbial Ecol 66:335–350

    Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Google Scholar 

  • Fontaine KM, Beck A, Stocker-Wörgötter E, Piercey-Normore MD (2012) Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants 1:39–60

    Google Scholar 

  • Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J 5:1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster RA, Zehr JP (2019) Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu Rev Microbiol 73:435–456

    Article  CAS  PubMed  Google Scholar 

  • Fournier A (2013) The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. BioSciences Master Reviews, Université de Lyon. http://biologie.ens-lyon.fr/ressources/bibliographies

  • Frey W (ed) (2016) Syllabus of plant families. Part 1/2 Ascomycota. Borntraeger publishers, Stuttgart, pp 1–322

    Google Scholar 

  • Frey W (ed) (2018) Syllabus of plant families. Part 1/3 Basidiomycota and Entorrhizomycota. Borntraeger publishers, Stuttgart, pp 1–471

    Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. In: Nash TH III (ed) Lichen Biology, 2nd ed. Cambridge University Press, pp 9–26

    Google Scholar 

  • Fries E (1821) Systema mycologicum sistens fungorum ordines, genera et species huc usque cognitas, quas ad norman methodi naturalis determinavit, disposuit atque descripsit. Gryphiswaldiae

    Google Scholar 

  • Fries E (1831) Systema mycologicum sistens fungorum, genera et species huc usque cognitas, quas ad norman methodi naturalis determinavit, disposuit atque descripsit. Paris

    Google Scholar 

  • Frisch A, Thor G, Ertz D, Grube M (2014a) The Arthonialean challenge: restructuring arthoniaceae. Taxon 63(4):727–744

    Google Scholar 

  • Frisch A, Thor G, Moon KH, Ohmura Y (2018) Galbinothrix, a new monotypic genus of Chrysotrichaceae (Arthoniomycetes) lacking pulvinic acid derivatives. Plant Fungal Syst 63(2):31–37

    Google Scholar 

  • Frisch A, Thor G, Sheil D (2014b) Four new Arthoniomycetes from Bwindi Impenetrable National Park, Uganda – supported by molecular data Nova Hedwigia 98(3–4):295–312

    Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2008) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Google Scholar 

  • Galloway D (2007) Flora of New Zealand lichens, revised 2nd edn including lichens-forming and lichenicolous fungi. Vols. 1 and 2. Lincoln, New Zealand, Manaaki Wehuna Press

    Google Scholar 

  • García-Portela M, Riobó P, Rodríguez F (2017) Morphological and molecular study of the cyanobiont-bearing dinoflagellate Sinophysis canaliculata from the Canary Islands (Eastern Central Atlantic). J Phycol 53:446–450

    Article  PubMed  Google Scholar 

  • Gasulla F, Barrasa JM, Casano LM, del Campo EM (2020) Symbiont composition of the basidiolichen Lichenomphalia meridionalis varies with altitude in the Iberian Peninsula. Lichenologist 52(1):17–26

    Google Scholar 

  • Gauslaa Y, Johlander S, Nordén B (2019) Lobaria amplissima thalli with external cephalodia need more rain than thalli without. Lichenologist 51(3):281–286

    Google Scholar 

  • Gehringer MM, Pengelly JJL, Cuddy WS, Fieker C, Forster PI, Neilan BA (2010) Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). Mol Plant Microbe Interact 23(6):811–822

    Article  CAS  PubMed  Google Scholar 

  • Geus A, Höxtermann E (2007) Evolution durch Kooperation und Integration. Basilisken Press, Marburg, Germany, 751 p

    Google Scholar 

  • Gilbert PW (1944) The alga-egg relationship in Ambystoma maculatum, a case of symbiosis. Ecology 25:366–369

    Article  Google Scholar 

  • Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420

    Google Scholar 

  • Giordani P, Malaspina P, Benesperi R, Incerti G, Nascimbene J (2019) Functional over-redundancy and vulnerability of lichen communities. Sci Tot Environ 666:22–30

    Google Scholar 

  • Goward T, Arsenault A (2018) Calicioid diversity in humid inland British Columbia may increase into the 5th century after stand initiation. Lichenologist 50(5):555–569

    Google Scholar 

  • Graham ER, Fay SA, Davey A, Sanders RW (2013) Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum. J Exp Biol 216:452–459

    CAS  PubMed  Google Scholar 

  • Granhall U, Hofsten AV (1976) Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiol Plant 36:88–94

    Article  Google Scholar 

  • Green TGA, Büdel B, Heber U, Meyer A, Zellner H, Lange OL (1993) Differences in photosynthetic per-formance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytol 125:723–731

    Google Scholar 

  • Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologia 85(4):498–503

    Google Scholar 

  • Green TGA, Lange OL, Cowan IR (1994) Ecophysiology of lichen photosynthesis: the role of water status and thallus diffusion resistances. Cryptogam Bot 4:166–178

    Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecol Stud 215:89–120

    Google Scholar 

  • Green TGA, Sancho LG, Pintado A, Savco D, Martín S, Arróniz-Crespo M, Casermeiro MA, de la Cruz Caravaca MT, Cameron S, Rozzi R (2017) Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts. Annals of Botany Plants 9(6). https://doi.org/10.1093/aobpla/plx053

  • Green TGA, Smith DC (1974) Lichen Physiology: 14. Differences between lichen algae in symbiosis and in isolation. New Phytol 73:753–766

    Google Scholar 

  • Grimm M, Grube M, Schiefelbein U, Zühlke D, Bernhardt J, Riedel K (2021) The lichens’ microbiota, still a mystery? Front Microbiol 12:623839. https://doi.org/10.3389/fmicb.2021.623839

  • Grube M, Aschenbrenner I, Cernava T, Berg G (2016) Lichen-bacterial interactions. In: Druzhinina IS, Kubicek CP (eds) The Mycota IV. Springer International, pp 179–188

    Google Scholar 

  • Grube M, Muggia L (2013) Success by flexible management of algal partners - lichen symbiosis. Biochemist 35(4):10–13

    Google Scholar 

  • Grube M, Wedin M (2016) Lichenized fungi and the evolution of symbiotic organization. Microbiol Spect 4(4):FUNK-0011-2016. https://doi.org/10.1128/microbiolspec.FUNK-0011-2016

  • Grilli Caiola M (1980) On the phycobionts of the cycad coralloid roots. New Phytol 85:537–544

    Article  Google Scholar 

  • Grilli-Caiola M, Billi D (2007) Chroococcidiopsis from desert to Mars. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 553–568

    Google Scholar 

  • Grilli-Caiola M, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32(5):315–322

    Google Scholar 

  • Gueidan C, Savić S, Thüs H, Roux C, Keller C, Tibell L, Prieto M, Heiðmarsson S, Breuss O, Orange A, Fröberg L, Wynns AA, Navarro-Rosinés P, Krzewicka B, Pykälä J, Grube M, Lutzoni F (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58(1):184–208

    Google Scholar 

  • Guevara R, Armesto JJ, Caru M (2002) Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting. Microb Ecol 44:127–136

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E (1904) Kunstformen der Natur. Leipzig and Wien, 545 p

    Google Scholar 

  • Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M (2019) Isolation and characterization of 1-palmitoyl-2-linoleoyl-snglycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep 9:4751. https://doi.org/10.1038/s41598-019-39647-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (2015) Lichenization: the origins of a fungal life-style. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer India, pp 1–10

    Google Scholar 

  • Hawksworth DL, Honegger R (1994) The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In: Williams MAJ (ed) Plant galls: organisms, interactions, populations. Clarendon Press, Oxford, pp 77–98

    Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spect 5(4):FUNK-0052-2016. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

  • Hawksworth DL, McManus PM (1989) Lichen recolonization in London under conditions of rapidly falling sulphur dioxide levels, and the concept of zone skipping. Bot J Linnean Soc 100:99–109

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Google Scholar 

  • Henskens FL, Green TGA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    Google Scholar 

  • Henssen A (1965) A review of the genera of the Collemataceae with simple spores (excluding Physma). Lichenologist 3:29–41

    Google Scholar 

  • Henssen A (1981) The lecanoralean centrum. In: Reynolds DR (ed) Ascomycetes systematics. Springer Verlag, New York, pp 139–234

    Google Scholar 

  • Henssen A, Jahns HM (1974) Lichens. Georg Thieme Verlag Stuttgart, 467 p

    Google Scholar 

  • Hestmark G (1992) Sex, size competition and escape d strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes). Oecologia 92:305–312

    Google Scholar 

  • Hill DJ (1976) The physiology of lichen symbiosis. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 457–496

    Google Scholar 

  • Hitch CJB, Millbank JW (1975) Nitrogen metabolism in lichens. VII. Nitrogenase activity and heterocsyst frequency in lichens with blue-green phycobionts. New Phytol 75:239–244

    Google Scholar 

  • Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14(1):147–161

    Article  CAS  PubMed  Google Scholar 

  • Honegger R (1984) Cytological aspects of the mycobiont-phycobiont relationship in lichens. Lichenologist 16(2):111–127

    Google Scholar 

  • Honegger R (1986) Ultrastructural studies in lichens. I. Haustorial types and their frequencies in a range of lichens with trebouxioid photobionts. New Phytol 103:785–795

    Google Scholar 

  • Honegger R (2007) Water relations in lichens. In: Gadd GM, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185–200

    Google Scholar 

  • Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deising HB (ed) The Mycota V (Plant relationships), 2nd ed. Springer, Berlin, Heidelberg, New York, pp 305–333

    Google Scholar 

  • Honegger R (2012) The symbiotic phenotype of lichenforming Ascomycetes and their endo- and epibionts. In: Hock B (ed) Fungal associations. 2nd ed. The Mycota IX. Springer, Berlin Heidelberg, pp 287–339

    Google Scholar 

  • Honegger R, Edwards D, Axe L (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the lower devonian of the welsh borderland. New Phytol 197:264–275

    Google Scholar 

  • Honegger R, Peter M (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in light and electron microscopy. Symbiosis 16:167–186

    Google Scholar 

  • Honegger R, Zippler U (2007) Mating systems in representatives of Parmeliaceae, Ramalinacae and Physciaceae (Lecanoromycetes, lichen forming ascomycetes). Mycol Res 111:424–432

    Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkovicz SM (2000) Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int J Biotmeteorol 43:184–190

    Google Scholar 

  • Jahns HM, Herold K, Beltman HA (1978) Chronological sequence, synchronisation and induction of the development of fruit bodies in Cladonia furcata var. furcata (Huds.) Schrad. Nova Hedwigia 30:469–526

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Mida-likowska J, Lumbsch T, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Seridani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Buck WR, Cole MS, Diederich P, Printzen C, Schmitt I, Schultz M, Yahr R, Zavarzin A, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822

    Google Scholar 

  • Jørgensen PM, Jahns HM (1987) Muhria, a remarkable new lichen genus from Scandinavia. Notes Royal Bot Gard Edinburgh 44:581–599

    Google Scholar 

  • Jones RI (1988) Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161:75–87

    Article  Google Scholar 

  • Jung P, Emrich D, Briegel-Williams L, Schermer M, Weber L, Baumann K, Colesie C, Clerc P, Lehnert LW, Achilles S, Bendix J, Büdel B (2019) Ecophysiology and phylogeny of new terricolous and epiphytic chlorolichens in a fog oasis of the Atacama Desert. MicrobiologyOpen 8(10):e894. https://doi.org/10.1002/mbo3.894

  • Jung P, Mikhailyuk T, Emrich D, Baumann K, Dultz S, Büdel B (2020) Shifting boundaries: ecological and geographical range extension based on three new species in the cyanobacterial genera Aliterella, Cyanocohniella and Oculatella. J Phycol 56:1216–1231

    Article  CAS  PubMed  Google Scholar 

  • Kaasalainen U, Schmidt AR, Rikkinen J (2017) Diversity and ecological adaptations in Palaeogene lichens. Nat Plants 3:17049. https://doi.org/10.1038/nplants.2017.49

  • Karsten G (1907) Das indische Phytoplankton nach dem Material der Deutschen Tiefsee-Expedition 1898–1899. Deutsche Tiefsee Expedition 1898–1899(2):423–548

    Google Scholar 

  • Kauff F, Bachran A, Schultz M, Hofstetter V, Lutzoni F, Büdel B (2018) Molecular data favors a monogeneric Peltulaceae (Lichinomycetes). Lichenologist 50:313–327

    Google Scholar 

  • Keebles F, Gamble FW (1905) On the isolation of the infecting organism (“Zoochlorella”) of Convoluta roscoffensis. Proc Royal Soc London, Series B 77:66–68

    Google Scholar 

  • Kehr J-C, Dittmann E (2015) Biosynthesis and function of extracellular glycans in cyanobacteria. Life 5:164–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller B (1930) Die Erdflechten und Cyanophyceen am unteren Lauf der Wolga und des Ural. In: Karsten G (ed) Vegetationsbilder. Series 20(8), plates 43–48

    Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge. 304 p

    Google Scholar 

  • Kerney R, Kim E, Hangarter RP, Heiss AA, Bishop CD, Hall BK (2011) Intracellular invasion of green algae in a salamander host. Proc Nat Acad Sci 108(16):6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keuler R, Garretson A, Saunders T, Erikson RJ, St. Andre N, Grewe F, Smith H, Lumbsch TH, Huang J-P, St. Clair LL, Leavitt SD (2020) Genome-scale data reveal the role of hybridization in lichen-forming fungi. Sci Rep 10:1497. https://doi.org/10.1038/s41598-020-58279-x

  • Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W (2019) Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evolutionary Biology, p 19

    Google Scholar 

  • Klochkova TA, Han JW, Chah K-H, Kim RW, Kim J-H, Kim KY, Kim GH (2013) Morphology, molecular phylogeny and photosynthetic activity of the sacoglossan mollusc, Elysia nigrocapitata, from Korea. Mar Biol 160:155–168

    Article  CAS  Google Scholar 

  • Kneip C, Voß C, Lockhart PJ, Maier U-G (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30. https://doi.org/10.1186/1471-2148-8-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153(1–2):62–69

    Article  Google Scholar 

  • Kropotkin PJ (1902) Murual aid: a factor of evolution. McClure Phillips & Co, New York

    Google Scholar 

  • Kützing FT (1849) Species algarum Lipsiae. F.A. Brockhaus, Leipzig

    Google Scholar 

  • Lakatos M, Rascher U, Büdel B (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytol 172:679–695. https://doi.org/10.1111/j.1469-8137.2006.01871.x

  • Lange OL (1965) Der CO2-Gaswechsel von Flechten nach Erwärmung im feuchten Zustand. Berichte der deutschen botanischen Gesellschaft 78:441–454

    Google Scholar 

  • Lange OL (2003a) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long term field monitoring of CO2 exchange and its physiological interpretation. II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70

    Google Scholar 

  • Lange OL (2003b) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long term field monitoring of CO2 exchange and its physiological interpretation. III. Diel, seasonal, and annual carbon budgets. Flora 198:277–292

    Google Scholar 

  • Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993a) Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 uptake. Oecologia 95:303–313

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993b) Further Evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25(2):175–189

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Ullmann I, Wessels DJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Madoqua 17(1):17–30

    Google Scholar 

  • Lange OL, Kilian E (1985) Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisches Verhalten. Flora 174:7–23

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodinaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Leavitt SD, Divakar DK, Crespo A, Lumbsch HT (2016) A matter of time–understanding the limits of the power of molecular data for delimiting species boundaries. Herzogia 29:479–492

    Google Scholar 

  • Leavitt SD, Kirika PM, Amo de Paz G, Huang J-P, Hur J-S, Elix JA, Grewe F, Divakar PK, Lumbsch HT (2018b) Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, Xanthoparmelia (Parmeliaceae, Ascomycota). Lichenologist 59(3):299–312

    Google Scholar 

  • Leavitt SD, Moreau CS, Lumbsch HT (2015) The dynamic discipline of species delimitation: Progress toward effectively recognizing species boundaries in natural populations. In: Upreti DK (ed) Recent advances in Lichenology. Springer, India, pp 11–44

    Google Scholar 

  • Leavitt SD, Westberg M, Sohrabi M, Elix JA, Timdal E, Nelsen MP, St. Clair LL, Williams L, Wedin M, Lumbsch HT (2018a) Multiple, distinct intercontinental lineages but isolation of Australian populations in a cosmopolitan lichen-forming fungal taxon, Psora decipiens (Psoraceae, Ascomycota). Front Microbiol 9:283. https://doi.org/10.3389/fmicb.2018.00283

  • Lechnow-Yossef S, Nierzwicki-Bauer SA (2002) Azolla-Anabaena symbiosis. In: Rai AN an Rasmussen U (eds) Cyanobacteria in Symbiosis. Kluwer Academic Publishers, Netherlands, pp 153–178

    Google Scholar 

  • Lehnert LW, Thies B, Trachte K, Achilles S, Osses P, Baumann K, Schmidt J, Samolov E, Jung P, Leinweber P, Karsten U, Büdel B, Bendix J (2018) A case study on fog/low stratus occurrence at Las Lomitas, Atacama Desert (Chile) as a water source for biological soil crusts. Aerosol Air Qual Res 18:254–269

    Google Scholar 

  • Lemmermann E (1905) Die Algenflora der Sandwich-Inseln. Ergebnisse einer Reise nach dem Pacific, H. Schauinsland 1896/97. Englers Botanisches Jahrbuch 34:607–663

    Google Scholar 

  • Linné C (1753) Species Plantarum. Lars Salvius: Stockholm

    Google Scholar 

  • Lindo Z, Nilsson M-C, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Change Biol 19:2022–2035

    Article  Google Scholar 

  • Lindgren H, Moncada B, Lücking R, Magain N, Simon A, Goffinet B, Sérusiaux E, Nelsen MP, Mercado-Díaz JA, Widhelm TJ, Lumbsch HT (2020) Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol Phylogenet Evol 150:106860

    Google Scholar 

  • Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447–482

    Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci USA 100:12765–12770

    Google Scholar 

  • Loron CC, François C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ (2019) Early fungi from the Proterozoic era in Arctic Canada. Nature 570:232–235

    Article  CAS  PubMed  Google Scholar 

  • Lücking R, Dal Forno M, Moncada B, Coca LF, Vargas-Mendoza LY, Aptroot A, Arias LJ, Besal B, Bungartz F, Cabrera-Amaya DM, Cáceres MES, Chaves JL, Eliasaro S, Gutiérrez MC, Hernández Marin JE, de los Angeles Herrera-Campos M, Holgado-Rojas ME, Jonitz H, Kukwa M, Lucheta F, Madriñán S, Marcelli MP, de Azevedo Martins SM, Mercado-Díaz JA, Molina JA, Morales EA, Nelson PR, Nugra F, Ortega F, Paredes T, Patiño AL, Peláez-Pulido RN, Pérez Pérez RE, Perlmutter GB, Rivas-Plata E, Robayo J, Rodríguez C, Simijaca DF, Soto-Medina E, Spielmann AA, Suárez-Corredor A, Torres J-M, Vargas CA, Yánez-Ayabaca A, Weerakoon G, Wilk K, Pacheco MC, Diazgranados M, Brokamp G, Borsch T, Gillevet PM, Sikaroodi M, Lawrey JD (2017) Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Divers 84:139–207

    Google Scholar 

  • Lücking R, Hodkinson BP, Leavitt SD (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – Approaching one thousand genera. Bryologist 119:361–416

    Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJM, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96(8):1409–1418

    Article  PubMed  Google Scholar 

  • Lücking R, Dal-Forno M, Lawrey JD, Bungartz F, Holgado Rojas ME, Hernández MJE, Marcelli MP, Moncada B, Morales EA, Nelsen MP, Paz E, Salcedo L, Spielmann AA, Wilk K, Will-Wolf S, YÁNEZ-Ayabaca A (2013) Ten new species of lichenized Basidiomycota in the genera Dictyonema and Cora (Agaricales: Hygrophoraceae), with a key to all accepted genera and species in the Dictyonema clade. Phytotaxa 139(1):1–38

    Google Scholar 

  • Lücking R, Nelsen MP (2018) Ediacarans, protolichens, and lichen-derived penicillium: a critical reassessment of the evolution of lichenization in fungi. Transformative Paleobotany, Academic Press, pp 551–590

    Google Scholar 

  • Lumbsch HT, Lücking R (2016) Ascomycota: introduction, characterization and systematic arrangement. In: Frey W (ed) Syllabus of plant families, 1/2 Ascomycota. Gebr. Borntraeger Verlagsbuchhandlung, pp 2–13

    Google Scholar 

  • Lüttge U, Beck E, Bartels D (2011) Plant desiccation Tolerance. Ecol Stud 215:386, Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón S (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 9:5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maphangwa KW, Musil CF, Raitt L, Zedda L (2014) Will climate warming exceed lethal photosynthetic temperature thresholds of lichens in a southern African arid region? Afr J Ecol 52:228–236

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Monographs in North American Lichenology 1:1–105, Northwest Lichenologists, Corvallis, Oregon

    Google Scholar 

  • McMurray JA, Roberts DW, Fenn ME, Geiser LH, Jovan S (2013) Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA. Water Air Soil Pollut 224:1487. https://doi.org/10.1007/s11270-013-1487-3

  • Meessen J, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 59:121–130

    Google Scholar 

  • Merežkovsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologisches Centralblatt 25:593–604

    Google Scholar 

  • Merežkovsky KS (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt 30: 278–303, 321–347, 353–367

    Google Scholar 

  • Metzgar JS, Schneider H, Pryer KM (2007) Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae). Int J Plant Sci 168(7):1045–1053

    Article  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Garcia-Otalora M, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos S, Brodo I, Perlmutter GB, Ertz D, Diederich P, Lendemer JC, Tripp E, Yahr R, May P, Gueidan C, Spatafora JW, Schoch C, Arnold AE, Robertson C, Lutzoni F (2006) New in-sights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    Google Scholar 

  • Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J (2018) A multi-tool approach to assess microalgal diversity in lichens: isolation, Sanger sequencing, HTS and ultrastructural correlations. Lichenologist 50:123–138

    Google Scholar 

  • Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbiosis: plants, animals, fungi, viruses, interactions explored, biopress limited, bristol (England), pp 339–351

    Google Scholar 

  • Moncada B, Mercado-Díaz JA, Smith CW, Bungartz F, Sérusiaux E, Lumbsch HT, Lücking R (2021) Two new common, previously unrecognized species in the Sticta weigelii morphodeme (Ascomycota: Peltigeraceae). Wildenowia 51:35–45

    Google Scholar 

  • Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS ONE 12(4):e0175091

    Google Scholar 

  • Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475

    Google Scholar 

  • Nash TH III (2008) Lichen Biology, 2nd ed. Cambridge University Press, Cambridge, pp 1–486

    Google Scholar 

  • Nash TH, Gries C (2002) Lichens as bioindicators of sulfur dioxide. Symbiosis 33(1):1–21

    Google Scholar 

  • Nazem-Bokaee H, Hom EFY, Warden AC, Mathews S, Gueidan C (2021) Towards a systems biology — approach to understanding the lichen symbiosis: opportunities and challenges of implementing network modelling. Front Microbiol 12:667864. https://doi.org/10.3389/fmicb.2021.667864

  • Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH (2019) No support for the emergence of lichens prior to the evolution of vascular plants. Geobiology 18:3–13. https://doi.org/10.1111/gbi.12369

    Article  PubMed  Google Scholar 

  • Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH (2020) The macroevoltionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci 117(35):21495–21503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelsen MP, Lücking R, Umaña L, Trest MT, Will-Wolf S, Chaves JL, Gargas A (2007) Multiclavula ichthyiformis (Fungi: Basidiomycota: Canthatrellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. Amer J Bot 94(8):1289–1296

    Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390

    Article  CAS  PubMed  Google Scholar 

  • Nimis PL, Haffelner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31:1–634

    Google Scholar 

  • Nock CA, Vogt RJ, Beisner BE (2016) Functional traits. In: eLS. John Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0026282

  • Norris RE, Hori T, Chihara M (1980) Revision of the genus Tetraselmis (Class Prasinophyceae). BotanMag Tokyo 93:317–339

    Article  Google Scholar 

  • O’Brien TL (1980) The symbiotic association between intracelIular zoochlorelIae (Chloro phyceae) and the coelenterate Anthopleura xanthogrammica. J Exp Zool 211:343–355

    Article  Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2013) Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol 198: 557–566

    Google Scholar 

  • Oberwinkler F (2012) Basidiolichens. In: Hock B (ed) Fungal association, 2nd ed. The Mycota IX. Springer, Berlin Heidelberg, pp 341–362

    Google Scholar 

  • Orr H (1888) Note on the development of amphibians, chiefly concerning the central nervous system; with additional observations on the hypophysis, mouth, and the appendages and skeleton of the head. Quat J Micros Sci NS 29:295–324

    Google Scholar 

  • Osborne B, Doris F, Cullen A, McDonald R, Campbell G, Steer M (1991) Gunnera tinctoria: an unusual invader. Bioscience 41(4):224–234

    Article  Google Scholar 

  • Osborne BA, Sprent JI (2002) Ecology of the Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, The Netherlands, pp 233–251

    Google Scholar 

  • Ostenfeld CH, Schmidt J (1901) Plankton fra det Röde hav og Adenbugten. Videnskabelige Meddelelser fra den Naturhistoriske Forening i Kjøbenhavn, pp 141–182

    Google Scholar 

  • Otálora MAG, Aragón G, Molina MC, Martínez MC, Lutzoni F (2010) Disentangling the Collema–Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen–forming Ascomycota). Mycologia 102:279–290

    Google Scholar 

  • Otálora MAG, Jørgensen PM, Wedin M. (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Divers 64:275–293

    Google Scholar 

  • Otálora MAG, Salvador C, Martínez I, Aragón G (2013) Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbiol Ecol 65:517–530

    Google Scholar 

  • Oulhen N, Schulz BJ, Carrier TJ (2016) English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 69(3):131–139

    Article  Google Scholar 

  • Palmqvist K, Dahlman L, Jonsson AV, Nash TH (2008) The carbon economy of lichens. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 182–215

    Google Scholar 

  • Palmqvist K, Dahlman L, Valladares F (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichens associations from different climate zones. Oecologia 13:295–306

    Google Scholar 

  • Parke M, Manton FRS (1967) The specific identity of the algal symbiont in Convoluta roscoffensis. J Marine Biol Assoc UK 47:445–464

    Article  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2000) Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol 146:291–299

    Google Scholar 

  • Peksa O, Řídká T, Vančurová L, Vaiglová Z, Škaloud P (2015) Do saxicolous lichen communities represent ecological guilds assembled on locally adapted photobionts? Poster

    Google Scholar 

  • Peksa O, Řídká T, Vančurová L, Vaiglová Z, Škaloud P (2016) Do saxicolous lichen communities represent photobiont-mediated guilds? Poster presented at the IAL 8 meeting at Helsinki

    Google Scholar 

  • Perkins SK, Peters GA (1993) The Azolla-Anabaena symbiosis: endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. New Phytol 123:53–64

    Article  Google Scholar 

  • Pizarro D, Dal Grande F, Leavitt SD, Dyer PS, Schmitt I, Crespo A, Lumbsch HT, Divakar PK (2019) Whole-genome sequence data uncover widespread heterothallism in a largest group of lichen-forming fungi. Mol Biol Evol. https://doi.org/10.1093/gbe/evz027/5306179

  • Phinney NH, Gauslaa Y, Palmqvist K, Esseen P-A (2020) Macroclimate drives growth of hair lichens in boreal forest canopies. J Ecol 109(1):478–490

    Google Scholar 

  • Poelt J, Mayrhofer H (1988) Über Cyanotrophie bei Flechten. Plant System Evol 158:265–281

    Article  Google Scholar 

  • Ponzetti JM, McCune BP (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104(2):212–225

    Google Scholar 

  • Porada P, Giordani P (2021) Bark water storage plays key role for growth of Mediterranean epiphytic lichens. Front For Glob Change 4. https://doi.org/10.3389/ffgc.2021.668682

  • Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier U-G (2004) Intracellular sphaeroid bodies of Rhopalodia gibba have nitrogen fixing apparatus of cyanobacterial origin. Mol Biol Evol 21(8):1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Prescott OL, Simkin JM, August TA, Randle Z, Dore AJ, Botham MS (2015) Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: review and evidence from biological records. Biol J Linn Society 115:611–635

    Google Scholar 

  • Prieto M, Baloch E, Theler A, Wedin M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29(3):296–308

    Google Scholar 

  • Prieto M, Wedin M (2013) Dating of the diversification of the major lineages of Ascomycota (fungi). PLoS One 8(6):e65576. https://doi.org/10.1371/journal.pone.0065576

  • Pringle A, Chen D, Taylor JW (2003) Sexual fecundity is correlated to size in the lichenized fungus Xanthoparmelia cumberlandia. Bryologist 106:221–225

    Google Scholar 

  • Printzen C, Kremer B (1997) Meeresflechten – Grenzgänger zwischen den Welten. Biologie in unserer Zeit 27:48–55

    Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, p 355

    Book  Google Scholar 

  • Ranft H, Moncada B, De Lange PJ, Lumbsch HT (2018) The Sticta filix morphodeme (Ascomycota: Lobariaceae) in New Zealand with the newly recognized species S. dendroides and S. menziesii: indicators of forest health in a threatened island biota? Lichenologist 50:185–210

    Google Scholar 

  • Rauch C, de Vries J, Rommel S, Rose LE, Woehle C, Christa G, Laetz EM, Wägele H, Tielens AGM, Nickelsen J, Schumann T, Jahns P, Gould SB (2015) Why it is time to look beyond algal genes in photosynthetic slugs. Genome Biol Evol 7(9):2602–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner SS, Grimm GW, Kapli P, Denk T (2016) Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth–death clock model. Philos Trans Royal Soc B 371:20150135

    Google Scholar 

  • Retallack et al. (2013) Diskagama buttoni. In: Döring M (2022) (ed) German Wikipedia-Species Pages. Wikimedia Foundation. Checklist dataset https://doi.org/10.15468/4wn9dt accessed via GBIF.org on 2023-07-13

  • Ried A (1960a) Stoffwechsel und Verbreitunsgrenzen von Flechten I. Flechtenzonierung an Bachufern und ihre Beziehungen zur jährlichen Überflutungsdauer und zum Mikroklima. Flora 148(4):612–638

    Google Scholar 

  • Ried A (1960b) Stoffwechsel und Verbreitunsgrenzen von Flechten II. Wasser- du Assimilationshaushalt, Entquellungs- und Submersionsresistenz von Krustenflechten benachbarter Standorte. Flora 149:345–385

    Google Scholar 

  • Rikkinen J (2017) Cyanobacteria in terrestrial symbiotic systems. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer International Publishing, pp 243–294

    Google Scholar 

  • Rikkinen J, Virtanen V (2008) Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Exp Bot 59(5):1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen J, Meinke SKL, Grabenhorst H, Gröhn C, Kobbert M, Wunderlich J, Schmidt AR (2018) Calicioid lichens and fungi in amber – tracing extant lineages back to the Paleogene. Geobios 51:469–479

    Google Scholar 

  • Rolstad J, Gjerde I, Storaunet KO, Rolstad E (2001) Epiphytic lichens in Norwegian coastal spruce forest: historic logging and present forest structure. Ecol Appl 11:421–436

    Google Scholar 

  • Röpstorf P, Reitner J (1994) Morphologie einiger Süßwasserporifera (Baikalospongia bacillifera, Lubomirskia baicalensis, Swartschewskia papyracea) des Baikal-Sees (Sibirien, Rußland). Berliner Geowissenschaftliche Abhandlungen 13:507–525 + 6 plates

    Google Scholar 

  • Rose F (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon, Oxford, UK, pp 211–233

    Google Scholar 

  • Ruprecht U, Fernández-Mendoza F, Türk R, Fryday AM (2020) High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist 52:287–303

    Google Scholar 

  • Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci 114(37):E7737–E7745. https://doi.org/10.1073/pnas.1620089114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho LG, Pintado A, Navarro F, Ramos M, Angel De Pablo M, Blanquer JM, Raggio J, Va ladares F, Green TGA (2017) Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Sci Rep 7:5689

    Google Scholar 

  • Sanders WB (2001) Lichens: the interface between mycology and plant morphology. Bioscience 51(12):1025–1035

    Google Scholar 

  • Sanders WB (2010) Together and separate: reconstructing life histories of lichen symbionts. In: Nash TH, Geiser L, McCune B, Triebel D, Tomescu AMF, Sanders WB (eds) Biology of lichens. Bibl Lichenologist 105:1–16

    Google Scholar 

  • Sanders WB, Masumoto H (2021) Lichen algae: the photosynthetic partners in lchen symbioses. Lichenologist 53:347–393

    Article  Google Scholar 

  • Sanders WB, Pérez-Ortega S, Nelsen MP, Lücking R de los Rios A (2016) Heveochlorella (Trebouxiophyceae): a little known genus of unicellular green algae outside of the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities. J Phycol 52:840–853

    Google Scholar 

  • Scheidegger C, Bilovitz PO, Werth S, Widmer I, Mayrhofer H (2012) Hitchhiking with forests: population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecol Evol 2(9):2223–2240

    Google Scholar 

  • Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol 23:55–66

    Google Scholar 

  • Schimper AFW (1883) Über die Entwickelung der Chlorophyllkörner und Farbkörper. Botanische Zeitschrift 41: 105–113, 121–131, 137–146, 153–162

    Google Scholar 

  • Schmitt I, del Prado R, Grube M, Lumbsch HT (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Mol Phylogen Evol 52:34–44

    Google Scholar 

  • Schmitt I (2011) Fruiting body evolution in the Ascomycota: a molecular perspective integrating lichenized and non-lichenized groups. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungi-like organisms. The Mycota XIV. Springer, Berlin, Heidelberg, pp 187–204

    Google Scholar 

  • Schmitt V, Händeler K, Gunkel S, Escande M-L, Menzel D, Gould SB, Martin WF, Wägele H (2014) Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia). Front Zool 11:5. https://doi.org/10.1186/1742-9994-11-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur yon Geosiphon pyriforme—Ein Versuch zur Deutung cytoplasmatischeher Membranen und Kompartimente. Arch Mikrobiol 49:112–131

    Article  Google Scholar 

  • Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynn A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, De Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM, Griffith GW, Castelbury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Vokmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58(2): 224-239. https://doi.org/10.1093/sysbio/syp020

  • Schöller H (ed) (1997) Flechten–Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Kleine Senckenberg-Reihe 27:1–247

    Google Scholar 

  • Schüßler A (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Schüßler A (2012) 5 The Geosiphon—Nostoc endosymbiosis and its role as a model for arbuscular mycorrhiza research. In: Hock B (eds) Fungal associations. The Mycota 9. Springer, Berlin, Heidelberg, pp 77–91

    Google Scholar 

  • Schüßler A, Wolf E (2005) Geosiphon pyriformis—a glomeromycotan soil fungus forming endosymbiosis with cyanobacteria. In: Declerck S, Strullu D-G, Fortin A (eds) Soil Biology 4:271–289

    Google Scholar 

  • Schwendener S (1869) Die Algentypen der Flechtengonidien. C. Schultze, Basel, 42 p

    Google Scholar 

  • Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophaceae, Chlorophyta). J Phycol 52:599–617

    Google Scholar 

  • Škaloud P, Steinová J, Řídká T, Vančurová L, Peksa O (2015) Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J Phycol 51:507–527

    Google Scholar 

  • Snelgar WP, Green TGA (1981) Carbon dioxide exchange in lichens: apparent photorespiration and possible role of CO2 refixation in some members of the Stictaceae (Lichenes). J Exp Bot 32(129):661–668

    Google Scholar 

  • Solheim B, Zielke M (2002) Association between cyanobacteria and Mosses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, The Netherlands, pp 137–152

    Google Scholar 

  • Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycol 98(6):1018–1028

    Google Scholar 

  • Spribille T (2018) Relative symbiont input and the lichen symbiotic outcome. Curr Opin Plant Biol 44:57–63

    Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabenheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Google Scholar 

  • Stanton D (2015) Small scale fog-gradients change epiphytic lichen shape and distribution. Bryologist 118(3):241–244

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 107 8(3):189–196

    Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98(6):838–849

    Article  PubMed  Google Scholar 

  • Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the lower Devonian Rhynie Chert. Am J Bot 84(8):992–1004

    Article  CAS  PubMed  Google Scholar 

  • Technau U, Weis VM (2013) EvoDevo meets ecology: the Ninth Okazaki Biology Conference on Marine Biology. EvoDev 4:18. http://www.evodevojournal.com/content/4/1/18

  • ten Veldhuis M-C, Ananyev G, Dismukes GC (2020) Symbiosis extended: exchange of photosynthetic O2 and fungal‑respired CO2 mutually power metabolism of lichen symbionts. Photosyn Res 143:287–299

    Google Scholar 

  • Tehler A, Ertz D, Irestedt M (2013) The genus Dirina (Roccellaceae, Arthoniales) revisited. Lichenologist 45:427–476

    Google Scholar 

  • Thell A, Crespo A, Divakar PK, Kärnefelt I, Leavitt SD, Lumbsch HT, Seaward MRD (2012) A review of the lichen family Parmeliaceae—history, phylogeny and current taxonomy. Nord J Bot 30:641–664

    Article  Google Scholar 

  • Thi Phi Võ G (2016) Cyanobacterial lichenized fungi and their photobionts in Vietnam. Inauguraldissertation (doctoral thesis) im Fachbereich Biologie. Universität Kaiserslautern, Kaiserslautern, pp 1–127

    Google Scholar 

  • Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Lücking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415

    Google Scholar 

  • Thüs H, Schultz M (2009) Fungi. Part 1: lichens. In: Büdel B, Gärtner G, Krienitz L, Preisig HR, Schagerl M (eds) Freshwater flora of Central Europe 21(1), Spektrum Akademischer Verlag Heidelberg, 223 p

    Google Scholar 

  • Tobler F (1934) Die Flechten. Gustav Fischer Verlag, Jena, 84 p

    Google Scholar 

  • Trench RK (1971a) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc Royal Soc London, Series B 177:225–235

    CAS  Google Scholar 

  • Trench RK (1971b) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed I4C by zooxanthellae in vitro. Proc Royal Soc London, Series B I77:237–250

    Google Scholar 

  • Trench RK (1971c) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. 111. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelentrates. Proc Royal Soc London, Series B 177:251–264

    CAS  Google Scholar 

  • Tung HF, Shen TC (1985) Studies of the Azolla pinnataAnabaena azollae symbiosis: Concurrent growth of Azolla with rice. Aquat Bot 22(2):145–152

    Article  CAS  Google Scholar 

  • Tuovinen V, Ekman S, Thor G, Vanderpool D, Spribille T, Johannesson H (2019) Two basidiomycete fungi in the cortex of wolf lichens. Current Biol. https://doi.org/10.1016/j.cub.2018.12.022

  • Türk R, Haffellner J, Taurer-Zeiner C (2004) Die Flechten Kärntens. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt 333 p

    Google Scholar 

  • Van den Broek D, Frisch A, Razafindrahaja T, Van de Vijver B, Ertz D (2018) Phylogenetic position of Synarthonia (lichenized Ascomycota, Arthoniaceae), with the description of six new species. Plant Ecol Evolut 151(3):327–351

    Google Scholar 

  • Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, Van De Peer Y, Geuten K (2012) Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-BOX gene and species diversification. Mol Biol Evol 29(12):3793–3806

    Article  CAS  PubMed  Google Scholar 

  • Villareal TA (1989) Division cycles in the nitrogen-fixing Rhizosolenia (Bacillariophyceae)-Richelia (Nostocaceae) symbiosis. Brit Phycol J 24:357–365

    Article  Google Scholar 

  • Villareal TA (1992) Marine nitrogen-fixing diatom-cyanobacteria symbioses. In: Carpenter EJ, Capone DG, Rueter J (eds) Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Kluwer Academic Publishers, Dordrecht, pp 163–175

    Chapter  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional Oikos 116:882–892

    Google Scholar 

  • Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30

    Article  Google Scholar 

  • Warshan D (2017) Cyanobacteria in symbiosis with boreal forest feathermosses—from genome evolution and gene regulation to impact on the ecosystem. Doctoral thesis, Stockholm University, 72 p

    Google Scholar 

  • Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, Altermark B, Pawlowski K, Weyman PD, Dupont CL, Rasmussen U (2018) Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. https://doi.org/10.1093/molbev/msy029

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber B, Scherr C, Bicker F, Friedl T, Büdel B (2011) Respiration-induced weathering patterns of two endolithically growing lichens. Geobiology 9:34–43

    Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Werth S, Gugerli F, Holderegger R, Wagner HH, Csencsics D, Scheidegger C (2007) Landscape‐level gene flow in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 16(13):2807–2815

    Google Scholar 

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046

    Google Scholar 

  • Wessels DCJ, Büdel B (1985) Lichens and Bagworms. Afr Wildl 39(3):114–118

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere 11(1): 1060–1456

    Google Scholar 

  • Wilk K, Pabijan M, Saługa M, Gaya E, Lücking R (2021) Phylogenetic revision of South American Teloschistaceae (lichenized Ascomycota, Teloschistales) reveals three new genera and species. Mycologia 113(1):1–22

    Google Scholar 

  • Williams L, Ellis CJ (2018) Ecological constraints to ‘old-growth’ lichen indicators: Niche specialism or dispersal limitation? Fungal Ecol 34:20–27

    Article  Google Scholar 

  • Wirth V (2010) Lichens of the Namib Desert. Klaus Hess Publishers, 96 p

    Google Scholar 

  • Wirth R, Kirsch H, Büdel B (2001) Verbreitungsmuster und Dynamik der Wiederausbreitung von Bartflechten der Gattungen Usnea und Bryoria im Spessart. Hoppea 62:411–436

    Google Scholar 

  • Wirth V, Gauck M, De Bruyn U, Schiefelbein U, John V, Otte V (2009) Flechten aus Deutschland mit Verbreitunsschwerpunkt im Wald. Herzogia 22: 79–107 (with English summary)

    Google Scholar 

  • Wirtz N, Lumbsch HT, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have a low cyanobiont selectivity in maritime Antarctica. New Phytologyist 160:177–183

    Article  Google Scholar 

  • Wirtz N, Printzen C, Lumbsch HT (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycol Res 112:472–484

    Article  CAS  PubMed  Google Scholar 

  • Wolseley P, Sutton M, Leith I, van Dijk N (2010) Epiphytic lichens as indicators of ammonia concentrations across the UK. In: Nash TH III, Geiser L, McCune B, Triebel D, Tomescu AMF, Sanders W (2010) Biology of lichens. Bibliotheca Lichenologica 105:75–85

    Google Scholar 

  • Wolseley PA, Leith ID, Van Dijk N, Sutton MA (2009) Macrolichens on branches and trunks as indicators of ammonia concentrations across the UK. In: Sutton MA, Reis S, Baker SMH (eds) Atmospheric Ammonia. Springer, London, pp 101–108

    Chapter  Google Scholar 

  • Wolseley PA, Pryor KV (1999) The potential of epiphytic twig communities on Quercus petraea in a Welsh woodland site (Tycanol) for evaluating environmental changes. Lichenologist 31:41–61.

    Google Scholar 

  • Yamashita H, Suzuki G, Hayashibara T, Koike K (2011) Do corals select zooxanthellae by alternative discharge? Mar Biol 158:87–100

    Article  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Zahradníkjová M, Andersen HL, Tønsberg T, Beck A (2017) Molecular evidence of Apatococcus including A. fuscideae sp. nov. as photobiont in the genus Fuscidea. Protist 168:425–438

    Google Scholar 

  • Zheng W, Bergman B, Chen B, Zheng S, Rasmussen U (2009) Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis. New Phytol 181(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga C, Leiva D, Carú M, Orlando J (2017) Substrates of Peltigera lichens as a potential source of cyanobionts. In M Allison KW, Child J (eds) The Liverworts of New Zealand. University of Otago Press. Dunedin, NZ, 304 p; Microb Ecol 74:561–569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büdel, B. (2024). Symbioses. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_6

Download citation

Publish with us

Policies and ethics