Skip to main content

Lichens and Particulate Matter: Inter-relations and Biomonitoring with Lichens

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

In the last three decades, considerable attention was paid to the inter-relations of lichens and particulate matter. This chapter highlights the determinant factors of the entrapment of airborne particles by the lichen, e.g., the growth form of the thallus. The soil which provides the greater part of the particles adhered-to and/or entrapped-in the thallus should be considered and characterized in biomonitoring studies which traditionally focus on airborne elements derived from anthropogenic activity, with an emphasis on heavy metals and radionuclides. Both visual data and analyses of coefficients of variation (CVs) contribute to knowledge of the nature of particulate matter entrapped by lichens. To date, a considerable number of laboratories studying the elemental content of lichens avoid the pre-treatment of thallial samples. A rough estimation based on a review of the relevant literature revealed that about 75 % of the laboratories used only dry cleaning and do not wash thalli prior to elemental determination. Other laboratories include in their protocol washing, sometimes several consecutive washings, combined with an ultrasonic treatment and/or shaking. This treatment has the potential to remove deposited material of natural and anthropogenic origin and induces the loss of elements. Lichenologists/bryologists need to face the dilemma of pre-treatment. In this context, scientists should determine whether the constituents of lichen are just and only algal and/or cyanobacterial cells and fungal hyphae, and particulates are “aliens.” The location of biomonitoring studies is of crucial importance: the increasing number of annual desert-dust storms especially in the Mediterranean basin and in southern Europe is the result of climate change. The temporal and spatial dimensions of bulk deposition are discussed, with relevance to change observed in biomonitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarkrog A, Dahlgaard H, Holm E, Hallstadius L (1984) Evidence for bismuth-207 in global fallout. J Environ Radioact 1:107–117

    CAS  Google Scholar 

  • Adamo P, Giordano S, Vingiani S, Castaldo Cobianchi R, Violante P (2003) Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ Pollut 122:91–103

    CAS  PubMed  Google Scholar 

  • Adamo P, Arienzo M, Pugliese M, Roca V, Violante P (2004) Accumulation history of radionuclides in the lichen Stereocaulon vesuvianum from Mt. Vesuvius (south Italy). Environ Pollut 127:455–461

    CAS  PubMed  Google Scholar 

  • Adamo P, Crisafulli P, Giordano S, Minganti V, Modenesi P, Monaci F et al (2007) Lichen and moss bags as monitoring devices in urban areas. Part II. Trace element content in living and dead biomonitors and comparison with synthetic materials. Environ Pollut 146:392–399

    CAS  PubMed  Google Scholar 

  • Adamo P, Bargagli R, Giordano S, Modenesi P, Monaci F, Pittao E et al (2008a) Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environ Pollut 152:11–19

    CAS  PubMed  Google Scholar 

  • Adamo P, Giordano S, Naimo D, Bargagli R (2008b) Geochemical properties of airborne particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment. Atmos Environ 42:346–357

    CAS  Google Scholar 

  • Affum HA, Oduro-Afriyie K, Nartey VK, Adomako D, Nyarko BJB (2008) Biomonitoring of airborne heavy metals along a major road in Accra, Ghana. Environ Monit Assess 137:15–24

    CAS  PubMed  Google Scholar 

  • Agnan Y, Séjalon-Delmas N, Probst A (2013) Comparing early twentieth century and present-day atmospheric pollution in SW France: a story of lichens. Environ Pollut 172:139–148

    CAS  PubMed  Google Scholar 

  • Aničić M, Tasić M, Frontasyeva MV, Tomaševic M, Rajšić S, Mijić Z et al (2009) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut 157:673–679

    PubMed  Google Scholar 

  • Aprile GG, Di Salvatore M, Carratù G, Mingo A, Carafa AM (2010) Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals. Environ Monit Assess 162:291–299

    CAS  PubMed  Google Scholar 

  • Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158

    CAS  PubMed  Google Scholar 

  • Aslan A, Budak G, Karabulut A (2004) The amounts of Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). J Quant Spectrosc Radiat Transfer 88:423–431

    CAS  Google Scholar 

  • Aslan A, Budak G, Tiraşoğlu E, Karabulut A (2006) Determination of elements in some lichens growing in Giresum and Ordu province (Turkey) using energy dispersive X-ray fluorescence spectrometry. J Quant Spectrosc Radiat Transfer 97:10–19

    CAS  Google Scholar 

  • Aubert D, Le Roux G, Krachler M, Cherbukin A, Kober B, Shotyk W et al (2006) Origin and fluxes of atmospheric REE entering an ombrotrophic peat bog in Black Forest (SW Germany): Evidence from snow, lichens and mosses. Geochim Cosmochim Acta 70:2815–2826

    CAS  Google Scholar 

  • Avila A, Penũelas J (1999) Increasing frequency of Saharan rains over northeastern Spain and its ecological consequences. Sci Total Environ 228:153–156

    CAS  Google Scholar 

  • Ayrault S, Clochiatti R, Carrot F, Daudin L, Bennett JP (2007) Factors to consider for trace element deposition biomonitoring surveys with lichen transplants. Sci Total Environ 372:717–727

    CAS  PubMed  Google Scholar 

  • Bačkor M, Fahselt D (2004) Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ont. Canada). Environ Exp Bot 52:149–159

    Google Scholar 

  • Bačkor M, Loppi S (2009) Interaction of lichens with heavy metals. Biol Plant 53:214–222

    Google Scholar 

  • Bačkor M, Klejdus B, Vantová I, Kováčik J (2009) Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate. Chemosphere 76:1340–1343

    PubMed  Google Scholar 

  • Bajpai R, Upreti DK, Dwiveki SK (2009) Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India. Environ Monit Assess 159:437–442

    CAS  PubMed  Google Scholar 

  • Baptista MS, Vasconcelos MTSD, Cabral JP, Freitas MC, Pacheco AMG (2008) Copper, nickel and lead in lichen and tree bark transplants over different periods of time. Environ Pollut 151:408–413

    CAS  PubMed  Google Scholar 

  • Barci-Funel G, Dalmasso J, Barci VL, Ardisson G (1995) Study of the transfer of radionuclides in trees at a forest site. Sci Total Environ 173/174:369–373

    CAS  Google Scholar 

  • Bargagli R (1990a) Mercury emission in an abandoned mining area: assessment by epiphytic lichens. In: Cheremisinoff PN (ed) Encyclopedia of environmental control technology, vol 4. Hazardous waste containment and treatment. Gulf Publishing Company, Houston, pp 613–640

    Google Scholar 

  • Bargagli R (1990b) Assessment of metal air pollution by epiphytic lichens: The incidence of crustal materials and of possible uptake from substrate barks. Stud Geobotanica 10:97–103

    Google Scholar 

  • Bargagli R (1995) The elemental composition of vegetation and the possible incidence of soil contamination of samples. Sci Total Environ 176:121–128

    CAS  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery, Springer, Berlin

    Google Scholar 

  • Bargagli R, Iosco FP, Leonzo C (1985) Monitarggio di elementi in trace mediante licheni epifiti. Inquinamento 2:33–37

    Google Scholar 

  • Bargagli R, Iosco FP, Barghigiani C (1987) Assessment of mercury dispersal in an abandoned mining area by soil and lichen analysis. Water Air Soil Pollut 36:219–225

    CAS  Google Scholar 

  • Bargagli R, Battisti E, Focardi S, Formichi P (1993) Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarct Sci 5:3–8

    Google Scholar 

  • Bargagli R, Brown DH, Nelli L (1995) Metal biomonitoring with mosses: procedures for correcting for soil contamination. Environ Pollut 89:169–175

    CAS  PubMed  Google Scholar 

  • Bargagli R, Sanchez-Hernandez JC, Monaci F (1999) Baseline concentrations of elements in the Antarctic macrolichen Umbilicaria decussata. Chemosphere 38:475–487

    CAS  PubMed  Google Scholar 

  • Bargagli R, Monaci F, Borghini R, Bravi F, Agnorelli C (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ Pollut 116:279–287

    CAS  PubMed  Google Scholar 

  • Bargagli R, Monaci F, Agnorelli C (2003) Oak leaves as accumulators of airborne elements in an area with geochemical an geothermal anomalies. Environ Pollut 124:321–329

    CAS  PubMed  Google Scholar 

  • Bargagli R, Monaci F, Bucci C (2007) Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol Biochem 39:352–360

    CAS  Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    CAS  PubMed  Google Scholar 

  • Bartók K (1988) Heavy metal distribution in several lichen species in a polluted area. Rev Roum Biol—Biol Végét 33:127–134

    Google Scholar 

  • Basile A, Sorbo S, Aprile G, Conte B, Castaldo Cobianchi R (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151:401–407

    CAS  PubMed  Google Scholar 

  • Beckett PJ, Boileau LJR, Padovan D, Richardson DHS, Nieboer E (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada—part 2: distance dependent uranium and lead accumulation patterns. Environ Pollut B 4:91–107

    CAS  Google Scholar 

  • Bennett JP, Wetmore CM (1999) Geothermal elements in lichens of Yellowstone National Park, USA. Environ Exp Bot 42:191–200

    CAS  Google Scholar 

  • Bennett JP, Wetmore CM (2003) Elemental chemistry of four lichen species from the Apostle Islands, Wisconsin, 1987, 1995 and 2001. Sci Total Environ 305:77–86

    CAS  PubMed  Google Scholar 

  • Bergamaschi L, Rizzio E, Valcuvia MG, Verza G, Profumo A, Gallorini M (2002) Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens. Environ Pollut 120:137–144

    CAS  PubMed  Google Scholar 

  • Bergamaschi L, Rizzio E, Giavery G, Profumo A, Loppi S, Gallorini M (2004) Determination of baseline element composition of lichens using samples from high elevations. Chemosphere 55:933–939

    CAS  PubMed  Google Scholar 

  • Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M (2007) Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environ Pollut 148:468–476

    CAS  PubMed  Google Scholar 

  • Bermudez GMA, Rodriguez JH, Pignata ML (2009) Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environ Res 109:6–14

    CAS  PubMed  Google Scholar 

  • Bettinelli M, Spezia S, Bizzarri G (1996) Trace elements determination in lichens by ICP-MS. Atom Spectrosc 17:133–141

    CAS  Google Scholar 

  • Bettinelli M, Perotti M, Spezia S, Baffi C, Beone GM, Alberici F et al (2002) The role of analytical methods for the determination of trace elements in environmental biomonitors. Microchem J 73:131–152

    CAS  Google Scholar 

  • Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK (2010) Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res B 268:1492–1501

    CAS  Google Scholar 

  • Boileau LJR, Beckett PJ, Lavoie P, Richardson DHS, Nieboer E (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada—part 1: field procedures, chemical analysis and interspecies comparisons. Environ Pollut B 4:69–84

    CAS  Google Scholar 

  • Bosserman RW, Hagner JE (1981) Elemental composition of epiphytic lichens from Okefenokee Swamp. Bryologist 84:48–58

    CAS  Google Scholar 

  • Branquinho C, Gaio-Oliveira G, Augusto S, Pinho P, Máguas C, Correia O (2008) Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ Pollut 151:292–299

    CAS  PubMed  Google Scholar 

  • Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci Total Environ 387:289–300

    CAS  PubMed  Google Scholar 

  • Bu K, Cizdziel JV, Dasher D (2013) Plutonium concentration and 240Pu/239Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS. J Environ Radioact 124:29–36

    CAS  PubMed  Google Scholar 

  • Bubach D, Arribére MA, Calvelo S, Ribeiro Guevara S, Román Ross G (1998) Characterization of minor and trace element contents of Protousnea magellanica from pristine areas of Northern Patagonia. Lichens 2:1–7

    Google Scholar 

  • Bubach D, Pérez Catán S, Arribére M, Ribeiro Guevara S (2012) Bioindication of volatile elements emission by the Puyehue-Cordón Caulle (North Patagonia) volcanic event in 2011. Chemosphere 88:584–590

    CAS  PubMed  Google Scholar 

  • Cabral JP (2003) Copper toxicity to five Parmelia lichens in vitro. Environ Exp Bot 49:237–250

    Google Scholar 

  • Calvelo S, Baccala N, Arribere MA, Ribeiro Guevara S, Bubach D (1997) Analytical and statistical analysis of elemental composition of lichens. J Radioanal Nucl Ch 222:99–104

    CAS  Google Scholar 

  • Caniglia G, Calliari I, Celin L, Tollardo AM (1994) Metal determination by EDXBF in lichens. A contribution to pollutants monitoring. Biol Trace Elem Res 43–45:213–221

    PubMed  Google Scholar 

  • Carignan J, Simonetti A, Gariépy C (2002) Dispersal of atmospheric lead in northeastern North America as recorded by epiphytic lichens. Atmos Environ 36:3759–3766

    CAS  Google Scholar 

  • Carreras HA, Pignata ML (2002) Biomonitoring of heavy metals and air quality in Córdoba City, Argentina, using transplanted lichens. Environ Pollut 117:77–87

    CAS  PubMed  Google Scholar 

  • Carreras HA, Rodriguez JH, González CM, Wannaz ED, Garcia Ferreyra F, Perez CA et al (2009a) Assessment of the relationship between total suspended particles and the response of two biological indicators transplanted to an urban area in central Argentina. Atmos Environ 43:2944–2949

    CAS  Google Scholar 

  • Carreras HA, Wannaz ED, Pignata ML (2009b) Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Environ Pollut 157:117–122

    CAS  PubMed  Google Scholar 

  • Carreras HA, Wannaz ED, Perez CA, Pignata ML(2005) The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. Environ Res 97:50–57

    Google Scholar 

  • Celik N, Cevik U, Celik A, Koz B (2009) Natural and artificial radioactivity measurements in Eastern Black Sea region in Turkey. J Hazard Mater 162:146–153

    CAS  PubMed  Google Scholar 

  • Chaparro MAE, Lavornia JM, Chaparro MAE, Sinito AM (2013) Biomonitors of urban air pollution: Magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut 172:61–69

    CAS  PubMed  Google Scholar 

  • Chettri MK, Sawidis T, Karataglis S (1997) Lichens as tool for biogeochemical prospecting. Ecotoxicol Environ Saf 38:322–335

    CAS  PubMed  Google Scholar 

  • Chiarenzelli J, Aspler L, Dunn C, Cousens B, Ozarko D, Powis K (2001) Multi-element and rare earth element composition of lichens, mosses and vascular plants from the Central Barrenlands, Nunavut, Canada. Appl Geochem 16:245–270

    CAS  Google Scholar 

  • Clark BM, St Clair LL, Mangelson NF, Rees LB, Grant PG, Bench GS (2001) Characterization of mycobiont adaptations in the foliose lichen Xanthoparmelia chlorochroa (Parmeliaceae). Am J Bot 88:1742–1749

    CAS  PubMed  Google Scholar 

  • Cloquet C, Carignan J, Libourel G (2006) Atmospheric pollutant dispersion around an urban area using trace metal concentrations and Pb isotopic composition in epiphytic lichens. Atmos Environ 10:574–587

    Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    CAS  PubMed  Google Scholar 

  • Costa CJ, Marques AP, Freitas MC, Reis MA, Oliveira OR (2002) A comparative study for results obtained using biomonitors and PM10 collectors in Sado Estuary. Environ Pollut 120:97–106

    CAS  PubMed  Google Scholar 

  • Culicov OA, Yurukova L (2006) Comparison of element accumulation of different moss—and lichen bags, exposed in the city of Sofia (Bulgaria). J Atmos Chem 55:1–12

    CAS  Google Scholar 

  • Daillant O, Kirchner G, Jacquiot L, Lecointe A, Tillier C, Van Haluwyn C (1996) Recherche d’élément radioactifs natureles dans quelques lichens foliaces. Pollut Atmos 65–79

    Google Scholar 

  • Danesi PR, Bleise A, Burkart W, Cabianca T, Campbell MJ, Makarewicz M et al (2003a) Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo. J Environ Radioactiv 64:121–131

    CAS  Google Scholar 

  • Danesi PR, Markowicz A, Chinea-Cano E, Burkart W, Salbu B, Donohue D et al (2003b) Depleted uranium particles in selected Kosovo samples. J Environ Radioactiv 64:143–154

    CAS  Google Scholar 

  • Di Lella LA, Frati L, Loppi S, Protano G, Riccobono F (2003) Lichens as biomonitors of uranium and other trace elements in an area of Kosovo heavily shelled with depleted uranium rounds. Atmos Environ 37:5445–5449

    Google Scholar 

  • Di Lella LA, Frati L, Loppi S, Protano G, Riccobono F (2004) Environmental distribution of uranium and other trace elements at selected Kosovo sites. Chemosphere 56:861–865

    PubMed  Google Scholar 

  • Dias da Cunha K, Barros Leite CV, Zays Z (2004) Exposure to mineral sands dust particles. Nucl Instrum Methods Phys Res B 217:649–656

    CAS  Google Scholar 

  • Dillman KL (1996) Use of the lichen Rhizoplaca melanophthalma as a biomonitor in relation to phosphate refineries near Pocatello, Idaho. Environ Pollut 92:91–96

    CAS  PubMed  Google Scholar 

  • Doğrul Demiray A, Yolcubal I, Akyol NH, Çobanoğlu G (2012) Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol Ind 18:632–643

    Google Scholar 

  • Dolgopolova A, Weiss DJ, Seltmann R, Kober B, Mason TFD, Coles B et al (2006) Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site (Russia). Appl Geochem 21:563–579

    CAS  Google Scholar 

  • Dongarrà G, Varrica D (1998) The presence of heavy metals in air particulate at Vulcano island (Italy). Sci Total Environ 212:1–9

    Google Scholar 

  • Dongarrà G, Ottonello D, Sabatino G, Triscari M (1995) Use of lichens in detecting environmental risk and in geochemical prospecting. Environ Geol 26:139–146

    Google Scholar 

  • Dowdall M, Gwynn JP, Moran C, O’Dea J, Davids C, Lind B (2005) Uptake of radionuclides by vegetation at a High Arctic location. Environ Pollut 133:327–332

    CAS  PubMed  Google Scholar 

  • Dzubaj A, Bačkor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) Fr. to metal stress. Ecotoxicol Environ Saf 70:319–326

    CAS  PubMed  Google Scholar 

  • El Khoukhi T, Cherkaoui RM, Gaudry A, Ayrault S, Senhou A, Chouak A et al (2004) Air pollution biomonitoring survey in Morocco using ko-INAA. Nucl Instrum Methods Phys Res B 213:770–774

    Google Scholar 

  • Fahselt D, Wu T-W, Mott B (1995) Trace element patterns in lichens following uranium mine closures. Bryologist 98:228–234

    CAS  Google Scholar 

  • Farinha MM, Verburg TG, Freitas MC, Wolterbeek HTh (2009) Local and regional sources as given by aerosol measurements and biomonitoring at Sado estuary area, Portugal. J Radioanal Nucl Ch 281:299–305

    CAS  Google Scholar 

  • Fenn ME, Geiser L, Bachman R, Blubaugh TJ, Bytnerowicz A (2007) Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA. Environ Pollut 146:77–91

    CAS  PubMed  Google Scholar 

  • Freitas MC, Reis MA, Alves LC, Wolterbeek HTh (1999) Distribution in Portugal of some pollutants in the lichen Parmelia sulcata. Environ Pollut 106:229–235

    CAS  PubMed  Google Scholar 

  • Freitas MC, Pacheco AMG, Baptista MS, Dionisio I, Vasconcelos MTSD, Cabral JP (2007) Response of exposed detached lichens to atmospheric elemental deposition. Ecol Chem Eng 14:631–644

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi bioweathering and bioremediation. Mycol Res 111:3–49

    CAS  PubMed  Google Scholar 

  • Gailey FAY, Lloyd OLI (1986) Methodological investigations into low technology monitoring of atmospheric metal pollution: part 2—the effect of length of exposure on metal concentrations. Environ Pollut B 12:61–74

    CAS  Google Scholar 

  • Ganor E, Stupp A, Alpert P, Osetinsky I (2007) Increasing trends in dust cloud intrusion from the Sahara over Israel. Abstracts of the IUGG 27, Perugia, Italy, 2–13 July 2007, p 210

    Google Scholar 

  • Garty J (1985) The amounts of heavy metals in some lichens in the Negev Desert. Environ Pollut B 10:287–300

    CAS  Google Scholar 

  • Garty J (2000) Trace metals, other chemical elements and lichen physiology: research in the nineties. In: Markert B, Friese K (eds) Trace elements—their distribution and effects in the environment. Elsevier, Amsterdam, pp 277–322

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metal with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    CAS  Google Scholar 

  • Garty J (2002) Biomonitoring heavy metal pollution with lichens. In: Kranner I, Beckett RP, Varma AK (eds) Protocols in lichenology. Springer, Culturing, biochemistry, ecophysiology and use in biomonitoring. Berlin, pp 458–482

    Google Scholar 

  • Garty J, Amman K (1987) The amount of Ni, Cr, Zn, Pb, Cu, Fe, and Mn in some lichens growing in Switzerland. Environ Exp Bot 27:127–138

    CAS  Google Scholar 

  • Garty J, Delarea J (1987) Some initial stages in the formation of epilithic crustose lichens in nature: a SEM study. Symbiosis 3:49–56

    Google Scholar 

  • Garty J, Fuchs C, Zisapel N, Galun M (1977) Heavy metals in the lichen Caloplaca aurantia from urban, suburban and rural regions in Israel (a comparative study). Water Air Soil Pollut 8:171–188

    CAS  Google Scholar 

  • Garty J, Galun M, Kessel M (1979) Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytol 82:159–168

    CAS  Google Scholar 

  • Garty J, Ronen R, Galun M (1985) Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (De Not.) Jatta. Environ Exp Bot 25:67–74

    CAS  Google Scholar 

  • Garty J, Harel Y, Steinberger Y (1995) The role of lichens in the cycling of metals in the Negev Desert. Arch Environ Contam Toxicol 29:247–253

    CAS  Google Scholar 

  • Garty J, Kauppi M, Kauppi A (1996a) Accumulation of airborne elements from vehicles in transplanted lichens in urban sites. J Environ Qual 25:265–272

    CAS  Google Scholar 

  • Garty J, Steinberger Y, Harel Y (1996b) Spatial and temporal changes in the concentration of K, Na, Mg and Ca in epilithic and in decomposing detached thalli of the lichen Ramalina maciformis and its potential role in the cycling of these elements in the Negev Desert. Environ Exp Bot 36:83–97

    CAS  Google Scholar 

  • Garty J, Cohen Y, Kloog N, Karnieli A (1997a) Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens. Environ Toxicol Chem 16:1396–1402

    CAS  Google Scholar 

  • Garty J, Karnieli A, Wolfson R, Kunin P, Garty-Spitz R (1997b) Spectral reflectance and integrity of cell membranes and chlorophyll relative to the concentration of airborne mineral elements in a lichen. Physiol Plant 101:257–264

    CAS  Google Scholar 

  • Garty J, Kloog N, Wolfson R, Cohen Y, Karnieli A, Avni A (1997c) The influence of air pollution on the concentration of mineral elements, on the spectral reflectance response and on the production of stress-ethylene in the lichen Ramalina duriaei. New Phytol 137:587–597

    CAS  Google Scholar 

  • Garty J, Cohen Y, Kloog N (1998a) Airborne elements, cell membranes, and chlorophyll in transplanted lichens. J Environ Qual 27:973–979

    CAS  Google Scholar 

  • Garty J, Kloog N, Cohen Y (1998b) Integrity of lichen cell membranes in relation to concentration of airborne elements. Arch Environ Contam Toxicol 34:136–144

    CAS  PubMed  Google Scholar 

  • Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A et al (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Phys Plant 109:410–418

    CAS  Google Scholar 

  • Garty J, Tamir O, Hassid I, Eshel A, Cohen Y, Karnieli A et al (2001a) Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J Environ Qual 30:884–893

    CAS  PubMed  Google Scholar 

  • Garty J, Weissman L, Cohen Y, Karnieli A, Orlovsky L (2001b) Transplanted lichens in and around the Mount Carmel National Park and the Haifa Bay industrial region in Israel: physiological and chemical responses. Environ Res A85:159–176

    Google Scholar 

  • Garty J, Kunin P, Delarea J, Weiner S (2002a) Calcium oxalate and sulphate-containing structures on the thallial surface of the lichen Ramalina lacera: response to polluted air and simulated acid rain. Plant, Cell Environ 25:1591–1604

    CAS  Google Scholar 

  • Garty J, Levin T, Cohen Y, Lehr H (2002b) Biomonitoring air pollution with the desert lichen Ramalina maciformis. Physiol Plant 115:265–275

    Google Scholar 

  • Garty J, Tamir O, Cohen Y, Lehr H, Goren AI (2002c) Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environ Toxicol Chem 21:848–858

    CAS  PubMed  Google Scholar 

  • Garty J, Tomer S, Levin T, Lehr H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198

    CAS  PubMed  Google Scholar 

  • Garty J, Tamir O, Levin T, Lehr H (2007) The impact of UV-B and sulphur—or copper—containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species. Environ Pollut 145:266–273

    CAS  PubMed  Google Scholar 

  • Garty J, Lehr H, Garty-Spitz RL, Ganor E, Stupp A, Alpert P, Osetinsky I (2008) Temporal fluctuations of mineral concentrations as related to the physiological status of the lichen Ramalina lacera (With) J.R. Laund. Isr J PIant Sci 56:361–369

    CAS  Google Scholar 

  • Garty J, Lehr H, Garty-Spitz RL (2009) Three decades of biomonitoring Pb in a rural area with the epiphytic lichen Ramalina lacera: a retrospective study. Isr J Plant Sci 56:25–34

    Google Scholar 

  • Geodonov AD, Petrov ER, Alexeev VG, Kuleshova IN, Savopulo ML, Burtsev IS et al (2002) Residual radioactive contamination of the peaceful underground nuclear explosion sites “Craton-3” and “Crystal” in the republic of Sakha (Yakutia). J Environ Radioactiv 60:221–234

    Google Scholar 

  • Getty SR, Gutzler DS, Asmeron Y, Shearer CK, Free SJ (1999) Chemical signals of epiphytic lichens in southwestern North America; natural versus man-made sources for airborne particulates. Atmos Environ 33:5095–5104

    CAS  Google Scholar 

  • Giordano S, Adamo P, Sorbo S, Vingiani S (2005) Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ Pollut 136:431–442

    CAS  PubMed  Google Scholar 

  • Giordano S, Adamo P, Spagnuolo V, Vaglieco BM (2010) Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment. J Environ Sci 22:1357–1363

    CAS  Google Scholar 

  • Giordano S, Adamo P, Spagnuolo V, Tretiach M, Bargagli R (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonization of the moss-bag technique. Chemosphere 90:292–299

    CAS  PubMed  Google Scholar 

  • Glenn MG, Gomez-Bolea A, Lobello R (1995) Metal content and community structure of cryptogam bioindicators in relation to vehicular traffic in Montseny Biospheric Reserve (Catalonia, Spain). Lichenol 27:291–304

    Google Scholar 

  • Godinho RM, Freitas MC, Wolterbeek HT (2004) Assessment of lichen vitality during a transplantation experiment to a polluted site. J Atmos Chem 49:355–361

    CAS  Google Scholar 

  • Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325

    CAS  PubMed  Google Scholar 

  • Godinho RM, Verburg TG, Freitas MC, Wolterbeek HT (2009a) Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ Pollut 157:102–109

    CAS  PubMed  Google Scholar 

  • Godinho RM, Wolterbeek HT, Pinheiro MT, Alves LC, Verburg TG, Freitas MC (2009b) Micro-scale elemental distribution in the thallus of Flavoparmelia caperata transplanted to polluted site. J Radioanal Nucl Chem 281:205–210

    CAS  Google Scholar 

  • Godoy JM, Schuch LA, Nordemann DJR, Reis VRG, Ramalho M, Recio JC et al (1998) 137Cs, 226,228Ra, 210Pb and 40K concentrations in Antarctic soil, sediment and selected moss and lichen samples. J Environ Radioactiv 41:33–45

    CAS  Google Scholar 

  • Golubev AV, Golubeva VN, Krylov NG, Kuznetsova VF, Mavrin S, Aleinikov YuA et al (2005) On monitoring anthropogenic airborne uranium concentrations and 235U/238U isotopic ration by Lichen-bio-indicator technique. J Environ Radioactiv 84:333–342

    CAS  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2003) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ Pollut 123:281–290

    CAS  PubMed  Google Scholar 

  • González CM, Casanovas S, Pignata ML (1996) Biomonitoring air pollutants from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Córdoba. Argentina. Environ Pollut 91:269–277

    Google Scholar 

  • González CM, Orellana LC, Casanovas SS, Pignata ML (1998) Environmental conditions and chemical response of a transplanted lichen to an urban area. J Environ Manage 53:73–81

    Google Scholar 

  • González CM, Pignata ML, Orellana L (2003) Applications of redundancy analysis for the detection of chemical response patterns to air pollution in lichen. Sci Total Environ 312:245–253

    PubMed  Google Scholar 

  • Gough LP, Jackson LL, Sacklin JA (1988) Determining baseline element composition of lichens II. Hypogymnia enteromorpha and Usnea spp. at Redwood National Park, California. Water Air Soil Pollut 38:169–180

    CAS  Google Scholar 

  • Gough LP, Erdman JA (1977) Influence of a coal-fired powerplant on the element content of Parmelia chlorochroa. Bryologist 80:492–501

    Google Scholar 

  • Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Ind 13:178–183

    CAS  Google Scholar 

  • Grasso MF, Clocchiatti R, Carrot F, Deschamps C, Vurro F (1999) Lichens as bioindicators in volcanic areas: Mt. Etna and Vulcano Island (Italy). Environ Geol 37:207–217

    CAS  Google Scholar 

  • Gueidan C, Daillant O, Tillier C (1997) Observation de la qualité de l’air par les lichen à Autun. Bull Soc Nat Hist Autun 164:15–32

    Google Scholar 

  • Haas JR, Purvis OW (2006) Lichen biogeochemistry. In: Gadd GM (ed) Fungi in biochemical cycles. Cambridge University Press, Cambridge, pp 344–376

    Google Scholar 

  • Häffner E, Lomský B, Hynek V, Hällgren JE, Batič F, Pfanz H (2001) Air pollution and lichen physiology. Water Air Soil Pollut 131:185–201

    Google Scholar 

  • Hauck H, Paul A, Spribille T (2006) Uptake and toxicity of manganese in epiphytic cyanolichens. Environ Exp Bot 56:216–224

    CAS  Google Scholar 

  • Heinrich G, Oswald K, Müller HJ (1999) Lichens as monitors of radiocesium and radiostrontium in Austria. J Environ Radioactiv 45:13–27

    CAS  Google Scholar 

  • Hissler C, Stille P, Krein A, Lahd Geagea M, Perrone T, Probst J-L et al (2008) Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina. Sci Total Environ 405:338–344

    CAS  PubMed  Google Scholar 

  • Horvat M, Jeran Z, Špirič Z, Jaćimović R, Miklavčič V (2000) Mercury and other elements in lichens near the INA Naftaplin gas treatment plant, Molve, Croatia. J Environ Monitor 2:139–144

    CAS  Google Scholar 

  • Hyvärinen M, Roitto M, Ohtonen R, Markkola A (2000) Impact of wet deposited nickel on the cation content of a mat-forming lichen Cladina stellaris. Environ Exp Bot 43:211–218

    PubMed  Google Scholar 

  • Jenkins DA, Davis RI (1966) Trace element content of organic accumulation. Nature 210:1296–1297

    CAS  Google Scholar 

  • Jeran Z, Byrne AR, Batič F (1995) Transplanted epiphytic lichens as biomonitors of air-contamination by natural radionuclides around the Žirovski VRH uranium mine, Slovenia. Lichenol 27:375–385

    Google Scholar 

  • Jeran Z, Jaćimović R, Batič F, Smodiš B, Wolterbeek HT (1996) Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. Fresen J Anal Chem 354:681–687

    CAS  Google Scholar 

  • Jeran Z, Jaćimović R, Batič F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113

    CAS  PubMed  Google Scholar 

  • Jeran Z, Jaćimović R, Pavsic Mikuz P (2003) Lichens and mosses as biomonitors. J Phys IV Fr 107:675–678

    CAS  Google Scholar 

  • Jeran Z, Mrak T, Jaćimović R, Batič F, Kastelec D, Mavsar R, Simončič P (2007) Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Environ Pollut 146:324–331

    CAS  PubMed  Google Scholar 

  • Jia G, Belli M, Sansone U, Rosamilia S, Gaudino S (2005) Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro. Appl Radiat Isotopes 63:381–399

    CAS  Google Scholar 

  • Jia G, Belli M, Sansone U, Rosamilia S, Gaudino S (2006) Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina. J Environ Radioactiv 89:172–187

    CAS  Google Scholar 

  • Jiries AG, Batarseh MI, El-Hassen T, Ziadat AH, Al-Nasir F, Berdanier BW (2008) Lichens (Rhizocarpon geographicum) (L.) DC) as a biomonitor for atmospheric pollution in Amman City. Jordan. Environ Bioindic 3:106–113

    CAS  Google Scholar 

  • Käffer MI, Lemos AT, Anders Apel M, Vaz Rocha J, de Azevedo Martins SM, Ferrão Vargas VM (2012) Use of bioindicators to evaluate air quality and genotoxic compounds in an urban environment in Southern Brazil. Environ Pollut 163:24–31

    PubMed  Google Scholar 

  • Kahraman A, Kaynak G, Gurler O, Yalcin S, Ozturk S, Gundogdu O (2009) Investigation of environmental contamination of lichens of Gökçeada (Imbroz) Island in Turkey. Rad Meas 44:199–202

    CAS  Google Scholar 

  • Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577

    PubMed  Google Scholar 

  • Korobova EM, Brown JB, Ukraintseva NG, Surkow VV (2007) 137Cs and 40K in the terrestrial vegetation of the Yenisey Estuary: landscape, soil and plant relationships. J Environ Radioactiv 96:144–156

    CAS  Google Scholar 

  • Koz B, Celik N, Cevik U (2010) Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecol Indic 10:762–765

    CAS  Google Scholar 

  • Kuik P, Wolterbeek HTh (1995) Factor analysis of atmospheric trace-element deposition data in the Netherlands obtained by moss monitoring. Water Air Soil Pollut 84:323–346

    CAS  Google Scholar 

  • Kularatne KIA, de Freitas CR (2013) Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environ Exp Bot 88:24–32

    CAS  Google Scholar 

  • Lawrey JD, Hale ME Jr (1981) Retrospective study of lichen lead accumulation in the northeastern United States. Bryologist 84:449–456

    CAS  Google Scholar 

  • LeGalley E, Widom E, Krekeler MPS, Kuentz DC (2013) Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in Southwest Ohio. Appl Geochem 32:195–203

    CAS  Google Scholar 

  • Lehto J, Paatero J, Pehrman R, Kulmala S, Suski J, Koivula T et al (2008) Deposition of gamma emitters from Chernobyl accident and their transfer in lichen-soil columns. J Environ Radioactiv 99:1656–1664

    CAS  Google Scholar 

  • Leonardo L, Paci Mazzilli B, Damatto SR, Saiki M, Barros de Oliveira SM (2011) Assessment of atmospheric pollution in the vicinity of a tin and lead industry using lichen species Canoparmelia texana. J Environ Radioactiv 102:906–910

    CAS  Google Scholar 

  • Lippo H, Poikolainen J, Kubin E (1995) The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water Air Soil Pollut 85:2241–2246

    CAS  Google Scholar 

  • Looney JHH, Kershaw KA, Nieboer E, Webber C, Stetsko PI (1985) The distribution of uranium and companion elements in lichen heath associated with undisturbed uranium deposits in the Canadian Arctic. In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 193–209

    Google Scholar 

  • Loppi S (1997) Monitoring of arsenic, boron and mercury by lichen and soil analysis in the Mt. Amiata geothermal area (Central Italy). Trans Geotherm Resour Counc 21:137–140

    CAS  Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 41:1333–1336

    CAS  PubMed  Google Scholar 

  • Loppi S, De Dominicis V (1996) Lichens as long-term biomonitors of air quality in central Italy. Acta Bot Neer 45:563–570

    Google Scholar 

  • Loppi S, Pirintsos SA (2003) Epihytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ Pollut 121:327–332

    CAS  PubMed  Google Scholar 

  • Loppi S, Chiti C, Corsini A, Bernardi L (1994) Lichen biomonitoring of trace metals in the Pistoia area (central northern Italy). Environ Monit Assess 29:17–27

    CAS  PubMed  Google Scholar 

  • Loppi S, Nelli L, Ancora S, Bargagli R (1997a) Passive monitoring of trace elements by means of tree leaves, epiphytic lichens and bark substrate. Environ Monit Assess 45:81–88

    CAS  Google Scholar 

  • Loppi S, Nelli L, Ancora S, Bargagli R (1997b) Accumulation of trace elements in the peripheral and central parts of a foliose lichen thallus. Bryologist 100:251–253

    CAS  Google Scholar 

  • Loppi S, Giomarelli B, Bargagli R (1999a) Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, central Italy). Cryptogam Mycol 20:119–126

    Google Scholar 

  • Loppi S, Pirintsos SA, De Dominicis V (1999b) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, Central Italy). Environ Monit Assess 58:121–131

    CAS  Google Scholar 

  • Loppi S, Riccobono F, Zhang ZH, Savic S, Ivanov D, Pirintsos SA (2003) Lichens as biomonitors of uranium in the Balkan area. Environ Pollut 125:277–280

    CAS  PubMed  Google Scholar 

  • Loppi S, Frati L, Paoli L, Bigagli V, Rossetti C, Bruscoli C et al (2004) Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Sci Total Environ 326:113–122

    CAS  PubMed  Google Scholar 

  • Machado A, Freitas MC, Pacheco AMG (2004) Relative response of biological and non-biological monitors in a coastal environment. J Atmos Chem 49:161–173

    CAS  Google Scholar 

  • Markert B (1993) Instrumental analysis of plants. In: Markert B (ed) Plants as biomonitors, indicators for heavy metals in the terrestrial environment. VCH, Weinheim, NewYork, pp 65–103

    Google Scholar 

  • Marques AP, Freitas MC, Wolterbeek HTh, Verburg T (2009) Parmelia sulcata lichen transplants positioning towards wind direction (part I): precipitation volumes, total element deposition and lichen element content. J Radioanal Nucl Chem 281:225–230

    CAS  Google Scholar 

  • Martin RS, Mather TA, Pyle DM, Watt SFL, Day JA, Collins SJ et al (2009) Sweet chestnut (Castanea sativa) leaves as a bio-indicator of volcanic gas, aerosol and ash deposition onto the flanks of Mt. Etna in 2005–2007. J Volcanol Geotherm Res 179:107–119

    CAS  Google Scholar 

  • Matschullat J, Scharnweber T, Garbe-Schönberg D, Walther A, Wirth V (1999) Epilithic lichen-atmospheric deposition monitors of trace elements and organohalogens? J Air Waste Manage Assoc 49:1201–1211

    CAS  Google Scholar 

  • Merešová J, Florek M, Holý K, Ješkovský M, Sýkora I, Frontasyeva MV et al (2008) Evaluation of elemental content in airborne particulate matter in low-level atmosphere of Bratislava. Atmos Environ 42:8079–8085

    Google Scholar 

  • Mietelski JW (2001) Plutonium in the environment of Poland (a review). In: Kudo A (ed) Plutonium in the environment. Elsevier, Amsterdam, pp 401–412

    Google Scholar 

  • Migaszewski ZM, Galuszka A, Świercz A, Kucharzyk J (2001) Element concentrations in soils and plant bioindicators in selected habitats of the Holy Cross Mountains, Poland. Water Air Soil Pollut 129:369–386

    CAS  Google Scholar 

  • Migaszewski ZM, Galuszka A, Paslawski P (2005) The use of the barbell cluster ANOVA design for the assessment of environmental pollution: a case study, Wigierski National Park, NE Poland. Environ Pollut 133:213–223

    CAS  PubMed  Google Scholar 

  • Minganti V, Capelli R, Drava G, De Pellegrini R, Brunialti B, Giordani P et al (2003) Biomonitoring of trace metals by different species of lichen (Parmelia) in North-West Italy. J Atmos Chem 45:219–229

    CAS  Google Scholar 

  • Mitchell PI, Holm E, León Vintró L, Condren OM, Roos P (1998) Determination of the 243Cm/244Cm ratio alpha spectrometry and spectral deconvolution in environmental samples exposed to discharges from the nuclear fuel cycle. Appl Radiat Isotopes 49:1283–1288

    CAS  Google Scholar 

  • Monna F, Aiuppa A, Varrica D, Dongarà G (1999) Pb isotope composition in lichens and aerosols from Eastern Sicily: insights into the regional impact of volcanoes on the environment. Environ Sci Technol 33:2517–2523

    CAS  Google Scholar 

  • Monna F, Poujol M, Losno R, Dominik J, Annegarn H, Coetzee H (2006) Origin of atmospheric lead in Johannesburg, South Africa. Atmos Environ 40:6554–6566

    CAS  Google Scholar 

  • Mrak T, Simčič J, Pelicon P, Jeran Z, Reis MA, Pinheiro T (2007) Use of micro-PIXE in the study of arsenate uptake in lichens and its influence on element distribution and concentrations. Nucl Instrum Methods Phys Res B 260:245–253

    CAS  Google Scholar 

  • Nakajima H, Yamamoto Y, Yoshitani A, Itoh K (2013) Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan. Ecotoxicol Environ Saf 97:154–159

    CAS  PubMed  Google Scholar 

  • Nieboer E, Ahmed HM, Puckett KJ, Richardson DHS (1972) Heavy metal content of lichens in relation to distance from a nickel smelter in Sudbury, Ontario. Lichenologist 5:292–304

    Google Scholar 

  • Nieboer E, Richardson DHS, Lavoi P, Padovan D (1979) The role of metal ion binding in modifying the toxic effects of sulphur dioxide on the lichen Umbilicaria muhlenbergii I. Potassium efflux studies. New Pythol 82:621–632

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS, Boileau LJR, Beckett PJ, Lavoi P, Padovan D (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada—Part 3: accumulations of iron and titanium and their mutual dependence. Environ Pollut B 4:181–192

    CAS  Google Scholar 

  • Nifontova M (1995) Radionuclides in the moss-lichen cover of tundra communities in the Yamal Peninsula. Sci Total Environ 160(161):749–752

    Google Scholar 

  • Nimis PL, Andreussi S, Pittao E (2001) The performance of two lichen species as bioaccumulators of trace metals. Sci Total Environ 275:43–51

    CAS  PubMed  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric metals. Nature 338:47–49

    CAS  Google Scholar 

  • Nyarko BJB, Adomako D, Serfor-Armah Y, Dampare SB, Adotey D, Akaho EHK (2006) Biomonitoring of atmospheric trace element deposition around an industrial town in Ghana. Radiat Phys Chem 75:954–958

    CAS  Google Scholar 

  • Olmez I, Cetin Gulovali M, Gordon GE (1985) Trace element concentrations in lichens near a coal-fired power plant. Atmos Environ 19:1663–1669

    CAS  Google Scholar 

  • Olszowski T, Tomaszewska B, Góralna-Wlodarscyk K (2012) Air quality in non-industrialized area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ 50:139–147

    CAS  Google Scholar 

  • Otnyukova T (2007) Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline. Environ Pollut 146:359–365

    CAS  PubMed  Google Scholar 

  • Outola I, Pehrman R, Jaakkola T (2003) Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland. Sci Total Environ 303:221–230

    CAS  PubMed  Google Scholar 

  • Pacheco AMG, Freitas MC (2004) Are lower epiphytes really that better than higher plants for indicating airborne contaminants? An insight into the elemental content of lichen thalli and tree bark by INAA. J Radioanal Nucl Chem 259:27–33

    CAS  Google Scholar 

  • Pacheco AMG, Freitas MC, Ventura MG (2004) A nonparametric assessment of the relative output of INAA and PIXE on joint determinants in environmental samples (atmospheric biomonitors). Nucl Instrum Methods Phys Res B 222:587–592

    CAS  Google Scholar 

  • Pacheco AMG, Freitas MC, Sarmento S (2007) Nuclear and non-nuclear techniques for assessing the differential uptake of anthropogenic elements by atmospheric biomonitors. Nucl Instrum Methods Phys Res A 579:499–502

    CAS  Google Scholar 

  • Pacheco AMG, Freitas MC, Baptista MS, Vasconcelos MTSD, Cabral JP (2008) Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with an in situ lichen. Environ Pollut 151:326–333

    CAS  PubMed  Google Scholar 

  • Paliouris G, Taylor HW, Wein RW, Svoboda J, Mierzynski B (1995) Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest. Sci Total Environ 160(161):153–166

    Google Scholar 

  • Palomäki V, Tynnyrinen S, Holopainen T (1992) Lichen transplantation in monitoring fluoride and sulphur deposition in the surroundings of a fertilizer plant and a strip mine in Siilinjärvi. Ann Bot Fennici 29:25–34

    Google Scholar 

  • Pálsson SE, Egilsson K, Pórisson S, Magnússon SM, Ólafsdóttir ED, Indridason K (1994) Transfer of radiocaesium from soil and plants to reindeer in Iceland. J Environ Radioactiv 24:107–125

    Google Scholar 

  • Paoli L, Loppi S (2008) A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy. Environ Pollut 155:383–388

    CAS  PubMed  Google Scholar 

  • Paoli L, Corsini A, Bigagli V, Vannini J, Bruscoli C, Loppi S (2012) Long-term biological monitoring of environment quality around a solid waste landfill assessed with lichens. Environ Pollut 161:70–75

    CAS  PubMed  Google Scholar 

  • Paoli L, Guttova A, Grassi A, Lackovičová A, Senko D, Loppi S (2014) Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia) Ecol Indic 40:127–135

    CAS  Google Scholar 

  • Paul A, Hauck M (2006) Effects of manganese on chlorophyll fluorescence in epiphytic cyano- and chlorolychens. Flora 201:451–460

    Google Scholar 

  • Pettersson HBL, Hallstadius L, Hedvall R, Holm E (1988) Radioecology in the vicinity of prospected uranium mining sites in a subarctic environment. J Environ Radioactiv 6:25–40

    CAS  Google Scholar 

  • Pignata ML, Plá RR, Jasan RC, Martinez MS, Rodriguez JH, Wannaz ED et al (2007) Distribution of atmospheric trace elements and assessment of air quality in Argentina employing the lichen, Ramalina celastri, as a passive biomonitor: detection of air pollution emission sources. Int J Environ Heal 1:29–46

    CAS  Google Scholar 

  • Prussia CM, Killingbeck KT (1991) Concentrations of ten elements in two common foliose lichens: leachability, seasonality, and the influence of rock and tree bark substrates. Bryologist 94:135–142

    CAS  Google Scholar 

  • Puckett KJ (1976) The effect of heavy metals on some aspects of lichen physiology. Can J Bot 54:2695–2703

    CAS  Google Scholar 

  • Puckett KJ, Finegan EJ (1980) An analysis of the element content of lichens from the Northwest Territories, Canada. Can J Bot 58:2073–2089

    CAS  Google Scholar 

  • Puckett KJ, Tomassini FD, Nieboer E, Richardson DHS (1977) Potassium efflux by lichen thalli following exposure to aqueous sulphur dioxide. New Phytol 9:135–145

    Google Scholar 

  • Purvis OW, Pawlik-Skowrónska B (2008) Lichens and metals. In: van West P, Statford M, Avery S (eds) Stress in fungi. Elsevier, Mycological Society Symposia Series, Amsterdam, pp 175–200

    Google Scholar 

  • Purvis OW, Williamson BJ, Bartok K, Zoltani N (2000) Bioaccumulation of lead by the lichen Acarospora smagardula from smelter emissions. New Phytol 147:591–599

    CAS  Google Scholar 

  • Purvis OW, Chimonides PJ, Jones GC, Mikhailova IN, Spiro B, Weiss DJ et al (2004) Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world. Proc R Soc Lond B 271:221–226

    Google Scholar 

  • Purvis OW, Longden J, Shaw G, Chimonides PDJ, Jeffries TE, Jones GC et al (2006) Biogeochemical signatures in he lichen Hypogymnia physodes in the mid Urals. J Environ Radioactiv 90:151–162

    CAS  Google Scholar 

  • Purvis OW, Chimonides PDJ, Jeffries T, Jones GC, Rusu A-M et al (2007) Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmos Environ 41:72–80

    CAS  Google Scholar 

  • Purvis OW, Dubbin W, Chimonides PDJ, Jones GC, Read H (2008) The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sci Total Environ 390:558–568

    CAS  PubMed  Google Scholar 

  • Reimann C, De Caritat P (2000) Intrinsic flaws of element factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091

    CAS  Google Scholar 

  • Reimann C, Halleraker JH, Kashulina G, Bogatyrev I (1999) Comparison of plant and precipitation chemistry in catchments with different levels of pollution on the Kola Peninsula. Russia. Sci Total Environ 243(244):169–191

    Google Scholar 

  • Reis MA, Alves LC, Wolterbeek HTh, Verburg T, Freitas MC, Gouveia A (1996) Main atmospheric heavy metal sources in Portugal by biomonitor analysis. Nucl Instrum Methods Phys Res B 109(110):493–497

    Google Scholar 

  • Reis MA, Alves LC, Freitas MC, van Os B, Wolterbeek HTh (1999) Lichens (Parmelia sulcata) time response model to environmental elemental availability. Sci Total Environ 232:105–115

    CAS  Google Scholar 

  • Reis MA, Alves LC, Freitas MC, Van Os B, de Goeij J, Wolterbeek HT (2002) Calibration of lichen transplants considering faint memory effects. Environ Pollut 120:87–95

    CAS  PubMed  Google Scholar 

  • Rencz AN, O’Driscoll NJ, Hall GEM, Peron T, Telmer K, Burgess NM (2003) Spatial variation and correlations of mercury levels in the terrestrial and aquatic components of a wetland dominated ecosystem: Kejimkujik Park, Nova Scotia, Canada. Water Air Soil Pollut 143:271–288

    CAS  Google Scholar 

  • Ribeiro Guevara S, Arribére MA, Calvelo S, Román Ross G (1995) Elemental composition of lichens at Nahuel Huapi National Park, Patagonia, Argentina. J Radioanal Nucl Ch 198:437–448

    Google Scholar 

  • Richardson DHS, Shore M, Hartree R, Richardson RM (1995) The use of X-ray spectrometry for the analysis of plants, especially lichens, employed in biological monitoring. Sci Total Environ 176:97–105

    CAS  Google Scholar 

  • Riget F, Asmund G, Aastrup P (2000) The use of lichen (Flavocetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Sci Total Environ 245:137–148

    CAS  PubMed  Google Scholar 

  • Rizzio E, Bergamaschi L, Valcuvia MG, Profumo A, Gallorini M (2001) Trace elements determination in lichens and in the airborne particulate matter for the evaluation of the atmospheric pollution in a region of northern Italy. Environ Int 26:543–549

    CAS  PubMed  Google Scholar 

  • Rodushkin I, Engström E, Sörlin D, Pontèr C, Baxter DC (2007) Osmium in environmental samples from Northeast Sweden. Part I. Evaluation of background status. Sci Total Environ 386:145–158

    CAS  PubMed  Google Scholar 

  • Roos P, Holm E, Persson RBR, Aarkrog A, Nielsen SP (1994) Deposition of 210Pb, 137Cs, 239+240Pu, 238Pu and 241Am in the Antarctic Peninsula area. J Environ Radioact 24:235–251

    CAS  Google Scholar 

  • Rosamilia S, Gaudino S, Sansone U, Belli M, Jeran Z, Ruisi S et al (2004) Uranium isotopes, metals and other elements in lichens and tree barks collected in Bosnia-Herzegovina. J Atmos Chem 49:447–460

    CAS  Google Scholar 

  • Rossbach M, Jayasekera R, Kniewald G, Thang NH (1999) Large scale air monitoring: lichen vs. air particulate matter analysis. Sci Total Environ 232:59–66

    CAS  PubMed  Google Scholar 

  • Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP (1997) Determination of trace elements in lichens by instrumental neutron activation analysis. J Radioana Nucl Chem 217:111–115

    CAS  Google Scholar 

  • Salbu B, Janssens K, Lind OC, Proost K, Danesi PR (2003) Oxidation states of uranium in DU particles from Kosovo. J Environ Radioactiv 64:167–173

    CAS  Google Scholar 

  • Salemaa M, Derome J, Helmisaari H-S, Nieminen T, Vanha-Majamaa I (2004) Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci Total Environ 324:141–160

    CAS  PubMed  Google Scholar 

  • Salo H, Bućko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ (2012) Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor 115:69–81

    CAS  Google Scholar 

  • Sansone U, Danesi PR, Barbizzi S, Belli M, Campbel M, Gaudino S et al (2001) Radioecological survey at selected sites hit by depleted uranium ammunitions during the 1999 Kosovo conflict. Sci Total Environ 281:23–25

    CAS  PubMed  Google Scholar 

  • Santos PL, Gouvea RC, Dutra IR (1993) Lead-210 in vegetables and soils from an area of high natural radioactivity in Brazil. Sci Total Environ 138:37–46

    CAS  PubMed  Google Scholar 

  • Sawidis T, Heinrich G, Chettri MK (1997) Cesium-137 monitoring using lichens from Macedonia, northern Greece. Can J Bot 75:2216–2223

    CAS  Google Scholar 

  • Sawidis T, Tsigaridas K, Tsikritzis L (2010) Cesium-137 monitoring using lichens from W. Macedonia. N. Greece. Ecotoxicol Environ Saf 73:1789–1796

    CAS  Google Scholar 

  • Scerbo R, Ristori T, Possenti L, Lampugnani L, Barale R, Barghigiani C (2002) Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci Total Environ 286:27–40

    CAS  PubMed  Google Scholar 

  • Seaward MRD (1995) Use and abuse of heavy metal bioassays in environmental monitoring. Sci Total Environ 176:129–134

    CAS  Google Scholar 

  • Sensen M, Richardson DHS (2002) Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada. Sci Total Environ 293:31–45

    CAS  PubMed  Google Scholar 

  • Sert E, Uğur A, Őzden B, Saç MM, Camgöz B (2011) Biomonitoring of 210 Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. J Environ Radioact 102:535–542

    CAS  PubMed  Google Scholar 

  • Shcherbov BL, Strakhovenko VD, Sukhorukov FV (2008) The ecogeochemical role of forest fires in the Baikal region. Geogr Nat Resour 29:150–155

    Google Scholar 

  • Sheard JW (1986a) Distribution of uranium series radionuclides in upland vegetation of northern Saskatchewan. I. Plant and soil concentrations. Can J Bot 64:2446–2452

    CAS  Google Scholar 

  • Sheard JW (1986b) Distribution of uranium series radionuclides in upland vegetation of northern Saskatchewan. II. Pattern of accumulation among species and localities. Can J Bot 64:2453–2463

    CAS  Google Scholar 

  • Sheppard SC, Sheppard MI, Ilin M, Tait J, Sanipelli B (2008) Primordial radionuclides in Canadian background sites: secular equilibrium and isotopic differences. J Environ Radioactiv 99:933–946

    CAS  Google Scholar 

  • Simonetti A, Gariépy C, Carignan J (2003) Tracing sources of atmospheric pollution in Western Canada using the Pb isotopic composition and heavy metal abundances of epiphytic lichens. Atmos Environ 37:2853–2865

    CAS  Google Scholar 

  • Singh NP, Wrenn ME (1988) Determination of actinides in biological and environmental samples. Sci Total Environ 70:187–203

    CAS  PubMed  Google Scholar 

  • Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Naik S, Pendnecker SM, Ravindra R (2013) Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess 185:1367–1376

    CAS  PubMed  Google Scholar 

  • Skuterud L, Gaare E, Eikelmann IM, Hove K, Steinnes E (2005) Chernobyl radioactivity persists in reindeer. J Environ Radioactiv 83:231–252

    CAS  Google Scholar 

  • Sloof JE (1995a) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20

    CAS  Google Scholar 

  • Sloof JE (1995b) Pattern recognition in lichens for source apportionment. Atmos Environ 29:333–343

    CAS  Google Scholar 

  • Smodiš B (2003) IAEA Approaches to assessment of chemical elements in atmosphere. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors, principles, concepts and applications. Elsevier, Amsterdam, pp 875–902

    Google Scholar 

  • Smodiš B, Bleise A (2002) Internationally harmonized approach to biomonitoring trace element atmospheric deposition. Environ Pollut 120:3–10

    PubMed  Google Scholar 

  • Søndergaard J, Asmund G, Johansen P, Elberling B (2010) Pb isotopes as tracers of mining-related Pb in lichens, seaweed and mussels near a former Pb–Zn mine in West Greenland. Environ Pollut 158:1319–1326

    PubMed  Google Scholar 

  • Søndergaard J, Johansen P, Asmund G, Riget F (2011) Trends of lead and zinc in resident and transplanted Flavocetraria nivalis lichens near a former lead-zinc mine in West Greenland. Sci Total Environ 409:4063–4071

    PubMed  Google Scholar 

  • Søndergaard J, Bach L, Asmund G (2013) Modelling atmospheric bulk deposition of Pb, Zn and Cd near a former Pb–Zn mine in West Greenland using transplanted Flavocetraria nivalis lichens. Chemosphere 90:2549–2556

    PubMed  Google Scholar 

  • Sorbo S, Aprile G, Strumia S, Castaldo Cobianchi R, Leone A, Basile A (2008) Trace element accumulation in Pseudevernia furfuracea (L.) Zopf exposed in Italy’s so called Triangle of Death. Sci Total Environ 407:647–654

    CAS  PubMed  Google Scholar 

  • Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf 74:1434–1443

    CAS  PubMed  Google Scholar 

  • Squire HM, Middleton LJ (1966) Behavior of Cs137 in soils and pastures a long term experiment. Radiat Bot 6:413–423

    CAS  Google Scholar 

  • St.Clair SB, St.Clair LL, Mangelson NF, Weber DJ (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 26:5637–5644

    Google Scholar 

  • St.Clair SB, St.Clair LL, Weber DJ, Mangelson NF, Eggett DL (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421

    CAS  Google Scholar 

  • Steinnes E, Njåstad O (1993) Use of mosses and lichens for regional mapping of 137Cs fallout from Chernobyl accident. J Environ Radioactiv 21:65–73

    CAS  Google Scholar 

  • Strandberg M (1994) Radiocesium in a Danish pine forest ecosystem. Sci Total Environ 157:125–132

    CAS  Google Scholar 

  • Takala K, Salminen R, Olkkonen H (1998) Geogenic and anthropogenic zinc in epiphytic and terricolous lichens in Finland. J Geochem Explor 63:57–66

    CAS  Google Scholar 

  • Tarhanen S, Metsärinne S, Holopainen T, Oksanen J (1999) Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environ Pollut 104:121–129

    CAS  Google Scholar 

  • Tomassini FD, Lavoie P, Puckett KJ, Nieboer E, Richardson DHS (1977) The effect of time of exposure to sulphur dioxide on potassium loss from and photosynthesis in the lichen Cladina rangiferina (L.) Harm. New Phytol 79:147–155

    CAS  Google Scholar 

  • Trembley ML, Fahselt D, Madzia S (1997) Localization of uranium in Cladina rangiferina and Cladina mitis and removal by aqueous washing. Bryologist 100:368–376

    Google Scholar 

  • Tretiach M, Adamo P, Bargagli R, Baruffo L, Carletti L, Crisafulli P et al (2007) Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality. Environ Pollut 146:380–391

    CAS  PubMed  Google Scholar 

  • Ugŭr A, Özden B, Saç MM, Yener G (2003) Biomonitoring of 210Po and 210Pb using lichens and mosses around a uraniferous coal-fired power plant in western Turkey. Atmos Environ 37:2237–2245

    Google Scholar 

  • Ugŭr A, Özden B, Saç MM, Yener G, Altinbaş Ü, Kurucu Y et al (2004) Lichens and mosses for correlation between trace elements and 210Po in the areas near coal-fired power plant at Yatağan, Turkey. J Radioanal Nucl Ch 259:87–92

    Google Scholar 

  • Upreti DK, Pandey V (1994) Heavy metals of Antarctic lichens 1. Umbilicaria. Feddes Repert 105:197–199

    Google Scholar 

  • Van den Berg GJ, Tyssen TPM, Ammerlaan MJJ, Vokers KJ, Woroniecka UD, de Bruin M et al (1992) Radiocesium and lead in the lichen species Parmelia sulcata sampled in three regions around Chernobyl: assessment of concentrations in 1990. J Environ Radioactiv 17:115–127

    Google Scholar 

  • Varrica D, Aiuppa A, Dongarrà G (2000) Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Volcano island (Sicily). Environ Pollut 108:153–162

    CAS  PubMed  Google Scholar 

  • Varskog P, Naeumann R, Steinnes E (1994) Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility. J Environ Radioactiv 12:43–53

    Google Scholar 

  • Vieira BJ, Freitas MC, Rodrigues AF, Pacheco AMG, Soares PM, Correia N (2004) Element-enrichment factors in lichens from Terceira, Santa Maria and Madeira Island (Azores and Madeira Archipelagoes). J Atmos Chem 49:231–249

    CAS  Google Scholar 

  • Vingiani S, Adamo P, Giordano S (2004) Sulphur, nitrogen and carbon content of Sphagum capillifolium and Pseudevernia furfuracea exposed in bags in Naples urban area. Environ Pollut 129:145–158

    CAS  PubMed  Google Scholar 

  • Wadleigh MA, Blake DM (1999) Tracing sources of atmospheric sulphur using epiphytic lichens. Environ Pollut 106:265–271

    Google Scholar 

  • Walker TR, Crittenden PD, Young SD (2003) Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia. Environ Pollut 125:401–412

    CAS  PubMed  Google Scholar 

  • Walker TR, Crittenden PD, Young SD, Prystina T (2006) An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north-eastern European Russia. Ecol Ind 6:369–387

    CAS  Google Scholar 

  • Walker TR, Crittenden PD, Dauvalter VA, Jones V, Kuhry P, Loskutova O et al (2009) Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia. Ecol Indic 9:765–779

    Google Scholar 

  • Wiersma GB, Finley K, Whitworth C, Bruns DA, McAnulty L, Boelcke C (1992) Elemental composition of lichens from a remote Nothofagus forest site in Southern Chile. Chemosphere 24:155–167

    CAS  Google Scholar 

  • Williamson BJ, Mikhailova I, Purvis OW, Udachin V (2004) SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia. Sci Total Environ 322:139–154

    CAS  PubMed  Google Scholar 

  • Wolterbeek HTh, Bode P (1995) Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci Total Environ 176:33–43

    CAS  Google Scholar 

  • Wolterbeek HTh, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors, principles, concepts and applications. Elsevier, Amsterdam, pp 377–419

    Google Scholar 

  • Yenisoy-Karakaş S, Tuncel SG (2004) Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parietina (L.) Th. Fr. Sci Total Environ 329:43–60

    PubMed  Google Scholar 

  • Yildiz A, Aksoy A, Tug GN, Islek C, Demirezen D (2008) Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Ankara (Turkey). J Atmos Chem 60:71–81

    CAS  Google Scholar 

  • Yoshida S, Muramatsu Y, Dvornik AM, Zhuchenko TA, Linkov I (2004) Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact 75:301–313

    CAS  PubMed  Google Scholar 

  • Žunic ZS, Mietelski JW, Blazej S, Gaca P, Tomankiewicz E, Ujić P et al (2008) Traces of DU in samples of environmental bio-monitors (non flowering plants, fungi) and soil from target sites of the Western Balkan region. J Environ Radioact 99:1324–1328

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Garty, J., Garty-Spitz, R.L. (2015). Lichens and Particulate Matter: Inter-relations and Biomonitoring with Lichens. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2181-4_3

Download citation

Publish with us

Policies and ethics