Skip to main content

Lichens as Agents of Biodeterioration

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

One of the major roles lichens play in shaping the natural world, both physically and biologically, is as agents in soil development: formerly considered only in a geological context, recent research has shown that they are capable of biodeteriorating stone substrata within a relatively short timescale. Chemical alteration of the substratum is achieved by the disruptive action of many species, particularly those capable of producing an oxalate at the thallus–substratum interface . The oxalate contributes significantly to the bulk and composition of the thallus itself and persists as an obvious encrustation after the lichen’s death. In the past, these disfiguring oxalate residues on ancient monuments have been variously interpreted as resulting from former mechanical/chemical renovation treatments, atmospheric pollution , and climatic weathering. The origin and nature of oxalate accretions, the factors involved in pedogenesis , and the development of lichen mosaics are reviewed. Aesthetic disfigurement versus physical damage to stonework is considered, and various aspects of stonework conservation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo P, Violante P (1991) Weathering of volcanic rocks from Mt. Vesuvius associated with the lichen Stereocaulon vesuvianum. Pedobiologia 35:209–217

    CAS  Google Scholar 

  • Aptroot A, James PW (2002) Monitoring lichens on monuments. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic, Dordrecht, pp 239–253

    Google Scholar 

  • Ariño X, Saiz-Jimenez C (2004) Lichens of different mortars at archaeological sites in southern Spain. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 165–179

    Google Scholar 

  • Arino X, Gomez-Bolea A, Hladun N, Saiz-Jimenez C (1996) Roccella phycopsis Ach.: colonization and weathering process on granite. In: Vicente MA, Delgado-Rodrigues J, Acevedo J (eds) Degredation and conservation of granitic rocks in monuments. Research report, protection and conservation of the European cultural heritage, European Commission, Brussels, pp 399–404

    Google Scholar 

  • Armstrong RH (1988) Substrate colonization, growth, and competition. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton

    Google Scholar 

  • Ascaso C, Wierzchos J (1995) Study of the biodeterioration zone between the lichen thallus and the substrate. Cryptogamic Bot 5:270–281

    Google Scholar 

  • Ascaso C, Galvan J, Ortega C (1976) The pedogenic action of Parmelia conspersa, Rhizocarpon geographicum and Umbilicaria pustulata. Lichenologist 8:151–171

    Google Scholar 

  • Ascaso C, Garcia del Cura MA, de los Rios A (2004) Microbial biofilms on carbonate rocks from a quarry and monuments in Vovelda (Alicante, Spain). In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 79–89

    Google Scholar 

  • Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 385–406

    Google Scholar 

  • Bajpai R, Upreti DK (2014) Lichens on Indian monuments: biodeterioration and biomonitoring. Bishen Singh Mahinder Pal Singh Publishers, DehraDun

    Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Bech-Andersen J (1984) Biodeterioration of natural and artificial stone caused by algae, lichens, mosses and higher plants. In: Barry S, Houghton DR, Llewellyn GC, O’Rear CE (eds) Biodeterioration 6. CAB International, Slough, pp 126–131

    Google Scholar 

  • Brightman FH, Seaward MRD (1977) Lichens of man-made substrates. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 253–293

    Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Hale ME, Ahmadjian V (eds) The lichens. Academic Press, New York, pp 401–441

    Google Scholar 

  • Bungartz F, Garvie LAJ, Nash TH (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenologist 36:55–73

    Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Minerological Mag 67:1127–1155

    CAS  Google Scholar 

  • Butlin RN (1991) Effects of air pollutants on buildings and materials. Proc R Soc Edinb 97B:255–272

    Google Scholar 

  • Caneva G (1993) Ecological approach to the genesis of calcium oxalate patinas on stone monuments. Aerobiologia 9:149–156

    Google Scholar 

  • Carter NEA, Viles HA (2003) Experimental investigations into the interactions between moisture, rock surface temperatures and an epilithic lichen in the bioprotection of limestone. Building Environ 38:1225–1234

    Google Scholar 

  • Carter NEA, Viles HA (2004) Lichen hotspots: raised rock temperatures beneath Verrucaria nigrescens on limestone. Geomorphology 62:1016

    Google Scholar 

  • Carter NEA, Viles HA (2005) Bioprotection explored: the story of a little known earth surface process. Geomorphology 67:273–281

    Google Scholar 

  • Chen J, Blume H, Bayer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146

    CAS  Google Scholar 

  • Chiari G, Cossio R (2004) Lichens on Wyoming sandstone. Do they cause damage? In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 99–113

    Google Scholar 

  • Concha-Lozano N, Gaudon P, Pages J, Billerneck G, Lafon D, Eterradossi O (2011) Protective effect of endolithic fungal hyphae on oolite limestone buildings. J Cult Heritage 13:120–127

    Google Scholar 

  • Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble walls in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodet 26:397–417

    Google Scholar 

  • De los Rios A, Wierzchos J, Sancho LG, Sancho TG, Ascaso C (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 37:383–395

    Google Scholar 

  • Del Monte M, Sabbioni C (1987) A study of the patina called ‘scialbatura’ on imperial Roman marbles. Stud Conserv 32:114–121

    Google Scholar 

  • Deruelle S (1988) Effets de la pollution atmospherique sur la vegetation lichenique des monuments historiques. Studia Geobot 8:23–31

    Google Scholar 

  • Drewello R, Drewello UG (2009) Flechten auf Denkmälern: Indikatoren und Vermittler zwischen Denkmal- und Naturschutz. In: Ōkologische Rolle der Flechten. Rundgespräche der Kommission für Ōkologie 36. Bayerische Akademie der Wissenschaften (Herausgeber). Freiderich Pfeil, Munchen

    Google Scholar 

  • Edwards HGM, Seaward MRD (1993) Raman microscopy of lichen–substratum interfaces. J Hattori Bot Lab 74:303–316

    Google Scholar 

  • Edwards HGM, Farwell DW, Jenkins R, Seaward MRD (1992) Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dihydrate in lichen encrustations on Renaissance frescoes. J Raman Spectrosc 23:185–189

    CAS  Google Scholar 

  • Edwards HGM, Edwards KAE, Farwell DW, Lewis IR, Seaward MRD (1994) An approach to stone and fresco lichen biodeterioration through Fourier Transform Raman microscopic investigation of thallus–substratum encrustations. J Raman Spectrosc 25:99–103

    CAS  Google Scholar 

  • Edwards HGM, Russell NC, Seaward MRD, Slarke D (1995) Lichen biodeterioration under different microclimates: an FT-Raman spectroscopic study. Spectrochimi Acta Part A 51:2091–2100

    Google Scholar 

  • Edwards HGM, Farwell DW, Seaward MRD (1997) FT-Raman spectroscopy of Dirina massiliensis forma sorediata encrustations growing on diverse substrata. Lichenologist 29:83–90

    Google Scholar 

  • Favero-Longo SE, Castelli D, Salvadori O, Belluso E, Piervittori R (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporostatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodeterior Biodegradation 56:17–27

    CAS  Google Scholar 

  • Favero-Longo SE, Borghi A, Tretiach M, Piervittori R (2009a) In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycol Res 113:1216–1227

    PubMed  Google Scholar 

  • Favero-Longo SE, Castelli D, Fabini B, Piervittori R (2009b) Lichens on asbestos-cement roofs: bioweathering and biocovering effects. J Hazard Mater 162:1300–1308

    CAS  PubMed  Google Scholar 

  • Fonseca AJ, Pina F, Macedo MF, Lean N, Romanowska-Deskins A, Laiz L, Gomez-Bolea A, Saiz-Jimenez C (2010) Anatase as an alternative application for preventing biodeterioration of mortar: evaluation and comparison with other biocides. Int Biodeterior Biodegradation 64:388–396

    CAS  Google Scholar 

  • Garcia-Rowe J, Saiz-Jimenez C (1991) Lichens and bryophytes as agents of deterioration of building materials in Spanish cathedrals. Int Biodeterior 28:151–163

    Google Scholar 

  • Garrett RM (1972) Electrostatic charges on freshly discharged lichen ascospores. Lichenologist 5:311–313

    Google Scholar 

  • Gazzano C, Favero-Longo SE, Matteucci E, Piervittori R (2009a) Image analysis for measuring lichen colonization on and within stonework. Lichenologist 41:299–313

    Google Scholar 

  • Gazzano C, Favero-Longo SE, Matteucci E, Roccardi A, Piervittori R (2009b) Index of lichen potential biodeteriogenic activity (LPBA): a tentative tool to evaluate the lichen impact on stonework. Int Biodeterior Biodegradation 63:836–843

    Google Scholar 

  • Gerson U, Seaward MRD (1977) Lichen-invertebrate associations. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 69–119

    Google Scholar 

  • Ginell WS, Kumar R (2004) Limestone stabilization studies at a Maya site in Belize. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 19–44

    Google Scholar 

  • Gómez-Pujol L, Stephenson WJ, Fornós JJ (2007) Two-hourly surface change on supra-tidal rock (Marengo, Victoria, Australia). Earth Surf Processes Land 32:1–12

    Google Scholar 

  • Innes JL (1985) Lichenometry. Prog Phys Geogr 9:187–254

    Google Scholar 

  • Iskandar IK, Syers JK (1971) Solubility of lichen compounds in water: pedogenetic implications. Lichenologist 5:45–50

    Google Scholar 

  • Jenkins ID, Middleton AP (1988) Paint on the Parthenon sculptures. Ann Br Sch Archaeol Athens 83:183–207

    Google Scholar 

  • Jones D (1988) Lichens and pedogenesis. In: Galun M (ed) Handbook of lichenology, vol 3. CRC Press, Boca Raton, pp 109–124

    Google Scholar 

  • Jones D, Wilson MJ (1985) Chemical activity of lichens on mineral surfaces—a review. Int Biodeterior 21:99–104

    CAS  Google Scholar 

  • Jones D, Wilson MJ, Tait JM (1980) Weathering of a basalt by Pertusaria corallina. Lichenologist 12:277–289

    Google Scholar 

  • Jones D, Wilson MJ, McHardy WJ (1981) Lichen weathering of rock-forming minerals: application of scanning electron microscopy and microprobe analysis. J Microsc 124:95–104

    CAS  Google Scholar 

  • Knight KB, St. Clair LL, Gardner JS (2004) Lichen biodeterioration at Inscription Rock, El Morro National Monument, Ramah, New Mexico, USA In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 129–163

    Google Scholar 

  • Koestler RJ, Vedral J (1991) Biodeterioration of cultural property: a bibliography. Int Biodeterior 28:229–340 (special issue: Biodeterioration of Cultural Property)

    Google Scholar 

  • Kossowska M, Węgrzyn M (2009) Lichens recorded on iron and glass in NE Poland. Polish Bot J 54:123–124

    Google Scholar 

  • Krumbein WE, Urzi CE, Gehrmann CK (1991) Biocorrosion and biodeterioration of antique and mediaeval glass. Geomicrobiol J 9:139–160

    CAS  Google Scholar 

  • Kulikova NN, Suturin AN, Boyko SM, Paradina LF, Timoshkin OA, Potemkina TG, Saybatalova EV (2009) The role of water lichens in the biogeochemical process in the Lake Baikal stony littoral. Inland Water Biol 2:144–148

    Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments. Research in conservation. Getty Conservation Institute, Los Angeles, pp 1–85

    Google Scholar 

  • Lallemant R, Deruelle S (1978) Présence des lichens sur les monuments en pierre: nuisance ou protection? In: Proceedings of the international symposium on deterioration and protection of stone monuments. UNESCO, Paris

    Google Scholar 

  • Mandrioli P, Caneva G, Sabbioni C (eds) (2003) Cultural heritage and aerobiology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Martin AK, Johnson GC (1992) Chemical control of lichen growths established on building materials: a compilation of published literature. Biodeterior Abstr 6:101–107

    Google Scholar 

  • Matthews JA, Owen G (2008) Endolithic lichens, rapid biological weathering and Schmidt Hammer R-values on recently exposed rock surfaces: Storbreen Glacier foreland, Jotunheimen, Norway. Geogr Ann Ser A Phys Geogr 90:287–297

    Google Scholar 

  • May E, Lewis FJ, Pereira S, Taylor S, Seaward MRD, Allsopp D (1993) Microbial deterioration of building stone—a review. Biodeterior Abstr 7:109–123

    Google Scholar 

  • McIlroy de la Rosa JP, Warke PA, Smith BJ (2012a) Microscale biopitting by the endolithic lichen Verrucaria baldensis and its proposed role in mesoscale solution basin development on limestone. Earth Surf Process Land 37:374–384

    Google Scholar 

  • McIlroy de la Rosa JP, Warke PA, Smith BJ (2012b) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37:325–351

    Google Scholar 

  • Mellor E (1923) Lichens and their action on the glass and leadings of church windows. Nature 25:299–300

    Google Scholar 

  • Mottershead D, Lucas G (2000) The role of lichens in inhibiting erosion of a soluble rock. Lichenologist 32:601–609

    Google Scholar 

  • Nascimbene J, Salvadori O, Nimis PL (2008) Monitoring lichen recolonization on a restored calcareous statue. Sci Total Environ 407:2420–2426

    Google Scholar 

  • Nimis PL, Monte M (1988) Lichens and monuments. Studia Geobot 8:1–133

    Google Scholar 

  • Nimis PL, Pinna D, Salvadori O (1992) Licheni e Conservazione dei Monumenti. Cooperativa Libraria Universitaria Ediatrice Bologna, Bologna

    Google Scholar 

  • Nugari MP, Pietrini AM, Caneva G, Imperi F, Visca P (2009) Biodeterioration of mural paintings in a rocky habitat: the crypt of the original sin (Matera, Italy). Int Biodeterior Biodegradation 63:705–711

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Hernandex-Marine M, Saiz-Jimenez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28:165–185

    Google Scholar 

  • Paine SG, Linggood FV, Schimmer F, Thrupp TC (1933) The relationship of micro-organisms to the decay of stone. Phil Trans R Soc Ser B 222:97–127

    Google Scholar 

  • Piervittori R (2004) Lichens and the biodeterioration of stonework: the Italian experience. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 45–68

    Google Scholar 

  • Piervittori R, Salvadori O, Seaward MRD (2004) Lichens and monuments. an analytical bibliography. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 241–282

    Google Scholar 

  • Prieto B, Rivas T, Silva B (1995) Effect of selected biocides on granites colonized by lichens. In: Bousher A, Chandra M, Edyvean R (eds) Biodeterioration and Biodegradation 9. Rugby, Institution of Chemical Engineers, pp 204–207

    Google Scholar 

  • Prieto B, Seaward MRD, Edwards HGM, Rivas T, Silva B (1999) Biodeterioration of granite monuments by Ochrolechia parella (L.) Mass.: an FT-Raman spectroscopic study. Biospectroscopy 5:53–59

    CAS  PubMed  Google Scholar 

  • Prieto B, Edwards HGM, Seaward MRD (2000) A Fourier Transform-Raman spectroscopic study of lichen strategies on granite monuments. Geomicrobiol J 17:55–60

    CAS  Google Scholar 

  • Purvis OW (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist 16:197–204

    CAS  Google Scholar 

  • Purvis OW (1996) Interactions of lichens with metals. Sci Progress 79:283–309

    CAS  Google Scholar 

  • Pye K, Schiavon N (1989) Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 342:663–664

    CAS  Google Scholar 

  • Rajakaruna N, Knudsen K, Fryday AM, O’Dell RE, Pope N, Olday FC, Woolhouse S (2012) Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA. Lichenologist 44:695–714

    Google Scholar 

  • Rollin EM, Milton EJ, Roche P (1994) The influence of weathering and lichen cover on the reflectance spectra of granitic rocks. Remote Sens Environ 50:194–199

    Google Scholar 

  • Saiz-Jimenez C, Arino X (2001) Microbial corrosion of cultural heritage stoneworks. In: Stocker JG (ed) A practical manual on microbiologically influenced corrosion, vol 2. NACE Press, Houston, pp 11.25–11.33

    Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Rodriquez-Hidalgo JM (1991) Biodeterioration of polychrome Roman mosaics. Int Biodeterior 28:65–79

    Google Scholar 

  • Saxena S, Upreti DK, Singh A, Singh KP (2004) Observations on lichens growing on artifacts in the Indian subcontinent. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 181–193

    Google Scholar 

  • Schatz A (1963) Soil microorganisms and soil chelation. The pedogenic action of lichens and lichen acids. J Agric Food Chem 11:112–118

    CAS  Google Scholar 

  • Schatz A, Cheronis ND, Schatz V, Trelawny GS (1954) Chelation (sequestration) as a biological weathering factor in pedogenesis. Proc Pennsylvania Acad Sci 28:44–51

    CAS  Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139

    CAS  PubMed  Google Scholar 

  • Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457–460

    Google Scholar 

  • Seaward MRD (1976) The lichens of county Carlow, Ireland. Rev Bryol Lichénol 42:665–676

    Google Scholar 

  • Seaward MRD (1982) Lichen ecology of changing urban environments. In: Bornkamm R, Lee JA, Seaward MRD (eds) Urban ecology. Blackwell Scientific, Oxford, pp 181–189

    Google Scholar 

  • Seaward MRD (1988) Lichen damage to ancient monuments: a case study. Lichenologist 20:291–294

    Google Scholar 

  • Seaward MRD (1996) Lichens and the environment. In: Sutton BC (ed) A century of mycology. British Mycological Society/Cambridge University Press, Cambridge, pp 293–320

    Google Scholar 

  • Seaward MRD (1997a) Major impacts made by lichens in biodeterioration processes. Int Biodeterior Biodegradation 40:269–273

    Google Scholar 

  • Seaward MRD (1997b) Urban deserts bloom: a lichen renaissance. Bibl Lichenologica 67:297–309

    Google Scholar 

  • Seaward MRD (2008) Environmental role of lichens. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 274–298

    Google Scholar 

  • Seaward MRD, Coppins BJ (2004) Lichens and hypertrophication. Bibl Lichenologica 88:561–572

    Google Scholar 

  • Seaward MRD, Edwards HGM (1995) Lichen-substratum interface studies, with particular reference to Raman microscopic analysis. 1. Deterioration of works of art by Dirina massiliensis forma sorediata. Cryptogamic Bot 5:282–287

    Google Scholar 

  • Seaward MRD, Edwards HGM (1997) Biological origin of major chemical disturbances on ecclesiastical architecture studied by Fourier Transform Raman spectroscopy. J Raman Spectrosc 28:691–696

    CAS  Google Scholar 

  • Seitz W, Schade A (1976) Calciumoxalat—ein bemerkenswertes “Abfallprodukt” in Flechten (Lichenes). Beitr Biol Pflanzen 52:355–382

    Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643

    PubMed  Google Scholar 

  • Silva B, Prieto B (2004) Lichens as subversive agents of biodeterioration. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 69–77

    Google Scholar 

  • Silver CS, Wolbers R (2004) Lichen encroachment onto rock art in eastern Wyoming: conservation problems and prospects for treatment. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 115–128

    Google Scholar 

  • St. Clair LL, Seaward MRD (eds) (2004a) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht

    Google Scholar 

  • St. Clair LL, Seaward MRD (2004b) Biodeterioration of rock substrata by lichens: progress and problems. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 1–8

    Google Scholar 

  • Syers JK, Iskandar IK (1973) Pedogenetic significance of lichens. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 225–248

    Google Scholar 

  • Syers JK, Birnie AC, Mitchell BD (1967) The calcium oxalate content of some lichens growing on limestone. Lichenologist 3:409–414

    Google Scholar 

  • Topham PB (1977) Colonization, growth, succession and competition. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 31–68

    Google Scholar 

  • Tratebas AM (2004) Biodeterioration of prehistoric rock art and issues in site preservation. In: St. Clair LL, Seaward MRD (eds) Biodeterioration of stone surfaces. Kluwer Academic, Dordrecht, pp 195–228

    Google Scholar 

  • Tratebas AM, Chapman F (1996) Ethical and conservation issues in removing lichens from petroglyphs. Rock Art Res 13:129–133

    Google Scholar 

  • Tretiach M, Crisafulli P, Imai N, Kashiwadani H, Moon KH, Wada H, Salvadori O (2007) Efficacy of a biocide tested on selected lichens and its effects on their substrata. Int Biodeterior Biodegradation 59:44–54

    CAS  Google Scholar 

  • Viles HA, Pentecost A (1994) Problems in assessing the weathering action of lichens, with an example of epiliths on sandstone. In: Robinson DA, Williams RGG (eds) Rock weathering and landform evolution. Wiley, Chichester, pp 99–116

    Google Scholar 

  • Wadsten T, Moberg R (1985) Calcium oxalate hydrates on the surface of lichens. Lichenologist 17:239–245

    CAS  Google Scholar 

  • Wee YC, Lee KB (1980) Proliferation of algae on surfaces of buildings in Singapore. Int Biodeterior Bull 16:113–117

    Google Scholar 

  • Wessels DJC, Schoeman P (1988) Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. South African J Sci 84:274–277

    Google Scholar 

  • Wessels DJC, Wessels LA (1991) Erosion of biogenically weathered Clarens sandstone by lichenophagous bagworm larvae. (Lepidoptera: Psychidae). Lichenologist 23:283–291

    Google Scholar 

  • Wierzchos J, Ascaso C (1996) Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays Clay Miner 44:652–657

    CAS  Google Scholar 

  • Wilson MJ, Jones D (1984) The occurrence and significance of manganese oxalate in Pertusaria corallina. Pedobiologica 26:373–379

    CAS  Google Scholar 

  • Wilson MJ, Jones D, McHardy WJ (1981) The weathering of serpentinite by Lecanora atra. Lichenologist 13:167–176

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. D. Seaward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Seaward, M.R.D. (2015). Lichens as Agents of Biodeterioration. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2181-4_9

Download citation

Publish with us

Policies and ethics