Skip to main content

Detection of Fungal Pathogens in Plants

  • Chapter
  • First Online:
Microbial Plant Pathogens-Detection and Disease Diagnosis:

Abstract

Among the microbial plant pathogens, fungus-like and fungal pathogens have well developed thallus consisting of hyphae, asexual and sexual reproductive structures. The morphological characteristics of these structures and various kinds of spores produced by them have been the basis of identification up to genus/species level and classification of these pathogens into family, order and class. However, the formae speciales, strains, varieties or biotypes within a morphologic species have to be identified using other characteristics such as pathogenicity, biochemical and immunological properties or nucleotide sequences of the genomic DNA. Isozyme analysis, vegetative compatability group (VCG) analysis and electrophoretic mobility of cell wall proteins have been shown to be useful for the detection of strains of some fungal pathogens. The usefulness of immunoassays for early detection and precise identification has been significantly enhanced following the development of enzyme-linked immunosorbent assay (ELISA) and monoclonal antibodies which exhibit greater sensitivity and specificity compared with Appendix 1 based methods which are laborious and time-consuming. Nucleic acid-based diagnostic techniques depending on the variations in the nucleotide sequences of the pathogen DNA have become the preferred ones, because of their greater speed, specificity, sensitivity, reliability, and reproducibility of the results obtained, following the development of polymerase chain reaction (PCR). Several variants of PCR and commercial kits for on-site adoption under field conditions, away from the laboratory, are now available, providing the results in a short time. The possibility of detecting two or more pathogens simultaneously has become bright after the development of DNA array technology. A wide range of diagnostic techniques can be applied for detection, identification and quantification of fungal pathogens present in the infected plants, propagative plant materials and postharvest produce. Speed, specificity, sensitivity and cost-effectiveness are the primary factors that may determine the suitability and choice of the diagnostic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad ZG, Abad JA, Cofffey MD, Oudemans PV, Man in’t Veld WA, de Gruyter H, Cunnington J, Louws FJ (2008) Phytophthora bischeria sp. nov., a new species identified in isolates from the Rosaceous raspberry, rose and strawberry in three continents. Mycologia 100: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Abdullah I, Koerbler M, Stachewicz H, Winter S (2005) The 18S rDNA of Synchytrium endobioticum and its utility in microarrays for simultaneous detection of fungal and viral pathogens. Appl Microbiol Biotechnol 68: 368–375.

    Article  CAS  Google Scholar 

  • Abe H, Baba T, Takukuwa T (1969) Serological reaction of root rot pathogen (Rhizoctonia solani) of sugar beets. Ann Phytopathol Soc Jpn 35: 374.

    Google Scholar 

  • Adair S, Kim S, Breuil C (2002) A molecular approach for early monitoring of decay basidiomycetes in wood chips. FEMS Microbiol Lett 211: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Adams GC Jr., Butler EE (1979) Serological relationships among anastomosis groups of Rhizoctonia solani. Phytopathology 69: 629–633.

    Article  Google Scholar 

  • Afouda L, Wolf G, Wydra K (2009) Development of a sensitive serological method for specific detection of laltent infection of Macrophomina phaseolina in cowpea. J Phytopathol 157: 15–23.

    Article  CAS  Google Scholar 

  • Agarwal VK, Sinclair TB (1996) Principles of Seed Pathology, 2nd edition, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Aggarwal A, Sharma D, Anuradha, Prakash V, Mehrotra RS (2001) Electrophoresis pattern of mycelial protein – a tool for differentiation of Phytophthora species from Chukrasia tabularis. Ind Phytopathol 54: 424–428.

    CAS  Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th edition, Elsevier-Academic Press, Amsterdam.

    Google Scholar 

  • Ahmed KM, Ravinder Reddy Ch (1993) A pictorial guide to the identification of seedborne fungi from sorghum, pearl millet, finger millet, chickpea, pigeonpea and groundnut. Information Bull No. 34, Internat Crops Res Inst for Semi-Arid Tropics (ICRISAT), Patancheru, India.

    Google Scholar 

  • Alaei H, Baeyen S, Maes M, Höfte M, Heungens K (2009) Molecular detection of Puccinia horiana in Chrysanthemum × morifolium through conventional and real-time PCR. J Microbiol Meth 76: 136–145.

    Article  CAS  Google Scholar 

  • Al-Samarrai TH, Schmid J (2000) A simple method for extraction of fungal genomic DNA. Appl Microbiol Lett 30: 53–56.

    Article  CAS  Google Scholar 

  • Andrade O, Muñoz G, Galdames R, Durán P, Honorato R (2004) Characterization, in vitro culture and molecular analysis of Thecaphora solani, the causal agent of potato smut. Phytopathology 94: 875–882.

    Article  PubMed  CAS  Google Scholar 

  • Anil Kumar, Singh A, Garg GK (1998) Development of seed immunoblot binding assay for the detection of Karnal bunt (Tilletia indica) of wheat. J Plant Biochem Biotechnol 7: 119–120.

    Article  Google Scholar 

  • Appel R, Alder N, Habermeyer J (2001) A method for the artificial inoculation of potato tubers with Phytophthora infestans and polymerase chain reaction of latently infected sprouts and stems. J Phytopathol 149: 297.

    Article  Google Scholar 

  • Arie T, Hayashi Y, Yoneyama K, Nagatani A, Furuya M, Yamaguchi I (1995) Detection of Fusarium spp. in plants with monoclonal antibody. Ann Phytopathol Soc Jpn 61: 311–317.

    Article  CAS  Google Scholar 

  • Arie T, Gouthu S, Shimagaki S, Kamakura J, Kimura M, Inoue M, Takio K, Ozaki A, Yoneyama K, Yamaguchi I (1998) Immunological detection of endopolygalacturonase secretion by Fusarium oxysporum in plant tissue and sequencing of its encoding gene. Ann Phytopathol Soc Jpn 64: 7–15.

    Article  CAS  Google Scholar 

  • Armengol J, Vicent A, Torné CL, García-Figueres G, García-Jiménez T (2001) Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathol Mediterr 40: 325–329.

    Google Scholar 

  • Aroca A, Raposo R (2007) PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine disease. Appl Environ Microbiol 73: 2911–2918.

    Article  PubMed  CAS  Google Scholar 

  • Arzanlou M, Abeln ECA, Kema GHJ, Waalwijk C, Carlier J, de Vries I, Guzman M, Crous P (2007) Molecular diagnostics for the Sigatoka disease complex of Banana. Phytopathology 97: 1112–1118.

    Article  PubMed  CAS  Google Scholar 

  • Atassi MZ, Lee C (1978) The precise and entire antigenic structure of native lysozyme. Biochem J 171: 429–434.

    PubMed  CAS  Google Scholar 

  • Attallah ZK, Stevenson WR (2006) A methodology to detect and quantify five pathogens causing decay using real-time quantitative polymerase chain reaction. Phytopathology 96: 1037–1045.

    Article  CAS  Google Scholar 

  • Attallah ZK, Bae J, Jansky SH, Rouse DI, Stevenson WR (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology 97: 865–872.

    Article  CAS  Google Scholar 

  • Babadoost M, Chen W, Bratsch AD, Eastman CE (2004) Verticilliun longisporum and Fusarium solani: two new species in the complex of internal discoloration of horseradish. Plant Pathol 53: 669–676.

    Article  Google Scholar 

  • Balesedent MH, Jednyczka M, Jain L, Mendes-Pereira E, Betrandy J, Rouxnel (1998) Conidia as a substrate for internal transcribed spacer based PCR identification of components of Leptosphaeria maculans-species complex. Phytopathology 88: 1210–1217.

    Article  Google Scholar 

  • Banks JN, Cox SJ (1992) The solid phase attachment of fungal hyphae in an ELISA to screen for antifungal antibodies. Mycopathologia 120: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Banks JN, Cox SJ, Clarke JH, Shamsi RH, Northway BJ (1992) Towards the immunological detection of field and storage fungi. In: Samson RA, Hocking AD, Ritt JI, King AD (ed), Modern Methods in Food Mycology, Elsevier, Holland, pp. 247–252.

    Google Scholar 

  • Barnes CW, Szabo LJ (2007) Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 97: 717–727.

    Article  PubMed  CAS  Google Scholar 

  • Barnes CW, Szabo LJ (2008) A rapid method for detecting and quantifying bacterial DNA in rust fungal DNA samples. Phytopathology 98: 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Bary T, Colleran G, Glennon M, Duncan LK, Gannon F (1991) The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Meth Appl 1: 51–56.

    Article  Google Scholar 

  • Bates JA, Taylor EJA (2001) Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Mol Plant Pathol 2: 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Baysal-Gurel F, Lewis Ivey ML, Dorrance A, Frederick R, Czarnecki J, Boeh M, Miller SA (2008) An immunofluorescence assay to detect urediniospores of Phakopsora pachyrhizi. Plant Dis 92: 1387–1393.

    Article  Google Scholar 

  • Bearchell SJ, Fraaije BA, Shaw MM, Fitt BD (2005) Wheat archive links long-term fungal pathogen population dynamics to air population. Proc. Natl Acad Sci USA 102: 5438–5442.

    Article  PubMed  CAS  Google Scholar 

  • Beck JJ, Ligon JM (1995) Polymerase chain reaction assays for the detection of Stagonospora nodorum and Septoria tritici in wheat. Phytopathology 85: 319–324.

    Article  CAS  Google Scholar 

  • Beck JJ, Ligon JM, Etienne L, Binder A (1996) Detection of crop fungal pathogens by polymerase chain reaction technology. BCPC Symp Proc No. 65, Diagnostics in Crop Production, pp. 111–118.

    Google Scholar 

  • Beever RE, Parkes SL (2003) Use of nitrate non-utilizing (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana (Botrytis cinerea). Eur J Plant Pathol 109: 607–613.

    Article  CAS  Google Scholar 

  • Beever RE, Weeds PL (2004) Taxonomy and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson P, Tudzinski P, Delen N (ed) Botryits: Biology, Pathology and Control, Kluwer Academic, Dordrecht, pp. 29–52.

    Google Scholar 

  • Bell KS, Roberts J, Verrall S, Cullen DW, Williams NA, Harrisons JG, Toth IK, Cooke DEL, Duncan JM, Claxton JR (1999) Detection and quantification of Spongospora subterranea f.sp. subterranea in soils and on tubers using specific primers. Eur J Plant Pathol 105: 905–915.

    Article  CAS  Google Scholar 

  • Bellaire L de, Chillet M, Mourichon S (2000) Elaboration of an early quantification of quiescent infections of Colletotrichum musae on bananas. Plant Dis 84: 128–133.

    Article  Google Scholar 

  • Benson DM (1991) Detection of Phytophthora cinnamomi in azalea with commercial serological assay kits. Plant Dis 75: 478–482.

    Article  CAS  Google Scholar 

  • Benson DM (1992) Detection by enzyme-linked immunosorbent assay of Rhizoctonia species in poinsettia cuttings. Plant Dis 76: 578–581.

    Article  Google Scholar 

  • Bermingham S, Dewey FM, Fisher PJ, Maltby L (2001) Use of a monoclonal antibody immunoassay for the detection and quantification of Helicus lugdunensis colonizing alder leaves and roots. Microbial Ecol 42: 506–512.

    Article  CAS  Google Scholar 

  • Bilodeau GJ, Lévesque CA, de Cock AWAM, Duchaine C, Briére S, Uribe P, Martin FM, Hamelin RC (2007) Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR and molecular beacons. Phytopathology 97: 632–642.

    Article  PubMed  CAS  Google Scholar 

  • Bindslev L, Oliver RP, Johansen B (2002) In situ PCR for detection and identification of fungal species. Mycol Res 106: 277–279.

    Article  CAS  Google Scholar 

  • Bluhm BH, Cousin MA, Woloshuk CP (2004) Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. J Food Protect 67: 536–543.

    CAS  Google Scholar 

  • Böhm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehmann R, Oßwald W (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol 147: 404–416.

    Article  Google Scholar 

  • Bolwerk A, Lagopodi A, Lugtenberg BJJ, Bolemberg GV (2005) Visualization of interactions between a pathogenic and beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 18: 710–721.

    Article  PubMed  CAS  Google Scholar 

  • Bom M, Boland GJ (2000) Evaluation of polyclonal antibody-based immunoassays for detection of Sclerotinia sclerotiorum on canola petals and prediction of stem rot. Canad J Microbiol 46: 723–729.

    CAS  Google Scholar 

  • Bonants PJM, van Gent-Pelzer PEM, Hagenaarde Weerdt M (2000) Characterization and detection of Phytophthora fragariae in plant, water and soil by molecular methods. Bull OEPP 30: 525–531.

    Article  Google Scholar 

  • Bonants PJM, van Gent-Pelzer PEM, Hooftman R, Cooke DEL, Guy DC, Duncan JM (2004) A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence for the detection of Phytophthora fragariae in strawberry plants. Eur J Plant Pathol 110: 698–702.

    Article  Google Scholar 

  • Bonde MR, Peterson GL, Dowler WM, May B (1984) Isozyme analysis to differentiate species of Peronosclerospora causing downy mildews for maize. Phytopathology 74: 1278.

    Article  CAS  Google Scholar 

  • Bonde MR, Peterson GL, Dowler WM, May B (1985) Comparison of Tilletia indica isolates from India and Mexico by isozyme analysis. Phytopathology 75: 1309.

    Article  Google Scholar 

  • Bonde MR, Peterson GL, Matsumoto TT (1989) The use of isozymes to identify teliospores of Tilletia indica. Phytopathology 79: 596–599.

    Article  CAS  Google Scholar 

  • Bonde MR, Micales JA, Peterson GL (1993) The use of isozyme analysis for identification of plant pathogenic fungi. Plant Dis 77: 961–968.

    Article  CAS  Google Scholar 

  • Børja I, Solheim H, Hietala AM, Fossdal CG (2006) Etiology and real-time polymerase chain reaction-based detection of Gremmeniella- and Phomopsis-associated disease in Norway spruce seedlings. Phytopathology 96: 1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Börjesson T, Johnson L (1998) Detection of common bunt (Tilletia caries) infestation in wheat with an electronic nose and human panel. J Plant Dis Protect 105: 306–313.

    Google Scholar 

  • Bosland PW, Williams PH (1987) An evaluation of Fusarium oxysporum from crucifers based on pathogenicity, isozyme polymorphism vegetative compatibility and geographic origin. Canad J Bot 65: 2067–2073.

    Article  Google Scholar 

  • Bossi R, Dewey FM (1992) Development of a monoclonal antibody-based immunodetection assay for Botrytis cinerea. Plant Pathol 41: 472–482.

    Article  CAS  Google Scholar 

  • Bounou S, Jabaji-Hare SH, Hogue R, Charest PM (1999) Polymerase chain reaction-based assay for specific detection of Rhizoctonia solani AG-3 isolates. Mycol Res 103: 1–8.

    Article  CAS  Google Scholar 

  • Bouterige S, Robert R, Bouchara JP, Marot-Leblond A, Molinero V, Senet JM (2000) Production and characterization of two monoclonal antibodies specific for Plasmopara halstedii. Appl Environ Microbiol 66: 3277–3282.

    Article  PubMed  CAS  Google Scholar 

  • Boyle B, Hamelin RC, Séguin A (2005) In vivo monitoring of obligate biotrophic pathogen growth by kinetic-PCR. Appl Environ Microbiol 71: 1546–1552.

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochemi 72: 248–254.

    Article  CAS  Google Scholar 

  • Braun H, Levivier S, Eber F, Renard M, Chevre AM (1997) Electrophoretic analysis of natural populations of Leptosphaeria maculans directly from leaf lesions. Plant Pathol 46: 147–154.

    Article  Google Scholar 

  • Brill LM, McClary RD, Sinclair JD (1994) Analysis of two ELISA formats and antigen preparations using polyclonal antibodies to Phomopsis longicolla. Phytopathology 84: 173–179.

    Article  CAS  Google Scholar 

  • Brown AE, Muthumeenakshi S, Sreenivasaprasad S, Mills RR, Swinburne TR (1993) A PCR primer specific to Cylindrocarpon heteronema for detection of the pathogen in apple wood. FEMS Microbiol Lett 108: 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Bruns TD, White JJ, Taylor JW (1991) Fungal molecular systematics. Ann Rev Ecol Syst 22: 525–564.

    Article  Google Scholar 

  • Bulman SR, Marshall JW (1988) Detection of Spongospora subterranea in potato tuber lesions using the polymerase chain reaction (PCR). Plant Pathol 47: 759–766.

    Google Scholar 

  • Burdon JJ, Luig NH, Marshall DR (1983) Isozyme uniformity and virulence variation in Puccinia graminis f.sp. tritici in Australia. Austr J Biol Sci 36: 403.

    Google Scholar 

  • Burdon JJ, Roelfs AP, Brown AHD (1986) The genetic basis of isozyme variation in the wheat stem rust fungus (Puccinia graminis tritici). Canad J Genet Cytol 28: 171.

    CAS  Google Scholar 

  • Bussaban B, Lumyong S, Lumyong P, Seelanan T, Park DC, McKenzie EHC, Hyde KD (2005) Molecular and morphological characterization of Pyricularia and allied genera. Mycologia 97: 1002–1011.

    Article  PubMed  CAS  Google Scholar 

  • Cadle-Davidson L (2008) Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries. Amer J Enol Vitic 59: 367–395.

    Google Scholar 

  • Cahill DM, Hardham AR (1994) A dipstick immunoassay for the specific detection of Phytophthora cinnamomi in soils. Phytopathology 84: 1284–1292.

    Article  Google Scholar 

  • Caiazzo R, Tarantino P, Porrone G, Lahoz E (2006) Detection and early diagnosis of Peronospora tabacina Adam in tobacco plant with systemic infection. J Phytopathol 154: 432–435.

    Article  CAS  Google Scholar 

  • Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Critical Rev Microbiol 31: 91–99.

    Article  CAS  Google Scholar 

  • Camele I, Marcone C, Cristinzio G (2005) Detection and identification of Phytophthora species in southern Italy by RFLP and sequence analysis of PCR-amplified nuclear ribosomal DNA. Eur J Plant Pathol 113: 1–14.

    Article  CAS  Google Scholar 

  • Campanile G, Schena L, Luisi N (2008) Real-time PCR identification and detection of Fuscoporia torulosa in Quercus ilex. Plant Pathol 57: 76–83.

    CAS  Google Scholar 

  • Cao T, Tewari J, Strelkov E (2007) Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers in plant and soil. Plant Dis 91: 80–87.

    Article  CAS  Google Scholar 

  • Carzaniga R, Fiocca D, Bowyer P, O’Connell RJ (2002) Localization of melanin in conidia of Alternaria alternata using phage antibodies. Mol Plant-Microbe Interact 15: 216–224.

    Article  PubMed  CAS  Google Scholar 

  • Causin R, Scopel C, Grendene A, Montechio L (2005) An improved method for the detection of Phytophthora cactorum (L.C.) Schröeter in infected plant tissues using SCAR markers. J Plant Pathol 87: 25–35.

    CAS  Google Scholar 

  • Celi FS, Zenilman ME, Shuldiner AR (1993) A rapid and versatile method to synthesize initial standards for competitive PCR. Nucleic Acids Res 21: 1047.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty V, Basu P, Das R, Saha A, Chakraborty BN (1996) Evaluation of antiserum raised against Pestalotiopsis theae for the detection of grey blight of tea by ELISA. Folia Microbiol 41: 413–418.

    Article  CAS  Google Scholar 

  • Chandelier A, Ivors K, Garbelotto M, Zini J, Laurent F, Cavelier M (2006) Validation of a real-time PCR method for the detection of Phytophthora ramorum. Bull OEPP/EPPO 36: 409–414.

    Article  Google Scholar 

  • Chang GH, Yu RC (1997) Rapid immunoassay of fungal mycelia in rice and corn. J Chinese Agric Chem Soc 35: 533–539.

    CAS  Google Scholar 

  • Chee HY, Kim WG, Cho WD (1998) Detection of Plasmodiophora brassicae by using polymerase chain reaction. Kor J Plant Pathol 14: 589–593.

    Google Scholar 

  • Chen W, Gray LE, Grau CR (1996) Molecular differentiation of fungi associated with brown stem rot and detection of Phialophora gregata in resistant and susceptible soybean cultivars. Phytopathology 86: 1140–1148.

    Article  CAS  Google Scholar 

  • Chen LC, Chen TZ, Chen HL, Yeh H (1998) Establishment of molecular markers for detection and diagnosis of Botrytis cinerea and B. elliptica. Plant Pathol Bull 7: 177–188.

    CAS  Google Scholar 

  • Chen Y-Y, Conner RL, Gillard CL, Boland GJ, Babcock C, Chang K-F, Hwang SF, Balasubramanian PM (2007) A specific and sensitive method for the detection of Colletotrichum lindemuthianum in dry bean tissue. Plant Dis 91: 1271–1276.

    Article  CAS  Google Scholar 

  • Chen R-S, Chu C, Cheng C-W, Chen W-Y, Tsay J-G (2008) Differentiation of two powdery ­mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. Eur J Plant Pathol 121: 1–8.

    Article  CAS  Google Scholar 

  • Chilvers MI, duToit LJ, Peever TL (2007) A real-time quantitative PCR assay for Botrytis spp. that cause neck rot of onion. Plant Dis 91: 599–608.

    Article  CAS  Google Scholar 

  • Chu PWG, Waterhouse PM, Martin RR, Gerlach WL (1989) New approaches to the detection of microbial plant pathogens. Biotechnol Genet Eng Rev 7: 45–111.

    CAS  Google Scholar 

  • Cilliers AJ, Swart AJ, Wingfield MJ (1994) Selective medium for isolating Lasidiplodia theobromae. Plant Dis 78: 1052–1055.

    Article  Google Scholar 

  • Cipriani MG, Schena L, Sialer MMF, Gallitelli D (2000) Characterization and cloning of a molecular probe for diagnosis of Verticillium spp. Atti Gionrate fitopatologiche 2: 551–558.

    Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Gen Virol 34: 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Clear RM, Patrick SK (1992) A simple medium to aid the identification of Fusarium moniliforme, F. proliferatum and F. subglutinans. J Food Protect 55: 120–122.

    Google Scholar 

  • Coff C, Poupara P, Xiao Q, Garner A, Lund V (1998) Sequence of a plastocyanin cDNA from wheat and the use of the gene product to determine serological tissue degradation after infection with Pseudocercosporella herpotrichoides. J Phytopathol 146: 11–17.

    Article  CAS  Google Scholar 

  • Colas V, Lacourt I, Ricci P, Vanlerberghe-Masulli F, Venard P, Poupet A, Panabieres F (1998) Diversity of virulence in Phytophthora parasitica in tobacco as reflected by nuclear RFLPs. Phytopathology 88: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Cooke DEL, Schena L, Cacciola SO (2007) Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J Plant Pathol 89: 145–160.

    Google Scholar 

  • Coolong TW, Walcott RR, Randle WM (2008) Quantitative real-time polymerase chain reaction assay for Botrytis aclada in onion bulb tissues. HortScience 43: 408–413.

    Google Scholar 

  • Cooper B, Eckert D, Andon NL, Yates JR (2003) Investigative proteomics: Identification of an unknown virus from infected plants using mass spectrometry. J Amer Soc Mass Spectro 14: 736–741.

    Article  CAS  Google Scholar 

  • Correll JC, Puhalla JE, Schneider RW (1986a) Identification of Fusarium oxysporum f.sp. apii on the basis of colony size, virulence and vegetative compatibility. Phytopathology 76: 396–400.

    Article  Google Scholar 

  • Correll JC, Puhalla JE, Schneider RW (1986b) Vegetative compatibility of groups among nonpathogenic root colonizing strains of Fusarium oxysporum. Canad J Bot 64: 2358–2361.

    Article  Google Scholar 

  • Correll JC, Klittich, CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77: 1640–1646.

    Article  Google Scholar 

  • Côté MJ, Tardif MC, Meldrum AJ (2004) Identification of Monilinia fructigena, M. fructicola, M. laxa and Monilia polystroma on inoculated and naturally infected fruit using multiplex PCR. Plant Dis 88: 1219–1225.

    Article  Google Scholar 

  • Coutts RHA, Covelli L, Di Serio F, Citir A, Açikgöz S, Hernández C, Ragozzino A, Flores R (2004) Cherry chlorotic rusty spot and Amasya cherry disease are associated with a complex pattern of mycoviral-like double stranded RNAs. II Characterization of a new species in the genus Partitivirus. J Gen Virol 85: 3349–3353.

    Article  CAS  Google Scholar 

  • Cruz P, Buttner MP (2008) Development and evaluation of a real-time quantitative PCR assay for Aspergillus flavus. Mycologia 100: 683–690.

    Article  PubMed  CAS  Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2002) Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol 51: 1365–1369.

    Article  Google Scholar 

  • Cullen DW, Toth IK, Pitkin Y, Boonham N, Walsh K, Barker I, Lees AK (2005) Use of quantitative molecular diagnostic assays to investigate Fusarium dry rot in potato stocks and soil. Phytopathology 95: 1462–1471.

    Article  PubMed  CAS  Google Scholar 

  • Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101: 69–79.

    Article  Google Scholar 

  • Degola F, Berni E, Dall’Asta C, Spotti E, Marchelli R, Ferrero I, Restivo FM (2007) A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. J Appl Microbiol 103: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Delcan J, Melgarejo P (2002) Mating behaviour and vegetative compatibility in Spanish populations of Botryotina fuckeliana. Eur J Plant Pathol 108: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Delfosse P, Reddy AS, Legreve A, Thirumala Devi K, Abdurahaman MD, Maraite H, Reddy DVR (2000) Serological methods for detection of Polymyxa graminis, an obligate root parasite and vector of plant viruses. Phytopathology 90: 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Demontis MA, Cacciola SO, Orru M, Balmas V, Chessa V, Maserti BE, Mascia L, Raudino F, di San Lio GM, Migheli Q (2008) Development of real-time PCR systems based on SYBR® Green I and TaqMan® technologies for specific quantitative detection of Phoma tracheiphila in infected citrus. Eur J Plant Pathol 120: 339–351.

    Article  CAS  Google Scholar 

  • Derrick KS (1972) Immuno-specific grids for electron microscopy of plant viruses. Phytopathology 62: 753.

    Google Scholar 

  • Derrick KS (1973) Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56: 652–653.

    Article  PubMed  CAS  Google Scholar 

  • Dewey FM (1998) Use of monoclonal antibodies to study plant invading fungi particularly Botrytis cinerea and Septoria nodorum. Beit Zucht Bundes Kultur 8: 45–47.

    Google Scholar 

  • Dewey FM, Brasier CM (1988) Development of ELISA for Ophiostoma ulmi using antigen-coated wells. Plant Pathol 37: 28–35.

    Article  Google Scholar 

  • Dewey FM, MacDonald M, Philipps S (1989a) Development of monoclonal antibody ELISA, dot-blot and dipstick immunoassays for Humicola languinosa in rice. J Gen Microbiol 135: 361–374.

    PubMed  CAS  Google Scholar 

  • Dewey FM, Munday CJ, Brasier CM (1989b) Monoclonal antibodies to specific components of the Dutch elm disease pathogen Ophiostoma ulmi. Plant Pathol 38: 9–20.

    Article  Google Scholar 

  • Dewey FM, MacDonald M, Philipps S, Priestley R (1990) Development of monoclonal antibody ELISA and dipstick immunoassays for Penicillium islandicum in rice grains. J Gen Microbiol 136: 753–760.

    PubMed  CAS  Google Scholar 

  • Dharam Singh, Maheshwari VK (2001) Influence of stack burn disease of paddy on seed health status. Seed Res 29: 205–209.

    Google Scholar 

  • Dhingra OD, Muchovej JJ (1980) Twin stem abnormality disease of soybean seedlings caused by Sclerotium sp. Plant Dis 64: 176.

    Article  Google Scholar 

  • Dhingra OD, Sediyama C, Carraro IM, Ries MS (1978) Behavior of four soybean cultivars to seed infecting fungi in delayed harvest. Fitopatol Brasil 3: 277.

    Google Scholar 

  • Dobrowolski MP, O’Brien PA (1993) Use of RAPD-PCR to isolate a species-specific DNA probe for Phytophthora cinnamomi. FEMS Microbiol Lett 113: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolski MP, Tommerup IC, Chearer BL, O’Brien PA (2003) Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopatholgy 93: 695–704.

    Article  CAS  Google Scholar 

  • Doster MA, Michailides TJ (1998) Production of bright greenish yellow fluorescence in figs infected by Aspergillus species in California orchards. Plant Dis 82: 669–673.

    Article  Google Scholar 

  • Dowell FE, Boratynski TN, Ykema RE, Dowdy AK, Staten RT (2002) Use of optical sorting to detect wheat kernels infected with Tilletia indica. Plant Dis 86: 1011–1013.

    Article  Google Scholar 

  • Drenth A, Wagals G, Smith B, Sendall B, O’Dwyer C, Irvine G, Irwin JAG (2006) Development of a DNA-based method for the detection and identification of Phytophthora species. Austr Plant Pathol 35: 147–159.

    Article  CAS  Google Scholar 

  • Duffy BK, Weller DM (1994) A semiselective and diagnostic medium for Gauemannomyces graminis var. tritici. Phytopathology 84: 1407–1415.

    Article  Google Scholar 

  • Duncan JM (1980) A technique for detecting red stele (Phytophthora fragariae) infection in strawberry stocks before planting. Plant Dis 77: 517–520.

    Google Scholar 

  • Duncan JM (1990) Phytophthora species attacking strawberry and raspberry. EPPO Bull 20: 107–115.

    Article  Google Scholar 

  • Duncan JM, Kennedy DM, Chard J, Ali A, Rankin PA (1993) Control of Phytophthora fragariae on strawberry and raspberry in Scotland by bait tests. In: Ebbels D (ed), Plant Health and the European Single Market, BCPC Symp, pp. 301–305.

    Google Scholar 

  • Dupont J, Laloui W, Magnin S, Larignon P, Roquebert MF (2000) Phaeoacremonium viticola, a new species associated with Esca disease of grapevine in France. Mycologia 92: 499–504.

    Article  Google Scholar 

  • Dushnicky LG, Ballance GM, Summer MJ, MacGregor AW (1998) Detection of infection and host responses in susceptible and resistant wheat cultivars to a toxin-producing isolate of Pyrenophora tritici-repens. Canad J Plant Pathol 20: 19–27.

    Article  Google Scholar 

  • Dyer RB, Kendra DF, Brown DW (2006) Real-time PCR assay to quantify Fusarium graminearum wild-type and recombinant mutant DNA in plant material. J Microbiol Meth 67: 534–542.

    Article  CAS  Google Scholar 

  • Edwards SG, Seddon B (2001) Selective media for the specific Appendix 1 and enumeration of Botrytis cinerea conidia. Lett Appl Microbiol 32: 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P (2001) Quantification of trichothecene-producing Fusarium species in harvested grains by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol 67: 1575–1580.

    Article  PubMed  CAS  Google Scholar 

  • Edwards J, Constable F, Wiechel T, Salib S (2007) Comparison of the molecular tests-single PCR, nested PCR and quantitative PCR (SYBR® Green and TaqMan®)- for detection of Phaeomoniella chlamydospora during grapevine nursery propagation. Phytopathol Mediterr 46: 58–72.

    CAS  Google Scholar 

  • Eibel P, Wolf GA, Koch AE (2005a) Detection of Tilletia caries, causal agent of common bunt of wheat by ELISA and PCR. J Phytopathol 153: 297–306.

    Article  CAS  Google Scholar 

  • Eibel P, Wolf GA, Koch AE (2005b) Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) for detection of loose smut of barley (Ustilago nuda). Eur J Plant Pathol 111: 113–124.

    Article  CAS  Google Scholar 

  • Ekefan EJ, Simons SA, Nwankiti AO, Peters JC (2000) Semi-selective medium for Appendix 1 of Colletotrichum gloeosporioides from soil. Experi Agric 35:313–321.

    Article  Google Scholar 

  • Elliot ML, DesJardin EA, Henson JM (1993) Use of a polymerase chain reaction assay to aid in identification of Gauemannomyces graminis var. graminis from different grass hosts. Phytopathology 83: 414–418.

    Article  Google Scholar 

  • Elwakil MA, Ghoneem KM (2002) An improved method of seed health testing for detecting the lurked seedborne fungi of fenugreek. Pak J Plant Pathol 1: 11–13.

    Article  Google Scholar 

  • Elwakil MA, El-Sherif EM, El-Metwally MA (2007) An innovative method for detecting slow-growing seedborne fungi of peanut. Plant Pathol J 6: 306–311.

    Article  Google Scholar 

  • Errampalli S, Saunders J, Cullen DW (2001) A PCR-based method for detection of potato pathogen, Helminthosporium solani in silver scurf-infected tuber tissue and soils. J Microbiol Meth 44: 59–68.

    Article  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The Amer Phytopathol Soc Press St. Paul, MN, USA.

    Google Scholar 

  • Eun AJC, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90: 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118: 259–274.

    Article  Google Scholar 

  • Fahleson J, Lagercrantz U, Hu Q, Steventon LA, Dixelium C (2003) Estimation of genetic variation among Verticillium isolates using AFLP analysis. Eur J Plant Pathol 109: 361–371.

    Article  CAS  Google Scholar 

  • Feodorova RN (1987) New and improved methods of detecting smuts in wheat and barley seeds. Biul Inst Hodowli i Aklim Ros’lin 201: 253–256.

    Google Scholar 

  • Ferraris L, Cardinale F, Valentino D, Roggero P, Tamietti G (2004) Immunological discrimination of Phytophthora cinnamomi from other Phytophthora pathogenic on chestnut. J Phytopathol 152: 193–199.

    Article  Google Scholar 

  • Förster H, Adaskaveg JE (2000) Early brown rot infections in sweet cherry fruit are detected by Monilinia-specific DNA primers. Phytopathology 90: 171–178.

    Article  PubMed  Google Scholar 

  • Fouly HM, Wilkinson HT (2000) Detection of Gauemannomyces graminis varieties using polymerase chain reaction with variety-specific primers. Plant Dis 84: 947–951.

    Article  CAS  Google Scholar 

  • Fountaine JM, Shaw MW, Napier B, Ward E and Fraaije BA (2007) Application of real-time and multiplex polymerase chain reaction assays to study leaf blotch epidemics in barley. Phytopathology 97: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Fourie PH, Halleen F (2000) Investigation on the occurrence of Phaeomoniella chlamydospora in canes of rootstock mother vines. Austr Plant Pathol 31: 425–426.

    Article  Google Scholar 

  • Fraaije BA, Lovell DJ, Rohel EA, Hollomon DW (1999) Rapid detection and diagnosis of Septoria tritici epidemics in wheat using a polymerase chain reaction/PicoGreen assay. J Appl Bacteriol 86: 701–708.

    Article  CAS  Google Scholar 

  • Francis SA, Roden BC, Adams MJ, Weiland J, Michael A (2007) Comparison of ITS sequences from UK and North American sugar beet powdery mildews and the designation of Erysiphe betae. Mycol Res 111: 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Fraser DE, Shoemaker PB, Ristaino JB (1999) Characterization of isolates of Phytophthora infestans from tomato and potato in North Carolina from 1993 to 1995. Plant Dis 83: 633–638.

    Article  Google Scholar 

  • Frederick RD, Snyder KE, Tooley PW, Berthier-Schaad Y, Peterson GI, Bonde MR, Schaad NW, Knorr DA (2000) Identification and differentiation of Tilletia indica and T. walkeri using the polymerase chain reaction. Phytopathology 90: 951–960.

    Article  PubMed  CAS  Google Scholar 

  • Fredlund E, Gidlund A, Olsen M, Borjesson T, Spliid NHH, Simonsson M (2008) Method of evaluation of Fusarium DNA extraction from mycelia and wheat for downstream real-time PCR quantification and correlation to mycotoxin levels. J Microbiol Meth 73: 33–40.

    Article  CAS  Google Scholar 

  • Freeman S, Maimon M, Pinkas Y (1999) Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease. Phytopathology 89: 456–461.

    Article  PubMed  CAS  Google Scholar 

  • French-Monar RD, Jones JB, Roberts PD (2006) Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Dis 90: 345–350.

    Article  CAS  Google Scholar 

  • Fu G, Huang SL, Wei JG, Yuan GQ, Ren JG, Yan WH, Cen ZL (2007) First record of Jatropha podagrica gummosis caused by Botryodiplodia theobromae in China. Austr Plant Dis Notes 2: 75–76.

    Article  Google Scholar 

  • Fulton CE, Brown AE (1997) Use of SSU rDNA group I intron to distinguish Monilinia fructicola from M. laxa and M. fructigena. FEMS Microbiol Lett 157: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Gabor Bk, O’Gara ET, Philip BA, Horan DP, Hardham AR (1993) Specificities of monoclonal antibodies to Phytophthora cinnamomi in two rapid diagnosis assays. Plant Dis 77: 1189–1197.

    Article  Google Scholar 

  • Ganley RJ, Bradshaw RE (2000) Rapid identification of polymorphic microsatellite loci in a forest pathogen, Dothistroma pini using anchored PCR. Mycol Res 105: 1075–1078.

    Article  Google Scholar 

  • Gao X, Jackson TA, Lambert KN, Li S, Harman GL, Niblack TL (2004) Detection and quantification of Fusarium solani f.sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Dis 88: 1372–1380.

    Article  CAS  Google Scholar 

  • Garcia Pedrajas MD, Bainbridge BW, Heale JB, Perez Artés E, Jimanez Diaz Rm (1999) A simple PCR-based method for the detection of the chickpea wilt pathogen Fusarium oxysporum f.sp. ciceris in artificial and natural soils. Eur J Plant Pathol 105: 251–259.

    Article  CAS  Google Scholar 

  • Garraway MO, Evans R (1984) Fungal Nutrition and Physiology. John Wiley & Sons, New York.

    Google Scholar 

  • Garrido C, Carbù M, Fernández-Acero FJ, Boonham N, Colyer A, Cantoral JM, Budge G (2009) Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathol 58: 43–51.

    Article  CAS  Google Scholar 

  • Garzón CD, Geiser DM, Moorman GW (2005) Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89: 81–89.

    Article  Google Scholar 

  • Gayoso C, de Ilárduya OM, Pomar F, de Cáceres FM (2007) Assessment of real-time PCR as a method for determining the presence of Verticillium dahliae in different Solanaceae cultivars. Eur J Plant Pathol 118: 199–209.

    Article  CAS  Google Scholar 

  • Gindrat D, Pezet R (1994) Paraquat, a tool for rapid detection of latent fungal infections and endophytic fungi. J Phytopathol 14: 86–98.

    Article  Google Scholar 

  • Giraud T, Fortini D, Levis C, Larmarque C, Leroux P, LoBuglio K, Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma are found in sympatry on numerous host plants. Phytopathology 89: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Gleason ML, Ghabrial SA, Ferriss RS (1987) Serologicaal detection of Phomopsis longicola in soybean seeds. Phytopathology 77: 371–375.

    Article  CAS  Google Scholar 

  • Glen M, Smith AH, Langrell SRH, Mohammed CL (2007) Development of nested polymerase chain reaction detection of Mycosphaerella spp. and its application to the study of leaf disease in Eucalyptus plantations. Phytopathology 97: 132–144.

    Article  PubMed  CAS  Google Scholar 

  • Gonzáles E, Sutton TB, Correll JC (2006) Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular and pathogenicity tests. Phytopathology 96: 982–992.

    Article  PubMed  CAS  Google Scholar 

  • González-Jaén MT, Mirete S, Patiño B, López-Errasquín E, Vázquez C (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains of Fusarium verticillioides. Eur J Plant Pathol 110: 525–532.

    Article  Google Scholar 

  • Goodwin PH, Kirkpatrick BC, Duniway JM (1989) Cloned probes for identification of Phytophthora parasitica. Phytopathology 79: 716–721.

    Article  CAS  Google Scholar 

  • Goodwin PH, English JT, Neber DA, Duniway JM, Kirkpatrick BC (1990) Detection of Phytophthora parasitica from soil and host tissue with a species-specific DNA probe. Phytopathology 80: 277.

    Article  Google Scholar 

  • Goodwin SB, Schneider RE, Fry WE (1995) Use of cellulose acetate electrophoresis for rapid identification of allozyme genotypes of Phytophthora infestans. Plant Dis 79: 1181–1185.

    Article  CAS  Google Scholar 

  • Gough KC, Li Y, Vaugan TJ, Williams AJ, Cockburn W, Whitelam GC (1999) Selection of phage antibodies to surface epitopes of Phytophthora infestans. J Immunol Meth 228: 97–108.

    Article  CAS  Google Scholar 

  • Griffin DW, Kellog CA, Peak KK, Shinn EA (2002) A rapid and efficient assay for extracting DNA from fungi. Lett Appl Microbiol 34: 210–214.

    Article  PubMed  CAS  Google Scholar 

  • Grote D, Olmos A, Kofoet A, Tuset JJ, Bertolini E, Cambra M (2000) Detection of Phytophthora nicotianae by PCR. Bull OEPP 30: 539–541.

    Article  Google Scholar 

  • Grote D, Olmos A, Kofoet A, Tuset JJ, Bertolini E, Cambra M (2002) Specific and sensitive detection of Phytophthora nicotianae by simple and nested PCR. Eur J Plant Pathol 108: 197–207.

    Article  CAS  Google Scholar 

  • Gubis J, Hudcovicová M, Klčová L, Červená V, Bojnanská K, Kraic J (2004) Detection of leaf blotches- causal agents in barley leaves and grains. Czech J Genet Plant Breed 40: 111–117.

    Google Scholar 

  • Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103: 1490–1507.

    Article  PubMed  CAS  Google Scholar 

  • Guillemete T, Iacomi-Vasilescu B, USAMV (2004) Conventional and real-time PCR-based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis 88: 490–496.

    Article  Google Scholar 

  • Guitierrez WA, Shew HD (1998) Identification and quantification of ascospores as the primary inoculum for collar rot of greenhouse-produced tobacco seedlings. Plant Dis 82: 485–490.

    Article  Google Scholar 

  • Guo J-R, Schnieder F, Beyer M, Verreet J-A (2005) Rapid detection of Mycosphaerella graminicola in wheat using reverse transcription-PCR assay. J Phytopathol 153: 674–679.

    Article  CAS  Google Scholar 

  • Gutierrez LJ, Wang Y, Lutton E, McSpadden Gardner BB (2006) Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions in tomatoes grown in Ohio. Plant Dis 90: 397–403.

    Article  CAS  Google Scholar 

  • Gwinn KD, Collins-Shepard MH, Reddick BB (1991) Tisssue print-immunoblot, an accurate method for the detection of Acremonium coenophialum in tall fescue. Phytopathology 81: 747–748.

    Article  Google Scholar 

  • Hahn F (2002) Fungal spore detection on tomatoes using spectral fourier signatures. Biosystem Eng 81: 249–259.

    Article  Google Scholar 

  • Hamer J, Farrel L, Orbach M, Valent A, Chumley F (1989) Host species specific conservation of a family of repeated DNA sequences in the genome of a fungal pathogen. Proc. Nat Acad Sci USA 86: 9981–9985.

    Article  PubMed  CAS  Google Scholar 

  • Hampson MC (1993) History, biology and control of potato wart disease in Canada. Canad J Plant Pathol 15: 223–224.

    Article  Google Scholar 

  • Han SS, Ra DS, Nelson RJ (1995) Relationship between DNA fingerprints and virulence of Pyricularia grisea from rice and new hosts in Korea. Internat Rice Res Notes 20(1): 26–27.

    Google Scholar 

  • Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate- species- and genus-specific components on the surface of zoospores and cysts of the genus Phytophthora cinnamomi. Canad J Bot 64: 311–321.

    Article  Google Scholar 

  • Hardham AR, Gubler F, Duniec J, Elliott J (1991) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens. J Microscopy 162: 305–318.

    Article  Google Scholar 

  • Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87: 1072–1076.

    Article  CAS  Google Scholar 

  • Harrison JG, Barker H, Lowe R, Rees EA (1990) Estimation of amounts of Phytophthora infestans mycelium in leaf tissue by enzyme-linked immunsorbent assay. Plant Pathol 39: 274–277.

    Article  Google Scholar 

  • Harrison JG, Rees EA, Barker H, Lowe R (1993) Detection of spore balls of Spongospora subterranea on potato tubers by enzyme-linked immunosorbent assay. Plant Pathol 42: 181–186.

    Article  CAS  Google Scholar 

  • Harvey HP, Ophel-Keller K (1996) Quantification of Gauemannomyces graminis var. tritici in infected roots and arid soil using slot-blot hybridization. Mycol Res 100: 962–970.

    Article  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth & Bisby’s Dictionary of the Fungi, CAB Internat, Oxon, UK.

    Google Scholar 

  • Hayden KJ, Rizozo D, Tse J, Garbelotto M (2004) Detecction and quantification of phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology 94: 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  • Hayden K, Ivors K, Wilkinson C, Garbelotto M (2006) TaqMan chemistry for Phytophthora ramorum detection and quantification with comparison of diagnostic methods. Phytopathology 96: 846–854.

    Article  PubMed  CAS  Google Scholar 

  • Henriquez JL, Sugar D, Spotts RA (2004) Etiology of bull’s eye rot of pear caused by Neofabraea spp. in Oregon, Washington and California. Plant Dis 88: 1134–1138.

    Article  CAS  Google Scholar 

  • Henson JM, French R (1993) The polymerase chain reaction and plant disease diagnosis. Ann Rev Phytopathol 31: 81–109.

    Article  CAS  Google Scholar 

  • Henson JM, Goins T, Grey W, Mathre DE, Elliott ML (1993) Use of polymerase chain reaction to detect Gauemannomyces graminis DNA in plants grown in artificially and naturally infested soil. Phytopathology 83: 283–297.

    Article  CAS  Google Scholar 

  • Hermansen A, Herrero M-L, Gausla E, Razzaghian J, Naerstad R (2007) Pythium species associated with cavity spot on carrots in Norway. Ann Appl Biol 150: 115–121.

    Article  Google Scholar 

  • Hewett PD (1977) Pretreatment in seed health testing: hypochlorite in the 2,4-D-blotter for Leptosphaeria maculans (Phoma lingam). Seed Sci Tech 5: 599.

    CAS  Google Scholar 

  • Hogg AC, Johnston RH, Dyer AT (2007) Applying real-time quantitative PCR to Fusarium crown rot of wheat. Plant Dis 91: 1021–1028.

    Article  CAS  Google Scholar 

  • Holtz BA, Karu AF, Weinhold AR (1994) Enzyme-linked immunosorbent assay for detection of Thielaviopsis basicola. Phytopathology 84: 977–984.

    Article  CAS  Google Scholar 

  • Hood ME, Shew HD (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86: 704–708.

    Article  Google Scholar 

  • Hsieh SPY, Huang RZ, Wang TC (1996) Application of tannic acid in qualitative and quantitative growth assay of Rhizoctonia spp. Plant Pathology Bull 5: 100–106.

    CAS  Google Scholar 

  • Hu X, Nazar RN, Robb J (1993) Quantification of Verticillium biomass in wilt disease development. Physiol Mol Plant Pathol 42: 23–36.

    Article  CAS  Google Scholar 

  • Hu CJ, Li YR, Wei YW, Huang SL (2008) A PCR-based method to detect Sclerotium hydrophilum in infected rice leaf sheaths. Austr Plant Pathol 37: 40–42.

    Article  CAS  Google Scholar 

  • Hughes kJD, Inman AJ, Beales PA, Cook RIA, Fulton CE, McReynolds ADK (1998) PCR-based detection of Phytophthora fragariae in raspberry and strawberry roots. Brighton Crop Protect Conf Pest Dis 2: 687–692.

    Google Scholar 

  • Hughes KJD, Giltrap PM, Barton VC, Hobden E, Tomilson JA, Barber P (2006) On-site real-time PCR detection of Phytophthora ramorum causing dieback of Parrotia persica in the UK. Plant Pathology 55: 813.

    Article  Google Scholar 

  • Hussain S, Lees AK, Duncan JM, Cooke DEL (2005) Development of a species-specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathol 54: 373–382.

    Article  CAS  Google Scholar 

  • Hyakumachi M, Priyatmojo A, Kubota M, Fukui H (2005) New anastomosis groups AG-T and AG-U of binucleate Rhizoctonia spp. causing root and stem rot of cut-flower and miniature roses. Phytopathology 95: 784–792.

    Article  PubMed  Google Scholar 

  • Hyun JW, Peres NA, Yi S-Y, Timmer LW, Kim KS, Kwon H-M, Lim H-C (2007) Development of PCR assays for the identification of species and pathotypes of Elsinoe causing scab on ­citrus. Plant Dis 91: 865–870.

    Article  CAS  Google Scholar 

  • Iacomi-Vasilescu B, Blancard D, Guénard M, Molinero-Demilly V, Laurent E, Simoneau P (2002) Development of a PCR-based diaganostic assay for detecting pathogenic Alternaria species in cruciferous seeds. Seed Sci Technol 30: 87–95.

    Google Scholar 

  • Infantino A, Pucci A (2005) A PCR-based assay for the detection and identification of Pyrenochaeta lycopersici. Eur J Plant Pathol 112: 337–437.

    Article  CAS  Google Scholar 

  • Ingle CA, Kushner SR (1996) Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc Natl Acad Sci USA 93: 12926–12931.

    Article  PubMed  CAS  Google Scholar 

  • International Seed Testing Association (ISTA) (1994) ISTA Handbook on Seed Health Testing, Section 2, Working Sheets. ISTA, Zurich, Switzerland.

    Google Scholar 

  • International Seed Testing Association (ISTA) (1996) International rules for seed testing. Proc. Internat Seed Testing Assoc 31: 1.

    Google Scholar 

  • Ioos R, Iancu G (2008) European collaborative studies for the validation of PCR-based detection tests targeting regulated fungi and oomycetes. EPPO Bull 38: 198–204.

    Article  Google Scholar 

  • Ivors KL, Tse J, Garbelotto M (2002) TaqMan PCR for detection of Phytophthora DNA in environmental plant samples. Proc Sudden Oak Death, Sci Symp, Montery, CA, USA, p. 56.

    Google Scholar 

  • Ivors KL, Garbelotto M, Vries IDE, Ruyter-Spira C, Hekkert B Te, Rosenzweig N, Bonants P (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forests and European nursery populations. Mol Ecol 15: 1493–1505.

    Article  PubMed  CAS  Google Scholar 

  • Jackson EW, Avant JB, Overturf KE, Bonman JM (2006) A quantitative assay of Puccinia coronata f.sp. avenae DNA in Avena sativa. Plant Dis 90: 692–636.

    Article  CAS  Google Scholar 

  • Jacobson DJ, Gordon TR (1990) Further investigations of vegetative compatibility within Fusarium oxysporum f.sp. melonis. Canad J Bot 68: 1245–1248.

    Article  Google Scholar 

  • Jamaux I, Spire D (1994) Development of a polyclonal antibody-based immunoassay for the early detection of Sclerotinia sclerotiorum in rapeseed petals. Plant Pathol 43: 847–852.

    Article  Google Scholar 

  • Jamaux I, Spire D (1999) Comparison of responses of ascospores and mycelium by ELISA with anti-mycelium and anti-ascospore antisera for the development of a method to detect Sclerotinia sclerotiorum on petals of oilseed rape. Ann Appl Biol 134: 171–179.

    Article  Google Scholar 

  • Jayasinghe CK, Fernando THPS (1998) Growth at different temperatures and on fungicide-amended media: two characteristics to distinguish Colletotrichum species pathogenic to rubber. Mycopathologia 143: 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14: 341–358.

    Article  PubMed  CAS  Google Scholar 

  • Joaquim RR, Rowe RC (1990) Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80: 1160–1166.

    Article  Google Scholar 

  • Joaquin RR, Rowe RC (1991) Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81: 552–558.

    Article  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. McGraw-Hill Book Co Inc., New York.

    Google Scholar 

  • Johnson RD, Johnson L, Kohmoto K, Otani H, Lane CR, Kodama M (2000) A polymerase chain reaction-based method to specifically detect Alternaria alternata apple pathotype (A. mali), the causal agent of Alternaria blotch of apple. Phytopathology 90: 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Messenger-Routh B (1996) Quantitation of Phytophthora cinnamomi in avocado roots using a species-specific DNA probe. Phyotpathology 86: 763–768.

    Article  CAS  Google Scholar 

  • Justesen AF, Hansen HJ, Pinnschmidt HO (2008) Quantification of Pyrenophora graminea in barley seed using real-time PCR. Eur J Plant Pathol 122: 253–263.

    Article  CAS  Google Scholar 

  • Jyan M-H, Huang L-C, Ann P-J, Liou R-F (2002) Rapid detection of Phytophthora infestans by PCR. Plant Pathol Bull 11: 45–56.

    Google Scholar 

  • Kageyama K, Kobayashi M, Tomita M, Kubota N, Suga H, Hyakumachi M (2002) Production and evaluation of monoclonal antibodies for the detection of Pythium sulcatum in soil. J Phytopathol 150: 97–104.

    Article  CAS  Google Scholar 

  • Kaminski JE, Demoeden PH, O’Neill NR, Wetzel II HC (2005) A PCR-based method for the detection of Ophiosphaerella agrostis in creeping bentgrass. Plant Dis 89: 980–985.

    Article  CAS  Google Scholar 

  • Karajeh MR (2006) Seed transmission of Verticillium dahliae in olive as detected by a highly sensitive nested PCR-based assay. Phytopathol Mediterr 45: 15–23.

    CAS  Google Scholar 

  • Karolewski Z, Fitt BDL, Latunde-Dada AO, Foster SJ, Todd AD, Downes K, Evans N (2006) Visual and PCR assessment of light leaf spot (Pyrenopezziza brassicae) on winter oilseed rape (Brassica napus) cultivars. Plant Pathol 55: 387–400.

    Article  CAS  Google Scholar 

  • Karpovich-Tate N, Spanu P, Dewey FM (1998) Use of monoclonal antibodies to determine biomass of Cladosporium fulvum in infected tomato leaves. Molec Plant-Pathogen Interact 11: 710–716.

    Article  CAS  Google Scholar 

  • Karthikeyan M, Radhika K, Bhaskaran R, Mathiyazhagan S, Samiyappan R, Velazahahan R (2006) Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protect Sci 42: 49–57.

    Google Scholar 

  • Kaufmann PJ, Weidemann GJ (1996) Isozyme analysis of Colletotrichum gloeosporioides from five host genera. Plant Dis 80: 1289–1293.

    Article  CAS  Google Scholar 

  • Kawaradani M, Kusakari S, Morita S, Tanaka Y (1994) The enzyme activities in eggplant infected with soilborne diseases and application to diagnosis for diseases. Ann. Phytopathol Soc Jpn 60: 507–613.

    Article  CAS  Google Scholar 

  • Kawaradani M, Kusakari S, Kimura M, Takizawa Hm Nishihashi H (1998) A new method for measuring ß1,3-glucanase activity using p-nitrophenyl-ß-D laminarintetraside as a substrate to diagnose Verticillium wilt of egg plant. Ann Phytopathol Soc Jpn 64: 489–493.

    Article  CAS  Google Scholar 

  • Kawasaki ES, Chehab FF (1994) Analysis of gene sequences by hybridization of PCR-amplified DNA to covalently bound oligonucleotides probes.The reverse dot-blot method. Methods Mol Biol 28: 225–236.

    PubMed  CAS  Google Scholar 

  • Keer JT, Birceh L (2003) Molecular methods for assessment of bacterial viability. J Microbiol Meth 53: 175–183.

    Article  CAS  Google Scholar 

  • Keiper FJ, Hayden MJ, Wallwork H (2006) Development of sequence tagged microsatellites for the barley scald pathogen Rhynchosporium secalis. Mol Ecol Notes 6: 543–546.

    Article  CAS  Google Scholar 

  • Keiper FJ, Capio E, Grcic M, Wallwork H (2007) Development of sequence tagged microsatellites for the barley net blotch pathogen Pyrenophora teres. Mol Ecol Notes 7: 664–666.

    Article  CAS  Google Scholar 

  • Keiper FJ, Grcic M, Capio E, Wallwork H (2008) Diagnostic microsatellite markers for the barley net blotch pathogens Pyrenophora teres f.sp. maculata and Pyrenophora teres f. teres. Austr Plant Pathol 37: 428–430.

    Article  Google Scholar 

  • Kellens JTC, Peumans WJ (1991) Biochemical and serological comparison of lectins from different anastomosis groups of Rhizoctonia solani. Mycol Res 95: 1235–1241.

    Article  CAS  Google Scholar 

  • Kendall JJ, Hollomon DW, Sellely A (1998) Immunodiagnosis as an aid to timing of fungicide sprays for the control of Mycosphaerella graminicola on winter wheat in the UK. Brighton Crop Protect Conf 2: 701–706.

    Google Scholar 

  • Kennedy R, Wakeham AJ, Cullington JE (1999) Production and immunodetection of ascospores of Mycosphaerella brassicola: Ringspot of vegetable crucifers. Plant Pathol 48: 297–307.

    Article  Google Scholar 

  • Kessel GJT, de Haas BH, Lombaers-van der Plas CH, Meijer EMJ, Dewey FM, Goudriaan J, van der Werf W, Köhl J (1999) Quantification of mycelium of Botrytis spp. and the antagonist Ulocladium atrum in necrotic leaf tissue of cyclamen and lily by fluorescence microscopy and image analysis. Phytopathology 89: 868–876.

    Article  PubMed  CAS  Google Scholar 

  • Khaldeeva EV, Medyantseva EP, Glushko NI, Budnikov GK (2001) Amperometric immuno-enzyme sensor for evaluating the degree of infection of vegetable crops by phytopathogenic fungi. Agrokshimiya 5: 81–86.

    Google Scholar 

  • Khanzada AK, Mathur SB (1988) Influence of extraction rate and concentration of stain on loose smut infection of wheat seed. Pak J Agric Res 9: 218–222.

    CAS  Google Scholar 

  • Khanzada AK, Rennie WJ, Mathur SB, Neergaard P (1980) Evaluation of two routine embryo test procedures for assessing the incidence of loose smut infection in seed samples of wheat (Triticum aestivum). Seed Sci Technol 8: 363.

    Google Scholar 

  • Kim HJ, Lee YS (2001) Development of an in planta molecular marker for the detection of Chinese cabbage (Brassica campestris pekinensis) club root pathogen Plasmodiophora brassicae. J Microbiol 39: 56–61.

    CAS  Google Scholar 

  • Kiss L, Takamatsu S, Cunnington JH (2005) Molecular identification of Oidium neolycopersici as the causal agent of the recent tomato powdery mildew epidemics in North America. Plant Dis 89: 491–496.

    Article  CAS  Google Scholar 

  • Kitagawa T, Sakamoto Y, Furumi K, Ogura H (1989) Novel enzyme immunoassays for specific detection of Fusarium oxysporum f.sp. cucumerinum and for general detection of various Fusarium species. Phytopathology 79: 162–165.

    Article  Google Scholar 

  • Klassen GR, Blacerzak M, de Cock AWAM (1996) 5S ribosomal RNA gene spacers as species-specific probes for eight species of Pythium. Phytopathology 86: 581–587.

    Article  CAS  Google Scholar 

  • Klemsdal SS, Herrero ML, Wanner LA, Lund G, Hermansen A ( 2008) PCR-based identification of Pythium spp. causing cavity spot in carrots and sensitive detection in soil samples. Plant Pathol 57: 877–886.

    Article  CAS  Google Scholar 

  • Klich MA, Mullaney EJ (1987) DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp Mycol 11: 170–175.

    Article  CAS  Google Scholar 

  • Knoll S, Vogel RF, Niessen L (2002) Identification of Fusarium graminearum in cereal samples by DNA Detection Test StripsTM. Lett Appl Microbiol 34: 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Ko SS, Kunimoto RK, Ko WH (2001) A simple technique for purifying fungal cultures contaminated with bacteria and mites. J Phytopathol 149: 509–510.

    Article  Google Scholar 

  • Koch G, Kohler W (1990) Isozyme variation and genetic distances of Erysiphe graminis DC. formae speciales. J Phytopathol 129: 89.

    Article  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature (Lond) 256: 495–497.

    Article  Google Scholar 

  • Konstantinova P, Bonants PJM, Genter-Pelzer MPE van, Zouwen P van der, Bulk R van den (2002) Development of specific primers for detection and identification of Alternaria spp. in carrot material by PCR and comparison with blotter and plating assays. Mycol Res 106: 23–33.

    Article  CAS  Google Scholar 

  • Korolev N, Elad Y, Katan T (2008) Vegetative compatibility grouping in Botrytis cinerea using sulphate non-utilizing mutants. Eur J Plant Pathol 122: 369–383.

    Article  Google Scholar 

  • Kox LFF, van Brouwershaven IR, van de Vossenberg BTLH, van den Beld HE, Bonants PJM, de Gruyter J (2007) Diagnostic values and utility of immunological, morphological and molecular methods for in planta detection of Phytophthora ramorum. Phytopathology 97: 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  • Kozlakidis Z, Covelli L, DiSerio F, Citir A, Açikgöz S, Hernández C, Ragozzino A, Flores R, Coutts RHA (2006) Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal etiology. J Gen Virol 87: 3113–3117.

    Article  PubMed  CAS  Google Scholar 

  • Kozlakidis Z, Citir A, Açikgöz S, Coutts RHA (2007) Development of a reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of Amasya cherry disease. Plant Pathol 56: 1032–1035.

    Article  CAS  Google Scholar 

  • Kraft JM, Boge WL (1994) Development of an antiserum to quantify Aphanomyces euteiches in resistant pea lines. Plant Dis 78: 179–183.

    Article  Google Scholar 

  • Krátká J, Pekárova-Kyněrová B, Kudlíkova I, Slováček J, Zemánková M (2002) Utilization of immunochemical methods for detection of Colletotrichum spp. in strawberry. Plant Protect Sci 38: 55–63.

    Google Scholar 

  • Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Host-Jenson A (2007) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102: 1060–1070.

    PubMed  CAS  Google Scholar 

  • Kroon LPNM, Verstappen ECP, Kox LFF, Flier WG, Bonants PJM (2004) A rapid diagnostic test to distinguish between American and European populations of Phytophthora ramorum. Phytopathology 94: 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Kushalappa AC, Lui LH (2002) Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Dis 86: 131–137.

    Article  Google Scholar 

  • Kutilek V, Lee R, Kitto GB (2001) Development of immunochemical techniques for detecting Karnal bunt in wheat. Food Agric Immunol 13: 103–114.

    Article  CAS  Google Scholar 

  • Láday M, Szécsi Á (2001) Distinct electrophoretic isozyme profiles of Fusarium graminearum and closely related species. System Appl Microbiol 24: 67–75.

    Article  Google Scholar 

  • Láday M, Szécsi Á (2002) Identification of Fusarium species by isozyme analysis. Acta Microbiol Immunol Hung 49: 321–330.

    Article  PubMed  Google Scholar 

  • Lamour K, Finley L (2006) A strategy for recovering high quality genomic DNA from a large numer of Phytophthora isolates. Mycologia 98: 514–517.

    Article  PubMed  Google Scholar 

  • Langerak CJ, van den Bulk RW, Franken AAJM (1996) Indexing seeds for pathogens. Adv Bot Res 23: 171–215.

    Article  Google Scholar 

  • Langrell SRH, Barbara dJ (2001) Magnetic capture hybridization for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Molec Biol re 19: 5–11.

    Article  CAS  Google Scholar 

  • Lardner R, Stummer BE, Sosnowski MR, Scott ES (2005) Molecular identification and detection of Eutypa lata in grapevine. Mycol Res 109: 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP, Ristaino JB, Campbell CL (1995) Detection and quantification of Phytophthora capsici. Phytopathology 85: 1057–1063.

    Article  Google Scholar 

  • Larsen JE, Hollingsworth CR, Flor J, Dornbusch MR, Simpson NL, Samac DA (2007) Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the North Central United States. Plant Dis 91: 551–558.

    Article  CAS  Google Scholar 

  • Leach JE, White FE (1991) Molecular probes for disease diagnosis and monitoring. In: Khush GS, Toenniessen GH (ed) Rice Biotechnology, CAB Internat UK and Internat Rice Res Inst, Philippines pp. 281–307.

    Google Scholar 

  • Lecomte P, Péros JP, Blancard D, Bastien N, Délye C (2000) PCR assays that identify the grapevine die-back fungus Eutypa lata. Appl Enviro Microbiol 66: 4475–4480.

    Article  CAS  Google Scholar 

  • Lee HK, Tewari JP (2001) A PCR-based assay to detect Rhynchosporium secalis in barley seed. Plant Dis 85: 220–225.

    Article  CAS  Google Scholar 

  • Lee HK, Tewari JP, Turkington TK (2001) Symptomless infection of barley seed by Rhynchosporium secalis. Canad J Plant Pathol 23: 315–317.

    Article  Google Scholar 

  • Lee HK, Tewari JP, Turkington TK (2002) Quantification of seedborne infection by Rhynchosporium secalis in barley using competitive PCR. Plant Pathol 51: 217–224.

    Article  CAS  Google Scholar 

  • Lees AK, van de Graaf P, Wale S (2008) The identification and detection of Spongospora subterranea and factors affecting infection and disease. Amer J Potato Res 85: 247–252.

    Article  Google Scholar 

  • Lees AK, Sullivan L, Cullen DW (2009) A quantitative polymerase chain reaction assay for the detection of Polyscytalum pustulans, the cause of skin spot disease of potato. J. Phytopathol 157: 154–158.

    Article  CAS  Google Scholar 

  • Leisova L, Kucera L, Minarikova V, Ovesna J (2005) AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol 54: 66–73.

    Article  CAS  Google Scholar 

  • Leisova L, Minarikova V, Kucera L, Ovesna J (2006) Quantification of Pyrenophora teres in infected barley leaves using real-time PCR. J Microbiol Meth 67: 446–455.

    Article  CAS  Google Scholar 

  • Leslie JP (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31: 127–150.

    Article  PubMed  CAS  Google Scholar 

  • Leung H, Williams PH (1986) Enzyme polymorphism and genetic differentiation among geographic isolates of the rice blast fungus. Phytopathology 76: 778.

    Article  CAS  Google Scholar 

  • Lévesque CA, Vrain TC, De Boer SM (1994) Development of a species-specific probe for Pythium ultimum using amplified ribosomal DNA. Phytopathology 84: 474–478.

    Article  Google Scholar 

  • Lévesque CA, Harlton CE, de Cock AWAM (1998) Identification of some oomycetes by reverse dot-blot hybridization. Phytopatholgy 88: 213–222.

    Article  Google Scholar 

  • Levy M, Romano J, Marchetti MA, Hamer JE (1991) DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3: 95–102.

    Article  CAS  Google Scholar 

  • Levy L, Lee IM, Hadidi A (1994) Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroid and MLO nucleic acids. J Virol Meth 49:, 295–304.

    Article  CAS  Google Scholar 

  • Lewis Ivey ML, Nava-Diaz C, Miller SA (2004) Identification and management of Colletotrichum acutatum on immature bell pepper. Plant Dis 88: 1198–1204.

    Article  Google Scholar 

  • Licciardello G, Grasso FM, Bella P, Cirvilleri G, Grimaldi V, Catara V (2006) Identification and detection of Phoma tracheiphilla, causal agent of citrus mal secco disease by real-time polymerase chain reaction. Plant Dis 90: 1523–1530.

    Article  CAS  Google Scholar 

  • Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95: 1374–1380.

    Article  PubMed  CAS  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogen. FEMS Microbiol Lett 223: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Lievens B, Hansen IRM, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2004) Root and foot rot on tomato caused by Phytophthora infestans detected in Belgium. Plant Dis 88: 86.

    Article  Google Scholar 

  • Lievens B, Claes L, Vanachter ACRC, Bruno PA, Cammue BPA, Thomma BPHJ (2006) Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiol Lett 255: 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Lievens B, Claes L, Vakalounakis DJ, Vanachter ACRC, Thomma BPHJ (2007) A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f.sp. cucumerinum and f.sp. radicis-cucumerinum. Environ Microbiol 9: 2145–2161.

    Article  PubMed  CAS  Google Scholar 

  • Liew ECY, Maclean DJ, Irwin JAG (1998) Specific PCR-based detection of Phytophthora medicaginis using the intergenic spacer region of the ribosomal DNA. Mycol Res 102: 73–80.

    Article  CAS  Google Scholar 

  • Lima CS, Pfenning LH, Costa SS, Campos MA, Leslie JF (2008) A new Fusarium lineage within the Gibberella fujikuroi species complex is the main causal agent of mango malformation disease in Brazil. Plant Pathol : Doi: 10.1111.j.1365–3059.2008-01946.x

    Google Scholar 

  • Lima CS, Monteiro JHA, Crespo NC, Costa SS, Leslie JF, Pfenning LH (2009) VCG and AFLP analyses identify the same groups in the causal agents of mango malformation in Brazil. Eur J Plant Pathol 123: 17–26.

    Article  CAS  Google Scholar 

  • Lin Y-H, Chang J-Y, Liu E-T, Chao C-P, Huang J-W, Chang PL (2009) Development of a molecular marker for specific detection of Fusarium oxysporum f.sp. cubense race 4. Eur J Plant Pathol 123: 353–365.

    Article  CAS  Google Scholar 

  • Lind V (1990) Isolation of antigens for serological identification of Pseudocercosporella herpotrichoides (Fron)Deighton. J Plant Dis Plant Protect 97: 490–501.

    CAS  Google Scholar 

  • Liu Z, Nickrent DL, Sinclair JB (1990) Genetic relationships among isolates of Rhizoctonia solani anastomosis group-2 based on isozyme analysis. Canad J Plant Pathol 12: 376.

    Article  CAS  Google Scholar 

  • LoBuglio KF, Pfister DH (2008) A Glomerella species phylogenetically related to Colletotrichum acutatum on Norway maple in Massachussetts. Mycologia 100: 710–715

    Article  PubMed  Google Scholar 

  • Lovic BR, Martyn RD, Miller ME (1995) Sequence analysis of the ITS regions of rDNA in Monosporascus spp. to evaluate its potential for PCR-mediated detection. Phytopathology 85: 655–661.

    Article  CAS  Google Scholar 

  • Lu TH, Groth JV (1987) Isozyme detection and variation in Uromyces appendiculatus. Canad J Bot 66: 885.

    Article  PubMed  Google Scholar 

  • Lübeck M, Poulsen H (2001) UP-PCR cross blot hybridization as a tool for identification of anastomosis groups in the Rhizoctonia solani complex. FEMS Microbiol Lett 201: 83–89.

    Article  PubMed  Google Scholar 

  • Lyons NF, White JG (1992) Detection of Pythium violae and Pythium sulcatum in carrots with cavity spots using competition ELISA. Ann Appl Biol 120: 235–244.

    Article  Google Scholar 

  • Ma, Luo Y, Michailides TJ (2003) Nested PCR assay for detection of Monilinia fructicola in stone fruit orchards and Botryosphaeria dothidea from pistachios in California. J Phytopathol 151: 312–322.

    Article  CAS  Google Scholar 

  • MacNish GC, O’Brien PA (2005) RAPD-PCR used to confirm that four pectic isozyme (zymograms) groups within the Australian Rhizoctonia solani AG-8 populations are true intraspecific groups. Austr Plant Pathol 34: 245–250.

    Article  CAS  Google Scholar 

  • MacNish GC, Sweetingham MW (1993) Evidence of stability of pectic zymogram groups within Rhizoctonia solani AG-8. Mycol Res 97: 1056–1058.

    Article  Google Scholar 

  • MacNish GC, Carling DE, Brainard KA (1997) Relationship of microscopic and macroscopic vegetative reaction in Rhizoctonia solani and the occurrence of vegetatively compatible populaltions (VCPs) in AG-8. Mycol Res 101: 61–68.

    Article  Google Scholar 

  • Magan N, Evans P (2000) Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J Stored Prod Res 36: 319–340.

    Article  PubMed  CAS  Google Scholar 

  • Maguire JD, Gabrielson RL (1983) Testing techniques for Phoma lingam. Seed Sci Tech 11: 599–605.

    Google Scholar 

  • Mahuku GS, Platt (Bud) HW, Maxwell P (1999) Comparison of polymerase chain reaction-based method with plating on media to detect and identify Verticillium wilt pathogen of potato. Canad J Plant Pathol 21: 125–131.

    Article  CAS  Google Scholar 

  • Mangan A (1983) The use of plain water agar for detection of Phoma betae on beet seeds. Seed Sci Technol 6: 925–926.

    Google Scholar 

  • Marakakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Symptom development, pathogen Appendix 1 and real-time QPCR quantification as factors for evaluating the resistance of olive cultivars to Verticillium pathotypes. Eur J Plant Pathol 124: 603–611.

    Article  CAS  Google Scholar 

  • Marasas WFO, Ploetz RC, Wingfield MJ, Wingfield BD, Steenkamp ET (2006) Mango malformation disease and the associated Fusarium species. Phytopathology 96: 667–672.

    Article  PubMed  CAS  Google Scholar 

  • Markovic VL, Stummer BE, Hill AS (2002) Immunodetection and characterization of antigens expressed by Uncinula necator. J Phytopathol 150: 667–673.

    Article  Google Scholar 

  • Martin B (1987) Rapid tentative identification of Rhizoctonia spp. associated with diseased turf grasses. Plant Dis 71: 47–49.

    Article  Google Scholar 

  • Martin FN (1991) Selection of DNA probes useful for isolate identification of two Pythium spp. Phytopathology 81: 742.

    Article  Google Scholar 

  • Martin MT, Cobos R (2007) Identification of fungi associated with grapevine decline in Castilla y León (Spain). Phytopathol Mediterr 46: 18–25.

    Google Scholar 

  • Martin FN, Tooley PW (2004) Identification of Phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology 94: 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Martin FN, Tooley PW, Blomquist C (2004) Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California and two additional species commonly recovered from diseased plant material. Phytopathology 94: 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Martin FN, Coffey MD, Zeller K, Hamelin RC, Tooley P, Garbelotto M, Hughes KJD, Kubisiak T, Bilodeau GJ, Levy L, Blomquist C, Berger PH (2009) Evaluation of molecular markers for Phytophthora ramorum detection and identification: Testing for specificity using standardized library of isolates. Phytopathology 99: 390–403.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Culebras PV, Querol A, Suarez-Fernandez MB, Garcia-Lopez MD, Barrio E (2003) Phylogenetic relationships among Colletotrichum pathogens of strawberry and design PCR primers for their identification. J Phytopathol 151: 135–143.

    Article  CAS  Google Scholar 

  • Mathur S, Ukhede R (2002) Development of a dot-blot technique for rapid identification of Botrytis cinerea, the causal organism of gray mold in greenhouse tomatoes. J Horti Sci Biotechnol 77: 604–608.

    CAS  Google Scholar 

  • Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Tamamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression of single conidium by polymerase chain reaction. Phytopathology 95: 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Matusyama N (1998) Trials of identification of Rhizoctonia solani AG 1-1A, the causal agent of rice sheath rot disease using specifically primed PCR analysis in diseased plant tissues. Bull Inst Trop Agric Kyushu Univ 21: 27–32.

    Google Scholar 

  • Matthew JS, Brooker JD (1991) The Appendix 1 and characterization of polyclonal and monoclonal antibodies to anastomosis group 8 of Rhizoctonia solani. Plant Pathol 40: 67–97.

    Article  CAS  Google Scholar 

  • Maude RB (1996) Seedborne Diseases and Their Control - Principles and Practice. CAB Internat, Wallingford, Oxon, UK.

    Google Scholar 

  • May KJ, Ristaino JB (2004) Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from Irish Potato Famine. Mycol Res 108: 471–479.

    Article  PubMed  CAS  Google Scholar 

  • McDonald JG, Wong E, Kristjannson GT, White GP (1999) Direct amplification by PCR of DNA from ungerminated teliospores of Tilletia species. Canad J Plant Pathol 21: 78–80.

    Article  CAS  Google Scholar 

  • McDonald JG, Wong E, White GP (2000) Differentiation of Tilletia spp. by rep-PCR genomic printing. Plant Dis 84: 1121–1125.

    Article  CAS  Google Scholar 

  • McMaugh SJ, Lyon BR (2003) Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques 34: 982–986.

    PubMed  CAS  Google Scholar 

  • Mehl HL, Epstein L (2007) Identification of Fusarium solani f.sp. cucurbitae race 1 and race 2 with PCR and production of disease-free pumpkin seeds. Plant Dis 91: 1288–1292.

    Article  CAS  Google Scholar 

  • Mehl HL, Epstein L (2008) Sewage and community shower drains are environmental reservoirs of Fusarium solani species complex group 1, a human and plant pathogen. Environ Microbiol 10: 219–227.

    PubMed  CAS  Google Scholar 

  • Meijerink G (1997) The International Seed Health Initiative. In: Hutchins D, Reeves JC (ed), Seed Health Testing, CAB International, Oxon, UK, pp. 87–94.

    Google Scholar 

  • Meng J, Wang Y (2010) Rapid detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt1 gene. J Phytopathol 158: 1–7.

    Article  CAS  Google Scholar 

  • Mertely JC, Legard DE (2004) Detection, Appendix 1 and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Dis 88: 407–412.

    Article  Google Scholar 

  • Mew T, Bride J, Hibino H, Bonman J, Merca S (1988) Rice pathogens of quarantine importance. Proc Interat Workshop on Rice Seed Health, Internat Rice Research Inst Los Banos, Philippines, pp. 101–115.

    Google Scholar 

  • Meyer UM, Spotts RA (2000) Detection and quantification of Botrytis cinerea by ELISA in pear stems during cold storage. Plant Dis 84: 1099–1103.

    Article  CAS  Google Scholar 

  • Meyer L, Sanders GM, Jacobs R, Korsten L (2006) A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Dis 90: 97–101.

    Article  CAS  Google Scholar 

  • Micales JA, Bonde MR (1995) Isozymes: Methods and applications. In: Singh RP and Singh US (ed) Molecular Methods in Plant Pathology, CRC/Lewis Publishers, Boca Ratan, USA

    Article  Google Scholar 

  • Miller SA, Bhat RG, Scmitthenner (1994) Detection of Phytophthora capsici in peper and cucurbit crops in Ohio with two commercial immunoassay kits. Plant Dis 78: 1042–1046.

    Article  Google Scholar 

  • Mills PR, Sreenivasaprasad J, Brown AE (1992) Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiol Lett 98: 137–143.

    Article  CAS  Google Scholar 

  • Minerdi D, Moretti M, Li Y, Gaggero L, Garibaldi A, Gullino ML (2008) Conventional PCR and real-time quantitative PCR detection of Phytophthora cryptogea on Gerbera jamesonii. Eur J Plant Pathol 122: 227–237.

    Article  CAS  Google Scholar 

  • Mirzaei S, Goltapeh EM, Shams-Bakhsh M, Safaie N (2008) Identification of Botrytis spp. on plants grown in Iran. J Phytopathol 156: 21–28.

    CAS  Google Scholar 

  • Montes-Borrego M, Muñoz Ledesma FJ, Jiménez-Díaz, Land BB (2009) A nested polymerase reaction protocol for detection and population biology studies of Peronospora arborescens, the downy mildew pathogen of opium poppy, using herbarium specimens and asymptomatic fresh plant tissues. Phytopathology 99: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Morrica S, Ragazzi A, Kasuga T, Mitchelson KR (1998) Detection of Fusarium oxysporum f.sp.vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathol 47: 486–494.

    Article  Google Scholar 

  • Mostert L, Groenewald JZ, Summerbell RC, Robert V, Sutton DA, Padhye AA, Crous PW (2005) Species of Phaeoacremonium associated with infection in humans and environmental reservoirs in infected woody plants. J Clin Microbiol 43: 1752–1767.

    Article  PubMed  Google Scholar 

  • Moukhamedov R, Hu X, Nazar RN, Robb J (1994) Use of polymerase chain reaction amplified ribosomal intergenic sequences for the diagnosis of Verticillium tricorpus. Phytopathology 84: 256–259.

    Article  CAS  Google Scholar 

  • Mulé G, Suca A, Stea G, Moretti A (2004) A species-specific PCR based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol 110: 495–502.

    Article  Google Scholar 

  • Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Amer April 56.

    Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via polymerase catalyzed chain reaction. Meth Enzymol 155: 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics – new solutions for old problems. Eur J Plant Pathol 116: 1–19.

    Article  CAS  Google Scholar 

  • Nakamura M, Suprapta DN, Iwai H (2008) Differentiation of pathogenic and nonpathogenic isolates of Geotrichum candidum sensu Suprapta on citrus fruit based on PCR-RFLP analysis of rDNA, ITS and PCR using specific primers designed in polygalacturonase genes. Mycoscience 49: 155–158.

    Article  CAS  Google Scholar 

  • Nannapaneni R, Gergerich RC, Lee FN (2000) Technology for rapid detection, identification and quantification of rice blast fungus Pyricularia grisea. Ark Agric Exp Sta Res Ser No 476: 480–485.

    Google Scholar 

  • Narayanasamy P (2001) Plant Pathogen Detection and Disease Diagnosis, Second edition, Marcel Dekker Inc., New York.

    Google Scholar 

  • Narayanasamy P (2005) Immunology in Plant Health and Its Impact on Food Safety, The Haworth Press, New York.

    Google Scholar 

  • Nanayakkara UN, Mathuresh Singh, Al Mugharabi KI, Peters RD (2009) Detection of Phytophthora erythroseptica in above-ground potato tissues, progeny tubers, stolons and crop debris using PCR techniques. Amer J Potato Res: DOI 10.1007/s12230-009-9077-x

    Google Scholar 

  • Nazar RN, Hu X, Schmidt J, Gulham D, Robb J (1991) Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens. Physiol Mol Plant Pathol 39: 1–11.

    Article  CAS  Google Scholar 

  • Newton AC (1991) Isozyme analysis in isolates of some facultative phytopathogenic fungi. J Phytopathol 131: 199.

    Article  CAS  Google Scholar 

  • Newton AC, Caten CE, Johnson R (1985) Variations for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol 34: 235.

    Article  CAS  Google Scholar 

  • Nicholson P, Simpson DR, Wilson AH, Chandler E, Thomsett M (2004) Detection and differentiation of trichothecene- and enniatin-producing Fusarium species on small grain cereals. Eur J Plant Pathol 110: 503–514.

    Article  CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skoube P, Holmström K (2005) An oligonucleotide microarray for the identification and differentiation of trichothencene producing and nonproducing Fusarium species occurring on cereal grains. J Microbiol Meth 62: 57–69.

    Article  CAS  Google Scholar 

  • Nicolaisen M, Suproniene S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Meth 76: 234–240.

    Article  CAS  Google Scholar 

  • Niepold F, Schöber-Butin G (1995) Application of PCR technique to detect Phytophthora infestans in potato tubers and leaves. Microbiol Res 150: 379–385.

    Article  PubMed  CAS  Google Scholar 

  • Niessen L, Vogel RF (1997) Specific identification of Fusarium graminearum by PCR with gaoA targeted primers. Syst Appl Microbiol 20: 111–123.

    Article  CAS  Google Scholar 

  • Northover J, Cerkauskas RF (1994) Detection and significance of symptomless latent infection of Monilinia fructicola in plums. Canad J Plant Pathol 16: 30–36.

    Article  Google Scholar 

  • O’Brien PA (2008) PCR primers for specific detection of Phytophthora cinnamomi. Austr Plant Pathol 37: 69–71.

    Article  Google Scholar 

  • O’Gorman DT, Sholberg PL, Stokes SC, Ginns J (2008) DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100: 227–235.

    Article  PubMed  Google Scholar 

  • Ogoshi A, Oniki M, Araki T, Ui T (1983) Anastomosis groups of binucleate Rhizoctonia spp. in Japan and North America and their perfect stages. Trans Mycol Soc Jpn 24: 79–87.

    Google Scholar 

  • Okoli CAN, Carder JH, Barbara DJ (1994) Restriction fragment length polymorphisms (RFLPs) and the relationships of some host-adopted isolates of Verticillium dahliae. Plant Pathol 43: 33–40.

    Article  Google Scholar 

  • Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reation. Phytopathology 98: 837–847.

    Article  PubMed  CAS  Google Scholar 

  • Old KM, Morgan GF, Bell JC (1984) Isozyme variability among isolates of Phytophthora cinnamomi from Australia and Papua New Guinea. Canad J Bot 62: 2016.

    Article  Google Scholar 

  • Oliver RP, Farman ML, Jones JDG, Harmon-Kosack KE (1993) Use of fungal transformants expressing ß-glucuronidase activity to detect infection and measure hyphal biomass in infected plant tissues. Molec Plant-Microbe Interact 6: 521–525.

    Article  CAS  Google Scholar 

  • Olsson CHB, Heiberg N (1997) Sensitivity of the ELISA test to detect Phytophthora fragariae var. rubi in raspberry roots. J Phytopathol 145: 285–288.

    Article  Google Scholar 

  • Omer MA, Johnson DA, Douhan LI, Hamm PB, Rowe RC (2008) Detection, quantification and vegetative compatibility of Verticillium dahliae in potato and mint production soils in the Columbia basin of Oregon and Washington. Plant Dis 92: 1127–1131.

    Article  Google Scholar 

  • Orihara S, Yamamoto T (1998) Detection of resting spores of Plasmodiophora brassicae from soil and plant tissues by enzyme immunoassay. Ann Phytopathol Soc Jpn 64: 569–573.

    Article  Google Scholar 

  • Otero AJ, Sarracent J, Hernández H, Sánchez M, Muirragui D, Villamar M, Moreta D, Jiménez MI, Pérez L, Maribona RH (2007) Monoclonal antibody-based TAS-ELISA for quantitative detection of Mycosphaerella fijiensis. J Phytopathol 155: 713–719.

    Article  CAS  Google Scholar 

  • Oudemans P, Coffey MD (1991a) Isozyme comparison within and among world wide sources of three morphologically distinct Phytophthora. Mycol Res 95: 19–30.

    Article  CAS  Google Scholar 

  • Oudemans P, Coffey MD (1991b) A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycol Res 95: 1025–1046.

    Article  CAS  Google Scholar 

  • Overton BE, Stewart EL, Qu X, Wenner NG, Christ BJ (2004) Qualitative real-time PCR-SYBR® Green detection of Petri disease fungi. Phytopathol Mediterr 43: 403–410.

    CAS  Google Scholar 

  • Paavanen-Huhtala S, Hyvönen J, Bulat SA, Yli-Mattilia T (1999) RAPD-PCR, isozyme, rDNA, RFLP and rDNA sequence analysis in identification of Finnish Fusarium oxysporum isolates. Mycol Res 103: 625–634.

    Article  CAS  Google Scholar 

  • Padliya ND, Garrett WM, Campbell KB, Tabb DL, Cooper B (2007) Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences. Proteomics 7: 3932–3942.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan R, Mohanraj D, Alexander KC, Jothi R (1995) Early and rapid detection of sugarcane smut by histological/immunological methods. In: Detection of Plant Pathogens and Their Management (ed) Verma JP, Varma A, Dinesh Kumar, Angkor Publishers, New Delhi, India, pp. 344–356.

    Google Scholar 

  • Pan SQ, Ye XS, Kuć J (1991) A technique for detection of chitinase ß-1,3-glucanase and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocusing. Phytopathology 81: 970–974.

    Article  CAS  Google Scholar 

  • Panabieres F, Marais A, Trentin F, Bonnet P, Ricci P (1989) Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology 79: 1105–1109.

    Article  CAS  Google Scholar 

  • Pasquali M, Dematheis F, Gilardi G, Gullino ML, Garibaldi A (2005) Vegetative compatibility groups of Fusarium oxysporum f.sp. lactucae from lettuce. Plant Dis 89: 237–240.

    Article  Google Scholar 

  • Patiño B, Mirete S, Gondález-Jaen MT, Mulé G, Rodriguez T, Váquez C (2004) PCR detection assay of fumonisin producing Fusarium verticillioides strains. J Food Protect 67: 1278–1283.

    Google Scholar 

  • Patzak J (2003) PCR detection of hop fungal pathogens. Proc Internat Hop Growers Conv. Dobrna-Zalec, Slovania, pp. 12–16.

    Google Scholar 

  • Paulitz TC, Schroeder KL (2005) A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Dis 89: 767–772.

    Article  Google Scholar 

  • Pekárová B, Krátka J, Slováćek J (2001) Utilization of immunochemical methods to detect Phytophthora fragariae in strawberry plants. Plant Protect Sci 37: 57–65.

    Google Scholar 

  • Peraza-Echeverría L, Rodríguez-García CM, Zapata-Salazar DM (2008) A rapid, effective method for profuse in vitro conidial production of Mycosphaerella fijiensis. Austr Plant Pathol 37: 460–463.

    Article  Google Scholar 

  • Peres NA, Harakava R, Adaskaveg JE, Timmer LW (2007) Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Dis 91: 525–531.

    Article  CAS  Google Scholar 

  • Pérez-Hernández O, Nam MH, Gleason ML, Kim HG (2008) Development of a nested polymerase chain reaction assay for detection of Colletotrichum acutatum on symptomless strawberry leaves. Plant Dis 92: 1665–1671.

    Article  CAS  Google Scholar 

  • Peters RD, Platt (Bud) HW, Hall R (1999) Use of allozyme markers to determine genotype to Phytophthora infestans in Canada. Canad J Plant Pathol 21: 144–153.

    Article  Google Scholar 

  • Peterson GL, Bonde MR, Phillips JG (2000) Size-selective sieving for detecting teliospores of Tilletia indica in wheat seed samples. Plant Dis 84: 999–1007.

    Article  CAS  Google Scholar 

  • Pethybridge SJ, Hay F, Jones S (2006) Seedborne infection of pyrethrum by Phoma ligulicola. Plant Dis 90: 891–897.

    Article  CAS  Google Scholar 

  • Pettitt TR, Wakeham AJ, Wainwright MF, White JG (2002) Comparison of serological, culture, and bait methods for detection of Pythium and Phytophthora zoospores in water. Plant Pathol 51: 720–727.

    Article  Google Scholar 

  • Pianzzola MJ, Moscatelli M, Vero S (2004) Characterization of Penicillium isolates associated with blue mold in apple in Uruguay. Plant Dis 88: 23–28.

    Article  Google Scholar 

  • Plantiño-Álvarez B, Rodríguez-Cámara MC, Rodríguez Fernandez T, González-Jaen MT, Vázquez Estévez C (1999) Immunodetection of an exo-polygalacturonase in tomato plants infected with Fusarium oxysporum f.sp. radicis-lycopersici. Bol Sandad Vegetal Plagas 25: 529–536.

    Google Scholar 

  • Plyler TR, Simone GW, Fernandez D, Kistler HB (1999) Rapid detection of the Fusarium oxysporum lineage containing the Canary Island date palm wilt pathogen. Phytopathology 89: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Polashock JJ, Vaiciunas J, Oudemans PV (2005) Identification of a new Phytophthora species causing root and runner rot of cranberry in New Jersey. Phytopatholgy 95: 1237–1243.

    Article  CAS  Google Scholar 

  • Polevaya Y, Alkalai-Tuvia S, Copel A, Fallik E (2002) Early detection of gray mold development in tomato after harvest. Postharvest Biol Technol 25: 221–225.

    Article  Google Scholar 

  • Prasad MNN. Bhat SS, Charith Raj AP, Janardhana GR (2006) Molecular detection of Phomopsis azadirachtae, the causative agent of dieback disease of neem by polymerase chain reaction. Curr Sci 91: 158–159.

    CAS  Google Scholar 

  • Priestley RA, Dewey FM (1993) Development of a monoclonal antibody immunoassay for the eye spot pathogen Pseudocercosporella herpotrichoides. Plant Pathol 42: 403–412.

    Article  CAS  Google Scholar 

  • Prospero S, Black JA, Winton LM (2004) Isolation and characterization of microsatellite markers in Phytophthora ramorum, the causal agent of sudden oak death. Molec Ecol Notes 4: 672–624.

    Article  CAS  Google Scholar 

  • Pryor BM, Davis RM, Gilbertson RL (1994) Detection and eradication of Alternaria radicina in carrot seed. Plant Dis 78: 452–456.

    Article  CAS  Google Scholar 

  • Puhalla JE (1979) Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopatholgy 69: 1186–1189.

    Article  Google Scholar 

  • Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Canad J Bot 63: 1305–1308.

    Google Scholar 

  • Puhalla JE, Hummel M (1983) Vegetative incompatibility groups within Verticillium dahliae. Phytopathology 73: 1305–1308.

    Article  Google Scholar 

  • Qi YX, Zhang X, Pu JJ, Xie YX, Zhang HQ, Huang SL, Li SL, Zhang H (2009) Nested PCR assay for detection of Corynespora leaf fall disease caused by Corynespora cassiicola. Austr Plant Pathol 38: 141–148.

    Article  CAS  Google Scholar 

  • Qu X, Kavanagh JA, Egan D, Christ BJ (2006) Detection and quantification of Spongospora subterranea f.sp. subterranea by PCR in host tissue and naturally infested soils. Amer J Potato Res 83: 21–30.

    Article  CAS  Google Scholar 

  • Rachdawong S, Cramer CL, Grabau EA, Stromberg VK, Lacy GH, Strombeg EL (2002) Gauemannomycces graminis vars. avenae, graminis and tritici identified using PCR amplification of avinacinase-like genes. Plant Dis 86: 652–660.

    Article  CAS  Google Scholar 

  • Radisěk S, Jakše J, Javornik B (2004) Development of pathotype-specific SCAR markers for detection of Verticillium albo-atrum isolates from hop. Plant Dis 88: 1115–1122.

    Article  Google Scholar 

  • Rafin C, Nodet P, Tirilly R (1994) Immunoenzymatic staining procedure for Pythium species with filamentous noninflated sporangia in soilless cultures. Mycol Res 98: 535–541.

    Article  Google Scholar 

  • Rajeswari S, Palaniswami A, Rajappan K (1997) A chemodiagnostic method for the detection of symptomless latent infection of Colletotrichum musae in banana fruits. Plant Dis Res 12: 50–52.

    Google Scholar 

  • Rasmussen OF, Wulff BS (1991) Detection of Pseudomonas syringae pv. pisi using PCR. Proc 4th Internat Working Group, Kluwer Academic Publishers, Dordrecht, Nederlands, pp. 367–376.

    Google Scholar 

  • Rey MEC (1984) Immunofluorescence and protein A- gold technique in Lowicryl K4 M embedded tissue. J Microscope 136: 373–381.

    Article  Google Scholar 

  • Ridgway HJ, Steyaert JM, Pottinger BM, Carpenter M, Nicol D, Stewart A (2005) Development of an isolate-specific marker for tracking Phaeomoniella chlamydospora infection in grapevines. Mycologia 97: 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Rigotti S, Gindro K, Richter H, Viret O (2002) Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria x ananassa Duch.) using PCR. FEMS Microbiol Lett 209: 169–174.

    PubMed  CAS  Google Scholar 

  • Rigotti S, Viret O, Gindro K (2006) Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr. Phytopathol Mediterr 45: 253–260.

    CAS  Google Scholar 

  • Ristaino JB, Johnson A, Blanco-Menses M, Liu B (2007) Identification of the tobacco blue mold pathogen Peronospora tabacina by polymerase chain reaction. Plant Dis 91: 685–691.

    Article  CAS  Google Scholar 

  • Rittenburg JH, Petersen FP, Grothaus GD, Miller SA (1988) Development of a rapid, field-usable immunoassay format for detection and quantification of Pythium, Rhizoctonia and Sclerotinia spp. in plant tissues. Phytopathology 78: 156.

    Google Scholar 

  • Roberts RG (2005) Alternaria yaliinficiens sp. nov. on Ya Li pear fruit: from interception to identification. Plant Dis 89: 134–145.

    Article  Google Scholar 

  • Roberts IM, Harrison BD (1979) Detection of potato leafroll and potato mop top viruses by immunosorbent electron microscopy. Ann Appl Biol 93: 289–297.

    Article  Google Scholar 

  • Robold AV, Hardham AR (1998) Production of species-specific antibodies that react with surface components on zoospores and cysts of Phytophthora nicotianae. Canad J Microbiol 44: 1161–1170.

    CAS  Google Scholar 

  • Roebroeck EJA, Groen NPA, Mes JJ (1990) Detection of latent Fusarium oxysporum infection in gladiolus corms. Acta Horti 266: 468–476.

    Google Scholar 

  • Rollo F, Amici A, Foesi F, di Silvestro L (1987) Construction and characterization of a cloned probe for the detection of Phoma tracheiphila in plant tissues. Appl Microbiol Biotechnol 26: 352.

    Article  CAS  Google Scholar 

  • Rollo F, Salvi R, Torchia P (1990) Highly sensitive and fast detection of Phoma tracheiphila by polymerase chain reaction. Appl Microbiol Biotechnol 32: 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Rolshausen PE, Trouillas FP, Gubler WD (2004) Identification of Eutypa lata by PCR-RFLP. Plant Dis 88: 925–929.

    Article  CAS  Google Scholar 

  • RueyShyang C, JwuGuh T, YuFen H, Chiou RYY (2002) Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by multiplex polymerase chain reaction. J Food Protect 65: 840–844.

    Google Scholar 

  • Ruiz E, Ruffner HP (2002) Immunodetection of Botrytis-specific invertase in infected grapes. J. Phytopathol 150: 76–85.

    Article  CAS  Google Scholar 

  • Saiki RK, Walsh PS, Levenson CH, Ehrlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Nat Acad Sci USA 86: 6230–6234.

    Article  PubMed  CAS  Google Scholar 

  • Salazar O, Julian MC, Rubio V (2000) Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R. solani AG2 subgroups and ecological types and binucleate Rhizoctonia. Mycol Res 104: 281–285.

    Article  CAS  Google Scholar 

  • Salinas J, Schots A (1994) Monoclonal antibodies-based immunofluorescence test for detection of conidia of Botrytis cinerea on cut flowers. Phytopathology 84: 351–356.

    Article  Google Scholar 

  • Sarlin T, Yli-Mattila T, Jestoi M, Rizzo A, Paavanen-Huhtala S, Harikara A (2006) Real-time PCR for quantification of toxigenic Fusarium species in barley and malt. Eur J Plant Pathol 114: 371–380.

    Article  CAS  Google Scholar 

  • Sauer KM, Hulbert SH, Tisserat NA (1993) Identification of Ophiosphaerella herpotricha by cloned DNA probes. Phytopathology 83: 97–102.

    Article  CAS  Google Scholar 

  • Savage SD, Sall MA (1981) Radioimmunosorbent assay for Botrytis cinerea. Phytopathology 71: 411–415.

    Article  Google Scholar 

  • Sayler RJ, Yang Y (2007) Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen in rice using real-time PCR. Plant Dis 91: 1663–1668.

    Article  CAS  Google Scholar 

  • Says-Lesage V, Meliala C, Nicolas P, Roeckel-Drevet P, de Labrouhe TD, Archambault D, Billand F (2001) Molecular test to show the presence of mildew (Plasmopara halstedii) in sunflower seeds. OCL-Oléagineux, Corps Gras, Lipides 8: 258–260.

    CAS  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41: 305–324.

    Article  PubMed  CAS  Google Scholar 

  • Schena L, Nigro F, Ippolito A (2002) Identification and detection of Rosellinia necatrix by ­conventional and real-time Scorpion-PCR. Eur J Plant Pathol 108: 355–366.

    Article  CAS  Google Scholar 

  • Schena L, Hughes KJ, Cooke DEL (2006) Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol Plant Pathol 7: 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Schena L, Duncan JM, Cooke DEL (2008) Development and application of a PCR-based “molecular tool box” for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol 57: 64–75.

    CAS  Google Scholar 

  • Schenk S (1998) Evaluation of a PCR amplification method for detection of systemic smut infection in sugarcane. SugarCane No.6: 2–5.

    Google Scholar 

  • Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicola. Plant Physiol 132: 999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Schlenzig A, Habermeyer J, Zinkernagel V (1999) Serological detection of latent infection with Phytophthora infestans in potato stems. J Plant Protect Plant Dis 106: 221–230.

    Google Scholar 

  • Schlenzig A, Cooke DEL, Chard JM (2005) Comparison of a baiting method and PCR for the detection of Phytophthora fragariae var. rubi in certified raspberry stocks. EPPO Bull 35: 87–91.

    Article  Google Scholar 

  • Schnerr H, Niessen L, Vogel R (2001) Real-time detection of the tri5 gene in Fusarium species by Light CyclerTM-PCR using SYBR® Green I for continuous fluorescence monitoring. Internat J Food Microbiol 71: 53–61.

    Article  CAS  Google Scholar 

  • Schroeder KL, Okubara PA, Tambong JT, Lévesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. 96: 637–647.

    Google Scholar 

  • Schulze S, Bahnweg G (1998) Critical review of identification techniques for Armillaria spp. and Heterobasidion annosum root and butt rot diseases. J Phytopathol 146: 61–72.

    Article  CAS  Google Scholar 

  • Schweigkofler W, O’Donnell K, Garbelotto M (2004) Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl Environ Microbiol 70: 3512–3520.

    Article  PubMed  CAS  Google Scholar 

  • Scott Jr DL, Clark CW, Tooley PW, Carras MM, Maas JL (2002) The use of biomagnetic separation to recover DNA suitable for PCR from Claviceps species. Lett Appl Microbiol 31: 95–99.

    Article  Google Scholar 

  • Serdani M, Crous PW, Holz G, Petrini O (1998) Endophytic fungi associated with core rot of apples in South Africa with specific reference to Alternaria species. Sydowia 50: 257–271.

    Google Scholar 

  • Serdani M, Kang JC, Andersen B, Crous PW (2002) Characterization of Alternaria species-groups associated with core rot of apples in South Africa. Mycol Res 106: 561–569.

    Article  Google Scholar 

  • Sheridan GEC, Masters CI, Shallcross JA, Mackey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64: 1313–1318.

    PubMed  CAS  Google Scholar 

  • Shi L, Hu W, Su Z, Lu X, Tong W (2003) Microarrays: Technologies and applications. Appl Mycol Biotechnol Ser Vol 3, Elsevier Sci BV, Amsterdam, pp. 271–293.

    Google Scholar 

  • Silva-Mann R, Vieira MGGC, Machado JC, Filho JRB, Salgado KCC, Stevens MR (2005) AFLP markers differentiate isolates of Colletotrichum gossypii from C. gossypii var. cephalosporioides. Fitopatol Brasileira 30: 169–172.

    Google Scholar 

  • Silvar C, Díaz J, Merino F (2005a) Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology 95: 1423–1429.

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Duncan JM, Cooke DEL, Williams NA, Díaz J, Merino F. (2005b) Development of specific PCR primers for identification and detection of Phytophthora capsici. Eur J Plant Pathol 112 : 43–52.

    Article  CAS  Google Scholar 

  • Sinha OK, Singh Kishan, Mishra R (1982) Stain technique for detection of smut hyphae in nodal buds of sugarcane. Plant Dis 66: 932–933.

    Article  Google Scholar 

  • Sippell DN, Hall R (1995) Glucose phosphate isomerase polymorphism distinguish weakly virulent from highly virulent strains of Leptosphaeria maculans. Canad J Plant Pathol 17: 1–6.

    Article  CAS  Google Scholar 

  • Sissons JGP, Oldstone MBA (1980) Antibody-mediated destruction of virus-infected cells. Adv Immunol 29: 209–260.

    Article  PubMed  CAS  Google Scholar 

  • Skottrup P, Frokiaer H, Hearty S, O’Kennedy R, Hejgaard J, Nicolaisen M, Justesen AF (2007a) Monoclonal antibodies for the detection of Puccinia striiformis urediniospores. Mycol Res 111: 332–338.

    Article  PubMed  CAS  Google Scholar 

  • Skottrup P, Nicolaisen M, Justesen AF (2007b) Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J Microbiol Meth 68: 507–515.

    Article  CAS  Google Scholar 

  • Smith DR, Stanosz GR (2006) A species-specific PCR assay for detection of Diplodia pinea and D. scrobiculata in dead red and jack pines with collar rot symptoms. Plant Dis 90: 307–313.

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Sneh N, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. The Amer Phytopathol Soc St. Paul MN, USA.

    Google Scholar 

  • Söchting HP, Verreet JA (2004) Effects of different cultivation systems (soil management, nitrogen fertilization) on the epidemics of fungal diseases in oilseed rape (Brassica napus L. var. napus). J Plant Dis Protect 111: 1–29.

    Google Scholar 

  • Somai BM, Keinath AP, Dean RA (2002) Development of PCR-ELISA detection and differentiation of Didymella bryoniae from related Phoma species. Plant Dis 86: 710–716.

    Article  CAS  Google Scholar 

  • Stace-Smith R, Bowler DJ, McKenzie DJ, Ellis P ( 1993) Monoclonal antibodies differentiate the weekly virulent from highly virulent strain of Leptosphaeria maculans, the organism causing black leg of canola. Canad J Bot 15: 127–133.

    Google Scholar 

  • Stackebrandt E, Liesack W, Witt D (1992) Ribosomal RNA and rDNA sequence analyses. Gene 115: 225–260.

    Article  Google Scholar 

  • Strandberg JO (2002) A selective medium for the detection of Alternaria dauci and Alternaria radicina. Phytoparasitica 30: 269–284.

    Article  CAS  Google Scholar 

  • Sundaram S, Plascencia S, Banttari EE ( 1991) Enzyme-linked immunosorbent assay for detection of Verticillium spp. using antisera produced to V. dahliae from potato. Phytopathology 81: 1485–1489.

    Article  Google Scholar 

  • Svircev AM, Gardiner RB, McKeen WE, Day AW, Smith RJ (1986) Detection by protein A-gold of antigens of Botrytis cinerea in cytoplasm of infected Vicia faba. Phytopathology 76: 622–626.

    Article  Google Scholar 

  • Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal micro-arrays. Nucleic Acids Res 33(8)- doi 10.1093/nar.gni069

    Google Scholar 

  • Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42: 135–139.

    Article  CAS  Google Scholar 

  • Takamatsu S, Nakano M, Yokota H, Kunoh H (1998) Detection of Rhizoctonia solani AG-2-2-IV, the causal agent of large patch of Zoysia grass, using plasmid DNA as probe. Ann Phytopathol Soc Jpn 64: 451–457.

    Article  CAS  Google Scholar 

  • Takenaka S (1992) Use of immunological methods with antiribosome serums to detect snow mold fungi in wheat plants. Phytopathology 82: 896–901.

    Article  CAS  Google Scholar 

  • Takenaka S, Kawasaki S (1994) Characterization of alanine-rich hydroxyproline, containing cell wall proteins and their application for identifying Pythium species. Physiol Molec Plant Pathol 45: 249–261.

    Article  CAS  Google Scholar 

  • Tambong JT, de Cock AWAM, Tinker NA, Lévesque CA (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72: 2691–2706.

    Article  PubMed  CAS  Google Scholar 

  • Tan MK, Ghalayini A, Sharma I, Yi J, Shivas R, Priest M, Wright D (2009) A one-tube fluorescent assay for the quarantine detection and identification of Tilletia indica and other grass bunts in wheat. Austr Plant Pathol 38: 101–109.

    Article  Google Scholar 

  • Tanaka A, Kitabayashi H, Tani T, Ogoshi A (1994) A pathogen causing patch so-called “elephant footprint” on zoysia grasses. Ann Phytopathol Soc Jpn 60: 344.

    Google Scholar 

  • Tempel A (1959) Serological investigations in Fusarium oxysporum. Meded No. 138 Lanbouwhogeschool, Wageningen 59: 1–60.

    Google Scholar 

  • Tenzer I, delgi Ivanissevic S, Morgante M, Gessler C (1999) Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathology 89: 748–753.

    Article  PubMed  CAS  Google Scholar 

  • Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28: 3752–3761.

    Article  PubMed  CAS  Google Scholar 

  • Themann K, Werres S, Diener HA, Lüttmann R (2002) Comparison of different methods to detect Phytophthora spp. in recylcling water from nurseries. J Plant Pathol 84: 41–50.

    Google Scholar 

  • Thornton CR, O’Neill TM, Hilton G, Gilligan CA (1999) Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting double monoclonal antibody ELISA. Plant Pathol 48: 627–634.

    Article  Google Scholar 

  • Timmer LW, Menge JA, Zitko SE, Pond E, Miller SA, Johnson EL (1993) Comparison of ELISA techniques and standard Appendix 1 methods for Phytophthora detection in citrus orchards in Florida and California. Plant Dis 77: 791–796.

    Article  CAS  Google Scholar 

  • Tisserat NA, Hulbert SH, Nus A (1991) Identification of Leptosphaeria korrae by cloned DNA probes. Phytopathology 81: 917–921.

    Article  Google Scholar 

  • Tisserat NA, Hulbert SH, Sauer KM (1994) Selective amplification of rDNA internal transcribed spacer regions to detect Ophiosphaerella korrae and O. herpotricha. Phytopathology 84: 478–482.

    Article  CAS  Google Scholar 

  • Toit LJ, Derie ML, Hernandez-Perez P (2005) Verticillium wilt in spinach production. Plant Dis 89: 4–11.

    Article  CAS  Google Scholar 

  • Tomioka K, Sato T (2001) Restriction landmark genomic scanning (RLGs) in fungi. Mycoscience 42: 295–299.

    Article  CAS  Google Scholar 

  • Tomlinson JA, Boonham N, Hughes KJO, Griffin RL, Barker I (2005) On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl Environ Microbiol 71: 6702–6710.

    Article  PubMed  CAS  Google Scholar 

  • Tooley PW, Martin FN, Carras MM, Frederick RD (2006) Real-time fluorescent polymerase chain reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Phytopathology 96: 336–345.

    Article  CAS  Google Scholar 

  • Tooley PW, Fry WE, Villareal-Gonzalez MJ (1985) Isozyme characterization of sexual and asexual Phytophthora infestans populations. J Hered 76: 431.

    Google Scholar 

  • Tooley PW, Carras MM, Lambert DH (1998) Application of a PCR-based test for detection of potato late blight and pink rot in tubers. Amer J Potato Res 75: 187–194.

    Article  Google Scholar 

  • Triki MA, Pirou S, El-Mahjoub B, Baudry A (2001) Leak syndrome of potato in Tunisia caused by Pythium aphanidermatum and P. ultimum. Potato Res 44: 221–231.

    Article  Google Scholar 

  • Trout CL, Ristaino JB, Madritch M, Wangsomboonde T (1997) Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Dis 81: 1042–1048.

    Article  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluores upon hybridization. Nat Biotechnol 14: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Úrbes-Torres JR, Leavitt GM, Guerrero JC, Guevara J, Gubler WD (2008) Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of Bot canker disease of grapevines in Mexico. Plant Dis 92: 519–529.

    Article  Google Scholar 

  • Urena-Padilla AR, Mac Kenzie SJ, Bowen BW, Legard DE (2002) Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology 92: 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • Vakalounakis DJ (1996) Root and stem rot of cucumber caused by Fusarium oxysporum f.sp. radicis-cucumerinum f.sp. nov. Plant Dis 80: 313–316.

    Article  Google Scholar 

  • Vakalounakis DJ, Fragkiadakis GA (1999) Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility and RAPD fingerprinting. Phytopathology 89: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Vallad GE, Bhat RG, Koike ST, Ryder EJ, Subbarao KV (2005) Weed-borne reservoirs and seed transmission of Verticillium dahliae in lettuce. Plant Dis 89: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I, Gessler C (2005) Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 95: 672–678.

    Article  PubMed  CAS  Google Scholar 

  • van de Graaf P, Lees AK, Cullen DW, Duncan JM (2003) Detection and quantification of Spongospora subterranea in soil, water and plant tissue samples using real-time PCR. Eur J Plant Pathol 109: 589–597.

    Article  Google Scholar 

  • van de Graaf P, Lees AK, Wale SJ, Duncan JM (2005) Effect of soil inoculum level and environmental facors on potato powdery scab caused by Spongospora subterranea. Plant Pathol 54: 22–28.

    Article  Google Scholar 

  • van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on Open ArraysTM. BMC Genomics 8: 276 doi: 10.1186/1471-2164-8-276

    Article  PubMed  CAS  Google Scholar 

  • van Gent-Pelzer MPE, Krijger M, Bonants PJM (2010) Improved real-time PCR assay for detection of the quarantine potato pathogen Synchytrium endobioticum in zonal centrifuge extracts from soil and in plants. Eur J Plant Pathol 126: 129–133.

    Article  CAS  Google Scholar 

  • Van Regenmortel MHV (1982) Serology and Immunochemistry of Plant Viruses, Academic Press, New York.

    Google Scholar 

  • Vandemark GJ, Ariss JJ (2007) Examining interaction between legumes and Aphanomyces euteichus with real-time PCR. Austr Plant Pathol 36: 102–108.

    Article  CAS  Google Scholar 

  • Vandemark GJ, Barker BM (2003) Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with real-time fluorescent assay. J Phytopathol 151: 577–583.

    Article  CAS  Google Scholar 

  • Velichetti RK, Lamison C, Brill LM, Sinclair JB (1993) Immunodetection of Phomopsis species in asymptomatic plants. Plant Dis 77: 70–73.

    Article  Google Scholar 

  • Verreet JA, Klink H, Hoffmann GM (2000) Regional monitoring for disease prediction and optimization of plant protection measures: the IPM wheat model. Plant Dis 84: 816–826.

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R, Padmanaban P (1998) Specific detection of Colletotrichum falcatum in sugarcane by serological techniques. SugarCane No.6: 18–3.

    Google Scholar 

  • Vöhringer G, Sander G (2001) Comparison of antibodies in chicken egg yolk (IgY) and rabbit (IgG) for quantitative strain detection of Colletotrichum falcatum and Fusarium subglutinans. J Plant Dis Protect 108: 39–48.

    Google Scholar 

  • Waalwijk C, Heide R, van der deVries I, Lee T, van der Schoen C, Coainville GC, Häuser-Hahn I, Kastelein P, Köhl J, Demarquet T, Kema GH (2004) Quantitative detection of Fusarium species in wheat using TaqMan. Eur J Plant Pathol 110: 481–494.

    Article  CAS  Google Scholar 

  • Wahlström K, Karlsson JO, Holdenrieder O, Stenlid J (1991) Pectinolytic activity and isoenzymes in European Armillaria species. Canad J Bot 69: 2732–2739.

    Article  Google Scholar 

  • Walcott RR, Gitaitis RD, Langston DB (2004) Detection of Botrytis aclada in onion seed using magnetic capture hybridization and the polymerase chain reaction. Seed Sci Technol 32: 425–438.

    Google Scholar 

  • Wang PH, White JG (1996) Development of a species-specific primer for Pythium violae. Proc BCPC Symp 65: 205–210.

    CAS  Google Scholar 

  • Wang YC, Yu RC (1998) Detection of toxigenic Aspergillus spp. in rice and corn by ELISA. J Chinese Agric Chem Soc 36: 512–520.

    Google Scholar 

  • Wang CG, Blanchette RA, Jackson WA, Palmer MA (1985) Differences in conidial morphology among isolates of Sphaeropsis sapinea. Plant Disease 69: 838–841.

    Article  Google Scholar 

  • Wang PH, Lo HS, Yeh Y (2001) Identification of F. oxysporum cucumerinum and F. oxysporum luffae by RAPD-generated DNA probes. Lett Appl Microbiol 33: 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Wang PH, Chung CY, Lin YS, Yeh Y (2003a) Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum in infected ginger rhizomes. Lett Appl Microbiol 36: 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Wang PH, Wang YT, White JG (2003b) Species-specific PCR primers for Pythium developed from ribosomal ITS1 region. Lett Appl Microbiol 37: 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Wang Y, Zheng X (2006) Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology 96: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zheng W, Buchenauer H, Zhao J, Han Q, Huang L, Kang Z (2008) The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol 120: 241–247.

    Article  CAS  Google Scholar 

  • Wangsomboondee T, Ristaino JB (2002) Optimization of sample size and rDNA extraction methods to improve PCR detection of different propagules of Phytophthora infestans. Plant Dis 86: 247–253.

    Article  CAS  Google Scholar 

  • Ward E, Gray RM (1992) Generation of a ribosomal DNA probed by PCR and its use in identification of fungi within the Gauemannomyces-Phialophora complex. Plant Pathol 41: 730–736.

    Article  CAS  Google Scholar 

  • Ward CM, Wilkinson AP, Bramham S, Lee HA, Chan WHS, Butcher GW, Hutchings A, Morgan MRA (1990) Production and characterization of polyclonal and monoclonal antibodies against aflatoxin B1 oxime-BSA in an enzyme-linked immunosorbent assay. Mycotoxin Res 6: 73–83.

    Article  CAS  Google Scholar 

  • Ward LI, Beales PA, Barnes AV, Lane CR (2004) A real-time PCR assay based method for routine diagnosis of Spongospora subterranea on potato tubers. J Phytpathol 152: 633–638.

    Article  CAS  Google Scholar 

  • Watson WT, Kenerley CM, Appel DM (2000) Visual and infra-red assessment of root colonization of apple trees by Phymatotrichopsis omnivora. Plant Dis 84: 539–543.

    Article  Google Scholar 

  • Webster J, Weber R (2007) Introduction to Fungi, Third edition, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Weeds PL, Beever RE, Long PL (1998) New genetic markers for Botrytis cinerea (Botryotinia fuckeliana). Mycol Res 102: 791–800.

    Article  CAS  Google Scholar 

  • Weier HU, Gray JW (1988) A programmable system to perform polymerase chain reaction. DNA 7: 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Whisson DL, Herdina A, Francis L (1995) Detection of Rhizoctonia solani AG-8 in soil using a specific DNA probe. Mycol Res 99: 1299–1302.

    Article  CAS  Google Scholar 

  • Whiteman SA, Jaspers MV, Stewart A, Ridgway JJ (2002) Detection of Phaeomoniella chlamydospora in soil using species-specific PCR. New Zealand Plant Prtoect 55: 139–145.

    Google Scholar 

  • Whiteman SA, Jaspars MV, Stewart A, Ridgway JJ (2004): Phaeomoniella chlamydospora detection in the grapevine propagation process by species-specific PCR. Phytopathol Mediterr 43: 156.

    Google Scholar 

  • Wiechel TJ, Salib S, Edwards J (2005) Real-time PCR detection and quantification of Phaeomoniella chlamydospora during grapevine propagation in the nursery. 15th Austr Plant Pathol Bienn Conf, Geelong, Australia.

    Google Scholar 

  • Wijekoon CP, Goodwin PH, Hsiang T (2008) Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software. J Microbiol Meth 74: 94–101.

    Article  CAS  Google Scholar 

  • Willits DA, Sherwood JE (1999) Polymerase chain reaction detection of Ustilago hordei in leaves of susceptible and resistant barley varieties. Phytopathology 89: 212–217.

    Article  PubMed  CAS  Google Scholar 

  • Wiwart M, Korona A (1998) Application of a color image analysis of kernels in evaluation of the infection of triticale grown in different cultivation system. Plant Breed Sci 42: 69–79.

    Google Scholar 

  • Woong NK, Hae KC, Haiseong H (1996) Studies on the pear abnormal leaf spot disease. 5. Selection of indicator plants. Kor J Plant Pathol 12: 214–216.

    Google Scholar 

  • Wu WS, Chen TW (1999) Development of a new selective medium for detecting Alternaria brassicola in cruciferous seeds. Seed Sci Technol 27: 397–409.

    Google Scholar 

  • Xiao CL, Rogers JD (2004) A postharvest fruit rot in d’Anjou pears caused by Sphaeropsis pyriputrescens sp. nov. Plant Dis 88: 114–118.

    Article  Google Scholar 

  • Xiaojie W, Chunlei T, Jimlong C, Buchenauer H, Jie Z, Qingmei H, Lili H, Zhensheng K (2009) Detection of Puccinia striiformis in latently infected wheat leaves by nested polymerase chain reaction. J Phytopathol DOI 10.1111/j.1439-0434.2008.01521.x

    Google Scholar 

  • Xu ML, Melchinger AE, Lübberstedt T (1999) Species-specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot-blot hybridization and PCR-based assays. Plant Dis 83: 390–395.

    Article  CAS  Google Scholar 

  • Xu X-M, Parry DW, Nicholson P, Thomsett MA, Simpson D, Edwards SG, Cooke BM, Doohan FM, Monaghan S, Moretti A, Tocco G, Mule G, Hornok L, Béki E, Tatnell J, Ritieni A (2008) Within-field variability of Fusarium head blight pathogens and their associated mycotoxins. Eur J Plant Pathol 120: 21–34.

    Article  CAS  Google Scholar 

  • Xue P, Goodwing PH, Annis SL (1992) Pathotype identification of Leptosphaeria maculans with PCR and oligonucleotide primers from ribosomal internal transcribed spacer sequences. 141: 179–188.

    Google Scholar 

  • Yan L, Zhang C, Ding L, Ma Z (2008) Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. J Appl Microbiol 104: 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  • Yao CL, Frederiksen RA, Magill CW (1990) Seed transmission of sorghum downy mildew: detection by DNA hybridization. Seed Sci Technol 18: 201–207.

    Google Scholar 

  • Yao CL, Magill CW, Frederiksen RA (1991) Use of an A-T rich DNA clone for identification and detection of Peronospora sorghi. Appl Environ Microbiol 57: 2027.

    PubMed  CAS  Google Scholar 

  • Yates IE, Hiett KL, Kapczynski DR, Smart W, Glenn AE, Hinton DM, Bacon CW, Meinersmann R, Liu S, Jaworski AJ (1999) GUS transformation of the maize endophyte Fusarium moniliforme. Mycol Res 103: 129–136.

    Article  CAS  Google Scholar 

  • Yin Y, Ding L, Liu X, Yang J, Ma Z (2009) Detection of Sclerotinia sclerotiorum in planta by a real-time PCR assay. J Phytopathol 157; 465–469.

    Article  CAS  Google Scholar 

  • Yoshida S, Tsukiboshi T, Shinohara H, Koitabashi M, Tsushima S (2007) Occurrence and development of Colletotrichum acutatum on symptomless blueberry bushes. Plant Pathology 56: 871–877.

    Article  CAS  Google Scholar 

  • Yu FH, Chiu FS (1998) Analysis of fumonisins and Alternaria alternata toxin by liquid chromatography-enzyme-linked immunosorbent assay. J AOAC Internat 81: 749–756.

    CAS  Google Scholar 

  • Yuan Q, Nian S, Yin Y, Li M, Cai J, Wang Z (2009) Development of a PCR-based diagnostic tool specific to wheat dwarf bunt caused by Tilletia controversa. Eur J Plant Pathol 124: 585–594.

    Article  CAS  Google Scholar 

  • Yuen GY, Craig ML, Avila F (1993) Detection of Pythium ultimum with a species-specific monoclonal antibody. Plant Dis 77: 692–698.

    Article  CAS  Google Scholar 

  • Yuen GY, Xia JQ, Sutula CL (1998) A sensitive ELISA for Pythium ultimum using polyclonal and species-specific monoclonal antibodies. Plant Dis 82: 1029–1032.

    Article  Google Scholar 

  • Zelinger E, Hawves CR, Gurr SJ, Dewey FM (2004) An immunochemical and ultra-structural study of the extracellular matrix produced by germinating spores of Stagonospora nodorum on natural and artificial surfaces. Physiol Mol Plant Pathol 65: 123–135.

    Article  CAS  Google Scholar 

  • Zhang AW, Hartman GL, Riccinoi L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81: 1143–1149.

    Article  CAS  Google Scholar 

  • Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89: 796–804.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang J, Wang Y, Zheng X (2005) Molecular detection of Fusarium oxysporum f.sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol Lett 249: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Geiser DM, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91: 1612–1620.

    Article  CAS  Google Scholar 

  • Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS (2007) A PCR-based assay for detection of Puccinia striiformis f.sp. tritici in wheat. Plant Dis 91: 1669–1674.

    Article  CAS  Google Scholar 

  • Zheng FC, Ward E (1998) Variation within and between Phytophthora species for rubber and citrus trees in China by polymerase chain reaction using RAPDs. J Phytopathol 146: 103–109.

    Article  Google Scholar 

  • Zink AR, Reischl U, Wolf H, Nerlich AG (2002) Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 213: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Zur G, Shimoni E, Hallerman E, Kashi Y (2002) Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay. J Food Protect 65: 1433–1440.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 1: General and Selective Media for Isolation of Fungal Pathogens

A. General media

Czapek Dox agar

Solution A

Sodium nitrate

40 g

Potassium chloride

10 g

Magnesium sulphate (hydrous)

10 g

Ferrous sulfate (hydrous)

0.2 g

Distilled water

1 liter

 

Solution B

Dipotassium hydrogen phosphate

20 g

Distilled water

1 l

(store the solutions A and B separately in a refrigerator)

Prepare the mixture of A and B

Stock solution A

50 ml

Stock solution B

50 ml

Distilled water

900 ml

Sucrose (analar)

30 g

Oxiod agar No.3

20 g

Just before autoclaving add for 1 l

Zinc sulfate (1.0 g/100 ml water)

1.0 ml

Cupric sulfate (0.5 g/100 ml water)

1.0 ml

Malt extract agar

White bread malt extract

20 g

Oxoid agar No.3

20 g

Tap water

1 l

Oat agar

Oat meal ground

30 g

Oxoid agar No.3

20 g

Tap water

1 l

Potato carrot agar

Grated potato

20 g

Grated carrot

20 g

Oxoid agar No.3

20 g

Tap water

1 l

Potato dextrose agar

Potatoes

200 g

Oxoid agar No.3

20 g

Dextrose

15 g

Tap water

1 l

V8 agar

V8 vegetable juice

200 ml

Oxoid agar No.3

20 g

Distilled water

800 ml

B. Selective media

CW medium for Alternaria brassicola (Wu and Chen 1999)

Galactose

30 g

Calcium nitrate

3 g

Dipotassium hydrogen phosphate

1 g

Magnesium sulfate

1 g

Benomyl

100 ppm

Chloramphenicol

100 ppm

Agar

20 g

Distilled water

1 l

Media for Botrytis cinerea (Edwards and Seddon 2001)

(i) Botrytis selective medium

Glucose

2 g

NaNO3

0.1 g

K2HPO4

0.1 g

MgSO4.7H2O

0.2 g

KCl

0.1 g

Chloramphenicol

0.02 g

Maneb 80 (80% manganese ethyl bisdithiocarbamate)

0.02 g

Rose Bengal

0.05 g

Tannic acid

5.0 g

Oxoid agar No.3

20 g

Water

1 l

Adjust the pH to 4.5 using 1M NaOH prior to addition of agar

(ii) Botrytis spore trap medium (BSTM)

Rubigan (12% fenarimol) is used intead of Rose Bengal usedin BSM above

(iii) Diluted supplemented Malt extract agar (dsMEA)

Malt extract broth (Oxoid)

4.0 g

Chloramphenicol

0.2 g

Rose Bengal

0.05 g

Oxoid agar No.3

15 g

Water

1 l

Semi-selective medium for Colletotrichum gloeosporioides (Ekefan et al. 2000)

Basal medium – PDA amended with

Pencycuron

50 mg/l

Tolclofos-methyl

10 mg/l

Streptomycin sulfate

100 mg/l

Chloramphenicol

100 mg/l

Chlortetracycline

100 mg/l

Adjust the pH to 5.0

Komada’s Selective medium for Fusarium spp. (Arie et al. 1995)

K2HPO4

1 g

KCl

0.5 g

MgSO4.7H2O

0.5 g

Fe-EDTA

10 mg

L-asparagine monohydrate

2.0 mg

D-(+) galactose

20 g

Pentachloronitrobenzene (PCNB)

0.75 g (a.i.)

Sodium chlorate

0.5 g

Sodium tetraborate decahydrate

1 g

Chloramphenicol

0.25 g

Agar

15 g

Distilled water

1 l

Fusarium selective (FS) medium for Fusarium circinatum (Schweigkofler et al. 2004)

Bacto peptone

15 g

Agar

20 g

KH2PO4

1 g

MgSO4.7H2O

0.5 g

Streptomycin sulfate

0.3 g

Ampicillin

0.1 g

Pentachloronitrobenzene

0.2 g

PDA

39 g

Water

1 l

R-PDA medium for Gaeumannomyces graminis var. tritici (Duffy and Weller 1994)

Peeled boiled potatoes

40 g

Dextrose

4 g

Agar

18 g

Deionized water

1 l

Add after autoclaving and adjusting the pH to 6.0–6.5

Rifampicin

100 μg/ml

Tolclofos-methyl

10 μg/ml

Appendix 2: Assessment of Vegetative Compatibility Relationships Among Verticillium dahliae Strains (Joaquim and Rowe 1990; Daayf et al. 1995)

A. Generation of nit mutants

  1. (i)

    Prepare monoconidial subcultures of isolates of the test pathogen in small culture vials containing sterilized soil, perlite and peat moss (1:1:1 v/v/v) and store at 5°C.

  2. (ii)

    Cut agar discs (5 mm diameter) using a cork borer from the edge of wild-type colonies of the pathogen growing on potato dextrose agar (PDA); transfer to chlorate minimal medium (CMM) amended with 30 g/l of potassium chlorate kept in petridishes (9 cm diameter) and incubate for 10 days at 25°C.

  3. (iii)

    Cut a small segment (1 cm diameter) from the margin of the chlorate-resistant colony; transfer into a tube containing sterile water (8 ml); agitate well to disperse the conidia from the medium and adjust the conidial concentration to 1 × 104/ml using a hemacytometer.

  4. (iv)

    Dispense aliquots of 50 μl of conidial suspension into petridishes containing CMM; incubate for about 40 h and transfer individual germinated conidia onto minimal medium (MM) placed in the petridishes to select distinct chlorate-resistant monoconidial strains.

  5. (v)

    Observe the colony morphology; thin and expansive mycelium on MM medium indicates the inability to metabolize nitrate; these colonies are considered as nit mutatnts.

B. Characterization of nit mutants

  1. (i)

    Transfer a segment of the mycelium of each chlorate-resistant mutant onto basal medium (MM without nitrogen source) supplemented with one of the following nitrogen sources: (a) sodium nitrate (0.2 g/l), (b) sodium nitrite (0.4 g/l), (c) hypoxanthine (0.5 g/l), or (d) ammonium tartarate (0.8 g/l) buffered with calcium carbonate and examine the growth response of each mutant in each nitrogen source.

  2. (ii)

    Assign nit mutants the phenotype identity as follows:

    1. (a)

      Nit1 mutants – unable to utilize nitrate, but capable of using nitrite, ammonium, hypoxanthine and uric acid.

    2. (b)

      Nit mutants – unable to use nitrate and hypoxanthine, but can use the other three nitrogen sources.

C. Assignment of strains to vegetative compatibility groups (VCGs)

  1. (i)

    Prepare complementary tester strains (Nit1 and NitM) for the strains to be assigned to VCG.

  2. (ii)

    Pair the tester strains with nit mutants by placing a Nit1 or NitM mutant derived from one strain at the center of each plate containing MM; place Nit1 and NitM (derived from a tester strain representing a specific VCG) each 1.0–1.5 cm apart on either side.

  3. (iii)

    Perform pairing twice for each mutant.

  4. (iv)

    Observe the prototrophic growth developing at the mycelial interface between the nit mutant positioned at the center; score the density of growth after 18–24 days of inoculation.

Appendix 3: Media for Generation and Selection of Vegetative Compatibility Groups (VCGs) of Fusarium oxysporum (Correll et al. 1987)

  1. A.

    Basal medium: Sucrose – 30 g; KH2PO4 – 1 g; MgSO4.7H2O – 0.5 g; KCl – 0.5 g; FeSO4.7H2O – 10 mg; agar – 20 g; trace element solution 0.2 ml; water 1,000 ml

    (Trace element solution: ZnSO4.7H2O – 5.0 g; Fe(NH4)2(SO4)2.6H2O – 1.0 g; CuSO4.5H2O – 0.25 g; MnSO4.H2O – 50 mg; H3BO4 – 50 mg; NaMoO4.2H2O – 50 mg; water – 95 ml)

  2. B.

    Complete medium: Basal medium – 1 l; NaNO – 2.0 g; N-Z amine (Sheffield) – 2.5 g; yeast extract (Difco) – 1 g; vitamin solution – 10 ml (Vitamin solution: Thiamine HCl – 100 mg; riboflavin – 30 mg; pyridoxine HCl – 75 mg; D-pantothenate-Ca – 200 mg; p-aminobenzoic acid – 5 mg; nicotinamide – 75 mg; cholineCl – 200 mg; folic acid – 5 mg; D-biotin – 5 mg; myoinositol – 4 mg; ethanol (50%) – 100 ml)

  3. C.

    Minimal medium: Basal medium 1 l; NaNO3 – 2 g

  4. D.

    Minimal agar medium with chlorate (MMC): Minimal medium 1 l; L-asparagine 1.6 g; NaNO3 − 2 g; KClO3 – 15 g

  5. E.

    Potato dextrose agar medium with chlorate (PDC): Potato dextrose broth (Difco) – 24 g; agar – 20 g; KClO3 – 15 g; water – 1,000 ml

Appendix 4: Generation of Antibodies Against Fungi (Banks et al. 1992)

A.Preparation of antigen

  1. (i)

    Prepare spore suspensions using 0.01% Tween 80; wash thrice by centrifugation; inoculate 1 ml of spore suspension (106 spores/ml) into 100 ml of liquid medium supplemented with NaCl (100 g/l) and incubate at 25°C for 7 days in the dark by placing the flask with contents on a rotary shaker.

  2. (ii)

    Transfer the mycelium by filtering into a sintered glass filter; wash with sterile water and then with sterile phosphate-buffered saline (PBS) containing 2.9 g Na2HPO4.12H2O, 0.2 g KH2PO4, 8.0 g NaCl and 0.2 g KCl and 1,000 ml distilled water; freeze overnight at −20°C; thaw and transfer to centrifuge tubes and dry in vacuum dryer.

  3. (iii)

    Collect the mycelium and add 50 ml of liquid nitrogen; mince the mycelium in a blender for 1 min and grind in a mortar with a pestle to a fine powder.

  4. (iv)

    Suspend the mycelial powder in PBS (200 mg in 100 ml); centrifuge at 4,500 rpm (3,000 g) for 10 min at 4°C and divide the supernatant containing soluble nitrogen into 0.5 ml aliquots and store at −20°C.

  5. (v)

    Estimate the total protein content of the antigen preparation.

B. Production of polyclonal antiserum

  1. (i)

    Mix soluble antigen preparation with equal volumes of Freund’s complete adjuvant (Difco) to produce a final protein concentration of the mixture at 1 mg/ml.

  2. (ii)

    Inject rabbits intramuscularly with 1 ml of the mixture at predetermined intervals.

  3. (iii)

    Bleed the animal at 4 weeks after the first injection and subsequently at 14, 16 and 18 weeks.

  4. (iv)

    Separate the serum after completion of clotting of blood cells followed by centrifugation.

C. Production of monoclonal antiserum

  1. (i)

    Mix soluble antigen preparation with an equal amount of Freund’s ­complete adjuvant to yield a final protein concentration of 1 mg/ml.

  2. (ii)

    Inject a BALB/c mouse, after anaesthetization with 0.1 ml of the immunogen intraperitoneally and subsequently at 2, 4, 6 and 8 weeks after the first injection with PBS and remove the spleen after sacrificing the animal by cervical dislocation.

  3. (iii)

    Carry out fusion of splenocytes with selected myeloma cell line (P3-NS-1-Ag4) at a ratio of 1 × 108: 5 × 107 by gentle addition of 2 ml of 30% polyethylene glycol (PEG) (w/v) over 60 s.

  4. (iv)

    Add 10 ml of warm serum-free RPMI 1640 medium (Gibco) over next 60 s with gentle stirring; add another 20 ml of RPMI and centrifuge for 3 min at 400 g at room temperature.

  5. (v)

    Suspend the pellet of cells in 50 ml of growth medium (RPMI 1640) with 20% Myclone fetal calf serum (FCS) (v/v); dispense cell suspension into five 96-well microplates at 100 μl/well.

  6. (vi)

    Add 110 μl of hypoxanthine aminopterin–thymidine (HAT) medium diluted to 1:50 in growth medium to each well in the fusion plates.

  7. (vii)

    Add growth medium + HAT on 2, 4, 7 and 10 days by removing 100 μl of the medium and replacing with 100 μl of fresh medium.

  8. (viii)

    Screen the hybridoma cells for efficiency of antibody production by indirect ELISA procedure.

  9. (ix)

    Clone healthy growing hybridoma twice by limiting dilution in a non-selective medium; preserve by freezing slowly in 7.5% dimethyl sulfoxide (DMSO) and store in liquid nitrogen.

Appendix 5: Detection of Botrytis cinerea by Enzyme-linked Immunosorbent Assay (ELISA) Test (Bossi and Dewey 1992)

A. Preparation of antigen

  1. (i)

    Prepare surface washings of the pathogen (B. cinerea) grown on PDA for 17–20 days at 21°C, using 5 ml/petridish of phosphate-buffered saline (PBS) containing 8.0 g NaCl, 0.2 g KCl, 1.15 g Na2HPO4, 0.25 g KH2PO4, and water 1,000 ml at pH 7.2 and remove the wash suspension by suction.

  2. (ii)

    Centrifuge the wash fluid for 3 min at 13,000 g to remove the fungal debris and dilute the supernatant with PBS to have tenfold dilutions.

  3. (iii)

    Remove the high MW carbohydrates and glycoproteins by passing the cell-free wash fluid through a Centricon 30-kDa filter (Amicon No. 4208) to prevent induction of nonspecific antibodies; freeze-dry the ­filtrate and redissolve the contents in 1 ml of distilled water and use it as the antigen.

B. Enzyme-linked immunosorbent assay (ELISA)

  1. (i)

    Coat the wells (in triplicate) in the 96-well microtiter plates with PBS surface washing fluid (50 μl/well) overnight and wash the wells four times allowing two min for each washing followed by a brief washing with distilled water.

  2. (ii)

    Air-dry the plates in a laminar flow hood and seal them in a polythene bag and store at 4°C.

  3. (iii)

    Incubate the plates successfully with hybridoma supernatants for 1 h, then with a 1/200 dilution of a commercial goat antimouse polyvalent (IgG + IgM) peroxidase conjugate and finally with PBS with 0.05% Tween-20 (PBST) for 1 h more.

  4. (iv)

    Add the substrate solution containing tetramethyl benzidine (100 μg/ml) for 30 min.

  5. (v)

    Maintain the controls incubated tissue culture medium containing 5% fetal bovine serum (FBS) in place of hybridoma supernatant.

  6. (vi)

    Stop the reaction by adding 3 M H2SO4 (50 μl/well); determine the intensity of color developed in each well using ELISA reader at 450 nm.

  7. (vii)

    Absorbance levels more than three times greater than those of controls indicate positive reaction and presence of antigen protein.

Appendix 6: Quantitative Detection of Mycosphaerella fijiensis by Triple Antibody Sandwich (TAS)-ELISA (Otero et al. 2007)

A. Preparation of antigens

  1. (i)

    Cultivate the fungal pathogen in appropriate medium under optimal growth conditions required; transfer the mycelial disks from the nutrient medium to 250 ml tissue culture flasks containing 50 ml of sterile potato dextrose broth (Difco) and incubate for 3–7 days at room temperature.

  2. (ii)

    Transfer the mycelial suspensions aseptically to 250 ml flasks; incubate with shaking (80 rpm) at 26°C and harvest the mycelia using cellulose filters in a Buchner funnel under vacuum.

  3. (iii)

    Dry the harvested mycelia (10 g) of 18 days old; mince in liquid nitrogen and resuspend the homogenate in protein extraction buffer containing 50 mM Tris HCl, pH 8.0, 1 mM phenylmethane sulphonyl fluoride (PMSF), 2 mM ethylenediaminetetraacetic acid (EDTA) and 2 mM 1-4-dithio-DL-threitol under agitation at room temperature.

  4. (iv)

    Precipitate the protein at 80% ammonium sulfate followed by destalting (Sephadex G-25) into phosphate-buffered saline (PBS) and determine the protein contents of the samples by the Coomassie method (Bradford 1976).

  5. (v)

    Prepare the secreted protein antigen from the metabolized pathogen culture suspension media by concentration, precipitation at 80% ammonium sulfate and dialysis against PBS and determine protein content of the sample as done earlier (step iv).

  6. (vi)

    Prepare the antigens from the leaves by washing with distilled water; cut them into fragments; powder the fragments (10 g) using liquid nitrogen followed by mixing (1:3 w/v) with alkaline extraction buffer containing Tris (50 mM), EDTA (10 mM), ascorbic acid (0.2%), sodium chloride (150 mM), 2-mercaptoethanol (20 mM), PMSF (0.57 mM), Tritox X-100 (1.5%, pH 7.5); keep the mixture at 4°C for 1 h; centrifuge at 2,000 × g for 10 min; precipitate the protein at 80% ammonium sulfate; dialyze against PBS and estimate the protein content as done earlier (step iv).

B. Preparation of polyclonal antiserum

  1. (i)

    Emulsify mycelial antigen preparation (100 μg) in 2 ml of complete Freund’s adjuvant (Sigma) and inject into female New Zealand adult rabbits subcutaneously and inject the same dose of antigen emulsified in incomplete Freund’s adjuvant (Sigma) at 2-week interval until the titer rises to 1:32 by Ouchterlony double immunodiffusion method.

  2. (ii)

    Bleed the animal; precipitate at 50% ammonium sulfate, desalt and fractionate on a matrix of diethyl aminoethyl Sepharose (Amersham-Bioscience) to have suitable IgG fraction.

  3. (iii)

    Determine the protein content following bicinchroninic acid method (Smith et al. 1985).

C. Preparation of monoclonal antiserum

  1. (i)

    Immunize 6–8 weeks old female BALB/c mice by intraperitoneal route with 50 μg of mycelial antigen in 1:1 (v/v) emulsion of complete Freund’s adjuvant (Sigma) and PBS and administer subsequent doses of mycelial antigen (50 μg) emulsified with incomplete Freund’s adjuvant (1:1 v/v) and PBS by subcutaneous route at 2 and 4 weeks after initial immunization.

  2. (ii)

    Obtain serum before and at 2 weeks after each immunization and analyze for antibodies reacting to pathogen mycelial antigen and assess the antibody response using an indirect ELISA.

  3. (iii)

    Give booster injection by intravenous route to the mouse with the highest antibody titer, with 25 μg of antigen in PBS; sacrifice the mouse by CO2 asphyxiation and remove the spleen.

  4. (iv)

    Follow the polyethylene glycol-based procedure for fusion of spleen cells with murine plasmacytoma cells Sp. 2/0-Ag 14 (ATCC No. CRL-1581) and identify positive clones by evaluating the supernatant using indirect ELISA method, using hybridoma culture medium.

  5. (v)

    Clone the hybridoma-producing antibody reactive to both mycelial and secreted antigens of the fungal pathogen using limiting dilution to recover homogeneous hybridoma cell line.

  6. (vi)

    Inoculate the selected hybridoma (2H6H8) into BALB/c mice by intraperitoneal route; collect the ascetic fluid and purify the antibody using affinity chromatography in a Protein G Sepharose Fast Flow (Amersham-Biosciences) column as per the manufacturer’s recommendations.

  7. (vii)

    Dialyze the antibody against PBS and determine the protein concentration as done earlier (Step B. iii); sterilize the antibody solution by filtration through a 0.22 μm nitrocellulose membrane.

D. Double antibody sandwich (DAS)-ELISA test

  1. (i)

    Coat the microtiter plates with 100 μl of a solution containing 10 μg/ml of the target pathogen in carbonate–bicarbonate buffer pH 9.6 and incubated at 4°C for 16 h.

  2. (ii)

    Wash the plates thrice with PBS-T after completion of the incubation period; block the wells using 3% BSA in PBS for 1 h to prevent nonspecific binding; dispense PAb solution (50–200 μg/ml) diluted in PBS-T solution to the antigen coated wells and incubate at 37°C for 1 h.

  3. (iii)

    Wash the wells as done before; transfer a 1:10,000 dilution of alkaline phosphatase-conjugated goat anti-rabbit antibody (Sigma) to the wells and incubate for 1 h.

  4. (iv)

    Add p-nitrophyenyl phosphate disodium hydrate in diethanolamine buffer, pH 9.8 and determine absorbance at 405 nm, after stopping the reaction by adding concentrated sulfuric acid.

E. Triple antibody system (TAS)-ELISA test

  1. (i)

    Coat the microplates with 100 μl of a solution containing 10 μg/ml of MAb recognizing the mycelial antigen in carbonate-bicarbonate buffer, pH 9.6; incubate for 16 h at 4°C; wash the plates thrice with PBS-T after completion of incubation period.

  2. (ii)

    Block the wells as done before (step D iii); dilute the antigen (1.25–40 μg/ml) in the blocking solution and transfer to the wells and incubate for 2 h at 37°C.

  3. (iii)

    Dispense 20 μg/ml of the second antibody PAb (anti-pathogen) and follow other steps as in DAS-ELISA test.

Appendix 7: Detection of Resting Spores of Plasmodiophora brassicae in Plant Tissues by ELISA (Orihara and Yamamoto 1998)

A. Preparation of immunogen

  1. (i)

    Homogenize club root-infected roots and hypocotyls (850 g) in distilled water for 5 min using a blender; filter the homogenate through eight layers of gauze; centrifuge the filtrate at 3,000 rpm for 20 min; resuspend the pellet in distilled water and repeat centrifugation cycle five times.

  2. (ii)

    Prepare a sucrose density column (with 20% and 40% sucrose solutions) in a transparent centrifuge tube; overlayer the final suspension containing resting spores and plant cell debris on sucrose gradient column and centrifuge at 3,000 rpm for 20 min.

  3. (iii)

    Collect the layer containing resting spores; wash with distilled water five times and store at −20°C.

B. Preparation of antiserum

  1. (i)

    Inject the rabbit intramuscularly with 0.5 ml of immunogen preparation (6 × 107) purified resting spores/ml of 0.85% NaCl solution); inject again intramuscularly with a mixture of 1 ml of immunogen and 1 ml of Freund’s complete adjuvant after an interval of 2 weeks; administer additional dose of immunogen (0.5 ml containing 5.4 × 107 resting spores/ml) intravenously.

  2. (ii)

    Collect the blood serum after a rest period of 2 weeks; purify the antibodies by ammonium sulfate preparation and DEAE-cellulose column chromatography.

C. Indirect ELISA

  1. (i)

    Collect the club root-infected roots and hypocotyls and similar healthy tissues and store at −20°C; homogenize the samples separately in distilled water for 5 min; filter as done earlier (step A i above) and adjust the spore concentration to 1 × 106 spores/ml and dilute healthy samples to the same volume.

  2. (ii)

    Suspend the sample extracts in coating buffer (carbonate) and dilute to required level and transfer 200 μl of each sample to two wells of microtiter plates and incubate overnight at 4°C.

  3. (iii)

    Wash the wells thrice with PBS-containing polyvinyl pyrrolidone (2%) and BSA (2%) and incubate for 1 h at room temperature.

  4. (iv)

    Dispense to each well PBS containing 2 μg/ml of anti-resting spore IgG; incubate at 37°C for 4 h and wash the wells as done earlier.

  5. (v)

    Add PBS containing goat anti-rabbit IgG-alkaline phosphate conjugate at a dilution of 1/2,000; incubate for 4 h at 37°C and wash the wells as done earlier.

  6. (vi)

    Add 1 ml of diethanolamine (10%), pH 9.8 containing p-nitrophenyl phosphate (enzyme substrate) to each well; incubate for 5 min at 37°C in the dark and record the absorbance values at 405 nm using an ELISA reader.

D. Dot immunobinding assay (DIBA)

  1. (i)

    Spot the samples of 2 μl onto a 40 cm2 nitrocellulose membrane sheet (Trans-Blot, BIO-RAD, USA); air dry and block nonspecific binding sites by immersing the membrane in a buffer solution consisting of 20 mM Tris-HCl, 500 mM NaCl, and 0.05% Tween-20, pH 7.5 (TTBS), 2% polyvinyl pyrrolidone (PVP) and 2% BSA.

  2. (ii)

    Treat the membrane with 0.1–0.2 μg/ml of anti-resting spore IgG in TTBS containing 2% PVP and 0.2% BSA (TTBSPB) for 1 h at room temperature.

  3. (iii)

    Treat the membrane with alkaline phosphatase conjugated goat anti-rabbit IgG in TTBSPB for 1 h and then with buffer consisting of 0.1 M Tris-HCl, 0.1 M NaCl and MgCl2, pH 9.5 containing 0.33 mg/ml of nitroblue tetrazolium substrate and 5-bromo-4-chloro-3-indolyl phosphate p-toluidine salt prediluted with N,N-dimethylformamide.

Appendix 8: Detection of Fusarium spp. by Direct Tissue Blot Immunoassay (DTBIA) (Arie et al. 1995; Arie et al. 1998)

  1. (i)

    Prepare cross sections of stems of infected plants (3 mm thick); place them on nitrocellulose membrane (0.45 μm, pore size) (Trans-Blot Transfer Medium, BIO-RAD USA) saturated with Tris-buffered saline (TBS), pH 7.0 for 10–30 min for direct tissue blotting.

  2. (ii)

    Immerse the membrane in a blocking solution containing fetal calf serum (FCS) (10% v/v) and BSA 1.0% w/v) in TBS (FB-TBS) for 1 h at room temperature.

  3. (iii)

    Incubate with specific MAb (AP 19–2) diluted in FB-TBS for 1 h at room temperature and wash the membrane thrice in TBS containing Tween-20 (0.1%) (TBST).

  4. (iv)

    Incubate the membrane with a mixture of biotinylated anti-mouse IgM-goat IGg, diluted to 1:500 in FB-TBS and horseradish peroxidase-avidin D ­conjugates (diluted 500 times) for 1 h at room temperature.

  5. (v)

    Wash the membrane with TBST for 5 min and repeat washing twice; immerse the membrane in substrate solution containing 4-chloro-1-naphthol and 0.02% hydrogen peroxide (v/v).

  6. (vi)

    Observe for the development of blue color indicating positive reaction.

Appendix 9: Detection of Fusarium spp. in Tomato by Immunofluorescence Assay (Arie et al. 1995)

  1. (i)

    Cut transverse sections (3 cm diameter, 0.3 mm thick) from fresh stem, crown or root of test plants using a sharp razor blade.

  2. (ii)

    Immerse the sections in blocking solution containing 1% gelatin and 10% BSA in 0.1 M phosphate buffered saline (PBS, pH 7.0) for 2 h at room temperature.

  3. (iii)

    Soak the sections in the MAb (AP19-2) solution diluted in PBS containing 0.1% Tween-20 (PBST) for 2 h at room temperature and then wash the sections thrice in PBST.

  4. (iv)

    Incubate the sections with fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgM diluted 500 times with PBST for 2 h at room temperature.

  5. (v)

    Observe the sections under a reflecting fluorescence microscope (BHS-RF-A, Olympus, Japan) by ß-excitation.

Appendix 10: Detection of Polymyxa graminis by Fluorescent Antibody Technique (FAT) (Delfosse et al. 2000)

  1. (i)

    Prepare root fragments (∼5 mm long) from healthy and infected plants; fix them in 3% glutaraldehyde (in 0.1 M phosphate buffer, pH 7.2 prepared under vacuum); wash in phosphate buffer; dehydrate in graded series of ethanol and embed in epoxy resin (Ladd Research Industries, USA).

  2. (ii)

    Cut transverse sections (∼8 μm thick) of embedded fragments; transfer to glass multispot slides and heat briefly on a hot plate at 50°C for the sections to adhere to the glass.

  3. (iii)

    Conjugate GAR-IgG (Sigma R-3128, Sigma Chemical Co., USA) with fluorescein 5-isothiocyanate (FITC) (Sigma F-7250) by the procedure detailed below.

  4. (iv)

    Dissolve 15 mg FITC in 1 ml of dimethyl sulfoxide (Sigma D-2650) and mix with 14 ml of 0.1 M sodium carbonate buffer, pH 9.6; dissolve one mg of GAR-IgG in 1 ml of carbonate buffer; dialyze against 15 ml of FITC solution overnight in cold room and remove excess FITC by dialysis against PBS.

  5. (v)

    Cross-absorb crude antiserum against the pathogen (P. graminis) with an equal volume of healthy sorghum root extract (dried roots at 0.4% w/v) prepared in conjugate buffer; remove the immuoprecipitate by centrifugation and repeat the cross-absorption process three times.

  6. (vi)

    Extract IgG for the pathogen from the supernatant with neutral ammonium sulfate and use at a concentration (100 μg/ml).

  7. (vii)

    Stain the thin sections in glass multispot slides using 20 μl of reagent/window in each step; soak sections in PBS-Tween containing 10% low fat milk (blocking buffer) for 1 h at 37°C and wash the sections under a gentle stream of distilled water.

  8. (viii)

    Soak the slides in pathogen IgG for 3 h at 37°C or overnight at 5°C prepared in blocking buffer and wash the sections in distilled water.

  9. (ix)

    Add FITC-labeled GAR-IgG at a dilution of 1:20 prepared in blocking buffer; incubate for 3 h at 37°C and wash the sections in distilled water.

  10. (x)

    Mount the sections in 90% glycerol in 0.1 M PBS; examine under the microscope with a provision for epifluorescence and photograph the desired tissues of healthy and infected roots for inference, using a Kodak 400 ASA color reversal film at a magnification of × 80 or × 100.

Appendix 11: Detection of Botrytis cinerea by Protein A-Gold Labeling Technique (Svircev et al. 1986)

A. Immunogen preparation

  1. (i)

    Separate the mat of mycelia and spores; treat with 0.5% formalin; centrifuge the suspension of fungal cells at 1,700 g for 10 min; resuspend the pellet in distilled water; repeat washing and centrifugation cycle three times and resuspend the mycelial mass in 2 ml of Freund’ complete adjuvant to have a concentration of 106 cells/ml.

  2. (ii)

    Adminster the fungal preparation intramuscularly followed by the booster dose (second injection ) after an interval of 2 weeks.

  3. (iii)

    Collect the blood, separate the antiserum after centrifugation and store at −20°C.

B. Preparation of proteina-gold label

  1. (i)

    Prepare the colloidal gold particles (15 mm diameter) by adding 4 ml of aqueous sodium citrate (1%) to 100 ml of a boiling solution of chloroauric acid (0.01); cool the mixture for 5 min until a wine red color develops and store at 4°C in the dark.

  2. (ii)

    Prepare the protein A-gold complex by adjusting the pH of colloidal gold suspension (10 ml) to pH 6.9 using potassium carbonate and add 0.3 ng protein A (Sigma, USA) in 0.2 ml of distilled water.

  3. (iii)

    Centrifuge at 48,000 g at 4°C to remove the excess unbound protein A.

  4. (iv)

    Resuspend the dark red protein A-gold pellet in 10 ml of 0.01 M PBS, pH 7.4 and store at 4°C.

Protein A-gold label may be stable for 6–8 weeks.

C. Protein A-gold labeling

  1. (i)

    Float thin sections of plant tissue to be tested onto a saturated sodium periodate solution to remove osmium tetroxide used as a fixative for 2–3 min.

  2. (ii)

    Wash the sections with distilled water three times and treat with 1% ovalbumin for 5 min to block non-specific binding sites.

  3. (iii)

    Float the sections on drops of specific antiserum placed on coated electron microscope grids and wash the sections thoroughly by passing the grids through a series of water drops.

  4. (iv)

    Treat the sections with protein A-gold solution for 30 min; wash with drops of water as done earlier and stain with 3% uranyl acetate for 20 min.

  5. (v)

    Examine the grids under the electron microscope.

Appendix 12: Detection of Fungal Pathogens with DNA Probes (Tisserat et al. 1991)

  1. (i)

    Transfer 200–400 mg of infected plant tissues in a 1.5 ml microfuge tube; freeze by adding liquid nitrogen and grind with smooth lipped steel rod.

  2. (ii)

    Suspend the macerate in 600 μl 2 × CTAB buffer (2 × CTAB = 1.4 M NaCl, 2% hexadecyl triethyl ammonium bromide, 1% 2-mercaptoethanol, 10 mM Tris-HCl, pH 8.0 and extract with chloroform.

  3. (iii)

    Precipitate by adding 0.8 volume of isopropanol and resuspend the pelleted DNA in 40 μl TE buffer (TE = 10 mM Tris, pH 7.6; 1 mM EDTA).

  4. (iv)

    Denature DNA at 95°C for 4 min; transfer 20 μl to a nylon membrane in a slot-blot apparatus and bake at 80°C for 2 h.

  5. (v)

    Hybridize with as for Southern hybridizations.

Appendix 13: Identification of Fungal Pathogens by Repetitive DNA Polymorphism (Panabieres et al. 1989)

A. Fungal DNA preparation

  1. (i)

    Cultivate the target fungus in an appropriate medium; harvest the cultures by filtration on filter paper under vacuum; rinse the mycelia in 250 ml of distilled water and store by freezing.

  2. (ii)

    Grind the frozen mycelium (250 mg) in liquid nitrogen; suspend the powdered mycelium in 0.5 ml of NIB buffer containing 100 mM NaCl, 30 mM Tris-HCl, pH 8.0; 10 mM ß-mercaptoethanol; 0.5% NP-40 9v/v) and centrifuge for 1 min at 12,000 g.

  3. (iii)

    Resuspend the pellet in NIB buffer; repeat the procedure in (ii) above; resuspend the pellet in 0.8 ml of homogenization buffer consisting of 0.1 M NaCl, 0.2 M sucrose and 10 mM EDTA; add 0.2 ml of lysis buffer containing 0.25 M EDTA; 0.5 M Tris, pH 9.2 and 2.5% sodium dodecylsulfate and incubate at 55°C for 30 min.

  4. (iv)

    Extract twice with one volume of phenol-chloroform isoamyalcohol (50:48:2) and then with one volume of ether.

  5. (v)

    Add one volume of ethanol; centrifuge for one min in a microcentrifuge at room temperature and collect the DNA as pellet.

  6. (vi)

    Wash the pellet with 70% ethanol; centrifuge again; resuspend in 50 μl of TE (10 mM Tris, pH 8.0; 1 mM EDTA) and store at −20°C.

B. Digestion of DNA and electrophoresis analysis

  1. (i)

    Digest 5 μg of total DNA overnight with 20 units of restriction enzyme as per the manufacturer’s instruction.

  2. (ii)

    Separate DNA fragments on 1% agarose gels at 5 V/cm in 90 mM Tris borate buffer, pH 8.3.

  3. (iii)

    Stain the gels with ethidium bromide; view under UV light.

Appendix 14: Rapid Extraction of DNA from Fusarium oxysporum (Plyler et al. 1999)

  1. (i)

    Remove 1-cm2 block of fungal growth from the colony edge of single-spore cultures; place the mycelium in a 1.5-ml Eppendorf tube containing 150 μl Tris-EDTA (TE) buffer and grind the mycelium using sterile wooden sticks.

  2. (ii)

    Place the tubes in liquid nitrogen for 3–4 min; thaw the tubes in a water bath at 22°C for 5 min; return the tube to liquid nitrogen followed by thawing at 22°C and repeat the cycle three or four times.

  3. (iii)

    Place the tubes at 65°C in a water bath for 15 min; centrifuge at 11,500 g for 10 min; transfer the supernatant to new Eppendorf tube; add an equal volume of chloroform-octanol (24:1) to the supernatant and mix the contents by ­vigorous shaking.

  4. (iv)

    Centrifuge at 12,000 g for 10 min and dilute the contents by tenfold for use in PCR assays. If necessary adopt the following additional steps for further purification.

  5. (v)

    Mix 24 μl of the supernatant with 16 μl of isopropanol in a separate tube to precipitate DNA; centrifuge for 5 min and drain isopropanol from the tubes.

  6. (vi)

    Add 16 μl of 70% ethanol to wash the pellet; centrifuge for 5 min; dry the pellet under a laminar flow hood; resupend the pellet in 2 μl TE buffer and use it for PCR amplification.

Appendix 15: Extraction of Genomic DNA from Claviceps sp. by Magnetic Separation (Scott Jr et al. 2002)

  1. (i)

    Cultivate the fungus (Claviceps africana) in YM broth (Difco) at 22°C in darkness and lyophilize the mycelium.

  2. (ii)

    Grind 5–10 mg of lyophilized mycelium to a fine powder in liquid nitrogen; resuspend the ground material in 250 μl of DNA X –TractTM solution 1 (D2 BioTechnologies Inc., USA); mix the suspension with an equal volume of DNA X-TractTM solution 2 (high salt buffer) in a 1.5 ml microfuge tube and add 500 μl of chloroform/isoamyl alcohol (24:1).

  3. (iii)

    Vortex the mixture vigorously; centrifuge at 10,000 g for 5 min; transfer the aqueous phase to a new tube; mix the suspension with 250 μl of DNA X TractTM precipitation solution and 250 μl of DNA X-TractTM solution 3 and incubate for 30 min on ice.

  4. (iv)

    Precipitate the DNA by centrifuging at 10,000 g for 15 min in a microcentrifuge and save the pellet.

  5. (v)

    Resuspend the maganetic particles (Dynabeads, DNA Direct System Dynal Inc., USA) by gentle swirling to get a homogenous dispersion of magnetic microparticles in solution and equilibrate to room temperature as per manufacturer’s instructions.

  6. (vi)

    Transfer 200 μl of magnetic particle solution to a sterile 1.5 ml microcentrifuge tube and place the tube in a magnetic stand (Dynal MPC) to allow the magnetic particles to complex to the sides of the tube and transfer the supernatant, after 2 min, to the tube containing the pellet of DNA (step iv above).

  7. (vii)

    Resuspend the pellet by flicking and breaking up with a pipette tip; transfer back the contents to the tube containing the magnetic microparticles (step vi above) and incubate the magnetic microparticles-DNA mixture for 10 min at room temperature.

  8. (viii)

    Place the tube again in the magnetic stand to allow the DNA-magnetic microparticle complex to aggregate to the sides of the tube and carefully pipette out the supernatant solution.

  9. (ix)

    Resuspend the complex in 200 μl of washing buffer; place the tube in the magnetic stand; allow it stand till the supernatant becomes clear and repeat washing once again.

  10. (x)

    Resuspend the complex in 30 μl of resuspension buffer and use the suspension either directly or after dilution (1:10) in PCR reactions.

  11. (xi)

    Alternatively, elute the DNA by incubation at 65°C for 5 min and place the tube in the magnetic stand to allow the magnetic microparticles to complex to the sides of the tube.

  12. (xii)

    Transfer the supernatant containing the DNA to new tube for use in PCR.

Appendix 16: Extraction of DNA from Fungal Cultures (Griffin et al. 2002)

  1. (i)

    Grow the test fungal pathogen in suitable medium; transfer 1 ml of culture suspension to a sterile cryogenic storage tube containing 200 μl of sterile glycerol and store at −70°C.

  2. (ii)

    Streak out the fungus onto plates containing R2A agar (Fisher Scientific, USA) and incubate for 2 days at room temperature.

  3. (iii)

    Transfer the fungal tissue (∼2.5 mg) from each isolate/species in a sterile 1.5 ml microcentrifuge tube and add to each tube 400 μl of AP1 buffer (DNeasy Plant Mini Kit, Qiagen) and 4 μl RNase (supplied with the kit).

  4. (iv)

    Apply freeze/thaw cycle to lyse fungal cells using crushed ice/ethanol and a boiling water bath; repeat the cycle seven times and boil for 30 min in a water bath, after the last cycle of freeze/thaw cycle.

  5. (v)

    Use a sterile 1 ml micropipette tip to grind any visible tissue in the tubes briefly (5 s) between the tip and conical bottom of the microcentrifuge tube.

  6. (vi)

    Follow DNeasy Plant Mini Kit ‘Protocol for Appendix 1 of DNA from plant tissue procedure starting with step 4 (add 130 μl of buffer AP2…).

  7. (vii)

    Elute the DNA in 50 μl buffer AE and use 5 μl of diluted DNA for PCR amplification.

B. Bead-beating extraction of fungal DNA

  1. (i)

    Streak the isolates from storage (−70°C) onto plates containing R2A agar and incubate for 2 days at room temperature.

  2. (ii)

    Transfer the fungal tissue (2.5 mg) of each isolate/species to sterile 2 ml cryogenic/microcentirfuge tubes fitted with an O-ring; add to each sample 400 μl AP1 buffer (DNeasy Plant Mini Kit) and 4 μl of RNase A (from the kit); transfer sterile glass bead (∼100 μl, 0.1 mm diameter) (BioSpec Products Inc., USA) and load the tubes in a Mini-BeadBeater-8 (BioSpec Products).

  3. (iii)

    Allow the beater to work for 2 min at maximum speed and repeat the bead-beating/cooling cycle twice.

  4. (iv)

    Centrifuge the samples for 10 min at 14,000 rpm in microcentrifuge.

  5. (v)

    Transfer the supernatant fluid from each tube separately to sterile 1.5 ml microcentrifuge tubes.

  6. (vi)

    Perform DNeasy Plant Mini Kit-Protocol for Appendix 1 of DNA from plant tissues procedure starting from step 4 (add 130 μl of buffer AP2).

  7. (vii)

    Elute the DNA in 50 μl buffer AE and use 5 μl of eluted DNA in PCR assay.

Appendix 17: Extraction of Genomic DNA from Phytophthora spp. (Lamour and Finley 2006)

A. Growing and disruption of pathogen mycelium

  1. (i)

    Use appropriate medium kept in petridishes for multiplication of the target pathogen and after the required incubation period gently scrap the mycelium from the top surface of the medium.

  2. (ii)

    Dispense 1 ml of PARP-V6 broth amended with 25 ppm pimaricin, 100 ppm ampicillin, 25 ppm rifampicin and 25 ppm pentachloronitrobenzene (PCNB) into each of the 24-deepwell (DW) Uniplate microtitter plates (Whatman Inc., USA) containing 10-ml wells; transfer wefts of mycelium scrapped from culture plates; cover the plates with ryan breathable tape and incubate the plates for 6 days at room temperature.

  3. (iii)

    Dispense the glass balls using a Millipore dry dispensing plate; transfer the pathogen colonies developing into a 96-well 2-ml DW plate containing three 3 mm glass balls/well; cover the plates with Aeraseal ryon breathable tape (PGC Scientifics, USA) and freeze the contents at −80°C for at lease 1 h.

  4. (iv)

    Lyophilize the samples for a period of 48 h; use the Labconco stoppering tray drying systems (STDS) (Labconco Corp., USA) with incubation chamber at 0°C for 24 h, followed by 24 h with incubation at 23°C.

  5. (v)

    Remove the samples from the chamber and apply a capmat immediately to deepwell plates with a capmat applicator (CMA) (Fisher Scientific).

  6. (vi)

    Disrupt the samples with MM 300 for a total of 2 min on the highest setting of 30 rpm; rotate the 96-well deepwell plate 180°, after bashing 1 min and bash again for an additional minute.

B. Extraction of DNA (Adatation of Qiagen DNeasy 96 Plant Kit)

  1. (i)

    Centrifuge the plates containing pulverized dried mycelium at 4,600 g for 5 min and remove the capmat carefully.

  2. (ii)

    Transfer a total of 400 μl of lysis cocktail containing 100 mM Tris, pH 8.0, 50 mM EDTA, 500 mM NaCl, 1.33% SDS with 0.8% Fighter F antifoaming agent (Loveland Industries, Colorado, USA) and 0.2 mg/ml RNase A to each well using the Apricot and apply a new capmat.

  3. (iii)

    Agitate vigorously by inverting the plate five to ten times and incubate them in a 65°C chamber for 20 min.

  4. (iv)

    Centrifuge the plates at 4,600 g for 2 min; gently remove the capmat; add 150 μl of 5 M potassium acetate using the Apricot and apply a new capmat.

  5. (v)

    Agitate the inverted plates vigorously five to ten times; incubate at −20°C for 30 min to overnight and centrifuge the plates at 4,600 g for 30 min.

  6. (vi)

    Transfer 400 μl of the supernatant to a new 2 ml DW plate containing 600 μl of a 0.66 M guanidine hydrochloride and 6.33% ethanol solution using the Apricot (Handle hazardous guanidine chloride carefully and use mask for eye protection) and apply a new capmat.

  7. (vii)

    Agitate the plates as done earlier to mix the solution; transfer 1 ml of the mixture to a Nunc spin column plate (Nalge Nunc Inc., NY, USA) sitting on a 2 ml DW plate and centrifuge at 4,600 g for 5 min.

  8. (viii)

    Discard the flow through; wash the membrane by adding 500 μl wash solution consisting of 10 mM Tris, pH 8.0, 1 mM EDTA, 50 mM NaCl and 67% ethanol and centrifuge at 4,600 g for 5 min.

  9. (ix)

    Wash the membrane again by adding 500 μl of 95% ethanol; centrifuge at 4,600 g for 5 min and incubate the spin column plate at 65°C for 5 min to dry the membrane.

  10. (x)

    Add 200 μl of 10 mM Tris, pH 8.0, to each well using the Apricot and incubate plates at room temperature for 30–60 min.

  11. (xi)

    Elute the DNA into a clean 1 ml DW plate by centrifuging at 4,600 g for 2 min and assess the quality of DNA by separation on a 1% agar gel.

Appendix 18: Rapid PCR-Based Method for the Detection of Fungal Pathogen (Harmon et al. 2003)

A. Extraction of DNA of fungal pathogen

  1. (i)

    Grow the fungal pathogen (Magnaporthe oryzae) in appropriate medium (V 8 juice agar, Campbell Soup Co. USA) and maintain the culture conditions that favor optimal growth.

  2. (ii)

    Grind the mycelium in liquid nitrogen; suspend in 0.4 ml of phenol and 0.8 ml of fungal genomic DNA extraction buffer (100 mM LiCl, 10 mM EDTA, 10 mM Tris, pH 8.0, 0.5% SDS and 0.1% ß-mercaptoethanol) in tubes and incubate for 5 min at 60°C.

  3. (iii)

    Agitate the tubes gently; allow them to cool; add 0.4 ml of chloroform/isoamyl alcohol (24:1 v/v) and centrifuge at 16,000 g for 10 min.

  4. (iv)

    Extract 0.7 ml of the upper phase with an equal volume of chloroform/isoamyl alcohol (24:1, v/v); separate the upper phase and precipitate DNA with 1.0 ml of cold ethanol containing 150 mM sodium acetate.

  5. (v)

    Allow the pellet to dry for 5 min and dissolve in 0.5 ml of TE buffer ( 1 mM EDTA,10 mM Tris, pH 8.0).

  6. (vi)

    Treat with RNase (50 μg); extract with phenol/chloroform and precipitate with ethanol; dissolve the pellet in 0.1 ml of TE buffer, pH 8.0; determine the DNA contents spectrophotometrically and adjust the final concentration to 50 ng/μl.

B. Extraction of DNA from plant tissues

  1. (i)

    Place the pieces of infected leaf blades in 1.5 ml Eppendorf tubes; add sufficient extract solution (100 μl) (from the Extract-N-Amp Kit, Sigma Chemical Co. USA) to cover the leaf tissues and incubate for 10 min at 95°C.

  2. (ii)

    Add equal volume of dilution solution (from the kit); homogenize the sample in the tube using a polypropylene pestle; place in ice and dilute 5 μl aliquot tenfold in sterile distilled water.

C. PCR amplification and detection of diagnostic amplicon

  1. (i)

    Use primers pfh2a and pfh2b capable of amplifying the 687-bp region of the Pot2 transposon.

  2. (ii)

    Perform PCR in a 50 μl rection mixture with DNA Taq polymerase (Promega, Madison, USA) and purify genomic DNA from pathogen isolates.

  3. (iii)

    Perform PCR for plant samples in a 20 μl reaction mixture from the kit in a DNA thermal cycler (Perkin Elmer Cetus, CT, USA).

  4. (iv)

    PCR program consists of initial denaturation of 2 min at 94°C; 30 cycles of 45 s denaturation at 94°C; 45 s of annealing at 55°C; 45 s of extension at 72°C and final extension at 72°C for 10 min.

  5. (v)

    Resolve the amplicon after electrophoresis in a 1% agarose gel; stain for 10 min in an ethidium bromide solution (10 μg/ml) and visualize the bands with UV light.

  6. (vi)

    Use photoimaging system (Stratagene, CA, USA) for getting gel images.

Appendix 19: Detection of Powdery Mildew Pathogens by PCR-mediated Method (Chen et al. 2008)

A. Extraction of DNA from obligate fungal pathogens

  1. (i)

    Scrape fungal mycelium from diseased leaf tissues; transfer into 2-ml microfuge tube; freeze the mycelium in liquid nitrogen and grind it into a powder using a plastic pestle.

  2. (ii)

    Add 700 μl of lysis buffer containing 50 mM Tris-HCl, pH 7.2, 50 mM EDTA, pH 7.2, 3% SDS, 1% mercaptoethanol; vortex the contents and heat in a water bath at 65°C for 1 h.

  3. (iii)

    Extract DNA solution; mix well with 700 μl of phenol/chloroform; centrifuge at 12,000 × g for 10 min; separate the upper phase; mix with 500 μl of chloroform and centrifuge at 12, 000 × g for 4 min.

  4. (iv)

    Transfer the aqueous phase into a new 1.5 ml Eppendorf tube; add 50 μl of 3 M sodium acetate and 500 μl of isopropanol and centrifuge at 12, 000 × g for 20 min.

  5. (v)

    Was the DNA pellet with 500 μl of 70% ethanol and centrifuge at 12, 000 × g for 20 min.

  6. (vi)

    Air-dry the DNA pellet; dissolve in 0.5 ml of TE buffer containing 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 to have a concentration of ∼200–500 μg /ml.

B. Primers and PCR amplification

  1. (i)

    Use ITS universal primer pair PN23/PN34.

  2. (ii)

    Use PCR reaction mixture containing 0.15 mM dNTPs, 0.4 μM primers, 1 U Taq polymerase (BioBasic), 1 × PCR buffer with 1.5 mM MgCl2 and 10 μg of template DNA.

  3. (iii)

    Add sterile distilled water to have a final volume of 25 μl.

  4. (iv)

    Perform PCR amplification using a thermal cycler under the following conditions: initial denaturation at 94°C for 5 min; 30 cycles consisting of denaturation at 94°C for 40 s; annealing at 62°C for 1 min; DNA synthesis at 72°C for 1.5 min; final extension at 72°C for 5 min.

  5. (v)

    Separate PCR product (5 μl) by gel electrophoresis on a horizontal 2% agarose gel and stain the bands with ethidium bromide (0.5 μg/ml).

  6. (vi)

    Visualize the bands under UV light and photograph.

Appendix 20: Detection of Rust Pathogen by PCR-Based Method (Wang et al. 2008)

A. Extraction of DNA from rust pathogen

  1. (i)

    Freeze pure samples of urediospores (from artificially inoculated wheat seedlings) in liquid nitrogen and store at −70°C till needed.

  2. (ii)

    Transfer 25 mg of urediospores to 2 ml tube; add 500 μl extraction buffer (50 mM Trsi-HCl, pH 8.0, 150 mM NaCl, 100 mM EDTA) and homogenize with a plastic pestle.

  3. (iii)

    Add 5 μl proteinase K (1 mg/ml); make up the volume to 1.0 ml with extraction buffer and incubate for 30 min at 65°C.

  4. (iv)

    Divide the mixture into two equal parts in two microfuge tubes; extract with phenol/chloroform/isoamyl alcohol (25:24:1, pH 8.0) and chloroform respectively; transfer the top aqueous phase to a clean tube; add an equal volume of cold isopropanol and incubate for 1 h at −20°C.

  5. (v)

    Centrifuge the contents at 12,000 rpm for 20 min at 4°C to precipitate the nucleic acid; rinse the pellet twice with cold 70% ethanol; dry and dissolve in 0.1 ml TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0).

  6. (vi)

    Add 1 μl of ribonuclease (10 mg/ml, final concentration 20 μg/ml) and incubate at 4°C overnight to digest the RNA completely.

  7. (vii)

    Reprecipitate the DNA; rinse it with cold 70% ethanol; dissolve in 50 μl of TE buffer and quantify the DNA spectrophotometrically.

B. PCR amplification

  1. (i)

    Use primers specific for the pathogen (Puccinia striiformis) Pst1 and Pst2.

  2. (ii)

    Perform amplification in aliquots of 25 μl containing 20 ng DNA template, 2.5 μl 10 × reaction buffer (750 mM Tris-HCl, 200 mM (NH4)2SO4, 0.1 Tween-20) 25 mM MgCl2, 2.5 mM each of dATP, dCTP, dGTP, dTTP, 0.2 μM primer and 1 U Taq polymerase and make up the volume to 25 μl with sterile distilled water.

  3. (iii)

    Provide optimal conditions using a thermal cycler: initial denaturation at 94°C for 3 min; 34 cycles of amplification each consisting of denaturation at 94°C for 50 s, primer annealing at 50–60°C for 90 s and primer extension at 72°C for 2 min; final extension step at 72°C for 10 min.

  4. (iv)

    Resolve the amplicons in 1.5% agarose gels, electrophoresed at 10 V/cm for 60–90 min along with a molecular size marker set.

Appendix 21: Detection of Colletotrichum acutatum by Arbitrarily Primed (AP)-PCR (Yoshida et al. 2007)

  1. (i)

    Grow the fungal pathogen in potato dextrose agar (PDA) for 4–7 days at ∼20°C.

  2. (ii)

    Extract the genomic DNA from each isolate using the Wizard Genomic DNA Purification Kit (Promega) as per the manufacturer’s recommen­dations.

  3. (iii)

    Use a total volume of 25 μl of ∼100 ng of genomic DNA,Read-to-Go-RAPD Analysis Beads (GE Healthcare) and uu(CAG)5 (5′-CAGCAGCAGCAGCAG-3′) or (GACAC)3 (5′-GACACGACACGACAC-3′) primer.

  4. (iv)

    Carry out the reactions using the GeneampPCR System 9600 (Applied Biosystems) starting with a 2-min denaturation at 95°C, followed by 45 cycles consisting of 1 min at 95°C, 1 min at either 60°C (for (CAG)5) or 48°C (for (GACAC)3) and 2 min at 72°C.

  5. (v)

    Resolve the amplicons using 2% agarose gels in TBE buffer and view the bands under UV light after staining with ethidium bromide.

Appendix 22: Detection of Puccinia coronata by Real-Time PCR Assay (Jackson et al. 2006)

A. Pathogen DNA extraction and amplification

  1. (i)

    Place standard weights (102–105 μg) of uredinospores or sections of infected leaf tissues in 1.5 ml tubes (Qiagen); lyophilize the pathogen tissues and add ∼30 mg 0.1 mm diameter zirconia/silica beads (Biospec) and 100 mg of 0.5 mm diameter zirconia/silica beads to each tube.

  2. (ii)

    For leaf samples add additional 3.2 mm stainless steel beads (Biospec) and 2.3 mm stainless beads and grind the tissues on a vibration mill (Retsch MM 300 USA) for 30 min at 30 Hz (3 O oscillations/s).

  3. (iii)

    Centrifuge the tube-contents at ∼6,000 × g for 10 min; add 500 μl of CTAB extraction buffer and mix the contents well.

  4. (iv)

    Grind the samples for 15 min on the vibration mill; place in water bath at 65°C for 25 min.

  5. (v)

    Add chloroform-isoamyl alcohol (24:1); centrifuge at 6000 × g for 15 min and separate the supernatant.

  6. (vi)

    Precipitate DNA with isopropanol; wash the pellet with 70% ethanol and dissolve the pellet in 200 μl of TE buffer containing 10 μl/ml RNase.

  7. (vii)

    Determine the purity and quantity of the DNA spectrophotometrically at A280 nm and A260 nm and store the DNA preparations at 4°C.

B. Conventional and real-time PCR assays

  1. (i)

    Perform amplifications at 50°C for 60 s and 95°C for 10 min; then 40 cycles at 95°C for 15 s and 60°C for 60 s in a total volume of 50 μl containing 28.6 μl sterile double distilled (dd) water, 5.0 μl 10 × buffer, 3.0 μl 25 mM Mg2+, 0.4 μl 5 U/ml Ampli TaqDNA polymerase (Applied Biosystems), 1.0 μl 10 mM dNTPs, 1.0 μl of each of forward and reverse primer (300 nM) and 10 μl DNA template (20 ng/μl).

  2. (ii)

    Visualize the PCR amplicons on 2% agarose (SIGMA) gels stained with ethidium bromide after 2 h at 90 V (approximate distance of 5 cm from the wells) using a Fluorochem 8800 Image System (Alpha Innotech Corp. CA, USA).

  3. (iii)

    Perform real-time PCR amplifications using a 96-well optical reaction plate in an ABI Prism 7000 Sequence detection system; follow thermal cycling conditions as in conventional PCR amplification (step B (i) above).

  4. (iv)

    Use reaction volumes of 50 μl containing 13.4 μl sterile dd water, 25 μl TaqMan Universal master mix (Applied Biosystems), 0.3 μl of each forward and reverse primer (300 nM), 10 μl TaqMan probe (200 nM) and 10 μl DNA template.

Appendix 23: Detection of Colletotrichum spp. in Strawberry Plants by Real-Time PCR Assays (Garrido et al. 2009)

A. Extraction of DNA from strawberry plant tissues

  1. (i)

    Place the weighed samples (0.25–1.0 g) in extraction bags (Bioreba) with 8–10 volumes of CTAB lysis buffer containing 12% sodium phosphate buffer, pH 8.0, 2% CTAB, 1.5 M NaCl, supplemented with 2% antifoam B emulsion (Sigma Aldrich); homogenize the samples to a paste-like consistency using a Homex grinder (Bioreba); transfer the homogenate to clean 2-ml centrifuge tubes and centrifuge for 5 min at 10,000 g to pellet the cell debris.

  2. (ii)

    Dispense 600 μl of lysate (supernatant) to fresh 2-ml tubes containing 200 μl chloroform; mix by vortexing and centrifuge for 5 min at 13,000 g.

  3. (iii)

    Transfer 500 μl of aqueous layer to clean 2-ml tubes containing 500 μl isopropanol and 50 μl MagneSil® Paramagnetic Particles (Promega); and incubate for 10 min at room temperature.

  4. (iv)

    Extract the DNA using a robotic magnetic particle processor (Kingfisher ML, ThermoScientific); load the Kingfiser 5-ml tube strips as detailed below:

    (a)tube 1: 1 ml sample containing the MagneSil® beads; (b) tube 2: 1 ml GITC lysis buffer containing 5.25 M guanidiniumthiocyanate, 50 mM Tris HCl pH 6.4, 20 mM EDTA and 13 g/l Triton X-100; (c) tubes 3 and 4: 1 ml 70% ethanol; (d) tube 5: 200 μl sterile distilled water.

  5. (v)

    Use a total genomic DNA program (Kingfisher ML, ThermoScientific) to purify the DNA in each sample; transfer DNA collected in tube 5 to fresh 1.5-ml microcentrifuge tubes and store all DNA samples at −20°C, until needed for use in real-time PCR.

B. Real-time PCR formats

  1. (i)

    Set up all real-time PCR assays in 96- or 384-well reaction plates.

  2. (ii)

    Set up all SYBR® green assays, use with Uni 58SSybr F1/Uni 58SSybr R2 primers with an AbsoluteTM QPCR SYBR® Green ROX (500 nM) Mix Kit (AB gene) as follows.

    12.5 μl SYBR® Green Mix, 0.375 μl ROX, passive reference (diluted 1:50), 300 nM primers and 10 μl diluted DNA extract made up to 25 μl using molecular grade water; carry out SYBR® green assays in duplicate with generic cycling conditions: 95°C for 10 min and 40 cylcles of 60°C for 1 min and 95°C for 15 s, followed by a dissociation step consisting of a single transfer from 60°C to 95°C at a ramp rate of 2% within an ABI Prism 7900 HT Sequence Detector Systen (PE Biosystems).

  3. (iii)

    Analyze the melting curves, after each run, to check for the presence of non-specific amplification products.

  4. (iv)

    Set up all TaqMan® assays using PCR Core Reagent Kits (PE Biosystems) consisting of 1 × buffer A, 0.025-U μl−1 AmpliTaq Gold, 0.2 mM dNTPs and 5.5 mM MgCl2.

  5. (v)

    Use all sets of primers at 300 nM and probes at 100 nM; add 1 μl DNA extract, giving a final volume of 25 μl/reaction.

  6. (vi)

    Maintain negative controls containing nuclease-free water instead of DNA for each run.

  7. (vii)

    Carry out TaqManR PCR reaction in duplicate at 50°C for 2 min and 45 cycles of 95°C for 15 s and 60°C for 1 min.

  8. (viii)

    Assess the CT values for each reaction using SEQUENCE DETECTION SOFTWARE v2.2.2 (PE Biosystems).

Appendix 24: Detection of Phytophthora cactorum by RAPD-PCR Technique (Causin et al. 2005)

A. Extraction of DNA of fungal pathogen

  1. (i)

    Crush the fungal mycelium (∼200 mg wet weight) in liquid nitrogen using pestle and mortar; transfer immediately the macerate into a microcentrifuge tube; add 1 ml of lysis buffer (100 mM Tris-HCl, pH 8.0, 20 mM EDTA, pH 8.0, 1.4 mM NaCl, 2% cetyltrimethylammonium bromide (CTAB), 1% polyvinylpyrrolidone (PVP), 1% mercaptoethanol) and incubate at 65°C for 60 min.

  2. (ii)

    Add 1 ml chloroform/isoamyl alcohol (24:1 v/v), shake the contents for 1 h in ice for completion of protein denaturation and centrifuge at 17,300 g for 10 min to separate the phases.

  3. (iii)

    Recover the aqueous phase carefully; precipitate the DNA by adding 2/3 volume of isopropanol and 1/10 volume 3 M sodium acetate, pH 5.2 and allow the sample to remain at −20°C for 20 min.

  4. (iv)

    Centrifuge at 17,300 g for 10 min; wash the pellet with 70% ethanol (v/v); repeat the cycle of pelleting and washing processes and dry the pellet at room temperature.

  5. (v)

    Resuspend the pellet in 100 μl of TE buffer consisting of 10 mM Tris-HCL and 1 mM EDTA) and store at −20°C till required.

B. Screening for RAPD markers

  1. (i)

    Use the DNA extracted from the test fungus for testing the 10-mer RAPD primers of the OPA series (OPA-1 – OPA-11) (Operon Technologies Inc., CA, USA).

  2. (ii)

    Perform the reactions in 25 μl volumes with 10–15 ng of template DNA, 100 μM of each dNTP, 2.5 μl of 10 × buffer (200 mM Tris-HCl, pH 9.0, 500 mM KCl, 1% Triton® × 100), 2 mM Mg Cl2, 0.2 μM of RAPD primer and 1 Unit of Taq DNA polymerase (Promega Corp. USA); overlay a drop of sterile mineral oil on the reaction mix and maintain negative controls without the template DNA to check for DNA contamination of the reagents.

  3. (iii)

    Provide the following conditions using the Thermo Cycler (Cycler TM, Bio-Rad, Italy): initial denaturation at 94°C for 2 min and 30 s; 45 cycles of amplification consisting of 94°C for 30 s, annealing at 38°C for 1 min, extension at 72°C for 2 min; final extension of 5 min at 72°C after cycling.

  4. (iv)

    Separate the amplicons using 1.5% TBE buffer (45 mM Tris-borate, 1 mM EDTA) in agarose gels for 2 h followed by staining with ethidium bromide and photographing under UV illuminator (302 nm).

  5. (v)

    Elute the RAPD band specific for the target pathogen directly from the agarose gel using the Agarose gel DNA Extraction Kit (Boehringer Mannheim Corp. USA).

  6. (vi)

    Ligate the purified DNA into a plasmid pGEM-T Vector System (Promega) as per the manufacturer’s instructions.

  7. (vii)

    Transform Escherichia coli strain JM 109 competent cells using the plasmids and identify recombinant column by the blue-white color selection after 12 h of growth at 37°C on LB agar medium (1.8% trypan-NaCl, 0.5% yeast extract, 1.6% agar agar) containing ampicillin, IPTG (isopropyl ß-D-1-thigalactopyranoside) and X-Gal (5-Bromo-4-chloro-3-indolyl ß-D-galactopyranoside) as per manufacturer’s recommen­dation.

  8. (viii)

    Purify the plasmids from LB/ampicilling liquid cultures of selected colonies using a High Pure Plasmid Isolation Kit (Boehringer Mannheim Corp.) following the manufacture’s instructions.

Appendix 25: Detection of Macrophomina phaseolina in Cowpea Seeds by DAS-ELISA Technique (Afouda et al. 2009)

A. Preparation of antigen

  1. (i)

    Grow the pathogen in polysulfon membrane filters (HT-200 Tuffryn, Gelman, Germany) supported by inert fibre for 4 days in petridishes containing 10 ml of potato dextrose broth (PDB); harvest the mycelium from the filter; homogenize in phosphate buffered saline (PBS, pH 7.4) and centrifuge at 30,000 × g for 10 min and at 130,000 × g for 30 min.

  2. (ii)

    Estimate the protein concentration by the method of Bradford (1976); adjust the protein concentration to 1 mg/ml and store aliquots of 1 ml in 2-ml Eppendorf centrifuge tubes at −20°C, until required.

  3. (iii)

    Dialyze the culture filtrate, after harvesting the mycelium against PBS overnight at 7°C; concentrate by ultracentrifugation; determine the protein concentration; adjust the protein concentration to 0.1 mg/ml and store at −20°C, until required.

B. Preparation of antiserum

  1. (i)

    Immunize the rabbits by injecting 1 ml of antigen emulsified with Fruend’s adjuvant (Difco); space the first three injections at 2-week intervals and fourth after 4 months, as booster injection.

  2. (ii)

    Bleed the rabbits at 1 week after each injection; store the antiserum ­supplemented with 0.05% sodium azide at 4°C and label the antisera generated against the mycelium and culture filtrate separately before storing.

  3. (iii)

    Purify the immunoglobulins (IgG) in the antiserum by precipitation with 50% ammonium sulfate, followed by suspension in half-strength PBS and passage through a DEAE-Fractogel columns (Merck, Germany).

  4. (iv)

    Collect 1 ml aliquots from the column; adjust their final OD to 1.45 at 280 nm corresponding ∼1 mg IgG/ml and store at −20°C.

  5. (v)

    For biotinulation of IgG, dialyze 1 ml of purified IgG overnight at 7°C against coupling buffer (containing 10 g NaCl, 10 g NaHCO3 and 1,000 ml water, pH 7.5) with three changes of buffer solution; add 50 μl of biotinylation reagent (1 mg X-NHS-Biotin, Sigma, Germany) to the IgG; incubate for 30 min at room temperature; stop the reaction by adding 50 μl 1 M Tris-HCL, pH 7.4; dialyze the product overnight in saline (0.85% NaCl); add 50% glycerol and 1% bovine serum albumin (BSA) and store the mixture at −20°C.

C. Preparation of seed extract

  1. (i)

    Soak the seeds singly in the wells of microtiter plates containing 1 ml PBS-T (PBS with 0.05% Tween 20) and 2% polyvinyl pyrrolidone (PVP); incubate the plates for 24 h at 4°C ;crush the seed into the buffer solution and incubate for a further period of 24 h at 4°C.

  2. (ii)

    Centrifuge the plates and use the supernatant for detection of the target pathogen.

D. Double-Antibody Sandwich (DAS)-ELISA technique

  1. (i)

    Coat the wells of microplates with IgG-diluted to 1: 1,000 (v/v) in 0.05 M carbonate buffer, pH 9.6; incubate at 4°C overnight and wash the plates thrice with half-strength PBS-T and subsequently between each step mentioned below.

  2. (ii)

    Block unspecific reactive surfaces of each well with 200 μl of 0.2% BSA dissolved in coating buffer (0.05 M sodium carbonate buffer, pH 9.6); incubate the plates at room temperature for 2 h.

  3. (iii)

    Dilute the antigen preparation suitably with PBS-T with 2% PVP; add 200 μl antigen solution to each well; incubate at 4°C overnight.

  4. (iv)

    Dilute the biotinylated IgG (1:1,000, v/v) in PBS-T buffer with 0.2% BSA; incubate at 4°C overnight.

  5. (v)

    Add streptavidin-alkaline phosphatase (Sigma) conjugate diluted (1:1,000, v/v) in conjugate buffer (half-strength PBS-T with 0.2% BSA and incubate at 37°C for 30 min.

  6. (vi)

    Add 100 μl/well the substrate (1 mg.ml of p-nitrophenyl phosphate) in 10% diethanolamine, pH 9.8 and record the absorbance values at 405 nm using the ELISA reader after allowing the reaction for 1–2 h at 37°C; absorbance values that are more than twice that of healthy control are considered to be positive reactions.

Appendix 26: Detection of Fungal Pathogens in Soybean Seeds by PCR-RFLP Technique (Zhang et al. 1999)

A. Extraction of DNA from soybean seeds

  1. (i)

    Treat the soybean seeds with 95% ethanol for 30 s, 0.5% NaOCl for 1 min, 2.5% paraquat (Gramoxone, Zeneca Corp. USA) for 2 min and rinse the seeds three times in double-distilled (dd) water.

  2. (ii)

    Squeeze the disinfected seeds to release the seed coats that are individually placed into a 1.5 ml microfuge tube with 250 μl of extraction buffer containing 50 mM Tris, pH 8.0, 10 mM EDTA, pH 8.0, 100 mM NaCl, 1.0% sodium dodecyl sulfate and 10 mM ß-mercaptoethanol.

  3. (iii)

    Break the seed coats using an ultrasonic processor (Biospec Products) and a tapered microtip (5 mm diameter) for 10 s; mix with 150 μl of potassium acetate (5 M, pH 5.2) and incubate on ice for 20 min.

  4. (iv)

    Centrifuge at 12,000 × g for 10 min; determine the DNA concentrations of the supernatant (extracted from the seed coat) by measuring OD at 260 nm in an UV spectrophotometer (Perkin-Elmer Applied Biosystems).

B.Extraction of DNA from the mycelium growing out of seeds on potato dextrose agar (PDA)

  1. (i)

    Plate 100 surface-disinfested seeds from each seed lot on PDA and incubate at 27°C for 24–36 h.

  2. (ii)

    Cut out 5 × 10 × 2 mm PDA plugs with mycelial growth originating from individual seeds; place into a microfuge tube (1.5 ml) containing 250 μl of extraction buffer and break the cells using the ultrasonic processor.

  3. (iii)

    Centrifuge and save the supernatants as DNA extracts.

C. PCR-RFLP Assay

  1. (i)

    Plate 100 seeds from each seed lots on PDA medium and extract the DNA from the pathogens as per steps B (i)–(iii).

  2. (ii)

    Perform PCRs with a DNA thermal cycler (Perkin-Elmer Applied Biosystems) using the reaction mixture containing 50 mM KCl, 2.5 mM MgCl2, 10 mM Tris-HCl, pH 8.3, 0.2 mM each of dTTP, dATP, dGTP and dCTP, 50 pmol of the primers, 2.5 units of Taq polymerase and 25 ng of genomic DNA in a final volume of 50 μl.

  3. (iii)

    Incubate the reactants at 96°C for 3 min followed by 30 cycles of 94°C for 1 min, 55°C for 1 min and 72°C for 2 min.

  4. (iv)

    Check the amplification efficiency by subjecting to agarose gel electrophoresis using 5 μl of PCR amplicons.

  5. (v)

    Digest the PCR amplicons (7 μl) with suitable restriction enzymes (5–10 units of Alu I, Mse I, Hha I, Rsa I and ScrF I) as per the manufacturer’s instructions using 1.5 μl of buffer (10×) and 6.5 μl of double distilled water at 37°C for 2–4 h.

  6. (vi)

    Size fractionate the enzyme-digested PCR amplicons on a mixed agarose gel of 1% ultra pure agarose (Amresco, USA) at 3.5 V/cm and stain with ethidium bromide.

  7. (vii)

    Visualize on a UV-transilluminator and photograph.

Appendix 27: Detection of Rhynchosporium secalis in Barley Seeds by Competitive PCR (Lee et al. 2002)

A. Extraction of DNA from seeds

  1. (i)

    Surface sterilize the seeds (100/sample) with ethanol for 30 s; wash them with several times with distilled water; dry at 22°C and grind to a fine powder using a mixer mill grinder.

  2. (ii)

    Extract total DNA from the seed powder (0.1 g) and adopt the cetyltrimethyl ammonium bromide (CTAB) procedure.

  3. (iii)

    Use the DNA equivalent of 0.1 mg dry seed weight in 1 μl for PCR.

B. PCR amplification

  1. (i)

    Use a reaction mixture (25 μl) containing 1 × PCR buffer (20 mM Tris-HCl, pH 8.4, 50 mM KCl, 1.5 mM MgCl2), 0.2 mM dNTPs, 250 nM of each forward and reverse primer and 0.6 units of TaqDNA polymerase.

  2. (ii)

    Use primer sets designed from ITS regions of target pathogen DNA.

  3. (iii)

    Perform PCR amplification with the following conditions: initial denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 2 min with final extension at 72°C for 10 min.

  4. (iv)

    Use 8 μl of PCR amplicons for separating them on a 1.5 agarose gel in Tris-borate-EDTA buffer at 100 V for 1 h; stain the gel with ethidium bromide for 15 min and visualize the PCR products on a UV transilluminator.

C. Competitive PCR

  1. (i)

    Prepare a heterologous internal control using a competitive DNA Construction Kit (Takara Shuzo Co. Ltd., Japan) which has 5′-and 3′-termini identical to the fungal target primary sites (RS1 and RS3), but no internal sequence homology to the target sequence.

  2. (ii)

    Generate the competitor fragment (445-bp) as per the manufacturer’s recommendation.

  3. (iii)

    Use 0.1 g milled seed powder (from 100-seed sample) for DNA extraction and use the extracts in the presence of constant amount of the internal control template DNA.

  4. (iv)

    Calculate the mean PCR product ratios obtained from three replicates of each level of infection (disease intensity); plot the ratios against percentage of seed infection and generate a standard curve by reference to which the quantification of fungal DNA in field-infected barley seed can be made.

  5. (v)

    Calculate the mean levels of PCR product ratios of samples and subsamples of naturally infected seeds and convert to ng of fungal DNA/mg seed material using the standard calibration curve.

Appendix 28: Detection of Verticillium dahliae in Olive Seeds by Nested PCR (Karajeh 2006)

A. Extraction of pathogen DNA from infected seeds

  1. (i)

    Grind the seed samples (10 seeds/sample) in liquid nitrogen using a Phillips screwdriver; homogenize the seed powder in 1.5 ml preheated 65°C) extraction buffer consisting of 50 mM Tris-HCl, pH 8.0, 700 mM NaCl, 10 mM EDTA-Na2; 2% CTAB, 0.5% 2-mercaptoethanol (v/v) and 1.0% polyvinyl pyrrolidone (PVP).

  2. (ii)

    Dispense the homogenate into two 1.5 ml microtubes; incubate at 65°C for 15 min with occasional mixing and extract with 0.6 ml chloroform-isoamyl alcohol (24:1) and centrifuge at 14,000 g for 5 min.

  3. (iii)

    Transfer the top aqueous phase to a new tube containing 2 μl RNase A (10 mg/ml water); incubate for 15 min at room temperature and precipitate protein using 0.5 volume of 3 M sodium acetate, pH 5.2.

  4. (iv)

    Add 0.3 ml isopropanol to each microtube; incubate at −20°C overnight and centrifuge at 14,000 g for 5 min.

  5. (v)

    Wash the DNA pellet with 1 ml 70% ethanol, air-dry and dissolve in 100 μl TE buffer consisting of 10 mM Tris, 1 mM EDTA, pH 8.0.

  6. (vi)

    Estimate DNA concentration using agarose gel electrophoresis and with a spectrophotometer at 260 nm.

B. DNA amplification using nested PCR assay

  1. (i)

    Carry out the first round amplification with the primer pair NESF 18S and NESR 28S from the highly conserved DNA sequences of 18S amd 28S genes that flank ITS region of the pathogen DNA and identify the product about 480-bp in size.

  2. (ii)

    Transfer one microliter of the product of first amplification; perform second amplification with pathogen-specific ITS primers FVD and RVD and identify the product 330-bp in size.

  3. (iii)

    Perform the PCR in a total volume of 25 μl with each reaction containing the following: 0.2 mM dNTPs (an equal molar mixture of dATP, dGTP. dCTP and dTTP), 0.5 U of Taq DNA polymerase, 0.25 mM of each forward and reverse primer, 1 × PCR buffer (10×: 500 mM KCl, 15 mM MgCl2, 100 mM Tris-HCl, pH 9.0 at 25°C) and 1 Triton X-100, 1 μl of the final DNA extract (about 50 ng).

  4. (iv)

    Maintain a negative control (water) for each round to detect contamination with template DNA and olive DNA extract.

  5. (v)

    Provide the following conditions using Eppendorf Master cycler: initial DNA denaturation for 2 min at 94°C, followed by 35 cycles each consisting of denaturation at 95°C for 30 s, annealing at 56°C for 30 s and extension at 72°C for 30 s and the final extension for 3 min at 72°C.

  6. (vi)

    Analyze the PCR products by agarose gel electrophoresis with 0.5 × TBE buffer consisting of 10 × buffer of 0.9 M Tris, 0.9 M boric acid and 20 mM EDTA; stain with ethidium bromide and visualize on a UV transilluminator.

Appendix 29: Detection of Pythium spp. in Carrot Tissue by PCR Assay (Klemsdal et al. 2008)

A. Extraction of DNA from the oomycete and carrot tissue

  1. (i)

    Cultivate the pathogen in potato dextrose agar (PDA) covered with cellophane at 20°C for 4–6 days; harvest the mycelium; grind it to a fine powder in liquid nitrogen and extract the DNA using DNeasy Plant Mini Kit (Qiagen Inc.) as per manufacturer’s recommendations.

  2. (ii)

    Collect carrots with and without symptoms of infection at harvest from the fields; wash them with water; take the peels carefully from the top to the tip in each carrot; freeze dry the peels overnight and grind them to a fine powder using pestle and mortar.

  3. (iii)

    Transfer carrot tissue powder (50 mg) to a microcentrifuge tube; extract the DNA using the GenElute Plant Genomic DNA Kit (Sigma-Aldrich) according to the manufacturer’s recommendations, except that elution of DNA from the binding column once with 100 μl TE buffer pH 7.5 and pre-warm the extract to 65°C.

  4. (iv)

    Purify the DNA further using Micro BioSpin Chromatography columns (BioRad Laboratories Ltd.) filled with insoluble polyvinyl polypyrrolidone (PVPP).

  5. (v)

    Load each column with 400 μl sterile water placed in a microcentrifuge tube and centrifuge for 5 min at 1,500 g.

  6. (vi)

    Transfer the column to a new centrifuge tube and load the DNA onto the PVPP surface.

  7. (vii)

    Collect the purified DNA as pellet after centrifuging at 1,500 g for 5 min.

B. Polymerase Chain Reaction Assay

  1. (i)

    Perform the assay in a total volume of 25 μl with final concentration of 50 mM KCl, 10 mM Tris-HCl, pH 8.3, 0.2 mM dNTPs, 0.1 mg/ml bovine serum albumin (BSA) and 0.1 mM MgCl2.

  2. (ii)

    Use 25 pmol of each primer and 0.6 U Ampli Taq polymerase (Applied Biosystems).

  3. (iii)

    Use 1 μl of the DNA extracted from carrot tissue as template; use universal primers ITS3 and ITS4 as positive control for DNA extracted from carrot tissues.

  4. (iv)

    Perform amplifications in a GeneAmp® PCR System 9700 thermal cycler (Applied Systems) programmed for initial denaturation at 94°C for 5 min followed by 45 cycles of 20 s at 94°C, and 30 s annealing at 72°C.

  5. (v)

    Use the following annealing temperatures for Pythium sylvaticum: 56°C; P.vipa’: 57°C; P. sulcatum and P. intermedium: 60°C and P. violae: 61°C.

  6. (vi)

    Separate the PCR amplicons by electrophoresis through 1.2% agarose gels; stain with ethidium bromide and photograph in UV light on a GelDoc 1000 (BioRad Laboratories Ltd. USA).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Narayanasamy, P. (2011). Detection of Fungal Pathogens in Plants. In: Microbial Plant Pathogens-Detection and Disease Diagnosis:. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9735-4_2

Download citation

Publish with us

Policies and ethics