Skip to main content

Accumulation of Phytoalexins as a Resistance Mechanism

  • Chapter
Plant Pathogenesis and Resistance

Abstract

Many metabolites are produced in small quantities by a limited number of species and do not appear to be essential for the growth and reproduction of the producing organisms. These compounds have been termed secondary metabolites. The interrelationship between primary metabolism and biosynthesis of some secondary metabolites is given in Fig. 9-1. All secondary metabolites are derived from intermediates of primary metabolism. Thus, biosynthetic pathways of secondary metabolites are extensions and branches of primary pathways. Consequently, the distinction between primary and secondary metabolism is not always clear. For example, terpenoid phytoalexins are generally considered to be secondary metabolites, yet they are synthesized via the same pathways from which many essential metabolites are derived. These metabolites include membrane sterols and growth regulators like gibberellins and abscisic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adesanya SA, Ogundana SK, Roberts MF (1989) Dihydrostilbene phytoalexins from Dioscorea bulbifera and D. dumentorum. Phytochemistry 28: 773–774

    CAS  Google Scholar 

  • Adrian M, Jeandet P, Bessis R, Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride (AICI3). J Agric Food Chem 44: 1979–1981

    CAS  Google Scholar 

  • Afek U, Sztejnberg A (1988) Accumulation of scoparone, a phytoalexin associated with resistance of citrus to Phytophthora citrophthora. Phytopathology 78: 1678–1682

    CAS  Google Scholar 

  • Afek U, Sztejnberg A (1993) Temperature and gamma irradiation effects on scoparone, a citrus phytoalexin conferring resistance to Phytophthora citrophthora. Phytopathology 83: 753–758

    CAS  Google Scholar 

  • Afek U, Sztejnberg A (1995) Scoparone (6,7-dimethoxycoumarin), a Citrus phytoalexin involved in resistance to pathogens. In Daniel M, Purkayastha RP (eds) Handbook of phytoalexin metabolism and action. Macel Dekker, New York, pp 263–286

    Google Scholar 

  • Afek U, Carmeli S, Aharoni N (1995) Columbianetin, a phytoalexin associated with celery resistance to pathogens during storage. Phytochemistry 39: 1347–1350

    CAS  Google Scholar 

  • Akatsuka T, Kodama O, Kato H, Kono Y, Takeuchi S (1983) 3-Hydroxy-7-oxo-sandraracopimaradiene (oryzalexin A), a new phytoalexin isolated from rice blast leaves. Agric Biol Chem 47: 445–447

    Google Scholar 

  • Alami I, Clérivet A, Naji M, Van Munster M, Macheix JJ (1999) Elicitation of Platanus x acerifolia cell suspension cultures induces the synthesis of xanthoarnol, a dihydrofuranocoumarin phytoalexin. Phytochemistry 51: 733–736

    CAS  Google Scholar 

  • Al-Douri NA, Dewick PM (1986) Biosynthesis of the furanoacetylene phytoalexin wyerone in Vicia faba. Z Naturforsch 41c: 34–38

    CAS  Google Scholar 

  • Allen EH, Thomas CA (1971 a) Trans-trans-3,1 I-tridecadiene-5,7,9-triyne-1,2-diol, an antifungal polyacetylene from diseased safflower (Carthamus linctorius). Phytochemistry 10: 1579–1582

    Google Scholar 

  • Allen EH, Thomas CA (197 1 b) A second antifungal polyacetylene from Phytophthora-infected safflower. Phytopathology 61: 1107–1109

    Google Scholar 

  • Ames BN, Gold LS (1989) Pesticides, risk and applesauce. Science 244: 755–757

    PubMed  CAS  Google Scholar 

  • Amin M, Kurosaki F, Nishi A (1988) Carrot phytoalexin alters the membrane permeability of Candida albicans and multilamellar liposomes. Gen J Microbiol 134: 241–246

    CAS  Google Scholar 

  • Anderson AJ (1989) The biology of glycoproteins as elicitors. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol 3. McGraw-Hill, New York, pp 87–130

    Google Scholar 

  • Arase S, Yoshiura Y, Ozoe Y, Honda Y, Nozu M (1996) Production of a phytoalexin, sakuranetin, in the Sekiguchi lesion on rice cv. Sekiguchi-asahi. Ann Phytopathol Soc Japan 62: 408–410

    Google Scholar 

  • Ayer WA, Craw PA, Ma Y-T, Miao S (1992) Synthesis of camalexin and related phytoalexins. Tetrahedron 48: 2919–2924

    CAS  Google Scholar 

  • Ayers AR, Ebel.1, Valent B, Albersheim P (1976a) Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57: 760–765

    PubMed  CAS  Google Scholar 

  • Ayers AR, Valent B, Ebel J, Albersheim P (1976b) Host-pathogen interactions. XI. Composition and structure of wall-released elicitor fractions. Plant Physiol 57: 766–774

    Google Scholar 

  • Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P (1976c) Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol 57: 751–759

    PubMed  CAS  Google Scholar 

  • Bailey JA (1973) Production of antifungal compounds in cowpea (Vigna sinensis) and pea (Pisum sativum) after virus infection. J Gen Microbiol 75: 119–123

    PubMed  CAS  Google Scholar 

  • Bailey IA, Burden RS (1973) Biochemical changes and phytoalexin accumulation in Phaseolus vulgaris following cellular browning caused by tobacco necrosis virus. Physiol Plant Pathol 3: 171–177

    CAS  Google Scholar 

  • Bailey JA, Mansfield JW (1982) Phytoalexins. John Wiley and Sons, New York, 334 pp

    Google Scholar 

  • Bailey JA, Burden RS, Vincent GG (1975) Capsidiol: an antifungal compound produced in Nicotiana tabacum and N. clevelandii following infection with tobacco necrosis virus. Phytochemistry 14: 597

    CAS  Google Scholar 

  • Bailey JA, Burden RS, Mynett A, Brown C (1977) Metabolism of phaseol lin by Septoria nodorum and other non-pathogens of Phaseolus vulgaris. Phytochemistry 16: 1541–1544

    CAS  Google Scholar 

  • Barz W, Mackenbrock U (1994) Constitutive and elicitation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum) cell suspension cultures. Plant Cell, Tissue and Organ Culture 38: 199–211

    Google Scholar 

  • Barz W, Bless W, Daniel S, Gunia W, Hinderer W, Jaques U, Kessmann H, Meier D, Tiemann K, Wittkampf U (1989) Elicitation and suppression of isoflavones and pterocarpan phytoalexins in chickpea (Cicer arietinum) cell cultures. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures II. Springer-Verlag, Berlin, pp 208–218

    Google Scholar 

  • Beier RC, Oertli EH (1983) Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 22: 2595–2597

    CAS  Google Scholar 

  • Bell AA, Stipanovic RD, Zhang J, Mace ME, Reibenspies JH (1998) Identification and synthesis of trinorcadalene phytoalexins formed by Hibiscus cannabinus. Phytochemistry 49: 431–440

    CAS  Google Scholar 

  • Benedict CR, Alchanati 1, Harvey PJ, Liu JG, Stipanovic RD, Bell AA (1995) The enzymatic formation of S-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry 39: 327–331

    Google Scholar 

  • Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT, Mansfield JW (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 44: 321–333

    CAS  Google Scholar 

  • Bestwick L, Bennett MH, Mansfield JW, Rossiter JT (1995) Accumulation of the phytoalexin lettucenin A and changes in 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in lettuce seedlings with the red spot disorder. Phytochemistry 39: 775–777

    CAS  Google Scholar 

  • Biggs DR (1975) Post-infectional compounds from the French bean, Phaseolus vulgaris: isolation and identification ofgenistein and 2’,4’,5,7-tetrahydroxyisotlavone. Aust J Chem 28: 1389–1392

    CAS  Google Scholar 

  • Binks RH, Greenham JR, Luis JG, Gowen SR (1997) A phytoalexin from roots of Musa acuminata var. Pisang sipulu. Phytochemistry 45: 47–49

    Google Scholar 

  • Blein J-P, Milat M-L, Ricci P (1991) Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. Possible plasmalemma involvement. Plant Physiol 95: 486–491

    Google Scholar 

  • Bless W, Barz W (1988) Isolation of pterocarpan synthase, the terminal enzyme of pterocarpan phytoalexin biosynthesis in cell suspension cultures of Cicer arietinum. FEBS Lett 235: 47–50

    CAS  Google Scholar 

  • Bloch CB, De Wit PJGM, Kuc J (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiol Plant Pathol 25: 199–208

    CAS  Google Scholar 

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41: 333–349

    Google Scholar 

  • Bonde MR, Miller RL, Ingham.1L (1973) Induction and identification of sativan and vestitol as two phytoalexins from Lotus corniculatus. Phytochemistry 12: 2957–2959

    CAS  Google Scholar 

  • Bostock RM, Kué JA, Laine RA (1981) Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungi toxic sesquiterpenes in the potato. Science 212: 67–69

    PubMed  CAS  Google Scholar 

  • Boydston R, Paxton JD, Koeppe DE (1983) Glyceollin: A site-specific inhibitor of electron transport in isolated soybean mitochondria. Plant Physiol 72: 151–155

    Google Scholar 

  • Bruegger BB, Keen NT (1979) Specific elicitor of glyceollin accumulation in the Pseudomonas glycinea-soybean host-parasite system. Physiol Plant Pathol 15: 43–51

    CAS  Google Scholar 

  • Brindle PA, Kuhn Pi, Threlfall DR (1988) Biosynthesis and metabolism of sesquiterpenoid phytoalexins and triterpenoids in potato cell suspension cultures. Phytochemistry 27: 133–150

    CAS  Google Scholar 

  • Brinker AM, Seigler DS (1991) Isolation and identification of piceatannol as a phytoalexin from sugarcane. Phytochemistry 30: 3229–3232

    CAS  Google Scholar 

  • Brinker AM, Seigler DS (1993) Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol Mol Plant Pathol 42: 169–176

    CAS  Google Scholar 

  • Brooks CJW, Watson DG (1991) Terpenoid phytoalexins. Nat Prod Rep 8: 367–389

    PubMed  CAS  Google Scholar 

  • Browne LM, Conn KL, Ayer WA, Tewari JP (1991) The camalexins: New phytoalexins produced in the leaves of Camelina sativa ( Cruciferae ). Tetrahedron 47: 3909–3914

    Google Scholar 

  • Bruce RJ, West CA (1982) Elicitation of casbene synthetase activity in castor bean. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol 69: 1181–1188

    Google Scholar 

  • Burden RS, Bailey JA (1975) Structure of the phytoalexin from soybean. Phytochemistry 14: 1389–1390

    CAS  Google Scholar 

  • Burden RS, Kemp MS (1983) (-)-7-Hydroxycalamenene, a phytoalexin from Tilia europea. Phytochemistry 22: 1039–1040

    Google Scholar 

  • Burden RS, Kemp MS (1984) Sesquiterpene phytoalexins from Ulmus glabra. Phytochemistry 23: 383–385

    CAS  Google Scholar 

  • Burden RS, Bailey JA, Dawson GW (1972) Structures of three new isoflavanoids from Phaseolus vulgaris infected with tobacco necrosis virus. Tetrahedron Lett 4175–4178

    Google Scholar 

  • Burden RS, Bailey JA, Vincent GG (1974) Metabolism of phaseollin by Colletotrichum lindeniuthianum. Phytochemistry 18: 1789–1791

    Google Scholar 

  • Burden RS, Bailey JA, Vincent GG (1975) Glutinosone, a new antifungal sesquiterpene from Nicotiana glutinosa infected with tobacco mosaic virus. Phytochemistry 14: 221–223

    CAS  Google Scholar 

  • Burden RS, Kemp MS, Wiltshire CW (1984) Isolation and structure determination of cotonefuran, an induced antifungal dibenzofuran from Cotoneaster lactea W. W. Sm. J Chem Soc Perkin Trans 1.1445–1448

    Google Scholar 

  • Burden RS, Rowell PM, Bailey JA, Loeffler RST, Kemp MS, Brown CA (1985) Debneyol, a fungicidal sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 24: 2191–2194

    CAS  Google Scholar 

  • Burden RS, Loeffler RST, Rowell PM, Bailey JA, Kemp MS (1986) Cyclodebneyol, a fungitoxic sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 25: 1607–1608

    CAS  Google Scholar 

  • Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20: 535–537

    CAS  Google Scholar 

  • Chappell J. Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85: 469–473

    PubMed  Google Scholar 

  • Chen Z-Y, Chen Y, Heinstein P, Davisson VJ (1995) Cloning, expression, and characterization of (+)-S-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324: 255–266

    PubMed  CAS  Google Scholar 

  • Cheony.1J, Hahn MG (1991) A specific, high-affinity binding site for the hepta-ß-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147.

    Google Scholar 

  • Cheony J-J, Birberg W, Fügedi P, Pilotti A, Garegg PJ, Hong N, Ogawa T, Hahn MG (1991) Structure-activity relationships of oligo-ß-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136

    Google Scholar 

  • Clemens S, Hinderer W, Wittkampf U, Barz W (1993) Characterization of cytochrome P450-dependent isoflavone hydroxylases from chickpea. Phytochemistry 32: 653–657

    CAS  Google Scholar 

  • Clérivet A, Alami I (1999) Effects of jasmonic acid and of an elicitor from Ceratocystis fimbriata f.sp. platani on the accumulation of phytoalexins in leaves of susceptible and resistant plane trees. Plant Sci 148: 105–110

    Google Scholar 

  • Coleman M.1, Mainzer J, Dickerson AG (1992) Characterization of a fungal glycoprotein that elicits a defence response in French bean. Physiol Mol Plant Pathol 40: 333–351

    CAS  Google Scholar 

  • Condon P, Kue J (1962) Confirmation of the identity of a fungitoxic compound produced by carrot root tissue. Phytopathology 52: 182–183

    Google Scholar 

  • Cooksey CJ, Garratt PJ, Dahiya JS, Strange RN (1983) Sucrose: a constitutive elicitor of phytoalexin synthesis. Science 220: 1398–1400

    PubMed  CAS  Google Scholar 

  • Côté F, Cheong J-J, Alba R, Hahn MG (1995) Characterization of binding proteins that recognize oligoglucoside elicitors of phytoalexin synthesis in soybean. Physiol Plant 93: 401–410

    Google Scholar 

  • Coxon DT, Price KR, Howard B, Osmon SF, Kalan EB, Zacharius RM (1974) Two new vetispirane derivatives: stress metabolites from potato (Solanum tuberosum) tubers. Tetrahedron Lett 2921–2924

    Google Scholar 

  • Coxon DT, Price KR, Howard B, Curtis RF (1977) Metabolites from microbially infected potato. Part I. Structure of phytuberin. J Chem Soc Perkin 53–59

    Google Scholar 

  • Coxon DT, O’Neil TM, Mansfield JW, Porter AEA (1980) Identification of three hydroxyflavan phytoalexins from daffodil bulbs. Phytochemistry 19: 889–891

    CAS  Google Scholar 

  • Crombie L, Mistry J (1990) The phytoalexins of oat leaves: 4H-3,1-benzoxazin-4-ones or amides? Tetrahedron Lett 31: 2647–2648

    CAS  Google Scholar 

  • Cruickshank IAM (1962) Studies on Phytoalexins. IV. The antimicrobial spectrum ofpisatin. Aust J Biol Sci 15: 147–159

    CAS  Google Scholar 

  • Cruickshank IAM, Perrin DR (1968) The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola. Life Sci 7 (11): 449–458

    CAS  Google Scholar 

  • Dahiya JS, Rimmer SR (1988) Phytoalexin accumulation in tissues of Brassica napus inoculated with Leptosphaeria maculans. Phytochemistry 27: 3105–3107

    CAS  Google Scholar 

  • Daniel M, Purkayastha RP (1995) Handbook of phytoalexin metabolism and action. Macel Dekker, New York, 615 pp

    Google Scholar 

  • Daniel S, Tiemann K, Wittkampf U, Bless W, Hinderer W, Barz W (1990) Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei. I. Investigations of enzyme activities involved in isoflavone and pterocarpan phytoalexin biosynthesis. Planta 182: 270–278

    Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors–A defense against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275

    CAS  Google Scholar 

  • Darvill A, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Ló V-M, Marfà V, Meyer B, Mohnen D, O’Neill MA, Spiro MD, Van Halbeek H, York WS, Albersheim P (1992) Oligosaccharins–oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2: 181–198

    PubMed  CAS  Google Scholar 

  • Davila-Huerta G, Hamada H, Davis GD, Stipanovic RD, Adams CM, Essenberg M (1995) Cadinane-type sesquiterpenes induced in Gossypium cotyledons by bacterial inoculation. Phytochemistry 39: 531–536

    CAS  Google Scholar 

  • Davis GD, Essenberg M (1995) (+)-ô-Cadinene is a product of sesquiterpene cyclase activity in cotton. Phytochemistry 39: 553–367

    Google Scholar 

  • Davis KR, Lyon CD, Darvill AG, Albersheim P (1984) Host-parasite interactions. XXV. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments. Plant Physiol 74: 52–60

    PubMed  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P (1986) Host-pathogen interactions. XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase. Z. Naturforsch. 41c: 39–48.

    Google Scholar 

  • Denny TP, VanEtten HD (1981) Tolerance by Nectria haematococca MP VI of the chickpea (Cicera arietinum) phytoalexins medicarpin and maackiain. Physiol Plant Pathol 19: 419–437

    CAS  Google Scholar 

  • Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticolagrapevine interaction. Physiol Mol Plant Pathol 34: 189–202

    CAS  Google Scholar 

  • Desjardins AE, Gardner HW (1989) Genetic analysis in Gibberella pulicaris: Rishitin tolerance, rishitin metabolism, and virulence on potato tubers. Mol Plant-Microbe Interact 2: 26–34

    Google Scholar 

  • Desjardins AE, Gardner HW (1991) Virulence of Gibberella pulicaris on potato tubers and its relationship to a gene for rishitin metabolism. Phytopathology 81: 429–435

    CAS  Google Scholar 

  • Desjardins AE, VanEtten HD (1986) Partial purification of pisatin demethylase, a cytochrome P-450 from the pathogenic fungus Nectria haematococca. Arch Microbiol 144: 84–90

    CAS  Google Scholar 

  • Desjardins AE, Gardner H W, Plattner RD (1989) Detoxification of the potato phytoalexin lubimin by Gibberella pulicaris. Phytochemistry 28: 431–437

    CAS  Google Scholar 

  • Devys M, Barbier M, Loiselet I, Rouxel T, Sarniguet A, Kollmann A, Bousquet J-F (1988) Brassilexin, a novel sulphur-containing phytoalexin from Brassica juncea L. ( Cruciferae ). Tetrahedron Lett 29: 6447–6448

    Google Scholar 

  • Devys M, Barbier M, Kollmann A, Rouxel T, Bousquet J-F (1990) Cyclobrassinin sulphoxide, a sulphur-containing phytoalexin from Brassica juncea. Phytochemistry 29: 1087–1088

    CAS  Google Scholar 

  • Dewick PM (I 975) Pterocarpan biosynthesis: chalcone and isoflavone precursors of demethylhomopterocarpin and maackiain in Trifolium pratense. Phytochemistry 14:979–982

    Google Scholar 

  • Dewick PM (1977) Biosynthesis of pterocarpan phytoalexins in Trifolium pratense. Phytochemistry 16: 93–97

    CAS  Google Scholar 

  • Dewick PM, Martin M (1979) Biosynthesis of pterocarpan and isoflavan phytoalexins in Medicago sativa: the biochemical interconversion of pterocarpans and 2’-hydroxyisoflavans. Phytochemistry 18: 591–596

    CAS  Google Scholar 

  • Dewick PM, Steele MJ (1982) Biosynthesis of the phytoalexin phaseollin in Phaseolus vulgaris. Phytochemistry 21: 1599–1603

    CAS  Google Scholar 

  • De Wit PJGM, Kodde E(1981)lnduction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum. Physiol Plant Pathol 18: 143–148

    Google Scholar 

  • De Wit PJGM, Roseboom PHM (1980) Isolation, partial characterization and specificity of glycoprotein elicitors from culture filtrates, mycelium and cell walls of Cladosporium fulvum (syn. Fulvia fulva). Physiol Plant Pathol 16: 391–408

    Google Scholar 

  • De Wit-Elshove A (1969) The role of pisatin in the resistance of pea plants–some further experiments on the breakdown of pisatin. Neth J Plant Pathol 75: 164–168

    Google Scholar 

  • Dillon VM, Overton J, Grayer RJ, Harborne JB (1997) Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 44: 599–603

    CAS  Google Scholar 

  • Dixon RA, Fuller KW (1977) Characterization of components from culture filtrates of Botrytis cinerea which stimulate phaseollin biosynthesis in Phaseolusvulgaris cell suspension cultures. Physiol Plant Pathol 11: 287–296

    CAS  Google Scholar 

  • Dixon RA, Jennings AC, Davies LA, Gerrish C, Murphy DL (1989) Elicitor-active components from French bean hypocotyls. Physiol Mol Plant Pathol 34: 99–115

    CAS  Google Scholar 

  • Dmitriev AP, Tverskoy LA, Kozlovsky AG, Grodzinsky DM (1990) Phytoalexins from onion and their role in disease resistance. Physiol Mol Plant Pathol 37: 235–244

    CAS  Google Scholar 

  • Dudley MW, Dueber MT, West CA (1986a) Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings. Changes in enzyme levels induced by fungal infection and intracellular localization of the pathway. Plant Physiol 81: 335–342

    Google Scholar 

  • Dudley MW, Dueber MT, West CA (1986b) Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings. The purification and properties of farnesyl transferase from elicited seedlings. Plant Physiol 81: 343–348

    Google Scholar 

  • Dumas MT, Strunz GM, Hubbes M, Jeng RS (1983) Isolation and identification of six mansonones from Ulmus americana infected with Ceratocystis ulmi. Experientia 39: 1089–1090

    CAS  Google Scholar 

  • Ebel J (1986) Phytoalexin synthesis: The biochemical analysis of the induction process. Annu Rev Phy to path o l 24: 235–264

    CAS  Google Scholar 

  • Ebel J, Schmidt WE, Loyal R (1984) Phytoalexin synthesis in soybean cells: Elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch Biochem Biophys 232: 240–248

    Google Scholar 

  • Ebel J, Stab MR, Schmidt WE (1985) Induction of enzymes of phytoalexin synthesis in soybean cells by fungal elicitor. In: Neumann K-H, Barz W, Reinhard E (eds) Primary and Secondary Metabolism of Plant Cell Cultures. Springer-Verlag, Berlin, pp 247–254

    Google Scholar 

  • Echeverri F, Torres F, Quinones W, Cardona G, Archbold R, Roldan J, Brito 1, Luis JG, Lahlou E-H (1997) Danielone, a phytoalexin from papaya fruit. Phytochemistry 44: 255–256

    PubMed  CAS  Google Scholar 

  • Eldon S, Hillocks RJ (1996)The effect of reduced phytoalexin production on the resistance of upland cotton (Gossypium hirsutum) to Verticillium and Fusarium wilts. Ann Appl Biol 129: 217–225

    Google Scholar 

  • Elgersma DM, Liem JI (1989) Accumulation of phytoalexins in susceptible and resistant nearisogenic lines of tomato infected with Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 34: 545–555

    CAS  Google Scholar 

  • Elliger CA, Halloin JM (1994) Phenolics induced in Beta vulgaris by Rhizoctonia solani infection. Phytochemistry 37: 691–693

    PubMed  CAS  Google Scholar 

  • Enkerli J, Bhatt G, Covert SF (1998) Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol Plant-Microbe Interact 11: 317–326

    CAS  Google Scholar 

  • Essenberg M, Pierce ML (1995) Sesquiterpenoid phytoalexins synthesized in cotton leaves and cotyledons during the hypersensitive response to Xanthomonas campestris pv. malvacearum. In: Daniel M, Purkayastha RP (eds) Handbook of phytoalexin metabolism and action. Marcel Dekker, New York, pp 183–198

    Google Scholar 

  • Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89: 11088–11092

    PubMed  CAS  Google Scholar 

  • Fagboun DE, Ogundana SK, Adesanya SA, Roberts MF (1987) Dihydrostilbene phytoalexins from Dioscorea rotundata. Phytochemistry 26: 3187–3189

    CAS  Google Scholar 

  • Farmer EE, Helgeson JP (1987) An extracellular protein from Phytophthora parasitica var. nicotianae is associated with stress metabolite accumulation in tobacco callus. Plant Physiol 85: 733–740

    PubMed  CAS  Google Scholar 

  • Favaron F, Alghisi P, Marciano P, Magro P (1988) Polygalacturonase isozymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin. Physiol Mol Plant Pathol 33: 385–395

    CAS  Google Scholar 

  • Fawcett CH, Firn RD, Spence DM (1971) Wyerone increase in leaves of broad bean ( Vicia faba L.) after infection by Botrytis fabae. Physiol Plant Pathol 1: 163–166

    Google Scholar 

  • Fliegmann J, Schroder G, Schanz S, Britsch L, Schroder J (1992) Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18: 489–503

    PubMed  CAS  Google Scholar 

  • Fuchs A, de Vries FW, Platero Sanz M (1980) The mechanism of pisatin degradation by Fusarium oxysporum f. sp. pisi. Physiol Plant Pathol 16: 119–133

    CAS  Google Scholar 

  • Fügedi P, Birberg W, Garegg PJ, Pilotti A (1987) Syntheses of a branched heptasaccharide having phytoalexin-elicitor activity. Carbohydr Res 164: 297–312

    Google Scholar 

  • Fügedi P, Garegg PJ, Kvarnström I, Svansson L (1988) Synthesis of a heptasaccharide, structurally related to the phytoelicitor active glucan of Phytophthora megasperma f. sp. glycinea. J Carbohydr Chem 7: 389–397

    Google Scholar 

  • Garcia D, Sanier C, Macheix JJ, D’Auzac.I (1995) Accumulation of scopoletin in Hevea brasiliensis infected by Microcyclus ulei (P. Henn.) V. ARX and evaluation of its fungitoxicity for three leaf pathogens of rubber tree. Physiol Mol Plant Pathol 47: 213–223

    Google Scholar 

  • Gardner HW, Desjardins AE, McCormick SP, Weisleder D (1994) Detoxification of the potato phytoalexin rishitin by Gibberella pulicaris. Phytochemistry 37: 1001–1005

    CAS  Google Scholar 

  • Gardner HW, Desjardins AE, Weisleder D, Plattner RD (1988) Biotransformation of the potato phytoalexin, lubimin, by Gibberella pulicaris. Identification of major products. Biochim Biophys Acta 966: 347–356

    Google Scholar 

  • Gehlert R, Schöppner A, Kindl H (1990) Stilbene synthase from seedlings of Pinus sylvestris: purification and induction in response to fungal infection. Mol Plant-Microbe Interact 3: 444–449

    CAS  Google Scholar 

  • Geigert J, Stermitz FR, Johnson G, Maag DD. Johnson DK (1973) Two phytoalexins from sugarbeet (Beta vulgaris) leaves. Tetrahedron 29:2703–2706

    Google Scholar 

  • Giannini JL, Holt JS, Briskin DP (1988) Isolation of sealed plasma membrane vesicles from Phytophthora megasperma f. sp. glycinea. H. Partial characterization of Ca’ transport and glyceollin effect. Arch Biochem Biophys 266: 644–649

    Google Scholar 

  • Giannini.1L, Holt JS, Briskin DP (1990) The effect of glyceollin on proton leakage in Phytophthora megasperma f. sp. glycinea plasma membrane and red beet tonoplast vesicles. Plant Sci 68: 39–45

    CAS  Google Scholar 

  • Giannini JL, Halvorson JS, Spessard GO (1991a) High yield isolation and effect on proton leakage of glyceollins I and III. Phytochemistry 30: 3233–3236

    CAS  Google Scholar 

  • Giannini JL, Holt JS, Briskin DP (1991b) The effect of glyceollin on soybean (Glycine max L.) tonoplast and plasma membrane vesicles. Plant Sci 74: 203–211

    CAS  Google Scholar 

  • Giannini JL, Nelson M, Spessard GO (1995) The effect of rishitin on potato tonoplast vesicle and vacuole proton transport. Phytochemistry 40: 1655–1658

    PubMed  CAS  Google Scholar 

  • Glazebrook J, Ausubel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91: 8955–8959

    PubMed  CAS  Google Scholar 

  • Glazener JA, Wouters CH (1981)Detection of rishitin in tomato fruits after infection with Botrytis cinerea. Physiol Plant Pathol 19: 243–248

    Google Scholar 

  • Glocker MO, Su H, Deinzer ML (1993) Structure elucidation of hop plant (Humulus lupulus) phytoalexin elicitors by fast atom bombardment mass spectrometry. J Agri Food Chem 41: 1558–1565

    CAS  Google Scholar 

  • Görge E, Werner D (1991) Degradation of wyerone, the phytoalexin of Faba bean by Rhizobium leguminosarum. Curr Microbiol 23: 153–157

    Google Scholar 

  • Goy PA, Signer H, Reist R, Aichholz R, Blum W, Schmidt E, Kessmann H (1993) Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa x Nicotiana debneyi. Planta 191: 200–206

    Google Scholar 

  • Graham TL, Graham MY (1991) Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol Plant-Microbe Interact 4: 60–68

    CAS  Google Scholar 

  • Graham TL, Kim JE, Graham MY (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol Plant-Microbe Interact 3: 157–166

    CAS  Google Scholar 

  • Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37: 19–42

    CAS  Google Scholar 

  • Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56: 253–263

    PubMed  CAS  Google Scholar 

  • Grisebach H, Edelmann L, Fischer D, Kochs G, Welle R (1989) Biosynthesis of phytoalexins and nod-gene inducing isoflavones in soybean. In Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer-Verlag, Berlin, pp 57–64

    Google Scholar 

  • Gross D (1993) Phytoalexins of the Brassicaceae. J Plant Dis Protect 100: 433–442

    CAS  Google Scholar 

  • Gunia W, Hinderer W, Wittkampf U, Barz W (1991) Elicitor induction of cytochrome P-450 monooxygenases in cell suspension cultures of chickpea (Citer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z Naturforsch 46c: 58–66

    CAS  Google Scholar 

  • Guo L, Paiva NL (1995) Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch Biochem Biophys 320: 353–360

    PubMed  CAS  Google Scholar 

  • Guo L, Dixon RA, Paiva NL (1994) Conversion of vestitone to medicarpin in alfalfa (Medicago sativa) is catalyzed by two independent enzymes. J Biol Chem 269: 22372–22378

    PubMed  CAS  Google Scholar 

  • Gustine DL (1987) Induction of medicarpin biosynthesis in Ladino clover callus by p-chloromercuribenzoic acid is reversed by dithiothreitol. Plant Physiol 84: 3–6

    PubMed  CAS  Google Scholar 

  • Gutierrez M-C, Parry A, Tena M, Jorrin J, Edwards R (1995) Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry 38: 1185–1191

    Google Scholar 

  • Hadwiger LA, Ogawa T, Kuyama H (1994) Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol Plant-Microbe Interact 7: 531–533

    PubMed  CAS  Google Scholar 

  • Hagmann M-L, Heller W, Grisebach H (1984) Induction of phytoalexin synthesis in soybean. Stereospecific 3,9-dihydroxypterocarpan 6a-hydroxylase from elicitor-induced soybean cell cultures. Eur J Biochem 142: 127–131

    PubMed  CAS  Google Scholar 

  • Hahn MG, Bonhoff A, Grisebach H (1985) Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. Plant Physiol 77: 591–601

    PubMed  CAS  Google Scholar 

  • Hahn MG, Bucheli P, Cervone F, Doares SH, O’Neil RA, Darvill A, Albersheim P (1989) The roles of cell wall constituents in plant-pathogen interactions. In: Kosuge T, Nester EW (eds) Plant-Microbe Interactions. Molecular and Genetic Perspectives, vol 3. McGraw Hill Publ, New York, pp 131–181

    Google Scholar 

  • Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Miol Biol 15: 325–335

    CAS  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phyto-alexin expression in a novel plant. Nature 361: 153–156

    PubMed  CAS  Google Scholar 

  • Ham K-S, Kauffmann S, Albersheim P, Darvill AG (1991) Host-pathogen interactions XXXIX. A soybean pathogenesis-related protein with ß-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol Plant-Micbrobe Interact 4: 545–552

    CAS  Google Scholar 

  • Hamdan MAMS, Dixon RA (1987a) Fractionation and properties of elicitors of the phenylpropanoid pathway from culture filtrates of Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 31: 91–103

    CAS  Google Scholar 

  • Hamdan MAMS, Dixon RA (1987b) Differential patterns of protein synthesis in bean cells exposed to elicitor fractions from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 31: 105–121

    CAS  Google Scholar 

  • Hamerski D, Beier RC, Kneusel RE, Matern U, Himmelspach K (1990) Accumulation of coumarins in elicitor-treated cell suspension cultures of Animi majus. Phytochemistry 29: 1137–1142

    CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: What have we learned after 60 years? Annu Rev Phytopathol 37: 285–306

    PubMed  CAS  Google Scholar 

  • Hammerschmidt R, Kue J (1979) Isolation and identification of phytuberin from Nicotiana tabacum previously infiltrated with an incompatible bacterium. Phytochemistry 18: 874–875

    CAS  Google Scholar 

  • Hanawa F, Kanauchi M, Tahara S, Mizutani J (1994) Lettucenin A as a phytoalexin of dandelion and its elicitation in dandelion cell cultures. J Fac Agri Hokkaido Univ 66: 151–162

    Google Scholar 

  • Harborne JB (1990) Role of secondary metabolites in chemical defence mechanisms in plants.Pages 126–139 in Bioactive Compounds from Plants. Ciba foundation Symposium 154

    Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27: 335–367

    CAS  Google Scholar 

  • Hardegger E, Schellenbaum M, Corrodi H (1963) Welkstoffe and Antibiotika. Uber induzierte Abwehrstoffe bei Orchideen II. HeIv Chim Acta 46: 1171–1180

    Google Scholar 

  • Harding VK, Heale JB (1980) Isolation and identification of the antifungal compounds accumulating in the induced resistance response of carrot slices to Botrytis cinerea. Physiol Plant Pathol 17: 277–289

    CAS  Google Scholar 

  • Hargreaves JA, Mansfiled JW, Coxon DT (1976a) Identification of medicarpin as a phytoalexin in the broad bean plant (Vicia faba L.). Nature 262: 318–319

    CAS  Google Scholar 

  • Hargreaves JA, Mansfiled JW, Coxon DT, Price KR (1976b) Wyerone epoxide as a phytoalexin in Vicia faba and its metabolism by Botrytis cinerea and B. fabae in vitro. Phytochemistry 15: 1119–1121

    CAS  Google Scholar 

  • Hartmann G, Nienhaus F (1974) The isolation of xanthoxylin from the bark of Phytophthora-and Hendersonula-infected Citrus Limon and its fungitoxic effect. Phytopathol Z 81: 97–113

    CAS  Google Scholar 

  • Heinstein P (1985) Stimulation of sesquiterpene aldehyde formation in Gossypium arboreum cell suspension cultures by conidia of Verticillium dahliae. J Nat Prod 48: 907–915

    CAS  Google Scholar 

  • Henfling JWDM, Bostock R, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber slices. Phytopathology 70: 1074–1078

    CAS  Google Scholar 

  • Higgins VJ, Stoessl A, Heath MC (1974) Conversion of phaseollin to phaseollinisoflavan by Stemphylium botryosum. Phytopathology 64: 105–107

    CAS  Google Scholar 

  • Hildenbrand S, Ninnemann H (1994) Kinetics of phytoalexin accumulation in potato tubers of different genotypes infected with Erwinia carotovora ssp. atroseptica. Physiol Mol Plant Pathol 44: 335–347

    CAS  Google Scholar 

  • Hipskind JD, Hanau R, Leite B, Nicholson RL (1990) Phytoalexin accumulation in sorghum: identification of an apigeninidin acyl ester. Physiol Mol Plant Pathol 36: 381–396

    CAS  Google Scholar 

  • Höhl B, Barz W (1987) Partial characterization of an enzyme from the fungus Ascochyta rabiei for the reductive cleavage of pterocarpan phytoalexins to 2’-hydroxysioflavans. Z Naturforsch 42c: 897–901

    Google Scholar 

  • Hoppe HH, Hümme B, Heitefuss R (1980) Elicitor induced accumulation of phytoalexins in healthy and rust infected leaves of Phaseolus vulgaris. Phytopathol Z 97: 85–88

    CAS  Google Scholar 

  • Hoshino T, Chida M, Yamaura T, Yoshizawa Y, Mizutani J (1994) Phytoalexin induction in green pepper cell cultures treated with arachidonic acid. Phytochemistry 36: 1417–1419

    CAS  Google Scholar 

  • Hoshino T, Yamaura T, Imaishi H, Chida M, Yoshizawa Y, Higashi K, Ohkawa H, Mizutani J (1995) 5-epi-Aristolochene 3-hydroxylase from green pepper. Phytochemistry 38: 609–613

    Google Scholar 

  • Hrazdina G, Borejsza-Wysocki W, Lester C (1997) Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathology 87: 869–876

    Google Scholar 

  • Huang J-S, Barker KR (1991) Glyceollin 1 in soybean-cyst nematode interactions. Spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol 96: 1302–1307

    Google Scholar 

  • Ingham JL (1976a) Induced isoflavonoids from fungus-infected stems of pigeon pea (Cajamus cajan). Z Naturforsch. 31c: 504–508

    CAS  Google Scholar 

  • Ingham JL (1976b) Induced and constitutive isotavonoids from stems of chickpeas (Cicer arietinum L.) inoculated with spores of Helminthosporium carbonum Ullstrup. Phytopathol Z 87: 353–367

    CAS  Google Scholar 

  • Ingham JL (1979) Isoflavonoid phytoalexins of the genus Medicago. Biochem Syst Evol 7: 29–34

    CAS  Google Scholar 

  • Ingham JL (1982) Phytoalexins from the leguminosae. In: Bailey JA, Mansfield JW (eds) Phytoalexins. John Wiley and Sons, New York, pp 21–80

    Google Scholar 

  • Ingham JL (1990) A further investigation of phytoalexin formation in the genus Trifolium. Z Naturforsch 45c: 829–834

    CAS  Google Scholar 

  • Ingham JL, Dewick PM (1979) A new isoflavan phytoalexin from leaflets of Lotus hispidus. Phytochemistry 18: 1711–1714

    CAS  Google Scholar 

  • Ingham JL, Miller RL (1973) Sativin: an induced isoflavan from the leaves of Medicago sativa L. Nature 242: 125–126

    CAS  Google Scholar 

  • Ingham JL, Keen NT, Mulheirn L.1, Lyne RL (1981) Inducibly-formed isoflavonoids from leaves of soybean (Glycine max). Phytochemistry 20: 795–798

    CAS  Google Scholar 

  • Inoue H, Oha K, Ando M, Uritani 1 (1984) Enzymatic reduction of dehydro-ipomeamarone to ipomeamarone in sweet potato root tissue infected by Ceratocystis fimbriata. Physiol Plant Pathol 25: 1–8

    CAS  Google Scholar 

  • Ishihara A, Ohtsu Y, Iwamura H (1999) Biosynthesis of oat avenanthramide phytoalexins. Phytochemistry 50: 237–242

    CAS  Google Scholar 

  • Jadhav SJ, Mazza G, Salunkhe DK (1991) Terpenoid phytoalexins in potatoes: A review. Food Chem 41: 195–217

    Google Scholar 

  • Jin DF, West CA (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol 74: 989–992

    PubMed  CAS  Google Scholar 

  • Johnson C, Brannon DR, Kuc J (1973) Xanthotoxin: a phytoalexin of Pastinaca saliva root. Phytochemistry 12: 2961–2962

    CAS  Google Scholar 

  • Johnson G, Maag DD, Johnson DK, Thomas RD (1976) The possible role of phytoalexins in the resistance of sugarbeet (Beta vulgaris) to Cercospora beticola. Physiol Plant Pathol 8: 225–230

    CAS  Google Scholar 

  • Kaplan DT, Keen NT, Thomason B (1980) Association of glyceollin with the incompatible response of soybean roots to Meloidogyne incognita. Physiol Plant Pathol 16: 309–318

    CAS  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1993) Oryzalexin E, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36: 299–301

    Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1994) Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36: 299–301

    CAS  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1995) Characterization of an inducible P450 hydroxylase involved in the rice diterpene phytoalexin biosynthesis pathway. Arch Biochem Biophys 316: 707–712

    PubMed  CAS  Google Scholar 

  • Kato N, Imaseki H, Nakashima N, Uritani 1 (1971) Structure of a new sesquiterpenoid, ipomeamaronol, in diseased sweet potato root tissue. Tetrahed Lett 843–846

    Google Scholar 

  • Katsui N, Murai A, Takasugi M, Imaizumi K, Masamune T (1968) The structure of rishitin, a new antifungal compound from diseased potato tubers. J Chem Soc Chem Commun 43–44

    Google Scholar 

  • Katsui N, Matsunaga A, Imaizumi K, Masamune T, Tomiyama K (1971) The structure and synthesis of rishitinol, a new sesquiterpene alcohol from diseased potato tubers. Tetrahed Lett 83–86

    Google Scholar 

  • Katsui N, Matsunaga A, Masamune T (1974) The structure of lubimin and oxylubimin, antifungal metabolites from diseased potato tubers. Tetrahed Lett 4483–4486

    Google Scholar 

  • Keen NT (1972) Accumulation of wyerone in broad bean and demethylhomopterocarpin in jack bean after inoculation with Phytophthora megasperma var. sojae. Phytopathology 62: 1365–1366

    CAS  Google Scholar 

  • Keen NT (1975a) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens? Science 187: 74–75

    PubMed  CAS  Google Scholar 

  • Keen NT (1975b) The isolation of phytoalexins from germinating seeds of Cicer arietinum, Vigna sinensis, Arachis hypogaea, and other plants. Phytopathology 65: 91–92

    CAS  Google Scholar 

  • Keen NT, Kennedy BW (1974) Hydroxyphaseollin and related isoflavonoids in the hyper-sensitive resistance reaction of soybeans to Pseudomonas glycinea. Physiol Plant Pathol 4: 173–185

    CAS  Google Scholar 

  • Keen NT, Zaki Al, Sims JJ (1972) Biosynthesis of hydroxyphaseollin and related isoflavanoids in disease-resistant soybean hypocotyls. Phytochemistry 11: 1031–1039

    CAS  Google Scholar 

  • Keen NT, Yoshikawa M, Wang MC (1983) Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f. sp. glycinea and other sources. Plant Physiol 71: 466–471

    PubMed  CAS  Google Scholar 

  • Kemp MS, Burden RS (1984) Isolation and structure determination of y-pyrufura, a thrid induced antifungal dibenzofuran from the wood of Pyrus communis L. infected with Chondrostereum purpureum (Pers. ex Fr.) Pouzar. J Chem Soc Perkin Trans 1: 1441–1443

    Google Scholar 

  • Kemp MS, Burden RS, Loeffler RST (1983) Isolation, structure determination, and total synthesis of the dibenzofurans a-and 13-pyrufuran, new phytoalexins from the wood of Pyrus communis L. J Chem Soc Perkin Trans I: 2267–2272

    Google Scholar 

  • Kendra DF, Hadwiger, LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp Mycol 8: 276–281

    CAS  Google Scholar 

  • Kessmann H, Edwards R, Geno PW, Dixon, RA (1990) Stress responses in alfalfa (Medicago sativa L.). V. Constitutive and elicitor-induced accumulation of isoflavonoid conjugates in cell suspension cultures. Plant Physiol 94: 227–232

    Google Scholar 

  • Kistler HC, VanEtten HD (1981) Phaseollin metabolism and tolerance in Fusarium solani f. sp. phaseoli. Physiol Plant Pathol 19: 257–271

    CAS  Google Scholar 

  • Kobayashi A, Akiyama K, Kawazu K (1994) Partially N-deacetylated chitin fragments are strong elicitors for (+)-pisatin induction in epicotyls of pea. Z Naturforsch 49c: 302–308

    CAS  Google Scholar 

  • Kochs G, Grisebach, H (1989) Phytoalexin synthesis in soybean: Purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophs 273: 543–553

    CAS  Google Scholar 

  • Kochs G, Werck-Reichhard D, Grisebach H (1992) Further characterization of cytochrome P450 involved in phytoalexin synthesis in soybean: cytochrome P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase. Arch Biochem Biophys 293: 187–194

    PubMed  CAS  Google Scholar 

  • Kodama O. Li WX, Tamogami S, Akatsuka T (1992a) Oryzalexin S, a novel stemarane-type diterpene rice phytoalexin. Biosci Biotehnol Biochem 56: 1002–1003

    Google Scholar 

  • Kodama O, M iyakawa.1, Akatsuka T, Kiyosawa S (1992b) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31: 3807–3809

    CAS  Google Scholar 

  • KogaJ, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N (1995) Phytocassanes A, B, C, and D, novel diterpen phytoaleixns from rice, Oryza sativa L. Tetrahedron 51: 7907–7918

    Google Scholar 

  • Koga J, Ogawa N, Yamauchi T, Kikuchi M, Ogasawara N, Shimura M (1997) Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44: 249–253

    CAS  Google Scholar 

  • Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273: 31985–31991

    Google Scholar 

  • Kokubun T, Harbome JB (1995) Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae): biphenyls or dibenzofurans. Phytochemistry 40: 1649–1654

    CAS  Google Scholar 

  • Kokubun T, Harborne JB, Eagles J (1994) 2’,6’-Dihydroxy-4’-methoxyacetophenone, a phytoalexin from the roots of Sanguisorba minor. Phytochemsitry 35: 331–333

    Google Scholar 

  • Kokubun T, Harborne JB, Eagles J, Waterman PG (1995a) Dibenzofuran phytoalexins from the sapwood of Cotoneaster acutifolius and five related species. Phytochemistry 38: 57–60

    CAS  Google Scholar 

  • Kokubun T, Harborne JB, Eagles J, Waterman PG (1995b) Dibenzofuran phytoalexins from the sapwood tissue ofPhotinia, Pyracantha and Crataegus species. Phytochemistry 39: 1033–1037

    CAS  Google Scholar 

  • Komae K, Komae A, Misaki A (1990) A 4,5-unsaturated low molecular oligo-galacturonide as a potent phytoalexin-elicitor isolated from polygalacturonide of Ficus awkeotsang. Agri Biol Chem 54: 1477–1484

    CAS  Google Scholar 

  • Kombrink E, Hahlbrock K (1986) Responses of cultured parsley cells to elicitors from phytopathogenic fungi. Timing and dose dependency of elicitor-induced reactions. Plant Physiol 81: 216–221

    Google Scholar 

  • Kubota T, Matsuura T (1953) Chemical studies on the black rot disease of sweet potato. V. Chemical constitution of ipomeamarone. J Chem Soc Japan 74: 248–251

    Google Scholar 

  • Kuc J (1982) Phytoalexins from the Solanaceae. In Bailey JA, Mansfiled JW (eds) Phytoalexins. John Wiley and Sons, New York, pp 81–105

    Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33: 275–297

    PubMed  CAS  Google Scholar 

  • Kupidlowska E, Dobrzynska K, Parys E, Zobel AM (1994) Effect of coumarin and xanthotoxin on mitochondria] structure, oxygen uptake, and succinate dehydrogenase activity in onion root cells. J Chem Ecol 20: 2471–2480

    CAS  Google Scholar 

  • Kurosaki F (1994) Regulation of biosynthesis of carrot phytoalexin 6-methoxymellein. Phytochemistry 37: 727–730

    CAS  Google Scholar 

  • Kurosaki F, Nishi A (1991) Comparison of enzyme activities involved in the biosynthesis of carrot phytoalexin 6-methoxymellein. Phytochemistry 30: 1823–1825

    CAS  Google Scholar 

  • Kurosaki F, Kizawa Y, Nishi A (1989) Derailment product in NADPH-dependent synthesis of a dihydroisocoumarin 6-hydroxymellein by elicitor-treated carrot cell extracts. Eur J Biochem 185: 85–89

    PubMed  CAS  Google Scholar 

  • Lackner M (1990) Secondary metabolism in microorgnisms, plants, and animals. Springer-Verlag, Berlin

    Google Scholar 

  • Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33: 151–152

    PubMed  CAS  Google Scholar 

  • Lange BM, Trost M, Heller W, Langebartels C, Sandermann H.Jr (1994) Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.). Planta 194: 143–148

    CAS  Google Scholar 

  • Latunde-Dada AO, Dixon RA, Lucas JA (1987) Induction of phytoalexin biosynthetic enzymes in resistant and susceptible lucerne callus lines infected with Verticillium albo-atrum. Physiol Mol Plant Pathol 31: 15–23

    CAS  Google Scholar 

  • Lee S-C, West CA (1981) Polygalacturonase from Rhizopus stolonifer is an elicitor of casbene synthase activity in Castor bean (Rhicinus communis L.) seedlings. Plant Physiol 67: 633–639

    PubMed  CAS  Google Scholar 

  • Li D, Chung K-R, Smith DA, Schardl CL (1995) The Fusarium solani gene encoding kievitone hydratase, a secreted enzyme that catalyzes detoxification of a bean phytoalexin. Mol Plant-Microbe Interact 8: 388–397

    PubMed  CAS  Google Scholar 

  • Liswidowati, Melchior F, Hohmann F, Schwer B, Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183: 307–314

    CAS  Google Scholar 

  • Longland AC, Slusarenko AJ, Friend J (1987) Arachidonic and linoleic acids elicit isoflavonoid phytoalexin accumulatiuon in Phaseolus vulgaris ( French bean ). J Phytopathol 120: 289–297

    Google Scholar 

  • Lucy MC, Matthews PS, VanEtten HD (1988) Metabolic detoxification of the phytoalexins maackiain and medicarpin in Nectria haematococca field isolates: relationship to virulence on chickpea. Physiol Mol Plant Pathol 33: 187–199

    CAS  Google Scholar 

  • Luis JG, Echeverri F, Quinones W, Brito I, López M, Torres F, Cardona G, Aguiar Z, Pelaez C, Rojas M (1993) lrenolone and emenolone: two new types of phytoalexin from Musa paradisiaca. J Org Chem 58: 4306–4308

    Google Scholar 

  • Luis JG, Quinones W, Echeverri F, Grillo TA, Kishi MP, Garcia-Garcia F, Torres F, Cardona G (1996) Musanolones: four 9-phenylphenalenones from rhizomes of Musa acuminala. Phytochemistry 41: 753–757

    CAS  Google Scholar 

  • Lyne RL, Mulheirn L.I, Leworthy DP (1976) New pterocarpinoid phytoalexins of soybean. J Chem Soc Chem commun 497–498

    Google Scholar 

  • Lyon FM, Wood RKS (1975) Production of phaseollin, coumestrol and related compounds in bean leaves inoculated with Pseudomonas spp. Physiol Plant Pathol 6: 117–124

    CAS  Google Scholar 

  • Lyon GD (1980) Evidence that the toxic effect of rishitin may be due to membrane damage. J Expt Bot 31: 957–966

    CAS  Google Scholar 

  • Mace ME, Stipanovic RD (1995) Mode of action of the phytoalexin desoxyhemigossypol against the wilt pathogen, Verticillium dahliae. Pesticide Biochem Physiol 53: 205–209

    CAS  Google Scholar 

  • Mackenbrock U, Barz W (1991) Elicitor-induced formation of pterocarpan phytoalexins in chickpea Cicer arietinum L.) cell suspension cultures from constitutive isoflavone conjugates upon inhibition of phenylalanine ammonia lyase. Z Naturforsch 46c: 43–50

    CAS  Google Scholar 

  • Mackenbrock U, Gunia W, Barz W (1993) Accumulation and metabolism of medicarpin and maackiain malonylglucosides in elicited chickpea (Cicer arietinum L.) cell suspension cultures. J Plant Physiol 142: 385–391

    CAS  Google Scholar 

  • Madar Z, Solel Z, Riov J, Sztejnberg A (1995a) Phytoalexin production by cypress in response to infection by Diplodia pinea f sp. cupressi and its relation to water stress. Physiol Mol Plant Pathol 47: 29–38

    CAS  Google Scholar 

  • Madar Z,Gottlieb HE, Cojocaru M, Riov J, Sold Z, Sztejnberg A (1995b) Antifungal terpenoids produced by cypress after infection by Diplodia pinea f. sp. cupressi. Phytochemistry 38:351–354

    Google Scholar 

  • Maloney AP, VanEtten HD (1994) A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet 243: 506–514

    PubMed  CAS  Google Scholar 

  • Mansfield JW. Porter AEA, Smallman RV (1980) Dihydrowyerone derivatives as components of the furanoacetylenic phytoalexin response of tissues of Vicia faba. Phytochemistry 19: 1057–1061

    Google Scholar 

  • Marinelli F, Gregoria SD, Ronchi VN (1991) Phytoalexin production and cell death in elicited carrot cell suspension cultures. Plant Sci 77: 261–266

    CAS  Google Scholar 

  • Marinelli F, Ronchi VN, Salvador P (1994) Elicitor induction of enzyme activities and 6-methoxymellein production in carrot cell suspension culture. Phytochemistry 35: 1457–1460

    CAS  Google Scholar 

  • Marshall PS, Harborne JB, King GS (1987) A spiroketalenol ether phytoalexin from infected leaves and stems of Coleostephus myconis. Phytochemistry 26: 2493–2494

    CAS  Google Scholar 

  • Mau CJD, West CA (1994) Cloning of casbene synthase cDNA: Evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci USA 91: 8497–8501

    Google Scholar 

  • Mayama S, Tani T, Ueno T, Hirabayashi K, Nakashima T, Fukami H, Mizuno Y, Inci H (1981) Isolation and structure elucidation of genuine oat phytoalexin, avenalumin I. Tetrahedron Lett 22: 2103–2106

    CAS  Google Scholar 

  • Melchior F, Kind H (1991) Coordinate-and elicitor-dependent expression of stilbene synthase and phenylalanine ammmonia-lyase genes in Vitis cv. Optima. Arch Biochem Biophys 288: 552–557

    Google Scholar 

  • Miao VPW, VanEtten HD (1992a) Three genes for metabolism of the phytoalexin maackiain in the plant pathogen Nectria haematococca: meiotic instability and relationship to a new gene for pisatin demethylase. Appl Environ Microbiol 58: 801–808

    PubMed  CAS  Google Scholar 

  • Miao VPW, VanEtten HD (1992b) Genetic analysis of the role of phytoalexin detoxification in virulence of the fungus Nectria haematococca on chickpea (Cicer arietinum). Appl Environ Microbiol 58: 809–814

    PubMed  CAS  Google Scholar 

  • Mieth H, Speth V, Ebel J (1986) Phytoalexin production by isolated soybean protoplasts. Z Naturforsch 41c: 193–201

    CAS  Google Scholar 

  • Milat M-L, Ricci P, Bonnet P, Blein J-P (1991) Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30: 2171–2173

    CAS  Google Scholar 

  • Miyagawa H, Ishihara A, Kuwahara Y, Ueno T, Mayama S (1996) A stress compound in oats induced by victorin, a host-specific toxin from Helminthosporium victoriae. Phytochemistry 41: 1473–1475

    CAS  Google Scholar 

  • Miyakodo M. Watanabe K, Ohno N, Nonaka F, Morita A (1985) Isolation and structure determination of eriobofuran, a new dibenzofuran phytoalexin from leaves of loquat, Eriobotrya japonica L. J Pesticide Sci 10: 101–106

    Google Scholar 

  • Modafar CE, Clerivet A, Fleuriet A, Macheix JJ (1993) Inoculation of Platanus acerifolia with Ceratocystis fimbriata f. sp. platani induces scopoletin and umbelliferone accumulation. Phytochemistry 34: 1271–1276

    Google Scholar 

  • Moesta P, Grisebach H (1982) L-2-Aminooxy-3-phenylpropionic acid inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora mega-sperma f. sp. glycinea. Physiol Plant Pathol 21: 65–70

    CAS  Google Scholar 

  • Moesta P, West CA (1985) Casbene synthetase: Regulation of phytoalexin biosynthesis in Ricinus communis L. seedlings. Arch Biochem Biophys 238: 325–333

    PubMed  CAS  Google Scholar 

  • Monde K, Katsui N, Shirata A, Takasugi M (1990a) Brassicanals A and B, novel sulphur-containing phytoalexins from th cabbage Brassica campestris L. ssp. pekinensis. Chem Lett 209–210

    Google Scholar 

  • Monde K, Oya T, Shirata A, Takasugi M (1990b) A guaianolide phytoalexin, cichoralexin, from Cichorium intybus. Phytochemistry 29: 3449–3451

    CAS  Google Scholar 

  • Monde K, Sasaki K, Shirata A, Takasugi M (1990e) 4-Methoxybrassinin, a sulphur-containing phytoalexin from Brassica oleracea. Phytochemistry 29: 1499–1500

    Google Scholar 

  • Monde K, Sasaki K, Shirata A, Takasugi M (1991) Brassicanal C and two dioxindoles from cabbage. Phytochemistry 30: 2915–2917

    CAS  Google Scholar 

  • Monde K, Kishimoto M, Takasugi M (1992) Yurinelide, a novel 3-benzylidene-1,4-bezodioxin2(3H)-one phytoalexin from Lillian maximowiczii. Tetrahedron Lett 33: 5395–5398

    CAS  Google Scholar 

  • Monde K, Takasugi M, Ohnishi T (1994a) Biosynthesis of cruciferous phytoalexins. J Am Chem Soc 116: 6650–6657

    CAS  Google Scholar 

  • Monde K, Tamura K, Takasugi M, Kobayashi K, Somei M (1994b) Dehydro-4-methoxycyclobrassinin, a sulfur-containing phytoalexin isolated from turnip Brassica campestris ssp. rapa. Heterocycles 38: 263–267

    CAS  Google Scholar 

  • Monde K, Takasugi M, Shirata A (1995) Three sulphur-containing stress metabolites from Japanese radish. Phytochemistry 39: 581–586

    CAS  Google Scholar 

  • Monden T, Toida T, Nakamura H, Sato N, Murai A (1995) Isolation of an endogenous elicitor induced by hydrogen peroxide from potato. Chem Lett 173–174

    Google Scholar 

  • Müller KO, Börger H (1940) Experimentel le Untersuchungen über die Phytophthora-resistenz der Kartoffel. Arb Biol Anst Reichsanst (Berlin) 23: 189–231

    Google Scholar 

  • Murai A, Sato K, Hasegawa T (1995) Implicit role of hydrogen peroxide on phytoalexin production in higher plants. Chem Lett 883–884

    Google Scholar 

  • Mwangi LM, Lin D, Rubbers M (1990) Chemical factor in Pinus strobus inhibitory to Armillaria ostoyae. Eur J For Pathol 20: 8–14

    Google Scholar 

  • Nicholson RL, Kollipara SS, Vincent JR, Lyons PC, Cadena-Gomez G (1987) Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and non-pathogenic fungi. Proc Natl Acad Sci USA 84: 5520–5524

    PubMed  CAS  Google Scholar 

  • Niemann GJ (1993) The anthranilamide phytoalexins of the Caryophyllaceae and related compounds. Phytochemistry 34: 319–328

    CAS  Google Scholar 

  • Niemann GJ, Liem J, van der Kerk-van Hoof A, Niessen WMA (1992) Phytoalexins, benzoxazinones, N-aroylanthranilates and N-aroylanilines, from Fusariunrinfected carnation stems. Phytochemistry 31: 3761–3767

    CAS  Google Scholar 

  • Nothnagel EA, McNeil M, Albersheim P, Dell A (1983) Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71: 916–926

    Google Scholar 

  • Ôba K, Oga K, Uritani I (1982) Metabolism of ipomeamarone in sweet potato root slices before and after treatment with mercuric chloride or infection with Ceratocystis fambriata. Phytochemistry 21: 1921–1925

    Google Scholar 

  • Oguni IU, Uritani I (1974) Dehydroipomeamarone from infected 1pomoea batatas root tissue. Phytochemistry 13: 521–522

    CAS  Google Scholar 

  • PaivaNL, Edwards R, Sun Y, Hrazdina G, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol Biol 17: 653–667

    Google Scholar 

  • Parker JE, Schulte W, Hahlbrock K, Scheel D (1991) An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol Plant-Microbe Interact 4: 19–27

    CAS  Google Scholar 

  • Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol 173: 3432–3439

    PubMed  CAS  Google Scholar 

  • Paxton JD (1981) Phytoalexins–A new working redefinition. Phytopathol Z 101: 106–109

    Google Scholar 

  • Pedras MSC, Khan AQ (1996) Biotransformation of the Brassica phytoalexin brassicanal A by the blackleg fungus. J Agri Food Chem 44: 3403–3407

    CAS  Google Scholar 

  • Pedras MSC, Khan AQ (1997)Unprecedented detoxification of the cruciferous phytoalexin camalexin by a root phytopathogen. Bioorg Med Chem Lett 7: 2255–2260

    Google Scholar 

  • Pedras MSC, Khan AQ (2000) Biotransformation of the phytoalexin camalexin by the phytopathogen Rhizoctonia solani. Phytochemistry 53: 59–69

    PubMed  CAS  Google Scholar 

  • Pedras MSC, Smith KC (1997) Sinalexin, a phytoalexin from white mustard elicited by destruxin B and Alternaria brassicae. Phytochemistry 46: 833–837

    CAS  Google Scholar 

  • Pedras MSC, Taylor JL (1993) Metabolism of the phytoalexin brassinin by the “blackleg” fungus. J Nat Prod 56: 731–738

    CAS  Google Scholar 

  • Pedras MSC, Zaharia IL (2000) Sinalbins A and B, phytoalexins from Sinapis alba: elicitation, isolation, and synthesis. Phytochemistry 55: 213–216

    PubMed  CAS  Google Scholar 

  • Pedras MSC, Sorensen JL, Okanga FI, Zaharia IL (1999) Wasalexins A and B, new phytoalexins from wasabi: isolation, synthesis, and antifungal activity. Bioorg Med Chem Lett 9: 3015–3020

    PubMed  CAS  Google Scholar 

  • Pedras MSC, Okanga FI, Zaharia IL, Khan AQ (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53: 161–176

    PubMed  CAS  Google Scholar 

  • Perrin DR (1964) The structure of phaseolin. Tetrahedron Lett 29–35

    Google Scholar 

  • Perrin DR, Bottomley W (1962) Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. J Amer Chem Soc 84: 1919–1922

    CAS  Google Scholar 

  • Perrin DR, Whittle CP, Batterham TJ (1972) The structure of phaseollidin. Tetrahedron Lett 1673–1676

    Google Scholar 

  • Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS-Microbiol Lett 167: 203–208

    CAS  Google Scholar 

  • Pezet R, Pont V, Hoang-Van K (1991) Evidence for oxidative detoxication of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol Mol Plant Pathol 39: 441–450

    CAS  Google Scholar 

  • Platero Sanz M, Fuchs A (1978) Degradation of pisatin, an antimicrobial compound produced by Pisun2 sativum L. Phytopathol Medit 17: 14–17

    Google Scholar 

  • Preisig CL, Kuc JA (1985) Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans ( Mont.) de Bary. Arch Biochem Biophys 236: 379–389

    Google Scholar 

  • Preisig CL, Matthews DE, VanEtten HD (1989) Purification and characterization ofS-adenosyl-Lmethionine:6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum. Plant Physiol 91: 559–566

    PubMed  CAS  Google Scholar 

  • Preisig CL, Bell JN, Sun Y, Hrazdina G, Matthews DE, VanEtten HD (1990) Biosynthesis of the phytoalexin pisatin. Isoflavone reduction and further metabolism of the product sophorol by extracts of Pisum sativum. Plant Physiol 94: 1444–1448

    PubMed  CAS  Google Scholar 

  • Preisig CL, VanEtten HD, Moreau RA (1991) Induction of 6a-hydroxymaackiain 3–0-methyltransferase and phenylalanine ammonia-Iyase mRNA translational activities during the biosynthesis of pisatin. Arch Biochem Biophys 290: 468–473

    PubMed  CAS  Google Scholar 

  • Proctor RH, Guries RP, Smalley EB (1994) Lack of association between tolerance to the elm phytoalexin mansonone E and virulence in Ophiostoma novo-ulmi. Can J Bot 72: 1355–1364

    CAS  Google Scholar 

  • Pueppke SG, VanEtten HD (1974) Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches, Fusarium solani f. sp. pisi, or Rhizoctonia solani. Phytopathology 64: 1433–1440

    CAS  Google Scholar 

  • Pueppke SG, VanEtten HD (1975) Identification of three new pterocarpans from Pisum sativum infected with Fusarium solani f. sp. pisi. J Chem Soc Perkin Trans 1: 946–948

    Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M, Kodama 0 (2000) Naringenin 7–0-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Sci 155: 213–221

    CAS  Google Scholar 

  • Ralton JE, Howlett BJ, Clarke AE (1988) Interaction of cowpea with Phytophthora vignae: inheritance of resistance and production of phenylalanine ammonia-Iyase as a resistance response. Physiol Mol Plant Pathol 32: 89–103

    CAS  Google Scholar 

  • Reimmann C, VanEtten HD (1994) Cloning and characterization of the PDA6–1 gene encoding a fungal cytochrome P-450 which detoxifies the phytoalexin pisatin from garden pea. Gene 146: 221–226

    PubMed  CAS  Google Scholar 

  • Reinecke T, Kindl H (1994a) Inducible enzymes of the 9,10-dihydro-phenanthrene pathway. Sterile orchid plants responding to fungal infection. Mol Plant-Microbe Interact 7: 449–454

    Google Scholar 

  • Reinecke T, Kindl H (1994b) Characterization of bibenzyl synthase catalysing the biosynthesis of phytoalexins of orchids. Phytochemistry 35: 63–66

    CAS  Google Scholar 

  • Ren Y-Y, West CA (1992) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99: 1169–1178

    PubMed  CAS  Google Scholar 

  • Rhodes MJC (1994) Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol Biol 24: 1–20

    PubMed  CAS  Google Scholar 

  • Rich JR, Keen NT, Thomason IJ (1977) Association of coumestans with the hypersensitivity of lima bean roots to Pratylenchus scribneri. Physiol Plant Pathol 10: 105–116

    CAS  Google Scholar 

  • Robeson DJ, Ingham JL (1979) New pterocarpan phytoalexins from Lathyrus nissolia. Phytochemistry 18: 1715–1717

    CAS  Google Scholar 

  • Robeson DJ, Ingham JL, Harborne JB (1980) Identification of two chromone phytoalexins in the sweet pea, Lathyrus odoratus. Phytochemistry 19: 2171–2173

    CAS  Google Scholar 

  • Rogers EE, Glazebrook J, Ausubel FM (1996) Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant-Microbe Interact 9: 748–757

    PubMed  CAS  Google Scholar 

  • Rosenkranz HS, Klopman G (1990) The structural basis of the carcinogenic and mutagenic potentials of phytoalexins. Mutation Res 245: 51–54

    PubMed  CAS  Google Scholar 

  • Rouxel T, Kollmann A, Boulidard L, Mithen R (1991) Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae. Planta 184: 271–278

    CAS  Google Scholar 

  • Rouxel T, Kollman A, Balesdent M-H (1995) Ihytoalexins from the crucifers. In: Daniel M, Purkayastha RP (eds) Handbook of phytoalexin metabolism and action. Macel Dekker, New York, pp 229–261

    Google Scholar 

  • Saad I, Diaz E, Chavez I, Reyes-Chilpa R, Rubluo A, Jiménez-Estrada M (2000) Antifungal monoterpene production in elicited cell suspension cultures of Piqueria trinervia. Phytochemistry 55: 51–57

    PubMed  CAS  Google Scholar 

  • Sato N, Tomiyama K, Katsui N (1968) Isolation of rishitin from tomato plants. Ann Phytopathol Soc Japan 34: 344–345

    CAS  Google Scholar 

  • Scala F, Matthews DE, Costa M, VanEtten HD (1988) Immunochemical relatedness of fungal NADPH-cytochrome P-450 reductase and their ability to reconstitute pisatin demethylase activity. Expt Mycol 12: 377–385

    CAS  Google Scholar 

  • Schanz S, Schröder G, Schröder J (1992) Stilbene synthase from Scots pine (Pinus sylvestres). FEBS Lett 313: 71–74

    PubMed  CAS  Google Scholar 

  • Schneider JA, Nakanishi K (1983) A new class of sweet potato phytoalexins. J Chem Soc Chem Commun 353–355

    Google Scholar 

  • Schneider JA, Yoshihara K, Nakanishi K (1983)The absolute configuration of (+)-ipomeamarone. J Chem Soc Chem Commun 352–353

    Google Scholar 

  • Schneider JA, Lee J, Yoshihara K, Mizukawa K, Nakanishi K (1984a) Biosynthetic studies of ipomeamarone. J Chem Soc Chem Commun 372–374

    Google Scholar 

  • Schneider JA, Lee J, Naya Y, Nakanishi K, Oba K, Uritani I (1984b) The fate of the phytoalexin ipomeamarone: furanoterpenes and butenolides from Ceratocystis fimbriata-infected sweet potatoes. Phytochemistry 23: 759–764

    CAS  Google Scholar 

  • Schröder J, Lanz T, Schröder G (1990) Genes for biosynthesis of stilbene-type phytoalexins. In: Lamb CJ, Beachy RN (eds) Plant gene transfer. Alan R. Liss, New York, pp 311–318

    Google Scholar 

  • Schutt C, Netzly D (1991) Effect of apiforol and apigeninidin on growth of selected fungi. J Chem Ecol 17: 2261–2266

    CAS  Google Scholar 

  • Seifert K, Härtling S, Porzel A, Johne S, Krauß G (1993) Phytoalexin accumulation in Orni-thopus sativus as a response to elicitor treatment. Z Naturforsch 48c: 550–555

    CAS  Google Scholar 

  • Sharon A, Ghirlando R, Gressel J (1992) Isolation, purification, and identification of2-(p-hydroxyphenoxy)-5,7-dihydroxychromone: A fungal-induced phytoalexin from Cassia obtusifolia. Plant hysiol 98: 303–308

    CAS  Google Scholar 

  • Sharp JK, McNeil M, Albersheim P (1984a) The primary structures of one elicitor-active and seven elicitor-inactive hexa(ß-D-glucopyranosyl)-D-glucitol isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259: 11321–11336

    PubMed  CAS  Google Scholar 

  • Sharp JK, Valent B, Albersheim P (1984b) Purification and partial characterization of a ß-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 259: 11312–11320

    PubMed  CAS  Google Scholar 

  • Sharp JK, Albersheim P, Ossowski P, Pilotti A, Garegg PJ, Lindberg B (1984e) Comparison of the structure and elicitor activities of a synthetic and a mycelial-wall-derived hexa(ß-Dglucopyranosyl)-D-glucitol. J Biol Chem 259: 11341–11345

    PubMed  CAS  Google Scholar 

  • Sitton D, West CA (1975) Casbene: an antifungal diterpene produced in cell-free extracts of Ricinus communis seedlings. Phytochemistry 14: 1921–1925

    CAS  Google Scholar 

  • Smith CJ (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132: 1–45

    CAS  Google Scholar 

  • Smith DA, VanEtten HD, Serum JW, Jones TM, Bateman DF, Williams TH, Coffen DL (1973) Confirmation of the structure of kievitone, an antifungal isoflavanone isolated from Rhizoctonia-infected bean tissues. Physiol Plant Pathol 3: 293–297

    Google Scholar 

  • Smith DG, McInnes AG, Higgins VJ, Miller RL (1971) Nature of the phytoalexin produced by alfalfa in response to fungal infection. Physiol Plant Pathol 1: 41–44

    CAS  Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248: 1637–1639

    PubMed  CAS  Google Scholar 

  • Soby S, Bates R, VanEtten HD (1997) Oxidation of the phytoalexin maackiain to 6,6a-dihydroxymaackiain by Colletotrichum gloeosporioides. Phytochemistry 45: 925–929

    PubMed  CAS  Google Scholar 

  • Sotheeswaran S, Pasupathy V (1993) Distribution of resveratrol oligomers in plants. Phytochemistry 32: 1083–1092

    CAS  Google Scholar 

  • Spessard GO, Hanson C, Halvorson JS, Giannini JL (1994) Effects of phaseollin on membrane leakage in red beet vacuoles and tonoplast vesicles. Phytochemistry 35: 43–47

    CAS  Google Scholar 

  • Stelzig DA, Allen RD, Bhatia SK (1983) Inhibition of phytoalexin synthesis in arachidonic acid-stressed potato tissue by inhibitors of lipoxygenase and cyanide-resistant respiration. Plant Physiol 72: 746–749

    PubMed  CAS  Google Scholar 

  • Stermer BA, Bostock RM (1987) Involvement of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol 84: 404–408

    PubMed  CAS  Google Scholar 

  • Stoessl A, Unwin CH, Ward EWB (1972) Post-infectional inhibitors from plants. I. Capsidiol, an antifungal compound from Capsicum frutescens. Phytopathol Z 74: 141–152

    CAS  Google Scholar 

  • Stoessl A, Unwin CH, Ward EWB (1973) Post-infectional fungus inhibitors from plants. Fungal oxidation of capsidiol in pepper fruits. Phytopathology 63: 1225–1231

    Google Scholar 

  • Strange RN, Subba Rao PV (1994) The phytoalexin response of groundnut and its role in disease resistance. Oléagineux 49: 227–233

    CAS  Google Scholar 

  • Sugimura T, Koguro K, Tai A (1993) Total syntheses of (+)-ipomeamarone and (-)-ngaione. Tetrahedron Lett 34: 509–512

    CAS  Google Scholar 

  • Sulistyowati L, Keane PJ, Anderson JW (1990) Accumulation of the phytoalexin, 6,7-dimethoxycoumarin in roots and stems of citrus seedlings following inoculation with Phytophthora citrophthora. Physiol Mol Plant Pathol 37: 451–461

    CAS  Google Scholar 

  • Sun TJ, Melcher U, Essenberg M (1988) Inactivation of cauliflower mosaic virus by a photoactivatable cotton phytoalexin. Physiol Mol Plant Pathol 33: 115–126

    CAS  Google Scholar 

  • Sun TJ, Essenberg M, Melcher U (1989) Photoactivated DNA nicking, enzyme inactivation, and bacterial inhibition by sesquiterpenoid phytoalexins from cotton. Mol Plant-Microbe Interact 2: 139–147

    Google Scholar 

  • Takasugi M, Katsui N (1986) A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25: 2751–2752

    CAS  Google Scholar 

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1978a) Structure of moracin A and B, new phytoalexins from diseased mulberry. Tetrahedron Lett. 797–798

    Google Scholar 

  • Takasugi M, Nagao S, Ueno S, Masamune T, Shirata A, Takahashi K (1978b) Moracin C and D, new phytoalexins from diseased mulberry. Chem Lett 1239–1240

    Google Scholar 

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1979) Structures of moracin E, F. G, and H, new phytoalexins from diseased mulberry. Tetrahedron Lett 4675–4678

    Google Scholar 

  • Takasugi M, Okinaka S, Katsui N, Masamune T, Shirata A, Ohuchi M (1985) Isolation and structure of lettucenin A, a novel guaianolide phytoalexin from Lactuca sativa var. capitata (Compositae).J Chem Soc Chem Commun 621–622

    Google Scholar 

  • Takasugi M, Katsui N. Shirata A (1986) Isolation of three novel sulphur-containing phytoalexins from the Chinese cabbage Brassica campestris L. ssp. pekinensis (Cruciferae). 1 Chem Soc Chem Commun 1077–1078

    Google Scholar 

  • Takasugi M, Monde K, Katsui N, Shirata A (1987a) Spirobrassinin, a novel sulfur-containing phytoalexin from the daikon Rapharus sativus L. var. hortensis ( Cruciferae ). Chem Lett 1631–1632

    Google Scholar 

  • Takasugi M, Kawashima S, Monde K, Katsui N, Masamune T, Shirata A (1987b) Antifungal compounds from Dioscorea batatas inoculated with Pseudomonas cichorii. Phytochemistry 26: 371–375

    CAS  Google Scholar 

  • Takasugi M, Monde K, Katsui N, Shirata A (1988) Novel sulfur-containing phytoalexins from the Chinese cabbage Brassica campestris L. ssp. pekinensis ( Cruciferae ). Bull Chem Soc Japan 61: 285–289

    Google Scholar 

  • Takeda T, Kanemitsu T, Ishiguro M, Ogihara Y, Matsubara M (1994) Synthesis of a glycopeptide with phytoalexin elicitor activity. 1. Syntheses of a triglycosyl L-serine and a triglycosyl LSERYL-t,-PROLINE dipeptide. Carbohydr Res 256: 59–69

    Google Scholar 

  • Tal B, Robeson DJ (1986a) The induction, by fungal inoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus. Phytochemistry 25: 77–79

    CAS  Google Scholar 

  • Tal B, Robeson DJ (1986b) The metabolism of sunflower phytoalexins ayapin and scopoletin. Plant-fungus interactions. Plant Physiol 82: 167–172

    Google Scholar 

  • Tamogami S, Kodama 0 (2000) Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54: 689–694

    CAS  Google Scholar 

  • Tamogami S, Mitani M, Kodama O, Akatsuka T (1993) Oryzalexin S structure: A new stemaranetype rice phytoalexin and its biogenesis. Tetrahedron 49: 2025–2032

    Google Scholar 

  • Tamogami S, Kodama O, Hirose K, Akatsuka T (1995) Pretilachlor [2-chloro-N-(2,6-diethylphenyl-N-(2-propoxyethyl)acetamidej-and butachlor [N-butoxymethyl)-2-chloro-N-(2,6diethylphenyl)-acetamide]-induced accumulation of phytoalexin in rice (Oryza saliva) plants. J Agric Food Chem 43: 1695–1697

    CAS  Google Scholar 

  • Tenhaken R, Salmen HC, Barz W (1991) Purification and characterization of pterocarpan hydroxylase, a flavoprotein monooxygenase from the fungus Ascochyta rabiei involved in pterocarpan phytoalexin metabolism. Arch Microbiol 155: 353–359

    CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stoecker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentuur Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51: 265–278

    CAS  Google Scholar 

  • Threlfall DR. Whitehead IM (1991) Terpenoid phytoalexins: aspects of biosynthesis, catabolism, and regulation. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 159–208

    Google Scholar 

  • Tiemann K, Hinderer W, Barz W (1987) Isolation of NADPH:isoflavone oxidoreductase, a new enzyme of pterocarpan phytoalexin biosynthesis in cell suspension cultures of Cicer arietinum. FEBS Lett 213: 324–328

    CAS  Google Scholar 

  • Tiemann K, Inzé D, Van Montagu M, Barz W (1991) Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH:isoflavone oxidoreductase. Eur J Biochem 200: 751–757

    PubMed  CAS  Google Scholar 

  • Tjamos EC, Kué.IA (1982) Inhibition of steroid glycoalkaloid accumulation by arachidonic and eicosapentaenoic acids in potato. Science 217: 542–544

    CAS  Google Scholar 

  • Tomiyama K, Ishizaka N, Sato N, Masamune T, Katsui N (1968) Rishitin, a phytoalexin-like substance, its role in the defense reaction of potato tubers to infection. In: Hirai T (ed) Biochemical regulation in diseased plants or injury. Phytopathol Soc Jpn, Tokyo, pp 287–292

    Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol 98: 1304–1309

    PubMed  CAS  Google Scholar 

  • Tsuji J, Zook M, Somerville SC, Last RL, Hammerschmidt R (1993) Evidence that tryptophan is not a direct biosynthetic intermediate of camalexin in Arabidopsis thaliana. Physiol Mol Plant Pathol 43: 221–229

    CAS  Google Scholar 

  • Turbek CS, Li DL, Choi GH, Schardl CL, Smith DA (1990) Induction and purification ofkievitone hydratase from Fusarium solani f. sp. phaseoli. Phytochemistry 29: 2841–2846

    PubMed  CAS  Google Scholar 

  • Uegaki R, Fujimori T, Kubo S, Kato K (1981) Sesquiterpenoid stress compounds from Nicotiana species. Phytochemistry 20: 1567–1568

    CAS  Google Scholar 

  • Uegaki R, Kubo S, Fujimori T (1988) Stress compounds in the leaves of Nicotiana undulata induced by TMV inoculation. Phytochemistry 27: 365–368

    CAS  Google Scholar 

  • Urech J, Fechtig B, Nuesch J, Vischer E (1963) Hircinol, eine antifungisch wirksame Substanz aus Knollen von Loroglossum hircinum ( L.) Rich. HeIv Chim Acta 46: 2758–2766

    Google Scholar 

  • VanEtten HD, Pueppke SG (1976) Isoflavonoid phytoalexins. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, New York, pp 239–289

    Google Scholar 

  • VanEtten HD, Matthews PS, Tegtmeier KJ, Dietert MF, Stein JI (1980) The association of pisatin tolerance and demethylation with virulence on pea in Nectria haematococca. Physiol Plant Pathol 16: 257–268

    CAS  Google Scholar 

  • VanEtten HD, Matthews DE, Matthews PS (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27: 143–164

    PubMed  CAS  Google Scholar 

  • Van der Heijden R, Threlfall DR, Verpoorte R, Whitehead IM (1989) Regulation and enzymology of pentacyclic triterpenoid phytoalexin biosynthesis in cell suspension cultures of Tabernaemontana divaricata. Phytochemistry 28: 2981–2988

    Google Scholar 

  • Van den Heuvel J, VanEtten HD, Serum JW, Coffen DL, Williams TH (1974) Identification of lahydroxyphaseol lone, a phaseollin metabolite produced by Fusarium solani. Phyto-chemistry 13: 1129–1131

    Google Scholar 

  • Vernenghi A, Ramiandrasoa F, Chuilon S, Ravise A (1987) Citrus phytoalexins: seselin biological activity and in vitro synthesis stimulation. Fruits 42: 103–111

    CAS  Google Scholar 

  • Vögeli U, Chappell J (1988) Induction of sesquiterpene cyclase and suppression of squalene activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88: 1291–1296

    PubMed  Google Scholar 

  • Vögeli U, Freeman JW, Chappell J (1990) Purification and characterization of an inducible sesquiterpene cyclase from elicitor-treated tobacco cell suspension cultures. Plant Physiol 93: 182–187

    PubMed  Google Scholar 

  • Volpin H, Phillips DA, Okon Y, Kapulnik Y (1995) Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol 108: 1449–1454

    PubMed  CAS  Google Scholar 

  • Ward EWB, Unwin CH, Stoessl A (1975a) Loroglossol: an orchid phytoalexin. Phytopathology 65: 632–633

    CAS  Google Scholar 

  • Ward EWB, Unwin CH, Hill J, Stoessl A (1975b) Sesquiterpenoid phytoalexins from fruits of eggplants. Phytopathology 675: 859–863

    Google Scholar 

  • Ward EWB, Stoessl A, Stothers JB (1977) Metabolism of the sesquiterpenoid phytoalexins capsidiol and rishitin to their 13-hydroxy derivatives by plant cells. Phytochemistry 16: 2024–2025

    CAS  Google Scholar 

  • Ward EWB, Cahill DM, Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma fsp. glycinea. Plant Physiol 91: 23–27

    PubMed  CAS  Google Scholar 

  • Watanabe K, Ishiguri Y, Nonaka F, Morita A (1982) Isolation and identification of aucuparin as a phytoalexin from Eriobotrya japonica. Agric Biol Chem 46: 567–568

    CAS  Google Scholar 

  • Watanabe K, Widyastuti SM, Nonaka F (1990) Two biphenyl compounds from Rhaphiolepsis umbellata as its phytoalexin. Agric Biol Chem 54: 1861–1862

    CAS  Google Scholar 

  • Weidemann C, Tenhaken R, Höhl U, Barz W (1991) Medicarpin and maackiain 3-O-glucoside-6’O-malonate conjugates are constitutive compounds in chickpea (Cier arietinum L.) cell cultures. Plant Cell Reptr 10: 371–374

    CAS  Google Scholar 

  • Weinstein LI, Hahn MG, Albersheim P (1981) Host-pathogen interactions: XVIII. Isolation and biological activity of glycinol, a pterocarpan phytoalexin synthesized by soybeans. Plant Physiol 68: 358–363

    Google Scholar 

  • Weissenborn DL, Denbow CJ, Laine M, Lang SS, Yang Z, Yu X, Cramer CL (1995) HMG-CoA reductase and terpenoid phytoalexins: Molecular specialization within a complex pathway. Physiol Plant 93: 393–400

    Google Scholar 

  • Welle R, Grisebach H (1988a) Induction of phytoalexin synthesis in soybean: Enzymatic cyclization ofprenylated pterocarpans to glyceollin isomers. Arch Biochem Biophys 263: 191–198

    Google Scholar 

  • Welle R, Grisebach H (1988b) Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEES Lett 236: 221–225

    CAS  Google Scholar 

  • Welle R, Grisebach H (1989) Phytoalexin synthesis in soybean cells: Elicitor induction of reductase involved in biosynthesis of 6’-deoxychalcone. Arch Biochem Biophys 272: 97–102

    PubMed  CAS  Google Scholar 

  • Welle R, Grisebach H (1991) Properties and solubilization ofthe prenyltransferase of iso-flavonoid phytoalexin biosynthesis in soybean. Phytochemistry 30: 479–484

    CAS  Google Scholar 

  • Welle R, Schröder J (1992) Expression cloning in Escherichia coli and preparative isolation of the reductase coacting with chalcone synthase during the key step in the biosynthesis of soybean phytoalexin. Arch Biochem Biophys 293: 377–381

    PubMed  CAS  Google Scholar 

  • Weltring K-M, Schaub H-P, Barz W (1995) Metabolism of pisatin stereoisomers by Ascochyta rabiei strains transformed with the pisatin demethylase gene of Nectria haematococca MP VI. Mol Plant-Microbe Interact 8: 499–505

    CAS  Google Scholar 

  • West,CA, Lois AF, Wickham KA, Ren Y-Y (1990) Diterpenoid phytoalexins: Biosynthesis and regulation. Recent Advances in Phytochemistry 24: 219–248

    Google Scholar 

  • Whitehead IM, Threlfall DR, Ewing DF (1987) cis-9, I 0-Dihydrocapsenone: a possible catabolite of capsidiol from cell suspension cultures of Capsicum annuum. Phytochemistry 26: 1367–1369

    Google Scholar 

  • Whitehead IM, Ewing DF, Threlfall DR (1988) Sesquiterpenoids related to the phytoalexin debneyol from elicited cell suspension cultures of Nicotiana tabacum. Phytochemistry 27: 1365–1370

    CAS  Google Scholar 

  • Whitehead IM, Threlfall DR, Ewing DF (1989) 5-epi-Aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28: 775–779

    Google Scholar 

  • Whitehead IM, Atkinson AL, Threlfall DR (1990) Studies on the biosynthesis and metablism of the phytoalexin lubimin and related compounds in Datura stramonium L. Planta 182: 81–88

    CAS  Google Scholar 

  • Wichkam KA, West CA (1992) Biosynthesis of rice phytoalexins: identification of putative diterpene hydrocarbon precursors. Arch Biochem Biophys 293: 320–332

    Google Scholar 

  • Widyastuti SM, Nonaka F, Watanabe K, Sako N, Tanaka K (1992) Isolation and characterization of two aucuparin-related phytoalexins from Photinia glabra Maxim. Ann Phytopathol Soc Japan 58: 228–233

    CAS  Google Scholar 

  • Woodward MD (1979a) Phaseoluteone and other 5-hydroxyisoflavonoids from Phaseolus vulgaris. Phytochemistry 18: 363–365

    CAS  Google Scholar 

  • Woodward MD (1979b) New isoflavonoids related to kievitone from Phaseolus vulgaris. Phytochemistry 18: 2007–2010

    CAS  Google Scholar 

  • Woodward MD (1980) Phaseollin formation and metabolism in Phaseolus vulgaris. Phytochemistry 19: 921–927

    CAS  Google Scholar 

  • Wu Q, Presig CL, Vanetten HD (1997) Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Plant Mol Biol 35: 551–560

    PubMed  CAS  Google Scholar 

  • Yajima A, Mori K (2000) Absolute configuration of phytocassanes as proposed on the basis of the CD spectrum of synthetic (+)-2-deoxyphytocassane A. Tetrahedron Lett 41: 351–354

    CAS  Google Scholar 

  • Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccahrides. Biosci Biotech Biochem 57: 405–409

    CAS  Google Scholar 

  • Yang D, Hubbes Mir, Jeng RS, Hubbes M (1994) A glycoprotein isolated from culture filtrates of Ophiostoma ulmi as a mansonone-inducing elicitor on elm callus. Mycol Res 98: 295–300

    CAS  Google Scholar 

  • Yang Z, Park H, Lacy Gli, Cramer CL (1991) Differential activation of potato 3-hydroxy-3methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell 3: 397–405

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Onoe T, Masago H, Sagawa H (1987) Ultrastructural in situ evidence for the role of glyceollin in the expression of soybean resistance to fungal infection. Ann Phytopathol Soc Japan 53: 227–241

    Google Scholar 

  • Yoshikawa M, Tsuda M, Takeuchi Y (1993) Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, 3- l,3-endogiucanase, from soybean. Natu rwi ssensch. 80: 417–420

    CAS  Google Scholar 

  • Yoshizawa Y, Yamaura T, Kawaii S, Hoshino T, Mizutani J (1994) Incorporation of 13C-labelled 5-epi-aristolochene into capsidiol in green pepper seedlings. Biosci Biotech Biochem 58: 304–308

    Google Scholar 

  • Zhang J, Mace ME, Stipanovic RD, Bell AA (1993) Production and fungitoxicity of the terpenoid phytoalexin in cotton inoculated with Fusarium oxysporum f. sp. vasinfectum. J Phytopathol 139: 247–252

    CAS  Google Scholar 

  • Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8: 2235–2244

    PubMed  CAS  Google Scholar 

  • Zook M, Hammerschmidt (1997) Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol 113: 463–468

    CAS  Google Scholar 

  • Zook MN, Kue JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthase activity in elicitor-treated or fungal-infected potato tuber tissue. Physiol Mol Plant Pathol 39: 377–390

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, JS. (2001). Accumulation of Phytoalexins as a Resistance Mechanism. In: Plant Pathogenesis and Resistance. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2687-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2687-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5750-1

  • Online ISBN: 978-94-017-2687-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics