Skip to main content

Nematode-Toxic Fungi and their Nematicidal Metabolites

  • Chapter
  • First Online:
Nematode-Trapping Fungi

Part of the book series: Fungal Diversity Research Series ((FDRS,volume 23))

Abstract

This chapter summarizes more than 200 compounds from fungi that have been shown to possess nematicidal activities. These compounds belong to diverse chemical groups including alkaloid, quinone, isoepoxydon, pyran, furan, peptide, macrolide, terpenoid, fatty acid, diketopiperazine, aphthalene and simple aromatics. They have mainly been isolated from a variety of ascomycetous and basidiomycetous fungal taxa. Their nematicidal activities are described and their potential roles in the biocontrol of nematodes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, W. R., & Arfmann, H. A. (1992). Penicillium camemberti a new source of brefeldin A. Planta Medica, 58, 484.

    PubMed  CAS  Google Scholar 

  • Adams, K. B., Wu, M. T., & Salunkhe, D. K. (1976). Effects of gamma radiation on growth and patulin production of Penicillium expansum and Penicillium patulim. Environmental and Experimental Botany, 16, 189–193.

    CAS  Google Scholar 

  • Alfaro, M. C., Urios, A., González, M. C., Moya, P., & Blanco, M. (2003). Screening for metabolites from Penicillium novae-zeelandiae displaying radical-scavenging activity and oxidative mutagenicity: Isolation of gentisyl alcohol. Mutation Research, 539, 187–194.

    PubMed  CAS  Google Scholar 

  • Anderson, M. G., Jarman, T. B., & Rickards, R. W. (1995). Structures and absolute configurations of Antibiotics of the oligosporon group from the nematode-trapping fungus Arthrobotrys oligospora. Journal of antibiotics, 48(5), 391–397.

    PubMed  CAS  Google Scholar 

  • Anke, H., Kolthoum, I., Zähner, H., & Laatsch, H. (1980a). Metabolic products of microorganisms. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Archives of Microbiology, 126, 223–230.

    CAS  Google Scholar 

  • Anke, H., Kolthoum, I., & Laatsch, H. (1980b). Metabolic products of microorganisms. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Archives of Microbiology, 126, 231–236.

    CAS  Google Scholar 

  • Anke, H., Stadler, M., Mayer, A., & Sterner, O. (1995). Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Canadian Journal of Botany, 73(Suppl. 1), 932–939.

    Google Scholar 

  • Anke, M., Michael, K., Birgit, H., Olov, S., & Heidrun, A. (1999). In-vitro and in-vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pesticide Science, 55, 27–30.

    Google Scholar 

  • Arai, K., Rawlings, B. J., Yoshizawa, Y., & Vederas, J. C. (1989). Biosynthesis of antibiobic A26771B by Penicillium turbatum and dehydrocurvularin by Alternaria cinerariae: Comparison of stereochemistry of polykide and fatty acid enoyl thiol ester reductases. Journal of the American Chemical Society, 111, 3391–3399.

    CAS  Google Scholar 

  • Arnone, A., Assante, G., Montorsi, M., Nasini, G., & Ragg, E. (1993). Secondary mould metabolites. XLIII: Isolation and structure determination of lethaloxin, a fungal macrolide from Mycosphaerella lethalis. Gazzetta Chimica Italiana, 123, 71–73.

    CAS  Google Scholar 

  • BačÍkovÁ, D., Betina, V., & Nemec, P. (1965). Antihelminthic activity of antibiotics. Nature, 206, 1371–1372.

    PubMed  Google Scholar 

  • Banks, R. M., Blanchflower, S. E., Everett, J. R., Manger, B. R., & Reading, C. (1997). Novel anthelmintic metabolites from an Aspergillus species; the Aspergillimides. Journal of Antibiotics, 50, 840–846.

    PubMed  CAS  Google Scholar 

  • Barron, G. L., & Thorn, R. G. (1987). Destruction of nematodes by species of Pleurotus. Canadian Journal of Botany, 65, 774–778.

    Google Scholar 

  • Barrow, K. D., & Murphy, W. S. (1972). The structure of alboleersin and luteoleesin; the identity of luteoleersin with cochlioquinone A. Journal of the Chemical Society Perkin Transactions, 1, 2837–2839.

    Google Scholar 

  • Beecham, A. F., Fridrichsons, J., & Mathieson, A. M. (1966). The structure and absolute configuration of gliotoxon and the absolute configuration of sporidesmin. Tetrahedron Letters, 27, 3131–3138.

    PubMed  CAS  Google Scholar 

  • Bernardini, M., Carilli, A., Pacioni, G., & Santurbano, B. (1975). Isolation of beauvericin from Pacilomyces fumoso-roseus. Phytochemistry, 14, 1865.

    CAS  Google Scholar 

  • Blanchflower, S. E., Banks, R. M., Evertt, J. R., Manger, B. R., & Reading, C. (1991). New paraherquamide antibiotics with anthelmintic activity. Journal of Antibiotics, 44, 492–497.

    PubMed  CAS  Google Scholar 

  • Blanchflower, A. E., Banks, R. M., Everett, J. R., & Reading, C. (1993). Further novel metabolites of the paraherquamide family. Journal of Antibiotics, 46, 1355–1363.

    PubMed  CAS  Google Scholar 

  • Blight, M. M., Coppen, J. J. W., & Grove, J. F. (1968). The biogenesis, from mevalonic acid of the steroidal antifungal metabolite viridian. Chemical Communications, 18, 1117–1118.

    Google Scholar 

  • Bodo, B., Rebuffat, S., Hajji, M. E., & Davoust, D. (1985). Structures of trichorzianine A IIIc, an antifungal peptide from Trichoderma harzianum. Journal of American Chemical Society, 107, 6011–6017.

    CAS  Google Scholar 

  • Brown, A. E., Finlay, R., & Ward, J. S. (1987). Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biology & Biochemistry, 19, 657–664.

    CAS  Google Scholar 

  • Brückner, H., Nicholson, G. J., & Jung, G. (1980). Gas chromatographic determination of the configuration of isovaline in antiamoebin, samarosporin (emerimicin IV), stilbellin, suzukacillins and trichotoxins. Chromatographia, 13, 209–213.

    Google Scholar 

  • Büchel, E., Martini, U., Mayer, A., Anke, H., & Sterner, O. (1998). Omphalotins B, C and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron, 54, 5345–5352.

    Google Scholar 

  • Burge, W. R., Buckley, L. J., Sullivan, J. D., McGrattan, C. J., & Ikawa, M. (1976). Isolation and biological activity of the pigments of the mold Epicoccum nigrum. Journal of Agricultural and Food Chemistry, 24, 555–559.

    PubMed  CAS  Google Scholar 

  • Chen, L. J., Chen, Y., Zhang, G. D., & Duan, Y. X. (2010). Nematicidal activity of extraction and fermentation filtrate of Basidiomycetes collected in liaoning province, China. Chinese. Journal of Biological Control, 26, 467–473.

    Google Scholar 

  • Clerkyjzio, M., & Sterner, O. (1997). Conversion of velutinal esters in the fruit bodies of Russula cuprea. Phytochemistry, 45, 1569–1572.

    Google Scholar 

  • Cutler, H. G., Crumley, F. G., Cox, R. H., Springer, J. P., Arrendale, R. F., Cole, R. J., & Cole, P. D. (1984). Ophiobolins G and H: New fungal metabolites from a novel source, Aspergillus ustus. Journal of Agricultural and Food Chemistry, 32, 768–772.

    Google Scholar 

  • Daniewski, W. M., Gumulka, M., & Kibicki, P. (1990). Furantriol, a lactarane sesquiterpene from Lactarius mitissimus. Phytochemistry, 29, 527–529.

    CAS  Google Scholar 

  • Dasenbrock, J. (1994). Isolierung und Strukturaufklärung neuer Wirkstoffe aus Höheren Pilzen. Ph.D. thesis, Department of chemistry, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Deol, B. S., Ridley, D. D., & Singh, P. (1978). Isolation of cyclodepsipeptides from plant pathogenic fungi. Australian Journal of Chemistry, 31, 1397–1399.

    CAS  Google Scholar 

  • Djian, C., Pijarouvski, L., Ponchet, M., & Arpin, N. (1991). Acetic acid, a selective nematicidal metabolite from culture filtrate of Paecilomyces lilacinus (Thom) Samsan and Trichoderma longibrachiatum Rifai. Nematologica, 37, 101–102.

    Google Scholar 

  • Dombrink-Kurtzman, M. A., & Blackburn, J. A. (2005). Evaluation of several culture media for production of patulin by Penicillium species. International Journal of Food Microbiology, 98, 241–248.

    PubMed  CAS  Google Scholar 

  • Dong, J. Y. (2005). Ph.D. thesis, Laboratory for conservation and utilization of bio-resource, Yunnan University, Kunming, China.

    Google Scholar 

  • Dong, J. Y., Mo, M. H., Chen, J. H., Li, Q. Y., & Zhang, K. Q. (2000). The nematicidal stability of Lampteromyces japonicus. Journal of Yunnan University, 22, 365–368.

    Google Scholar 

  • Dong, J. Y., Zhang, K. Q., Zhao, Z. X., Liu, W. Z., & Li, Q. Y. (2001). Nematicidal activity of perylenequinones photosensitive compounds. Mycosystema, 20, 515–519.

    CAS  Google Scholar 

  • Dong, J. Y., Zhao, Z. X., Cai, L., Liu, S. Q., Zhang, H. R., Duan, M., & Zhang, K. Q. (2003). Nematicidal effect of freshwater fungal cultures against the pine-wood nematode, Bursaphelenchus xylophilus. Fungal Diversity, 15, 123–133.

    Google Scholar 

  • Dong, J. Y., He, H. P., Shen, Y. M., & Zhang, K. Q. (2005a). Nematicidal Epipolysulfanyldioxopiperazines from Gliocladium roseum. Journal of Natural Products, 68, 1510–1513.

    CAS  Google Scholar 

  • Dong, J. Y., Li, R., He, H. P., & Zhang, K. Q. (2005b). Nematicidal sphingolipids from the freshwater fungus Paraniesslia sp. YMF1.01400. European Journal of Lipid Science and Technology, 107, 779–785.

    CAS  Google Scholar 

  • Dong, J. Y., Zhou, W., Li, L., Li, G. H., Liu, Y. J., & Zhang, K. Q. (2006a). A new Epidithiodioxopiperazine Metabolite Isolated from Gliocladium roseum YMF1.00133. Chinese Chemical Letters, 17, 922–924.

    CAS  Google Scholar 

  • Dong, J. Y., Zhou, Y. P., Li, R., Zhou, W., Zhu, Y. H., Huang, R., & Zhang, K. Q. (2006b). Newnematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiology Letters, 264, 65–69.

    CAS  Google Scholar 

  • Dong, J. Y., Zhu, Y. H., Song, H. C., Li, R., He, H. P., Liu, H. Y., Huang, R., Zhou, Y. P., Wang, L., & Zhang, K. Q. (2007). Nematicidal Resorcylides from the Aquatic Fungus Caryospora callicarpa YMF1.01026. Journal of Chemical Ecology, 33, 1115–1126.

    PubMed  CAS  Google Scholar 

  • Dong, J. Y., Song, H. C., Li, J. H., Tang, Y. S., Sun, R., Wang, L., Zhou, Y. P., Wang, L. M., Shen, K. Z., Wang, C. R., & Zhang, K. Q. (2008). Ymf 1029A E, Preussomerin Analogues from the Fresh-Water-Derived Fungus YMF 1.01029. Journal of Natural Products, 71, 952–956.

    PubMed  CAS  Google Scholar 

  • Dong, J. Y., Wang, L., Song, H. C., Wang, L. M., Shen, K. Z., Sun, R., Li, G. H., Li, L., & Zhang, K. Q. (2010). Ophiocerol, a novel macrocylic neolignan from the aquatic fungus Ophioceras dolichostomum YMF1.00988. Natural Products Research, 24, 1004–1012.

    CAS  Google Scholar 

  • Dornberger, K., Ihn, W., Ritzau, M., Gräfe, U., Schlegel, B., Fleck, W. F., & Metzger, J. W. (1995). Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma Ap101. Journal of Antibiotics, 48, 977–989.

    PubMed  CAS  Google Scholar 

  • Ekaterini, R., Lawrence, A. L., & Neussa, G. (2008). Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biological Control, 45, 380–385.

    Google Scholar 

  • El-Din, H. K. M., Allam, A., & Tag, B. A. (2012). Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research, 52, 47–52.

    Google Scholar 

  • Fardos, A. M. B. (2009). Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Archives of Phytopathology and Plant Protection, 42, 361–369.

    Google Scholar 

  • Freeman, G. G., Gill, J. E., & Waring, W. S. (1959). The structure of trichothecin and its hydrolysis products. Journal of the Chemical Society, (0), 1105–1132.

    Google Scholar 

  • Fukuda, T., Arai, M., Yamaguchi, Y., Masuma, R., Tomoda, H., & Ōmura, S. (2004). New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366. Journal of Antibiotics, 57, 110–116.

    PubMed  CAS  Google Scholar 

  • Ghisalberti, E. L., & Rowland, C. V. (1997). 6-Chlorode-hydrocurvularin, a new metabolite from Cochliobolus spicifer. Journal of Natural Products, 56, 2175–2177.

    Google Scholar 

  • Gill, M. (1994). Pigments of fungi (Macromycetes). Natural Product Reports, 11, 67–90.

    PubMed  CAS  Google Scholar 

  • Giuma, A. Y., & Cooke, R. C. (1971). Nematotoxin production by Nematoctonus haptocladus and N. concurrens. Transactions of the British Mycological Society, 56, 89–94.

    Google Scholar 

  • Giuma, A. Y., Hackett, A. M., & Cooke, R. C. (1973). Thermostable nematotoxins produced by germinaling conidia of some endozoic fungi. Transactions of the British Mycological Society, 60, 49–56.

    Google Scholar 

  • Godtfredsen, W. O., & Vangedal, S. (1964). Trichodermin, a new antibiotic related to trichothecin. Proceedings of the Chemical Society, 6, 188–189.

    Google Scholar 

  • Grabley, S., Hammann, P., Thiericke, R., Wink, J., Philipps, S., & Zeeck, A. (1993). Secondary metabolites by chemical screening. 21 Clonostachydiol, A novel anthelmintic macrodiolide from the fungus Clonostachys cylindrospora. Journal of Antibiotics, 46, 343–345.

    PubMed  CAS  Google Scholar 

  • Gruhn, N., Schoettler, S., Sterner, O., & Anke, T. (2007). Biologically active metabolites from the basidiomycete Limacella illinita (Fr.) Murr. Zeitschrift fur Naturforschung—Section C. Journal of Biosciences, 62, 808–812.

    PubMed  CAS  Google Scholar 

  • Guo, J. P., Zhu, C. Y., Zhang, C. P., Chu, Y. S., Wang, Y. L., Zhang, J. X., Wu, D. K., Zhang, K. Q., & Niu, X. M. (2012). Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophiles. Journal of the American Chemical Society, 134, 20306–20309.

    PubMed  CAS  Google Scholar 

  • Hamill, R. L., Higgens, C. E., Boaz, N. E., & Gorman, M. (1969). The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Letters, 49, 4255–4258.

    CAS  Google Scholar 

  • Hansson, T., Sterner, O., & Strid, K. (1995). Chemotaxonomic evidence for a division of Lactarius vellereus and L. bertillonii as different species. Phytochemistry, 39, 363–365.

    CAS  Google Scholar 

  • Harvey (2000). Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today, 7, 94–300.

    Google Scholar 

  • Hautzel, R., & Anke, H. (1990). Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Zeitschrift fur Naturforschung—Section C.Journal of Biosciences, 45, 68–73.

    Google Scholar 

  • Hautzel, R., Anke, H., & Sheldrick, W. S. (1990). Mycenon, a new metabolite from a Mycena species ta 87202 (Basidiomycetes) as an inhibitor of isocitrate lyase. Journal of Antibiotics, 43, 1240–1244.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Wada, K., & Munakata, K. (1981). New nematicidal metabolites from a fungus, Irepex lacteus. Agricultural and Biological Chemistry, 45, 1527–1529.

    CAS  Google Scholar 

  • Hayashi, H., Nakatani, T., Inoue, Y., Nakayama, M., & Nozaki, H. (1997). New dihydroquinolinone toxic to Artemia salina produced by Penicillium sp. NTC-47. Bioscience Biotechnology and. Biochemistry, 61, 914–916.

    CAS  Google Scholar 

  • Hayashi, A., Fujioka, S., Nukina, M., Kawano, T., Shimada, A., & Kimura, Y. (2007). Fumiquinones A and B, nematicidal quinones produced by Aspergillus fumigatus. Bioscience Biotechnology and. Biochemistry, 71, 1697–1702.

    CAS  Google Scholar 

  • Haydock, P. P. J., Woods, S. R., Grove, I. G., & Hare, M. C. (2006). Chemical control of nematodes. In R. N. Perry & M. Moens (Eds.), Plant Nematology (pp. 392–410). Wallingford: CAB Interna-tional.

    Google Scholar 

  • He, J., Wijeratne, E. M., Bashyal, B. P., Zhan, J., Seliga, C. J., Liu, M. X., Pierson, E. E., Pierson, L. S., VanEtten, H. D., & Gunatilaka, A. A. (2004). Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of sonoran desert plants. Journal of Natural Products, 67, 1985–1991.

    PubMed  CAS  Google Scholar 

  • Hibbett, D. S., & Thorn, R. G. (1994). Nematode-trapping in Pleurotus tuberregium. Mycologia, 86, 696–699.

    Google Scholar 

  • Huang, Z. L., Dan, Y., Huang, Y. C., Lin, L. D., Li, T. H., Ye, W. H., & Wei, X. Y. (2004). Sesquiterpenes from the mycelial cultures of Dichomitus squalens. Journal of Natural Products, 67, 2121–2123.

    PubMed  CAS  Google Scholar 

  • Hyeon, S., Ozaki, A., Suzuki, A., & Tamura, S. (1976). Isolation of αβ-dehydrocurvularin and β-hydroxycurvularin from Alternaria tomato as sporulation-suppressing factors. Agricultural and Biological Chemistry, 40, 1663–1664.

    CAS  Google Scholar 

  • Kanai, Y., Fujimaki, T., Kochi, S., Konno, H., Kanazawa, S., & Tokumasu, S. (2004). Paeciloxazine, a novel nematicidal antibiolic from Paecilomyces sp. Journal of Antibiotics, 57, 24–28.

    PubMed  CAS  Google Scholar 

  • Kang, S. W., & Kim, S. W. (2004). New antifungal activity of penicillic acid against Phytophthora species. Biotechnology letters, 26, 695–698.

    PubMed  CAS  Google Scholar 

  • Kavanagh, F., Hervey, A., & Robbins, W. J. (1949). Antibiotic substances from basidiomycetes. Proceedings of the National Academy of Sciences, 35, 343–349.

    Google Scholar 

  • Kawazu, K., Murakami, T., Ono, Y., Kanzaki, H., Kobayashi, A., Mikawa, T., & Yoshikawa, N. (1993). Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Bioscience Biotechnology and Biochemistry, 57, 98–101.

    CAS  Google Scholar 

  • Kennedy, N., & Tampion, J. (1978). A nematotoxin from Nematotonus robustus. Transantions of the British Mycological Society, 70, 140–141.

    Google Scholar 

  • Khambay, B. P. S., Bourne, J. M., Cameron, S., Kerry, B. R., & Zaki, M. J. (2000). A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 56, 1098–1099.

    CAS  Google Scholar 

  • Khan, S. T., & Kgan, T. A. (1992). Effect of culture filtrates of soil fungi on the hatching and mortality of root knot nematode (Meloidogyne incognita). Current Nematology, 3, 53–60.

    Google Scholar 

  • Khan, M. R., & Haque, Z. (2011). Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco. Phytopathologia Mediterranea, 50, 257–266.

    CAS  Google Scholar 

  • Kim, H. L., & Kochevar, J. (1995). Isolation of brefeldin A. General Pharmacology, 26, 363–364.

    PubMed  CAS  Google Scholar 

  • Kim, J. C., Choi, G. J., Park, J. H., Kim, H. T., & Cho, K. Y. (2001). Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Management Science, 57, 554–559.

    PubMed  CAS  Google Scholar 

  • Kimura, Y., Mori, M., Suzuki, A., & Kobayashi, A. (1981). Isolation and identification of two nematicidal substances from roots of Erigeron philadelphicus L. and nematicidal activities of their related compounds. Agricultural and Biological Chemistry, 45, 2915–2917.

    CAS  Google Scholar 

  • Kimura, Y., Kusano, M., Koshino, H., Uzawa, J., Fujioka, S., & Tani, K. (1996a). Penigequinolones A and B, pollen-growth inhibitors produced by Penicillium sp. No. 410. Tetrahedron Letters, 37, 4961–4964.

    CAS  Google Scholar 

  • Kimura, Y., Nakahara, S., & Fujioka, S. (1996b). Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Bioscience Biotechnology and. Biochemistry, 60, 1375–1376.

    CAS  Google Scholar 

  • Kimura, Y., Shimada, A., Kusano, M., Yoshii, K., Morita, A., Nishibe, M., Fujioka, S., & Kawano, T. (2002). Myxostiolide, myxostiol, and clavatoic acid, plant growth regulators from the fungus Myxotrichum stipitatum. Journal of Natural Products, 65, 621–623.

    PubMed  CAS  Google Scholar 

  • Kimura, Y., Tani, S., Hayashi, A., Ohtani, K., Fujioka, S., Kawano, T., & Shimada, A. (2007). Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant-parasitic nematodes. Zeitschrift Fur Naturforschung C, 62, 234–238.

    CAS  Google Scholar 

  • Kind, R., Zeeck, A., Grabley, S., Thiericke, R., & Zerlin, M. (1996). Secondery metabolites by chemical screening. 30. Helmidiol, a new m acrodiolide from Alternaria alternaya. Journal of Natural Products, 59, 539–540.

    CAS  Google Scholar 

  • Kithsiri Wijeratne, E. M., Paranagama Priyani, A., & Leslie Gunatilaka, A. A. (2006). Five new isocoumarins from Sonoran desert plant-associated fungal strains Paraphaeosphaeria quadriseptata and Chaetomium chiversii. Tetrahedron, 62, 8439–8446.

    Google Scholar 

  • Kobayashi, A., Hino, T., Yata, S., Itoh, T. J., Sato, H., & Kawazu, K. (1988). Unique spindle poisons. Curvularin and its derivatives, isolated from Penicillium species. Agricultural and Biological Chemistry, 52, 3119–3123.

    CAS  Google Scholar 

  • Koitabashi, M., Kajitani, Y., & Hirashima, K. (2004). Antifungal substances produced by fungal strain Kyu-W63 from wheat leaf and its taxonomic position. Journal of General Plant Pathology, 70, 124–130.

    CAS  Google Scholar 

  • Konishi, K., Iida, A., Kaneko, M., Tomioka, k, Tokuda, H., Nishino, H., & Kumeda, Y. (2003). Cancer preventive potential of trichothecenes from Trichothecium roseum. Bioorganic & Medicinal Chemistry, 11, 2511–2518.

    CAS  Google Scholar 

  • Köpcke, B., Johansson, M., Sterner, O., & Anke, H. (2002). Biologically active secondary metabolites from the ascomycete A111-95. 1. Production, isolation and biological activities. Journal of Antibiotics, 55, 36–40.

    PubMed  Google Scholar 

  • Krasnoff, S. B., & Gupta, S. (1994). Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. Journal of Chemical Ecology, 20, 293–302.

    PubMed  CAS  Google Scholar 

  • Kumazawa, S., Kanda, M., Utagawa, M., Chiba, N., Ohtani, H., & Mikawa, T. (2003). MK7924, a novel metabolite with nematocidal activity from Coronophora gregaria. Journal of Antibiotics, 56, 652–654.

    PubMed  CAS  Google Scholar 

  • Kupka, J., Anke, T., Mizumoto, K., Giannetti, B. M., & Steglich, W. (1983). Antibiotics from Basidiomycetes. XVII The effect of marasmic acid on nucleic acid metabolism. Journal of Antibiotics, 36, 155–160.

    PubMed  CAS  Google Scholar 

  • Kusano, M., Koshino, H., Uzawa, J., Fujioka, S., Kawano, T., & Kimura, Y. (2000). Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. Simplicissimum. Bioscience Biotechnology and. Biochemistry, 64, 2559–2568.

    CAS  Google Scholar 

  • Kusano, M., Nakagami, K., Fujioka, S., Kawano, T., Shimada, A., & Kimura, Y. (2003). β,γ; -dehydrocurvularin and related compounds as nematicides of Pratylenchus penetrans from the Fungus Aspergillus sp. Bioscience Biotechnology and. Biochemistry, 67, 1413–1416.

    CAS  Google Scholar 

  • Kwok, O. C. H., Plattner, R., Weisleder, D., & Wicklow, D. T. (1992). A namatical toxin from Pleurotus ostreatus NRRL 3526. Journal of Chemical Ecology, 18, 127–136.

    PubMed  CAS  Google Scholar 

  • Lai, S., Shizuri, Y., Yamamura, S., Kawai, K., Terada, Y., & Furukawa, H. (1989). Novel curvularin-type metabolites of a hybrid strain ME 0005 derived from Penicillium citreo-viride B. IFO and 4692. Tetrahedron Letters, 30, 2241–2244.

    CAS  Google Scholar 

  • Lai, S., Shizuri, Y., Yamamura, S., Kawai, K., Terada, Y., & Furukawa, H. (1990). New metabolites of two hybrid strains ME 0004 and 0005 derived from Penicillium citreo-viride B. IFO 6200 and 4692. Chemistry Letters, 19, 589–592.

    Google Scholar 

  • Li, Y. Z. (2005). Researches on the screening of nematophagous Basidiomycetes and their effects on nematodes. Master thesis. Laboratory of Plant Pathology, College of Agriculture, Guizhou University, Guiyang.

    Google Scholar 

  • Li, G. H., Dong, J. Y., Mo, M. H., & Zhang, K. Q. (2001). Nematicidal activity of nematophagous Pleurotus and allied fungi to Panagrellus redivivus. Chinese. Journal of Biological Control, 17, 26–29.

    Google Scholar 

  • Li, G. H., Shen, Y. M., & Zhang, K. Q. (2005). Nematicidal activity and chemical component of Poria cocos. The Journal of Microbiology, 43, 17–20.

    PubMed  CAS  Google Scholar 

  • Li, G. H., Li, L., Duan, M., & Zhang, K. Q. (2006). The Chemical Constituents of the Fungus Stereum sp. Chemistry and Biodiversity, 3, 210–216.

    PubMed  CAS  Google Scholar 

  • Li, G. H., Wang, X. B., Zheng, L. J., Li, L., Huang, R., & Zhang, K. Q. (2007a). Nematicidal metabolites from the fungus Pleurotus ferulae Lenzi. Annals of Microbiology, 57, 527–529.

    CAS  Google Scholar 

  • Li, G. H., Yu, Z. F., Li, X., Wang, X. B., Zheng, L. J., & Zhang, K. Q. (2007b). Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chemistry and Biodiversity, 4, 1520–1524.

    CAS  Google Scholar 

  • Li, G. H., Duan, M., Yu, Z. F., Li, L., Dong, J. Y., Wang, X. B., Guo, J. W., Huang, R., Wang, M., & Zhang, K. Q. (2008). Stereumin A-E, sesquiterpenoids from the fungus Stereum sp. CCTCC AF 207024. Phytochemistry, 69, 1439–1445.

    PubMed  CAS  Google Scholar 

  • Liesch, J. M., & Wichmann, C. F. (1990). Novel antinematodal and antiparasitic agents from Penicillium Charlesii. II. Structure determination of paraherquamides B, C, D, E, F, and G. Journal of Antibiotics, 43, 1380–1386.

    PubMed  CAS  Google Scholar 

  • Liu, Y. J. (2005). Ph.D. thesis, Laboratory for conservation and utilization of bio-resource, Yunnan University, Kunming, China.

    Google Scholar 

  • Liu, Y. J., Liu, Y., & Zhang, K. Q. (2008). Xanthothone E, a new nematicidal N-compound from Coprinus xanthothrix. Chemistry of Natural Compounds, 44, 161–162.

    Google Scholar 

  • Liu, Y. J., Zhai, C. Y., Liu, Y., & Zhang, K. Q. (2009). Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound. The Journal of Microbiology, 47, 248–252.

    PubMed  CAS  Google Scholar 

  • Liu, J. H., Wang, L., Qiu, J. Y., Jiang, L., Yan, J. Y., Liu, T., Liu, W. C., & Duan, Y. X. (2011). Nematicidal activity of gymnoascus reesii against meloidogyne incognita. African Journal of Microbiology Research, 5, 2715–2719.

    Google Scholar 

  • Lopez-Diaz, T. M., & Flannigan, B. (1997). Production of patulin and cytochalasin E by Aspergillus clavatus during malting of barley and wheat. International Journal of Food Microbiology, 35, 129–136.

    PubMed  CAS  Google Scholar 

  • Lorenzen, K., Anke, T., Anders, U., Hindermayr, H., & Hansske, F. (1994). 14-epidihydrocochlioquinone B, and 14-epocochliqquinone B, antibiotics from fermentation of the ascomycete Neobulgaria pura: Structure elucidation and effects on platelet aggregation. Zertschrift Fur Naturforschung C, 49C, 313–320.

    Google Scholar 

  • Luo, H., Liu, Y. J., Fang, L., Li, X., Tang, N. H., & Zhang, K. Q. (2007). Coprinus comatus Damages Nematode Cuticles Mechanically with Spiny Balls and Produces Potent Toxins. Applied and Environmental Microbiology, 73, 3916–3923.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martínez-Luis, S., González, M. C., Ulloa, M., & Mata, R. (2005). Phytotoxins from the fungus Malbranchea aurantiaca. Phytochemistry, 66, 1012–1016.

    PubMed  Google Scholar 

  • Mayer, A. (1995). Ph.D. thesis, University of Kaiserslautern, Kaiserslauten.

    Google Scholar 

  • Mayer, A., Anke, H., & Sterner, O. (1997). Omphalotin, a new cycle peptide with potent nematicidal activity from Omphalotus olearius. I. Fermentation and Biological activity. Natural Product Letters, 10, 25–32.

    CAS  Google Scholar 

  • Meira, B. E., Edna, S., & Yitzhak, S. (2006). Nematicidal activity of Chrysanthemum coronarium. European Journal of Plant Pathology, 114, 427–433.

    Google Scholar 

  • Meng, Q., Shi, X., Meng, F., Feng, X., & Sun, J. (2012). Isolation of an Acremonium sp. from a screening of 52 seawater fungal isolates and preliminary characterization of its growth conditions and nematicidal activity. Biotechnology Letters, 34, 1847–1850.

    PubMed  Google Scholar 

  • Metzger, J., Schlegel, B., Fleck, W. P., Dornberger, K., Ihn, W., Schade, W., & Gräfe, U. J. (1994). Canadian patent Appl. No. 2,115,966 (18.02.94).

    Google Scholar 

  • Meyer, S. L. F., Huettel, R. N., Liu, X. Z., Humber, R. A., Juba, A., & Nitao, J. K. (2004). Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology, 6, 23–32.

    Google Scholar 

  • Mirrington, R. N., Ritchie, E., Shoppee, C. W., Taylor, W. C., & Sternhell, C. (1964). The constitution of radicicol. Tetrahedron Letters, 7, 365–370.

    Google Scholar 

  • Mo, M. H., Li, G. H., Dong, J. Y., & Zhang, K. Q. (2000). Lampteromyces japonicus- A new nematophagous fungi. Mycosystema, 19, 529–533.

    CAS  Google Scholar 

  • Mori, M., Hyeon, S., Kimura, Y., & Suzuki, A. (1982). The nematicidal activity of acetylene compounds. Agricultural and Biological Chemistry, 46, 309–311.

    CAS  Google Scholar 

  • Moulé, Y., & Hatey, F. (1977). Mechanism of the in vitro inhibition of transcription by patulin, a mycotoxin from Byssochlamys nivea. FEBS Letters, 74, 121–125.

    PubMed  Google Scholar 

  • Munro, H. D., Musgrave, O. C., & Templeton, R. (1967). Curvularin. Part V. The compound C16H18O5, αβ-dehydrocurvularin. Journal of the Chemical Society C, 947–948.

    Google Scholar 

  • Nakahara, S., Kusano, M., Fujioka, S., Shimada, A., & Kimura, Y. (2004). Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Bioscience Biotechnology and. Biochemistry, 68, 257–259.

    CAS  Google Scholar 

  • Nielsen, K. F., Hansen, M. O., Larsen, T. O., & Thrane, U. (1998). Production of trichothecene mycotoxins on water damaged gypsum boards in Danish buildings. International Biodeterioration & Biodegradation, 42, 1–7.

    CAS  Google Scholar 

  • Nitao, J. K. B., Meyer, S. L. F., Oliver, J. E., Schmidt, W. F., & Chitwood, D. J. (2002). Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology, 4, 55–63.

    CAS  Google Scholar 

  • Niu, X. M., Wang, Y. L., Chu, Y. S., Xue, H. X., Li, N., Wei, L. X., Mo, M. H., & Zhang, K. Q. (2010). Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agricultural and Food Chemistry, 58, 828–834.

    PubMed  CAS  Google Scholar 

  • Nozawa, K., & Nakajima, S. (1979). Isolation of radicicol from Penicillium luteo-aurantium, and meleagrin, a new metabolite, from Penicillium meleagrinum. Journal of Natural Products, 42, 374–377.

    CAS  Google Scholar 

  • Ohtani, K., Fujioka, S., Kawano, T., Shimada, A., & Kimura, Y. (2011). Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp. Zeitschrift fur Naturforschung—Section C. Journal of Biosciences, 66, 31–34.

    PubMed  CAS  Google Scholar 

  • Ōmura, S., Miyadera, H., Ui, H., Shiomi, K., Yamaguchi, Y., Masuma, R., Nagamitsu, T., Takano, D., Sunazuka, T., Harder, A., Kölbl, H., Namikoshi, M., Miyoshi, H., Sakamoto, K., & Kita, K. (2001). An anthelmintic compound, nafuredin, shows selective inhabition of complex I in helminth mitochondria. Proceedings of the National Academy of Sciences USA, 98, 60–62.

    Google Scholar 

  • Ondeyka, J. G., Goegelman, R. T., Schaeffer, J. M., Kelemen, L., & Zitano, L. (1990). Novel antinematodal and antiparasitic agents from Penicillium Charlesii. I. Fermentation, isolation and biological activity. Journal of Antibiotics, 53, 1375–1379.

    Google Scholar 

  • Palizi, P., Goltapeh, E. M., Pourjam, E., & Safaie, N. (2009). Potential of oyster mushrooms for the biocontrol of sugar beet nematode (Heterodera schachtii). Journal of Plant Protection Research, 49, 27–33.

    Google Scholar 

  • Pandey, R. C., Meng, H., Cook, J. C., & Rinehart, K. L. (1977). Structure of antiamoebin I from high resolution field desorption and gas chromatographic mass spectrometry studies. Journal of American Chemical Society, 99, 5203–5205.

    CAS  Google Scholar 

  • Park, J. O., Hargreaves, J. R., Cole, A. L. J., Ghisalberti, E. L., Gams, W., & Sivasithamparam, K. (2001). Cuticular disruption and mortality of Caenorhabditis elegans exposed to culture filtrate of Byssochlamys nivea westling. Nematology, 3, 355–363.

    Google Scholar 

  • Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., & Sivasithamparam, K. (2004). Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology, 38, 271–276.

    PubMed  CAS  Google Scholar 

  • Pfister, J. R. (1988). Isolation and bioactivity of 2-aminoquinoline from Leucopaxillus albissimus. Journal of Natural Products, 51, 969–970.

    PubMed  CAS  Google Scholar 

  • Polondky, J., Merrien, M. N., Prangé, T., Pascard, C., & Moreau, S. (1980). Isolation and structure (X-ray analysis) of marcfortine A, a new alkaloid from Penicillium roqueforti. Journal of the Chemical Society—Chemical Communications, 13, 601–602.

    Google Scholar 

  • Prangé, T., Billion, M. A., Vuilhorgne, M., Pascard, C., Polonsky, J., & Moreau, S. (1981). Structures of marcfortine B and C (X-ray analysis), alkaloids from Penicillium Roqueforti. Tetrahedron Letters, 22, 1977–1980.

    Google Scholar 

  • Quaghebeur, K., Coosemans, J., Toppet, S., & Compernolle, F. (1994). Cannabiorci- and 8-chlorocannabiorcichromenic acid as fungal antagonists from Cylindrocarpon Olidum. Phytochemistry, 37, 159–161.

    PubMed  CAS  Google Scholar 

  • Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin (2012). Applied Soil Ecology, 56, 58–62.

    Google Scholar 

  • Rao, A. V. R., Murthy, V. S., & Sharma, G. V. M. (1995). The first synthesis and determination of absolute stereochemistry of clonostachydiol-Part II. Tetrahedron Letters, 36, 143–146.

    CAS  Google Scholar 

  • Regaieg, H., Ciancio, A., Raouani, N. H., Grasso, G., & Rosso, L. (2010). Effects of culture filtrates from the nematophagous fungus Verticillium leptobactrum on viability of the root-knot nematode Meloidogyne incognita. World. Journal of Microbiology and Biotechnology, 26, 2285–2289.

    CAS  Google Scholar 

  • Reimerdes, E. H., Engel, G., & Behnert, J. (1975). Investigation on the production of mycotoxins and quantitative evaluation. I The production of penicillic acid by Penicillium cyclopium. Journal of Chromatography, 110, 361–368.

    PubMed  CAS  Google Scholar 

  • Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123.

    CAS  Google Scholar 

  • Robertson, A. P., Clark, C. L., Burans, T. A., Thompson, D. P., & Geary, T. G. (2002). Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris Muscke. The Journal of Pharmacology and Experimental Therapeufics, 302(3), 853–860.

    CAS  Google Scholar 

  • Reyes-Estebanez, M., Herrera-Parra, E., Cristóbal-Alejo, J., Heredia-Abarca, G., Canto-Canché, B., Medina-Baizabal, I., & Gamboa-Angulo, M. (2011). Antimicrobial and nematicidal screening of anamorphic fungi isolated from plant debris of tropical areas in Mexico. African Journal of Microbiology Research, 5, 1083–1089.

    Google Scholar 

  • Robeson, D. J., & Strobel, G. A. (1981). αβ-dehydrocurvularin and curvularin from Alternaria cinerariae. Zeitschrift fur Naturforschung C, 36c, 1081–1083.

    CAS  Google Scholar 

  • Robeson, D. J., & Strobel, G. A. (1985). The identification of a major phytotoxic component from Alternaria macrospore as αβ-dehydrocurvularin. Journal of Natural Products, 48, 139–141.

    CAS  Google Scholar 

  • Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D., & Lumyong, S. (2010). Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 26, 1569–1578.

    CAS  Google Scholar 

  • Samson-Himmelstjerna, G. V., Harder, A., Sangster, N. C., & Coles, G. C. (2005). Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology, 130, 343–347.

    Google Scholar 

  • Sankaranarayanan, C., Hussaini, S. S., Kumar, P. S., & Prasad, R. D. (1997). Nematicidal effect of fungal filtrates against root-knot nematodes. Journal of Biological Control, 11, 37–41.

    Google Scholar 

  • Sasaki, T., Takagi, M., Yaguchi, T., Miyadoh, S., Okada, T., & Koyama, M. (1992). A new anthelmintic cyclodepsipeptide, PF1022A. Journal of Antibiotics, 45, 692–697.

    PubMed  CAS  Google Scholar 

  • Schaeffer, J. M., Frazier, E. G., Bergstrom, A. R., Williamson, J. M., Liesch, J. M., & Goetz, M. A. (1990). Cochlioquinone A, a nematocidal agent which competes for specific [3H] ivermectin binding sites. Journal of Antibiotics, 43, 1179–1182.

    PubMed  CAS  Google Scholar 

  • Schlunegger, U. P., Kuchen, A., & Clemencon, H. (1976). Mycelium products in higher fungi. I. phenoxazine derivatives in Calocybe gambosa. Helvetica Chimica Acta, 59, 1383–1388.

    PubMed  CAS  Google Scholar 

  • Schwarz, M., Köpcke, B., Weber, R. W. S., Sterner, O., & Anke, H. (2004). 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry, 65, 2239–2245.

    PubMed  CAS  Google Scholar 

  • Shan, R., Stadler, M., Sterner, O., & Anke, H. (1996). New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. VIII. Isolation, structure determination and biological activities of minor metabolites structurally related to mycorrhizin A. Journal of Antibiotics, 49, 447–452.

    PubMed  CAS  Google Scholar 

  • Sharma, V. P. (1994). Potential of Pleurotus sajor-caju for biocontrol of Aphelenchoides camposticola in Agaricus bisporus cultivation. Mushroom Research, 3, 15–20.

    Google Scholar 

  • Shimada, A., Fujioka, S., Koshino, H., & Kimura, Y. (2010) Nematicidal activity of beauvericin produced by the fungus Fusarium bulbicola. Zeitschrift fur Naturforschung C, 65, 207–210.

    CAS  Google Scholar 

  • Shiomi, K., Ui, H., Suzuki, H., Hatano, H., Nagamitsu, T., Takano, D., Miyadera, H., Yamashita, T., Kita, K., Miyoshi, H., Harder, A., Tomoda, H., & Ōmura, S. (2005). A γ-lactone form nafuredin, nafuredin-γ; also inhabits helminth complex I. Journal of Antibiotics, 58, 50–55.

    PubMed  CAS  Google Scholar 

  • Singh, S. B., Smith, J. L., Sabnis, G. S., Dombrowski, A. W., Schaeffer, J. M., Goetz, M. A., & Bills, G. F. (1991). Structure and conformation of opiophiobolin K and 6- epiophiobolin K from Aspergillus ustus as a nematocidal Agent. Tetrahedron, 47, 6931–6938.

    CAS  Google Scholar 

  • Singleton, V. L., Bohonos, N., & Ullstrup, A. J. (1958). Decumbin, a new compound from a species of Penicillium. Nature, 181, 1072–1073.

    PubMed  CAS  Google Scholar 

  • Snook, C. F., Woolley, G. A., Oliva, G., Pattabhi, V., Wood, S. F., Blundell, T. L., & Wallace, B. A. (1998). The structure and function of ntiamoebin I, a proline-rich membrane-active polypeptide. Structure, 6, 783–792.

    PubMed  CAS  Google Scholar 

  • Stadler, M. (1993). PhD thesis, University of Kaiserslautern, Kaiserslautem, Germany.

    Google Scholar 

  • Stadler, M., & Anke, H. (1993a). Lachnumon and lachnumol A, new metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. I. Producing organism, fermentation, isolation and biological activities. Journal of Antibiotics, 46, 961–967.

    CAS  Google Scholar 

  • Stadler, M., & Anke, H. (1993b). Lachnumon and lachnumol A, new metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. II. Structural elucidation. Journal of Antibiotics, 46, 968–971.

    CAS  Google Scholar 

  • Stadler, M., & Sterner, O. (1998). Production of bioactive secondary metabolities in the fruit bodies of macrofungi as a response to injury. Phytochemistry, 49, 1013–1019.

    CAS  Google Scholar 

  • Stadler, M., Sterner, O., & Anke, H. (1993). New biologically active compounds from the nematode-trappingfungus Arthrobotrys oligospora Fresen. Zeitschrift fur Naturforschung C, 48c, 843–850.

    Google Scholar 

  • Stadler, M., Anke, H., & Sterner, O. (1994a). Six new antimicrobial and nematicidal bisadolanes from the Basidiomycete Cheimonophyllum candidissimum. Tetrahedron, 50, 12649–12654.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., & Sterner, O. (1994b). New nematicidal and antimicrobial compounds from the Basidiomycete Cheimonophyllum candidissimum (Berk & Curt) Sing, I. Producing organism, fermentation, isolation, and biological activaties. Journal of Antibiotics, 47, 1284–1289.

    CAS  Google Scholar 

  • Stadler, M., Mayer, A., Anke, H., & Sterner, O. (1994). Fatty acids and other compounds with nematicidal activity from cultures of basidiomycetes. Planta Medica, 60, 128–132.

    PubMed  CAS  Google Scholar 

  • Stadler, M., Anke, H., & Sterner, O. (1995a). Metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. III. Production of novel isocoumarin derlvatives, isolation and biological activities. Journal of Antibiotics, 48, 261–266.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., & Sterner, O. (1995b). New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. IV. Structural elucidation of novel isocoumarin dervatives. Journal of Antibiotics, 48, 267–273.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., & Sterner, O. (1995c). Metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. V. Production, isolation and biological activities of bromine-contaning mycorrhizin and lachnumon derivatives and four additional new bioactive metabolites. Journal of Antibiotics, 48, 149–153.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., Shan, R., & Sterner, O. (1995d). New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. VI. Structure determination of non-halogenated metabolites structurally related to mycorrhizin A. Journal of Antibiotics, 48, 154–157.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., Shan, R., & Sterner, O. (1995e). New metabolites with nematicidal and antimicrobial activities from the Ascomycete Lachnum papyraceum (Karst.) Karst. VII. Structure determination of brominated Lachnumom and mycorrhizin A derivatives. Journal of Antibiotics, 48, 158–161.

    CAS  Google Scholar 

  • Stadler, M., Anke, H., Dekermendjian, K., Reiss, R., Sterner, O., & Witt, R. (1995f). Novel bioactive azaphilones from fruit bodies and mycelial cultures of the Ascomycete Bulgaria inquinans. Natural Products Letters, 7, 7–14.

    CAS  Google Scholar 

  • Stadler, M., Fouron, J. Y., Sterner, O., & Anke, H. (1995g). 1,2-Dihydroxymintlactone, a new nematicidal monoterpene isolated from the Basidiomycete Cheimonophyllum candidissimum (Berk & Curt) Sing. Zeitschrift fur Naturforschung C, 50c, 473–475.

    Google Scholar 

  • Sterner, O., Bergman, R., Kihlberg, J., & Wickberg, B. (1985). The sesquiterpenes of Lactarius Vellereus and their role in a proposed chemical defense system. Journal of Natural Products, 48, 279–288.

    CAS  Google Scholar 

  • Stener, O., Etzel, W., & Mayer, A. (1997). Omphalotin, a new cycle peptide with potent nematicidal activity from Omphalotus olearius. II. Structure elucidation. Natural Products Letters, 10, 33–38.

    Google Scholar 

  • Sun, J. H. (1997). The control of growth and reproduce to Bursaphelenchus xylophilus by fungal cultures. Acta Scientiarum Naturalium University Nankaiensis, 30, 82–85.

    Google Scholar 

  • Sun, J., Wang, H., Lu, F., Du, L., & Wang, G. (2008). The efficacy of nematicidal strain Syncephalastrum racemosum. Annals of Microbiology, 58, 369–373.

    Google Scholar 

  • Suzuki, Y., Tanaka, H., Aoki, H., & Tamura, T. (1970). Ascotoxin (decumbin), a metabolite of Ascochyta imperfecta. Agricultural and Biological Chemistry, 34, 395–413.

    CAS  Google Scholar 

  • Tarbell, D. S., Carman, R. M., Chapman, D. D., Huffman, K. R., & McCorkinadale, N. J. (1960). The structure of Fumagillin. Journal of the American Chemical Society, 82, 1005–1007.

    CAS  Google Scholar 

  • Thirumalachur, M. J. (1968). Antiamoebin, a new antiprotozoalantihelmintic antibiotic. Part I. Production and biological studies. Hindustan Antibiotics Bulletin, 10, 287–289.

    Google Scholar 

  • Thorn, R. G., & Barron, G. L. (1984). Carnivorous mushrooms. Science, 224, 76–78.

    PubMed  CAS  Google Scholar 

  • Tomoda, H., Nishida, H., Huang, X. H., Masuma, R., Kim, Y. K., & Ōmura, S. (1992). New cyclodepsipeptides, enniatins D, E and F produced by Fusarium sp. FO-1305. Journal of Antibiotics, 45, 1207–1215.

    PubMed  CAS  Google Scholar 

  • Trofast, J., & Wickberg, B. (1977). Mycorrhizin A and chloromycorrhizin A, two antibiotics from mycorrhizal fungus of Monotrapa hypopitys L. Tetrahedron, 33, 875–879.

    CAS  Google Scholar 

  • Trofast, J. (1978). Chloromycorrhizinol A, a furochroman from an isolate of the roots of Monotropa hypopitys. Phytochemistry, 17, 1359–1361.

    CAS  Google Scholar 

  • Tsipouras, A., Adefarati, A. A., Tkacz, J. S., Frazier, E. G., Rohrer, S. P., Birzin, E., Rosegay, A., Zink, D. L., Goetz, M. A., Singh, S. B., & Schaeffer, J. M. (1996). Ophiobolin M and analogues, noncompetitive inhabitors of ivermectin binding with nematocidal activity. Bioorganic & Medicinal Chemistry, 4, 531–536.

    CAS  Google Scholar 

  • Tzean, S. S., & Liou, J. Y. (1993). Nematophagous resupinate basidiomycetous fungi. Ecology and Epidemiology, 83, 1015–1020.

    Google Scholar 

  • Ui, H., Shiomi, K., Yamaguchi, Y., Masuma, R., Nagamitus, T., Takano, D., Sunazuka, T., Namikoshi, M., & Ōmura, S. (2001). Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554. Journal of Antibiotics, 54, 234–238.

    PubMed  CAS  Google Scholar 

  • Van Dessel, P., Coyne, D., Dubois, T., De Waele, D., & Franco, J. (2011). In vitro nematicidal effect of endophytic Fusarium oxysporum against Radopholus similis, Pratylenchus goodeyi and Helicotylenchus multicinctus. Nematropica, 41, 154–160.

    Google Scholar 

  • Venkatasubbaiah, P., & Chilton, W. S. (1991). Toxins produced by the dogwood anthracnose fungus Discula sp. Journal of Natural Products, 54, 1293–1297.

    CAS  Google Scholar 

  • Verdejo-Lucas, S., Viera, A., Stchigel, A. M., & Sorribas, F. J. (2009). Screening culture filtrates of fungi for activity against Tylenchulus semipenetrans. Spanish Journal of Agricultural Research, 7, 896–904.

    Google Scholar 

  • Vurro, M., Evidente, A., Andolfi, A., Zonno, M. C., Giordano, F., & Motta, A. (1998). Brefeldin A and α,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Science, 138, 67–79.

    CAS  Google Scholar 

  • Wagner, C., Anke, H., & Sterner, O. (1998). Rubrobramide, a cytotoxic and phytotoxic metabolite from Cladobotryum rubrobrunnescens. Journal of Natural Products, 61, 501–502.

    PubMed  CAS  Google Scholar 

  • Wang, J. F., Huang, Y. J., Fang, M. J., Zhang, Y. J., Zheng, Z. H., Zhao, Y. F., & Su, W. J. (2002). Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunology and Medical Microbiology, 34, 51–57.

    PubMed  CAS  Google Scholar 

  • Watts, R., Dahiya, J., Chandhary, K., & Tauro, P. (1988). Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant and Soil, 107, 81–84.

    CAS  Google Scholar 

  • Wei, L. X., Zhang, H. X., Tan, J. L., Chu, Y. S., Li, N., Xue, H. X., Wang, Y. L., Niu, X. M., Zhang, Y., & Zhang, K. Q. (2011). Arthrobotrisins A-C, oligosporons from the nematode-trapping fungus Arthrobotrys oligospora. Journal of Natural Products, 74, 1526–1530.

    PubMed  CAS  Google Scholar 

  • William, A. A., Rudong, S., Latchezar, S. T., & Leonard, J. H. (1998). Sesquiterpenes from the nematicidal fungus Clitocybula oculus. Phytochemistry, 49, 589–592.

    Google Scholar 

  • Willis, A. J., & Thomas, M. B. (1998). Biocontrol-risky but necessary? Trends in Ecology & Evolution, 13, 325–329.

    Google Scholar 

  • Wirth, J. C., Gilmore, T. E., & Noval, J. J. (1956). Penicillic acid, the antibiotic responsible for the activity of culture filtrate of a strain of Penicillium martensii. Archives of Biochemistry and Biophysics, 63, 452–453.

    PubMed  CAS  Google Scholar 

  • Xiang, H. Q., & Feng, Z. X. (2001). The nematicidal toxicity of the fruits bodies of Pleurotus ostreatus. Journal of Shenyang Agricultural University, 32, 173–175.

    Google Scholar 

  • Xu, L., Wang, J., Zhao, J., Li, P., Shan, T., Wang, J., Li, X., & Zhou, L. (2010). Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Natural Product Communications, 5, 811–814.

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., Okuyama, E., Kobayashi, M., & Inoue, H. (1981). The structure of paraherquamide, a toxic metabolite from Penicillium Paraherquei. Tetrahedron Letters, 22, 135–136.

    CAS  Google Scholar 

  • Yan, X. N., Sikora, R. A., & Zheng, J. W. (2010). Activities of seven fungal endophytes from cucumber plants to the second stage juveniles of meloidogyne incognita. Chinese Journal of Biological Control, 26, 181–185.

    CAS  Google Scholar 

  • Yang, Z. S. (2008). Screening of nematicidal activities of Trichoderma spp. and the isolation and identification of active compounds. Master thesis, laboratory for conservation and utilization of bio-resource, Yunnan University, Kunming, China.

    Google Scholar 

  • Yang, Z. S., Li, G. H., Zhao, P. J., Zheng, X., Luo, S. L., Li, L., Niu, X. M., & Zhang, K. Q. (2010). Nematicidal activity of Trichoderma spp. and isolationof an active compound. World Journal of Microbiology and Biotechnology, 26, 2297–2302.

    CAS  Google Scholar 

  • Yang, Z. S., Yu, Z. F., Lei, L. P., Xia, Z. Y., Shao, L., Zhang, K. Q., & Li, G. H. (2012). Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15, 647–650.

    CAS  Google Scholar 

  • Yao, T., Liang, Z. Q., Mo, M. H., & Wang, C. Y. (2006). Nematicidal activity of Paecilomyces isolates from Yunnan province. Chinese Journal of Biological Control, 22, 226–229.

    Google Scholar 

  • Yuan, Y. P., Xiang, M. M., Xi, P. G., & Jiang, Z. D. (2010). Screening of Nematicidal isolates from the Endophytic Fungi of Quisqualis indica and optimization of culture conditions for the isolate. Chinese Journal of Biological Control, 26, 474–479.

    Google Scholar 

  • Zhang, Y. (2004). Master thesis, TianJin University of Science and Technology, TianJin, China.

    Google Scholar 

  • Zhang, J. P., & Zhao, B. G. (2003). Influences of fungi isolated from dead pine trees ans other wood decaying fungi on the population growth of Bursaphelenchus xylophilus. Journal of Fujian College of Forestry, 23, 245–248.

    Google Scholar 

  • Zhang, Y. G., Yuan, W. P., Xia, X. Q., Liu, X., Meng, X. M., Wang, X. J., Zhang, J. S., & Liu, C. H. (2010). Isolation and identification of the nematicidal secondary metabolites from one strain of entomogenous fungi. Chinese Journal of Pesticide Science, 12, 225–228.

    Google Scholar 

  • Zhao, Z. X. (2004). Master thesis, laboratory for conservation and utilization of bio-resource, Yunnan University, Kunming, China.

    Google Scholar 

  • Zhou, Y. P., Shen, K. Z., Dong, J. Y., Wang, L. M., Wang, C. R., Wang, L., & Zhang, K. Q. (2009). Nematicidal metabolites of the aquatic fungus Coelomycetes sp. YMF1.01029. Chinese Journal of Antibiotics, 34, 74–78.

    CAS  Google Scholar 

  • Zhu, Y. H., Dong, J. Y., Wang, L., Li, L., He, H. P., Liu, H. Y., & Zhang, K. Q. (2008). Screening and isolation of antinematodal metabolites against Bursaphelenchus xylophilus produced by fungi. Annals of Microbiology, 58, 375–380.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mushroom Research Foundation

About this chapter

Cite this chapter

Li, GH., Zhang, KQ. (2014). Nematode-Toxic Fungi and their Nematicidal Metabolites. In: Zhang, KQ., Hyde, K. (eds) Nematode-Trapping Fungi. Fungal Diversity Research Series, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8730-7_7

Download citation

Publish with us

Policies and ethics