Skip to main content

Fungal Endophytes Representing Diverse Habitats and Their Role in Plant Protection

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Fungal endophytes are commonly considered all those highly diverse fungi that colonize internal tissue of plants either part or complete their life without causing any negative symptoms of disease. Researches on structural and functional diversity of fungal entophytes have developed great appreciation among the scientific community because its promises plethora of advantages to host plants which most of them we are not aware and to be potential source of novel metabolites that could serve as new drugs of pharmaceutical and agricultural importance. Endophytic fungi are reported from each group of plants from thallophytes to spermatophytes (algae to angiosperms) and from aquatic to xerophytic plants. Taxonomically they are categorized into two different phylogenetic groups i.e. clavicipitaceous and non-clavicipitaceous group that may be transmitted horizontally or vertically from plant to plant. Endophytism is classical example of mutualistic symbiosis which has evolved from the balanced antagonism between microbes and host plant during the course of time. Past researches on fungal endophyte mainly focused on diversity and its secondary metabolites; many aspects of their role in plant protection against biotic and abiotic stresses are less explored. Since the majority of these groups of microbes are mysterious and their other hidden potential values are yet to be discovered which need more attention. Past fragmentary reports on role of fungal endophyte in plant protection give enough clue regarding scope and application of these microbes as tools for the improving fitness of plant in terms of quality and quantity of their productivity. The present article mostly focuses to review the status on diversity of fungal endophytes in different groups of plants, and their spatio-temporal distribution including the role in plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, London

    Google Scholar 

  • Alva P, McKenzie EHC, Pointing SB, Penamuralla R, Hyde KD (2002) Do sea grasses harbour endophytes? Fungal Divers Res Ser 7:167–178

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Nat Acad Sci USA 100:15649–15654

    Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York, pp 341–388

    Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloëtyphina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berbee ML, Taylor JW (2007) Rhyniechert: a window into a lost world of complex plant–fungus interactions. New Phytol 174:475–479

    PubMed  Google Scholar 

  • Bernstein ME, Carroll GC (1977) Internal fungi in old-growth Douglas fir foliage. Can J Bot 55:644–653

    Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, Minnesota, pp 31–65

    Google Scholar 

  • Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 4:141–173

    Google Scholar 

  • Boullard B (1988) Observations of the coevolution of fungi with hepatics. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic Press, London, pp 107–124

    Google Scholar 

  • Boullard B (1979) Considerations sur la symbiosefongique chez les PteridophytesSyllogeus. 19. National Musium of Natural Science. Ottawa, Canada

    Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama forest reserve, Guyana. Mycologia 94:210–220

    PubMed  Google Scholar 

  • Cabral D, Stone JK, Carroll G (1993) The internal mycobiota of Juncas sp.: microscopic and cultural observations of infection pattern. Mycol Res 97:367–376

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbionts. Ecology 69:2–9

    Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Google Scholar 

  • Carroll G, Petrini O (1983) Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia 75(1):53–63

    Google Scholar 

  • Chambers SM, Williams PG, Seppelt RD, Cairney JWG (1999) Molecular identification of Hymenoscyphus sp. from the rhizoids of the leafy liverwort Cephaloziellaexiliflora in Australia and Antarctica. Mycol Res 103:286–288

    CAS  Google Scholar 

  • Choi YW, Hodgkiss IJ, Hyde KD (2005) Enzyme production by endophytes of Bruceajavanica. J Agric Technol 1:xx

    Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    PubMed  Google Scholar 

  • Clay K (1991) Fungal endophytes, grasses and herbivores. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant herbivore interactions. Wiley, New York, pp 199–226

    Google Scholar 

  • Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7:3505–3509

    CAS  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria(Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667

    PubMed  Google Scholar 

  • de Bary A (1879) Die Erscheinung der Symbiose. Verlagvon Karl J, Trubner, Strassburg

    Google Scholar 

  • de Bary A (1866). Morphologic und physiologie der plize, Flechten, und Myxomyceten (Hofmeister’s Hand Book of Physiological Botany), vol. 2, Leipzig

    Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation on tomato. Mycorrhiza 13:199–204

    CAS  PubMed  Google Scholar 

  • Dreyfuus MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heineman, London, pp 49–80

    Google Scholar 

  • Duckett JG, Anna C, Roberto L (2004) Liverwort phylogeny and endophytic fungi. Abstract: Bryological and Lichenological Section/ABLS, Abstract ID, 431

    Google Scholar 

  • Duckett JG, Russell J, Ligrone R (2006) Basidiomycetous endophytes in jungermannialean (leafy) liverworts have novel cytology and species-specific host ranges: a cytological and experimental study. Can J Bot 84:1075–1093

    Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Int Comp Biol 42:360–368

    Google Scholar 

  • Fisher PJ, Andoson AE, Petrini O (1984) Antibiotic activities of some endophytic fungi from ericaceous plants. Bot Helv 94:153–156

    Google Scholar 

  • Fisher PJ, Petrini O, Petrini LE, Sutton BC (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca, and Switzerland. New Phytol 127:133–137

    Google Scholar 

  • Freeman EM (1904) The seed fungus of Lolium temulentum L., the darnel. Philos Trans R Soc Lond B 196:1–27

    Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75

    CAS  PubMed  Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conser 8:977–1004

    Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Biotechnol Res 4(13):1346–1351

    Google Scholar 

  • Ghimire SR, Hyde KD (2004) Fungal endophytes. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology Springer, Berlin, pp 281–292

    Google Scholar 

  • Giménez C, Cabrera R, Reina M, Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    Google Scholar 

  • Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelosCorreae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375

    Google Scholar 

  • Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A (2011) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthesarbor-tristis, a well- known medicinal plant of India. Mycoscience 53(2):113–121

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 5:875–877

    CAS  Google Scholar 

  • Guerin P (1898) Surla presence d’un chamignondansl’ivraie. J Botanique 12:230–238

    Google Scholar 

  • James TY, Kauff F et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Jersch S, Scherer C, Hutz G, Schlosser E (1989) Proanthocianidins as a basis for quiescence of Botrytis cinerea in immature strawberry fruits. Z PflanzenkrankheitenPflanzenschutz 96:365–378

    Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential; antioxidant resource: endophytic from medicinal plants. Econ Bot 61(1):14–30

    Google Scholar 

  • Hawksworth DL (1987) Observations on three algicolus microfungi. Notes R Bot Gard Edinb 44:549–560

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Ikeda H, Fukuda T, Yokoyama J (2016) endophytic fungi associatedwith a holoparasitic plant, Balanophora japonica (Balanophoraceae. Am J Plant Sci 7:152–158

    CAS  Google Scholar 

  • Inacio ML, Silva GH, Teles HL, Trevisan HC, Cavalheiro AJ, da Bolzani SV, Young MCM, Pfenning LH, Araujo AR (2006) Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem Syst Ecol 34:822–824

    Google Scholar 

  • Janardhanan KK, Ahmad A (1997) Fungal endophytes of grasses: incidence and distribution in India. In: Janardhanan KK, Natarajan K, Hawksworth DL (eds) Tropcal mycology. Oxford and IBH Publishing Co Pvt. Ltd., Calcutta, pp 157–168

    Google Scholar 

  • Kauserud H, Mathiesen C, Ohlson M (2008) High diversity of fungi associated with living parts of boreal forest bryophytes. Botany 86:1326–1333

    Google Scholar 

  • Kehr RD, Wulf A (1993) Fungi associated with above ground portion of declined oaks (Quercus rubra) in Germany. Eur J Pathol 23:18–27

    Google Scholar 

  • Kharwar RN, Gond SK, Kumar A, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodoraHook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Google Scholar 

  • Kharwar RN, Verma VC, Stroble S, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don Curr Sci 95:228–233

    CAS  Google Scholar 

  • Kharwar RN, Verma SK, Mishra A, Gond SK, Sharma VK, Afreen T, Kumar A (2011) Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant Adenocalymma alliaceum Miers. Symbiosis 55:39–46

    Google Scholar 

  • Krohn K, Dai J, Florke U, Aust HJ, Drager S, Schulz B (2005) Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J Nat Prod 68:400–405

    CAS  PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Google Scholar 

  • Kumaresan V, Ganesan T, Rajarajan D, Nirmal Kumar K (2006) Fungal endophytes of Psilotum nudum—a first report. Geobios 33:200–202

    Google Scholar 

  • Kumaresan V, Veeramohan R, Bhat MM, Sruthi K, Ravindran CP (2013) Fungal endophyte assemblages of some Pteridophytes from Mahe, India. World Journal of Science and Technology 3(01):07–10

    Google Scholar 

  • Leben C (1965) Epiphytic microorganisms in relation to plant diseases. Ann Rev Phytopathol 3:209–230

    Google Scholar 

  • Leveille J.H (1846) Considerations mycologiquessuivisd’une nouvelle classification des champig- nons. Paris

    Google Scholar 

  • Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Loliumperenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63

    Google Scholar 

  • Ligrone R (1988) Ultrastructure of a fungal endophyte in Phaeoceros laevis (L.) Prosk, anthocerotophyta. Bot Gaz 149(1):92–100

    Google Scholar 

  • Lin X, Lu C, Huang Y, Zheng Z, Su W, Shen Y (2007) Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World J Microbiol Biotechnol 23:1037–1040

    Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    CAS  Google Scholar 

  • Mathan S, Subramanian V, Nagamony S, Ganpathy K (2013) Isolation of endophytic fungi from marine algae and bioactivity. Int J Res Pharm Sci 4(1):45–49

    Google Scholar 

  • Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 64:3288–3398

    Google Scholar 

  • Nalini MS, Mahesh B, Tejesvi MV, Prakash HS, Subbaiah V, Kini KR, Shetty HS (2005) Fungal endophytes from the three-leaved caper, Crataeva magna (Lour.) DC. (Capparidaceae). Mycopathologia 159:245–249

    PubMed  Google Scholar 

  • Narisawa K, Ohki T, Hashiba T (2000) Suppression of clubroot and Verticillium yellows in Chinese cabbage in the fi eld by the endophytic fungus, Heteroconium chaetospira. Plant Pathol 49:141–146

    Google Scholar 

  • Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophytes. Eur J Plant Pathol 108:103–109

    Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. The plant health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

    Article  Google Scholar 

  • Pelaez F, Collado J, Arenal F, Basilio A, Cabello A, Diezmatas MT, Garcia JB, Gonzalez Del Val A, Gonzalez V, Gorrochategui J, Hernandez P, Martin I (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, Berlin, pp 179–197

    Google Scholar 

  • Petrini O, Fisher PJ (1986) Fungal endophytes in Salicornia perennis. Trans Brit Mycol Soc 87:647–651

    Google Scholar 

  • Petrini O (1996) Ecological and physiological aspect of host specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul

    Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxin 1:185–196

    CAS  Google Scholar 

  • Pirozynski KA, Hawksworth DL (1988) Coevolution of fungi with plants and animals: introduction and overview. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plant and animals. Harcourt Brace Jovanovich, London, pp 1–29

    Google Scholar 

  • Rajagopal R, Suryanarayanan TS (2000) Isolation of endophytic fungi from leaves of neem (Azadirachta indica). Curr Sci 78:1375–1378

    Google Scholar 

  • Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J Basic Microbiol 45:230–235

    CAS  PubMed  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6(7):e14823. https://doi.org/10.1371/journal.pone.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesen TK, Close RC (1987) Endophytic fungi in propiconazole—reated and untreated barley leaves. Mycologia 79:546–552

    Google Scholar 

  • Riesen TK, Sieber TN (1985) Endophytic fungi in winter wheat (Triticumaestivum L.). Administarations and Druck AG (ADAG), Zürich

    Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. Adv Bot Res 24:169–193

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold JAE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Sahashi N, Kubono T, Miyasawa Y, Ito S (1999) Temporal variations in isolation frequency of endophytic fungi from Japanese beech. Can J Bot 77:197–202

    Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9(6):275–280

    CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Silva GH, Teles HL, Trevisan HC, da Bolzani V S, Young MCM, Pfenning LH, Eberlin MN, Haddad R, Costa-Neto CM, Araujo AR (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:1463–1466

    Google Scholar 

  • Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97(1):45–49

    CAS  PubMed  Google Scholar 

  • Sati SC, Pargaein N, Belwal M (2009) Diversity of aquatic hyphomycetes as root endophytes on pteridophytic plants in Kumaun Himalaya. J Am Sci 5(4):179–182

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed borne fungal endophytes. Ann Rev Plant Biol 55:315–340

    CAS  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    CAS  PubMed  Google Scholar 

  • Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytol 124:69–81

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophyte continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophytic colonization by fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology and evolution. APS Press, St. Paul, pp 3–29

    Google Scholar 

  • Sieber T (2007) Endophytic fungi in forest tree: are they mutualists? Fungal Biol Rev 21:75–89

    Google Scholar 

  • Siegel MR, Johnson M, Varney DR, Nesmith WC, Buckner RC, Bush LP, Burrus PB (1984) A fungal endophyte in tall fescue: incidence and dissemination. Phytopathology 74:932–937

    Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF, Marcel D (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Stone JK (1988) Fine structure of latent infection by Rhabdocline parkeri on Douglas fir, with observation on uninfected epidermal cells. Can J Bot 66:45–54

    Google Scholar 

  • Stone JK, Polishook JD, White JRJ (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, pp 241–270

    Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Res 67:491–502

    CAS  Google Scholar 

  • Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Johnson JA (2014) Fungal endosymbionts of macroalgae: need for enquiries into diversity and technological potential. Oceanography 2:119. https://doi.org/10.4172/2332-2632.1000119

    Article  Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109(5):635–639

    PubMed  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104(12):1465–1467

    Google Scholar 

  • Suryanarayanan TS, Kumarsan V, Jonson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CAS  Google Scholar 

  • Suryanarayanan TS, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscutareflexa and its host plants. Fungal Divers 4:117–123

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30

    Google Scholar 

  • Suske J, Acker G (1989) Identification of endophytic hyphae of Lophodermium piceae in tissues of green, symptomless Norway spruce needles by immunoelectron microscopy. Can J Bot 67:1768–1774

    Google Scholar 

  • Swatzell LJ, Powell MJ, Kiss JZ (1996) The relationship of endophytic fungi to the gametophyte of the fern Schizaea pusilla. Int J Plant Sci 157:53–62

    CAS  PubMed  Google Scholar 

  • Sydowia H (1914) Beitragezurkenntnis der pilzflora des sudlichenostindiens II. Ann Mycologica 12:484–490

    Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confer protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Hunthrike SS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540

    Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2(2):147–155

    Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J For Res 17(2):213–218

    Google Scholar 

  • Tyler BM (1993) To kill or not to kill: the genetic relationship between a parasite and endophyte. Trends Microbiol 1:252–254

    CAS  PubMed  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Arnold EA (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353

    PubMed  Google Scholar 

  • Usama WH, Ahmed AEB, Ali MEH (2012) Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch Pharmacal Res 35(10):1749–1756

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Google Scholar 

  • Verma SK, Gond SK, Mishram A, Sharma VK, Kumar J, Singh DK, Kumar A, Goutam J, Kharwar RN (2014) Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Ann Microbiol 64(2):721–734

    Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) Endophytic mycoflora from leaf, bark, and stem of Azadirachta indica A Juss. from Varanasi India. Microb Ecol 54:119–125

    CAS  PubMed  Google Scholar 

  • Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, Proksch P, Wang BG (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625

    CAS  PubMed  Google Scholar 

  • White JF (1993) Endophyte-host associations in grasses. XIX. A systematic study of some sympatric species of Epichloe in England. Mycologia 85:444–445

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microb Inter 13:1027–1033

    CAS  Google Scholar 

  • Williamson B (1994) Latency and quiescence in survival and success of fungal plant pathogen. In: Blackman JP, Williamson B (eds) Ecology of plant pathogens. CAB International, London, pp 187–207

    Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of term, a classification of its use and definition. Oikos 73:274–276

    Google Scholar 

  • Yang RY, Li CY, Lin YC, Peng GT, She ZG, Zhou SN (2006) Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorganic Med Chem Lett 16:4205–4208

    CAS  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloe festucae. J Agric Food Chem 48:4687–4692

    CAS  PubMed  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    CAS  PubMed  Google Scholar 

  • Zhang T, Zhang YQ, Liu HY, Wei YZ, Li HL, Su J, Zhao LX, Yu LY (2013) Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, Mmaritime Antarctica. FEMS Microbiol Lett 341(1):52–61

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Kharwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.K. et al. (2017). Fungal Endophytes Representing Diverse Habitats and Their Role in Plant Protection. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_9

Download citation

Publish with us

Policies and ethics