Skip to main content

Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Weeds usually result in average ~ 20–37% losses of the world’s agricultural output, and therefore, weed control is indispensable in every crop production system. For weed management, usually chemical herbicides are applied, but their indiscriminate use causes environmental problems and human health hazards. Moreover, continuous use of herbicides may lead to evolution of resistant weed biotypes and shift in the weed flora. Thus, biological control of weeds is an alternate eco-friendly method of weed management, in which microorganisms or their products are used to suppress the growth of weed species. Many rhizosphere microorganisms including Pseudomonas aeruginosa, P. fluorescens, Erwinia herbicola, Alcaligenes sp., strains of Xanthomonas campestris pv. poannua, Pseudomonas syringae pv. tagetis, Serratia plymuthica, and S. marcescens as well as the fungi including Colletotrichum gloeosporioides, Aeschynomene virginica, Phoma chenopodicola, and Exserohilum monoceras have been characterized as bioherbicides. These rhizosphere microorganisms have been found to suppress the growth of weeds by reducing weed density, biomass, and its seed production. Various metabolites produced by microorganisms such as cyanide, organic acids, secondary metabolites (antibiotic 2, 4-diacetylphloroglucinol), and plant growth regulators, including auxins (indole acetic acid and δ-aminolevulinic acid), have been found to inhibit seed germination, seedling growth, and suppression of weed plant growth. Bacterial and fungal microbes also produce a wide array of phytotoxins that may cause mortality of weed plants. Many of the microorganisms have been released as commercial bioherbicides for different crops. Thus, there are immense possibilities for characterizing and developing novel microbial bioherbicides that could reduce the application of chemical herbicides for weed control in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas HK, Tanaka T, Duke SO, Boyette CD (1995) Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol 9:125–130

    CAS  Google Scholar 

  • Abbas H, Johnson B, Pantone D, Hines R (2004) Biological control and use of adjuvants against multiple seeded cocklebur (Xanthium strumarium) in comparison with several other cocklebur types. Biocontrol Sci Tech 14:855–860

    Article  Google Scholar 

  • Abu-Dieyeh M, Watson A (2007) Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed Res 47:63–72

    Article  Google Scholar 

  • Adetunji C, Oloke J (2013) Efficacy of freshly prepared pesta granular formulations from the multicombination of wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Agric Univ Tirana 12:555–563

    Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 4(1):e1002352

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahonsi MO, Berner DK, Emechebe AM, Lagoke ST (2002) Selection of rhizobacterial strains for suppression of germination of Striga hermonthica (Del.) Benth. Seeds. Biol Control 24:143–152

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistin on Lemna paucicostata. Pesticide. Biochem Physiol 49:37–52

    CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auld BA, McRae CF, Say MM (1988) Possible control of Xanthium spinosum by a fungus. Agric Ecosyst Environ 21:219–223

    Article  Google Scholar 

  • Auld BA, Say MM, Ridings HI, Andrews J (1990) Field applications of Colletotrichum orbiculare to control Xanthium spinosum. Agric Ecosyst Environ 32:315–323

    Article  Google Scholar 

  • Bailey KL (2014) The bioherbicide approach to weed control using plant pathogens. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Elsevier, San Diego, pp 245–266

    Chapter  Google Scholar 

  • Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Article  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bakker M, Manter D, Sheflin A, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Baldani VD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380–390

    Article  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41–55

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AM, Souza CGM, Dekker RFH, Fonseca RC, Ferreira DT (2002) Phytotoxin produced by Bipolaris euphorbiae in-vitro is effective against the weed Euphorbia heterophylla. Braz Arch Biol Technol 45:233–240

    Article  CAS  Google Scholar 

  • Barreto RW, Evans HC (1998) Fungal pathogens of Euphorbia heterophylla and E. hirta in Brazil and their potential as weed biocontrol agents. Mycopathologia 141:21–36

    Article  CAS  PubMed  Google Scholar 

  • Barton J (2005) Bioherbicides: all in a day’s work… for a superhero. Manaaki Whenua, Landcare Research Ltd., Lincoln, pp 4–6

    Google Scholar 

  • Beckie HJ, Lozinski C, Shirriff S, Brenzil CA (2013) Herbicide-resistant weeds in the Canadian prairies: 2007 to 2011. Weed Technol 27:171–183

    Article  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed Central  PubMed  Google Scholar 

  • Berkowitz DB, Charette BD, Karukurichi KR, McFadden JM (2006) α-Vinylic amino acids: occurrence, asymmetric synthesis, and biochemical mechanisms. Tetrahedron Asymmetry 17:869–882

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. https://doi.org/10.1023/A:1026290508166

    Article  CAS  Google Scholar 

  • Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackshaw RE, Brandt RN, Janzen HH, Entz T (2004) Weed species response to phosphorus fertilization. Weed Sci 52:406–412

    Article  CAS  Google Scholar 

  • Block A, Schmelz E, Jones JB, Klee HJ (2005) Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control. Mol Plant Pathol 6:79–83

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  CAS  PubMed  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun A, Amiar Z, Rona J, Ouhdouch Y, El Hadrami I, Bouteau F (2006) A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant-Microbe Inter 19:550–556

    Article  CAS  Google Scholar 

  • Boyette CD (1991) Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania (Sesbania exaltata). Plant Dis 75:62–64

    Article  Google Scholar 

  • Boyette CD, Hoagland RE (2013a) Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cocklebur (Xanthium strumarium). Biocontrol Sci Tech 23:183–196

    Article  Google Scholar 

  • Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Tech 25:229–237

    Article  Google Scholar 

  • Boyette CD, Reddy KN, Hoagland RE (2006) Glyphosate and bioherbicide interaction for controlling kudzu (Pueraria lobata), redvine (Brunnichia ovata) and trumpet creeper (Campsis radicans). Biocontrol Sci Tech 16:1067–1077

    Article  Google Scholar 

  • Boyette CD, Hoagland RE, Weaver MA (2007) Biocontrol efficacy of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) is enhanced with unrefined corn oil and surfactant. Weed Biol Manag 7:70–76

    Article  Google Scholar 

  • Boyette CD, Gealy D, Hoagland RE, Vaughn KC, Bowling AJ (2011) Hemp sesbania (Sesbania exaltata) control in rice (Oryza sativa) with the bioherbicidal fungus Colletotrichum gloeosporioides f.sp. aeschynomene formulated in an invert emulsion. Biocontrol Sci Tech 21:1399–1407

    Article  Google Scholar 

  • Brar LS, Walia US (1993) Bioefficacy of sulphonylureas against Phalaris minor Retz. in wheat. Indian. J. Weed Sci 25: 1–5.

    Google Scholar 

  • Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi Spaepen S, Ver L, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  • Busby RR, Rodriguez G, Gebhart DL, Yannarell AC (2016) Native Lespedeza species harbor greater non-rhizobial bacterial diversity in root nodules compared to the coexisting invader, L. cuneata. Plant Soil 401:427–436

    Article  CAS  Google Scholar 

  • Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2011) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9

    Article  PubMed  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733

    Article  CAS  PubMed  Google Scholar 

  • Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One 9(6):e99949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Article  Google Scholar 

  • Charudattan R (2005) Ecological, practical and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35:183–196

    Article  Google Scholar 

  • Chaudhary H, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821

    Article  CAS  PubMed  Google Scholar 

  • Chhokar RS, Sharma RK, Jat GR, Pundir AK, Gathala MK (2007) Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop Prot 26:1689–1696

    Article  CAS  Google Scholar 

  • Chhokar RS, Sharma RK, Gill SC (2013) Compatibility of herbicides against grassy weeds in wheat. Indian J Weed Sci 45:239–242

    Google Scholar 

  • Chutia M, Mahanta JJ, Saikia R, Boruah AKS, Sarma TC (2006) Effect of leaf blight disease on yield of oil and its constituents of Java citronella and in vitro control of the pathogen using essential oils. World J Agri Sci 2:319–321

    Google Scholar 

  • Cimmino A, Andolfi A, Zonno MC, Avolio F, Santini A, Tuzi A (2013) Chenopodolin: a phytotoxic unrearranged entpimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. J Nat Prod 76:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonisation, mechanisms involved and prospects for utilisation. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  CAS  PubMed  Google Scholar 

  • Daigle DJ, Connick JWJ, Boyetchko SM (2002) Formulating a weed suppressive bacterium in ‘pesta’. Weed Technol 16:407–413

    Article  Google Scholar 

  • Dane F, Shaw JJ (1996) Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non-host plants in the field environment. J Appl Bacteriol 80:73–80

    Article  Google Scholar 

  • Daniel JT, Templeton GE, Smith RJ, Fox WT (1973) Biological control of northern joint vetch in rice with an endemic fungal disease. Weed Sci 21:303–307

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • de Luna L, Stubbs T, Kennedy A, Kremer R (2005) Deleterious bacteria in the rhizosphere. In: Zobel R, Wright S (eds) Roots and soil management: interactions between roots and the soil. Monograph no. 48, Madison, pp 233–261

    Google Scholar 

  • de Luna L, Kennedy A, Hansen J, Paulitz T, Gallagher R, Fuerst E (2011) Mycobiota on wild oat (Avena fatua L.) seed and their caryopsis decay potential. Plant Health Prog 10:1–8

    Google Scholar 

  • DeCoste NJ, Gadkar VJ, Filion M (2010) Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry. Can J Microbiol 56:906–915

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal HS, Singh R, Brar LS (2007) Impact analysis of factors affecting Phalaris minor infestation in wheat in Punjab. Indian J Weed Sci 39:66–73

    Google Scholar 

  • Diaz R, Manrique V, Hibbard K, Fox A, Roda A, Gandolfo D (2014) Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: a review of key program components. Florida Entomol 97:179–190

    Article  Google Scholar 

  • Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duke SO, Abbas HK, Boyette CD, Gohbara M (1991) Microbial compounds with the potential for herbicide use. Proceeding Brighten Crop Protection Confenence Weeds, Brighton, pp 155–164

    Google Scholar 

  • Duke SO, Evidente A, Fiore M, Rimando AM, Vurro M, Chistiansen N, Looser R, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem Physiol 100:41–50

    Article  CAS  Google Scholar 

  • Edwards R, Brazier-Hicks M, Dixon DP, Cummins I (2005) Chemical manipulation of antioxidant defences in plants. Adv Bot Res 42:1–32

    Article  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elliott MS, Massey B, Cui X, Hiebert E, Charudattan R, Waipara N (2009) Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australas Plant Pathol 38:603–607

    Article  Google Scholar 

  • El-Shora HM, El-Amier YA, Awad MH (2016) Antimicrobial activity and allelopathic potential of Zygophyllum coccineum L. on Chenopodium album L. British J Appl Sci Technol 15:1–10

    Google Scholar 

  • Elzein A, Kroschel J, Leth V (2006) Seed treatment technology: an attractive delivery system for controlling root parasitic weed Striga with mycoherbicide. Biocontrol Sci Tech 16:3–26

    Article  Google Scholar 

  • EPA (2015) Biopesticides Registration Action Document: Tobacco mild green mosaic tobamo virus strain U2. PC Code: 056705. United States Environmental Protection Agency. Available at: http://www.regulations.gov/#! Document Detail; D-EPA-HQ-OPP-2013-0759-0017

  • Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2000) Trans-4 aminoproline, a phytotoxic metabolite with herbicidal activity produced by Ascochyta caulina. Phytochemistry 53:231–237

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A (2011) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693

    Article  CAS  PubMed  Google Scholar 

  • Evidente M, Cimmino A, Zonno MC, Masi M, Berestetskyi A, Santoro E, Superchi S, Vurro M, Evidente A (2015) Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 117:482–488

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:45–51

    Article  Google Scholar 

  • Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91:282–284

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MI, Reinhardt CF (2016) Allelopathic weed suppression in agroecosystems: a review of theories and practices. Afr J Agric Res 11(6):450–459

    Article  Google Scholar 

  • Ferrell J, Charudattan R, Elliott M, Hiebert E (2008) Effects of selected herbicides on the efficacy of Tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci 56:128–132

    Article  CAS  Google Scholar 

  • Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:54–62

    Article  Google Scholar 

  • Fischer MS, Rodriguez RJ (2013) Fungal endophytes of invasive Phragmites australis populations vary in species composition and fungicide susceptibility. Symbiosis 61:55–62

    Article  CAS  Google Scholar 

  • Font MI, Cordoba-Selles MC, Cebrian MC, Herrera-Vasquez JA, Alfaro-Fernandez A, Boubaker A (2009) First report of tobacco mild green mosaic virus infecting Capsicum annuum in Tunisia. Plant Dis 93:761–761

    Article  Google Scholar 

  • Franke AC, Singh S, McRoberts N, Nehra AS, Godara S, Malik RK, Marshall G (2007) Phalaris minor seed bank studies: longevity, seedling emergence and seed production as affected by tillage regime. Weed Res 47:73–83

    Article  Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398

    Article  CAS  Google Scholar 

  • Gasson MJ (1980) Indicator technique for antimetabolic toxin production by phytopathogenic species of Pseudomonas. Appl Environ Microbiol 39:25–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gealy DR, Gurusiddah S, Ogg AGJ, Kennedy AC (1996) Metabolites from Pseudomonas fluorescens strain D7 inhibits downy brome (Bromus tectorum) seedling growth. Weed Technol 10:282–287

    Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Gerwick BC, Fields SS, Graupner PR, Gray JA, Chapin EL, Cleveland JA, Heim DR (1997) Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction. Weed Sci 45:654–657

    CAS  Google Scholar 

  • Gerwick BC, Brewster WK, Deboer GJ, Fields SC, Graupner PR, Hahn DR, Pearce CJ, Schmitzer PR, Webster JD (2013) Mevalocidin, a novel phloem mobile phytotoxin from Fusarium DA 056446 and Rosellina DA092917. J Chem Ecol 39:253–261

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli J, Owens LD, Mudd SH (1973) β-cystathionase. In vivo inactivation by rhizobitoxins and role of the enzyme in methionine biosynthesis in corn seedlings. Plant Physiol 51:492–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Gnanavel I (2015) Eco-friendly weed control options for sustainable agriculture. Sci Int 3:37–47

    Article  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby JA (2003) The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66:1558–1561

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120

    CAS  PubMed  Google Scholar 

  • Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R Br. Appl Soil Ecol 64:252–261

    Article  Google Scholar 

  • Gurusiddaiah S, Gealy D, Kennedy A, Ogg AJ (1994) Isolation and characterization of metabolites from Pseudomonas fluorescens strain D7 for control of downy brome (Bromus tectorum L.). Weed Sci 42:492–501

    CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Harata K, Kubo Y (2014) Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 9:e109045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harding DP, Riazada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659–667

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2011) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444. https://doi.org/10.1093/jxb/err430

    Article  CAS  Google Scholar 

  • Heap I (2006) International survey of herbicide resistant weeds. https://www.weedscience.org/.in.asp

  • Hoagland R, Boyette C, Abbas H (2007) Myrothecium verrucaria isolates and formulations as bioherbicide agents for kudzu. Biocontrol Sci Tech 17:721–731

    Article  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Biosci Biotechnol Biochem 61:2025–2028

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:845–849

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2011) Improvement to the “pesta” formulation to promote survival and dispersal of Pseudomonas fluorescens BRG100 green foxtail bioherbicide. Pest Technol 5:80–87

    Google Scholar 

  • Hynes RK, Chumala PB, Hupka D, Peng G (2010) A complex coacervate formulation for delivery of Colletotrichum truncatum 00-003B1. Weed Technol 24:185–192

    Article  CAS  Google Scholar 

  • Ibekwe AM, Kennedy AC, Stubbs TL (2010) An assessment of environmental conditions for control of downy brome by Pseudomonas fluorescens D7. Int J Environ Technol Manag 12:27–46

    Article  CAS  Google Scholar 

  • Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumotu T (1977) The structure of coronatine. J Chem Soc 99:636–637

    Article  CAS  Google Scholar 

  • Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae (JT-P482). Biol Control 8:7–14

    Article  Google Scholar 

  • Imaizumi S, Honda M, Fujimori T (1999) Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol Control 16:13–17

    Article  Google Scholar 

  • Javaid A, Adrees H (2009) Parthenium management by cultural filtrates of phytopathogenic fungi. Nat Prod Res 23:1541–1551

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Booth C (1983) Plant pathologist’s pocket book. 2nd ed., Surrey, Commonwealth Agricultural Bureaux, Slough

    Google Scholar 

  • Juan Y, Wei W, Peng Y, Bu T, Zheng Y, Li-hui Z, Jin-gao D (2015) Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation. J Integr Agri 14:1348–1355

    Article  CAS  Google Scholar 

  • Kadir J, Ahmad A, Sariah M, Juraimi AS (2003) Potential of Drechslera longirostrata as bioherbicide for itch grass (Rottboellia cochinchinensis). Proceedings of the 19th Asian-Pacific Weed Science Society Conference, 17–21 Mar. 2003, Manila: Weed Science Society of the Philippines, pp 450–455

    Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Kao-Kniffin J, Carver SM, DiTommaso A (2013) Advancing weed management strategies using metagenomic techniques. Weed Sci 61:171–184

    Article  CAS  Google Scholar 

  • Kataryan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetyl phloroglucinol. Dokl Akadmy Nauk Armyan SSR 63:109–112

    CAS  Google Scholar 

  • Kazinczi G, Lukacs D, Takacs A, Horvath J, Gaborjanyi R, Nadasy M (2006) Biological decline of Solanum nigrum due to virus infections. J Plant Dis Protect 32:325–330

    Google Scholar 

  • Kennedy A (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76

    Article  Google Scholar 

  • Kennedy A, Stubbs T (2007) Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol Control Theor Applic Pest Manag 40:213–221

    Google Scholar 

  • Kennedy AC, Elliott LF, Young FL, Douglas CL (1991) Rhizobacteria suppressive to the weed downy brome. Am J Soil Sci Soc 55:722–727

    Article  Google Scholar 

  • Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Res J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khandelwal A (2016) Evaluation of herbicidal potential of rhizosphere bacteria against bathu (Chenopodium album) and piazi (Asphodelus tenuifolius) weeds. Ph.D. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar

    Google Scholar 

  • Khattak SU, Iqbal Z, Lutfullah G, Bacha N, Khan AA, Saeed M, Ali M (2014) Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pakistan J Weed Sci Res 20:293–303

    Google Scholar 

  • Kim SJ, Kremer RJ (2005) Scanning and transmission electron microscopy of root colonization of morning glory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis 39:117–124

    Google Scholar 

  • Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS 3rd, Ryu C (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555. https://doi.org/10.1128/AEM.01867-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomous JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, McInroy JA, Liu K (2013) Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS One 8, e58531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohlschmid E, Sauerborn J, Muller-stover D (2009) Impact of Fusarium oxysporum on the holoparasitic weed Phelipanche ramosa: biocontrol efficacy under field-grown conditions. Weed Res 49:56–65

    Article  Google Scholar 

  • Kollmann J, Banuelos MJ, Nielsen SL (2007) Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia 79:33–44

    Google Scholar 

  • Kostov T, Pacanoski Z (2007) Weeds with major economic impact on agriculture in Republic of Macedonia. Pakistan J Weed Sci Res 13:227–239

    Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Kremer RJ (2000) Growth suppression of annual weeds by deleterious rhizobacteria integrated with cover crops. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds. Montana State University, Bozeman, pp 931–940

    Google Scholar 

  • Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609

    Google Scholar 

  • Kremer R, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kremer RJ, Begonia MFT, Stanley L, Lanham ET (1990) Characterization of rhizobacteria associated with weed seedlings. Appl Environ Microbiol 56:1649–1655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kroschel J, Elzein A (2004) Bioherbicidal effect of fumonisin B1, a phytotoxic metabolite naturally produced by Fusarium nygamai, on parasitic weeds of the genus Striga. Biocontrol Sci Tech 14:117–128

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:299–413

    Google Scholar 

  • Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Castaneda R, Rudrappa T, Bais HP (2013) Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238(4):657–668

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi V, Kumari S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119

    Article  Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HB, Kim CJ, Kim JS, Hong KS, Cho KY (2003) A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett Appl Microbiol 36:387–391

    Article  CAS  PubMed  Google Scholar 

  • Lehman RM, Acosta-Martinez V, Buyer JS, Cambardella CA, Collins HP, Ducey TF, Halvorson JJ, Jin VL, Johnson JM, Kremer RJ, Lundgren JG (2015) Soil biology for resilient, healthy soil. J Soil Water Conserv 70(1):12A–18A

    Article  Google Scholar 

  • Lemerle D, Verbeek B, Orchard B (2001) Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res 41:197–209

    Article  Google Scholar 

  • Leuchtmann A (1997) Ecological diversity in Neotyphodium-infected grasses as influenced by host and fungus characteristics. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Springer, Boston, pp 93–108

    Chapter  Google Scholar 

  • Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65

    Article  CAS  Google Scholar 

  • Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  CAS  PubMed  Google Scholar 

  • Li M, Jordan NR, Koide RT, Yannarell AC, Davis AS (2016) Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci 64:642–652

    Article  Google Scholar 

  • Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, p 532

    Book  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    Article  CAS  Google Scholar 

  • Loretta OR, Martin M, Williams II (2006) Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: implications for biological control. Biol Control 38:356–362

    Article  Google Scholar 

  • Lydon J, Kong H, Murphy C, Zhang W (2011) The biology and biological activity of Pseudomonas syringae pv. tagetis. Pest Technol 5:48–55

    Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malik RK, Singh S (1995) Little seed canary grass (Phalaris minor Retz.) resistance in India. Weed Technol 9:419–425

    Google Scholar 

  • Marinov-Serafimoov P, Dimitrova T (2007) Dynamics and distribution of the main weeds in weed associations of some grain legume crops. Plant Sci 44:167–173

    Google Scholar 

  • Marinov-Serafimov P (2005) Study on the competitive relationship between soybean and black nightshade (Solanum nigrum L.) under conditions of leached black earth in northern Bulgaria. Ph. D. thesis

    Google Scholar 

  • Massenssini AM, Bonduki VH, Melo CA, Totola MR, Ferreira FA, Costa MD (2014) Soil microorganisms and their role in the interactions between weeds and crops. Planta Daninha 32(4):873–884

    Article  Google Scholar 

  • Mazzola M, Stahlman PW, Leach JE (1995) Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil Biol Biochem 27:1271–1278

    Article  CAS  Google Scholar 

  • McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-Formylaminooxyvinyl glycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73:1853–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T (2010) Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl 55:561–572

    Article  Google Scholar 

  • Menaria BL (2007) Bioherbicides: an eco-friendly approach to weed management. Curr Sci 92:10–11

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  • Mendoza EKM, Violante HGM, Inocencio CM, Salcedo GO, Madrigal HC, Portugal VO, Pérez MVA (2012) Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res 6:1887–1892

    Google Scholar 

  • Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physio-chemical and biological properties. J Antibiot 45:914–921

    Article  CAS  PubMed  Google Scholar 

  • Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Morin L, Evans KJ, Sheppard AW (2006) Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Aust J Entomol 45:349–365

    Article  Google Scholar 

  • Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690

    Article  CAS  Google Scholar 

  • Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117(4):1171–1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortensen K (1988) The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti). Weed Sci 36:473–478

    Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann S, Boland GJ (1999) Influence of selected adjuvants on disease severity by Phoma herbarum on dandelion (Taraxacum officinale). Weed Technol 13:675–679

    Google Scholar 

  • Ngigi AN, Getenga ZM, Boga HI, Ndalut PK (2012) Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya. J Environ Sci Health B 47:769–778

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Murao S, Wada H (1984) Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin. J Biochem 95:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Norman MA, Patten KD, Gurusiddaiah S (1994) Evaluation of a phytotoxin(s) from Pseudomonas syringae for weed control in cranberries. Hortic Sci 29:1475–1477

    CAS  Google Scholar 

  • Oettmeier W, Dostatni R, Majewski C, Hoefle G, Fecker T, Kunze B, Reichenbac H (1990) The aurachins, naturally occurring inhibitors of photosynthetic electron flow through photosystem II and cytochrome b6/f-complex. Z Natureforsch 45:322–328

    CAS  Google Scholar 

  • Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Evans S, Zorner P (1995) Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotechnol Biochem 59:113–114

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crop Res 89:263–280

    Article  Google Scholar 

  • Oluwaseun AC, Kola OJ, Isaac A (2016) Persistence of bioherbicidal agents formulated from the multi-combination of the wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Am-Eurasian J Agric Environ Sci 16:1406–1416

    Google Scholar 

  • Owen A, Zdor R (2001) Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Biol Biochem 33:801–809

    Article  CAS  Google Scholar 

  • Park J, Radhakrishnan R, Kang S, Lee I (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Patil VS (2013) Rhizospheric bacteria with the potential for biological control of Parthenium hysterophorus. J Chem Biol Phys Sci 3:2679–2686

    Google Scholar 

  • Patil VS (2014) Isolation, characterization and identification of rhizospheric bacteria with the potential for biological control of Sida acuta. J Environ Res Dev 8:411–417

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2015) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644. https://doi.org/10.1007/s11103-015-0337-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43

    Article  CAS  Google Scholar 

  • Phour M (2012) Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. M. Sc. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar

    Google Scholar 

  • Phour M (2016) Aminolevulinic acid production by rhizobacteria: its role in salt tolerance and weed control in mustard [Brassica juncea (L.)]. Ph. D. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar

    Google Scholar 

  • PMRA (2006) “Re-evaluation of Colletotrichum gloeosporioides f.sp. malvae [CGM]” REV2006–10. Health Canada, Ottawa

    Google Scholar 

  • PMRA (2010) “Sclerotinia minor strain IMI344141” RD2010-08. Health Canada, Ottawa

    Google Scholar 

  • Prikyrl Z, Vančura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 27:159–163. https://doi.org/10.1007/BF02902155

    Article  Google Scholar 

  • Quail JW, Ismail N, Pedras MSC, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallographica, section C: crystal structure. Communications 58:268–271

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4- diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller AM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63(3):881–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24

    CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68

    Article  CAS  PubMed  Google Scholar 

  • Ray P, Vijayachandran LS (2013) Evaluation of indigenous fungal pathogens from horse purslane (Trianthema portulacastrum) for their relative virulence and host range assessments to select a potential mycoherbicidal agent. Weed Sci 61:580–585

    Article  CAS  Google Scholar 

  • Riddle GE, Burpee LL, Boland GJ (1991) Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci 39:109–118

    Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152

    Article  Google Scholar 

  • Rodrigues RR, Pineda RP, Barney JN, Nilsen ET, Barrett JE, Williams MA (2015) Plant invasions associated with change in root-zone microbial community structure and diversity. PLoS One 10:e0141424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. Am J Bot 100:1726–1737

    Article  CAS  PubMed  Google Scholar 

  • Rubiales D, Fernández-Aparicio M (2012) Innovations in parasitic weeds management in legume crops. Agro Sustain Develop 32:433–449

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. https://doi.org/10.1104/pp.108.127613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryall B, Mitchell H, Mossialos D, Williams HD (2009) Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett Appl Microbiol 49:131–135

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9(6):275–280

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5(3):289–297

    Article  Google Scholar 

  • Sarwar M, Kremmer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  • Sasaki K, Tanaka T, Nishio N, Nagai S (1993) Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acid. Biotechnol Lett 15:859–864

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana CV, Rao PR (1994) 5-aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Prog 10:451–459

    Article  CAS  Google Scholar 

  • Sayed MHE, Aziz ZKA, Abouzaid AM (2014) Efficacy of extracellular metabolite produced by Streptomyces levis strain LX-65 as a potential herbicidal agent. J Am Sci 10:169–180

    Google Scholar 

  • Schisler DA, Howard KM, Bothast RJ (1991) Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria. Biol Control 1:261–268

    Article  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Inter 28(3):212–217

    Article  CAS  Google Scholar 

  • Selvakumar G, Lenin M, Thamizhiniyan P, Ravimycin T (2009) Response of biofertilizers on the growth and yield of blackgram (Vigna mungo). Recom Res Sci Technol 1:169–175

    Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Sa T (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 61–96

    Chapter  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Inter 25:28–36

    Article  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2004) Enhanced mineralization of [U-14C] 2, 4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 70:4766–4774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knot weed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control 49:105–113

    Article  Google Scholar 

  • Singh S (2006) Herbicide resistance mechanism in Phalaris minor and its consequences on management strategies. Indian J Weed Sci 38:183–193

    Google Scholar 

  • Singh S (2007) Role of management practices on control of isoproturon resistant little seed canary grass (Phalaris minor) in India. Weed Technol 21:339–346

    Article  CAS  Google Scholar 

  • Soares WL, Porto MFS (2009) Estimating the social cost of pesticide use: an assessment from acute poisoning in Brazil. Ecol Econ 68:2721–2728

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  • Stewart-Wade SM, Boland GJ (2005) Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol Sci Tech 15:671–681

    Article  Google Scholar 

  • Stubbs TL, Kennedy AC (2012) Microbial weed control and microbial herbicides. In: Alvarez-Fernandez R (ed.). INTECH DOI:https://doi.org/10.5772/32705

  • Sturz A, Matheson B, Arsenault W, Kimpinski J, Christie BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Suslow TV, Schroth MN (1982) Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111–115

    Article  Google Scholar 

  • Suzuki S, Yuxi H, Oyaizu H, He Y (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Kimura T, Nakamura K, Arahira M, Iida M (1995) Phosphonothrixin, a novel herbicidal antibiotic produced by Saccharothrix sp. ST 888, I. Taxonomy, fermentation isolation and biological properties. J Antibiot 48:1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Tateno A (2000) Herbicidal composition for the control of annual bluegrass. U.S. Patent No 6162763A. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • TeBeest D (1982) Survival of Colletotrichum gloeosporioides f. sp. aeschynomene in rice irrigation water and soil [used as biocontrol for the weed]. Plant Dis 66:469–472

    Article  Google Scholar 

  • Templeton GE (1988) Biological control of weeds. Am J Altern Agri 3:69–72

    Article  Google Scholar 

  • Tetard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72:203–209

    Article  CAS  PubMed  Google Scholar 

  • Tosiah S, Kadir J, Sariah M, Juraimi AS, Lo NP, Soetikno S (2009) Survey and evaluation of native fungal pathogens for biocontrol of barnyard grass (Echinochloa crus-galli complex). J Trop Agric Food Sci 37:119–128

    Google Scholar 

  • Tosiah S, Kadir J, Sariah M, Juraimi AS, Soetikno S (2011) Efficacy of Exserohilum monoceras, a potential fungi for biocontrol of Echinochloa species. J Trop Agric Food Sci 39:117–124

    Google Scholar 

  • van Loon LC, Bakker PAHM (2006) Root associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordrecht, pp 269–316

    Chapter  Google Scholar 

  • van Overbeek LS, Franke AC, Nijhuis EH, Groeneveld RM, da Rocha UN, Lotz LA (2011) Bacterial communities associated with Chenopodium album and Stellaria media seeds from arable soils. Microb Ecol 62:257–264

    Article  PubMed  Google Scholar 

  • Vickery P, Wheeler J, Mulcahy C (1987) Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust J Agric Res 38:1053–1059

    Article  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 22:1–15

    Google Scholar 

  • Wang P, Zhang X, Kong C (2013) The response of allelopathic rice growth and microbial feedback to barnyard grass infestation in a paddy field experiment. Eur J Soil Biol 56:26–32

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hungarica 55:315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev 28:449–455

    Article  CAS  Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath B, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:1743–1752. https://doi.org/10.1073/pnas.1203689109

    Article  Google Scholar 

  • Weissmann R, Uggla C, Gerhardson B (2003) Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biol Control 48:725–742

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

  • Wood AR, Morris MJ (2007) Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa: 15 years of monitoring. Biol Control 41:68–77

    Article  Google Scholar 

  • Xie H, Pasternack JJ, Glick BR (1996) Isolation and characterization of mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yandoc CB, Rosskopf EN, Pitelli A, Charudattan R (2006) Effect of selected pesticides on conidial germination and mycelia growth of Dactylaria higginsii, a potential bioherbicide for purple nutsedge (Cyperus rotundus). Weed Technol 20:255–260

    Article  CAS  Google Scholar 

  • Yang Z (2000) Maximum likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Cao HZ, Wang W, Zhang LH, Dong JG (2014) Isolation, identification and herbicidal activity of metabolites produced by Pseudomonas aeruginosa CB-4. J Integr Agric 13:1719–1726

    Article  CAS  Google Scholar 

  • Yorinori JT, Gazziero LP (1989) Control of milk weed (Euphorbia heterophylla) with Helminthosporium sp. In: Delfosse ES (ed) Proceedings 7th international symposium on biological control of weeds, 6–11 March, 1988. Istituto sperimentale per la patologia vegetale, Rome, pp 571–576

    Google Scholar 

  • You C, Zhou F (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    Article  CAS  Google Scholar 

  • Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, Gross H (2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE 1-1-14 is involved in pathogen suppression and root colonization. Mol Plant-Microbe Interact 28(7):800–810

    Article  CAS  PubMed  Google Scholar 

  • Zdor R, Alexander C, Kremer R (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299

    Article  CAS  Google Scholar 

  • Zeller S, Brandl H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop weed model system. PLoS One 2:1–7

    Article  CAS  Google Scholar 

  • Zeng RS (2014) Allelopathy-the solution is indirect. J Chem Ecol 40:515–516

    Article  CAS  PubMed  Google Scholar 

  • Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broom rape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:487–497

    Article  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

  • Zhang J, Wang W, Lu X, Xu Y, Zhang X (2010) The stability and degradation of a new biological pesticide, pyoluteorin. Pest Manag Sci 66:248–252

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Shamoun S (2005) Effects of potato dextrose broth and gelatin on germination and efficacy of Phoma exigua, a potential biocontrol agent for salal (Gaultheria shallon). Can J Plant Pathol 27:234–244

    Article  CAS  Google Scholar 

  • Zhou L, Bailey K, Derby J (2004) Plant colonization and environmental fate of the biocontrol fungus Phoma macrostoma. Biol Control 30:634–644

    Article  Google Scholar 

  • Zidack NK, Quimby PC (2002) Formulation of bacteria for biological control using the stabilize method. Biocontrol Sci Tech 12:67–74

    Article  Google Scholar 

  • Zonno MC, Vurro M, Luceretti S, Andolfi A, Perrone C, Evidente A (2008) Phyllostictine A, potential herbicide produced by Phyllosticta cirsii: in vitro production and toxicity. Plant Sci 175:818–828

    Article  CAS  Google Scholar 

  • Zuo S, Li X, Ma Y, Yang S (2014) Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil 378:49–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyavir S. Sindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, S.S., Sehrawat, A. (2017). Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_19

Download citation

Publish with us

Policies and ethics