Skip to main content

Bioherbicidal Potential of Rhizosphere Microorganisms for Ecofriendly Weed Management

  • Chapter
  • First Online:
Role of Rhizospheric Microbes in Soil

Abstract

Weeds pose a serious constraint to agricultural production and usually result in average ~37% losses of the world’s agricultural output. Thus, weed control is indispensable in every crop production system. For weed management, chemical herbicides are usually applied due to uncertainty of effects caused by mechanical methods, and it also involves more labour. Although these herbicides are quite effective in controlling the weeds, their indiscriminate use causes environmental problems and human health hazards; moreover continuous use of herbicides may lead to evolution of resistant weed biotypes and shift in the weed flora. These problems necessitated the search for an alternate ecofriendly method of weed management through the biological approach, in which microorganisms or their products could be used to suppress the growth of weed species. Many naturally occurring microorganisms in the rhizosphere have the potential to suppress the growth of weeds through the manipulation of rhizosphere ecosystem. These rhizosphere microorganisms colonize the root surfaces of weed seedlings and suppress the growth of weed plant by reducing weed density, biomass and its seed production. Many rhizosphere bacteria such as Pseudomonas aeruginosa, P. fluorescens, Erwinia herbicola, Alcaligenes sp.; strains of Xanthomonas campestris pv. poannua, Pseudomonas syringae pv. tagetis and P. syringae pv. phaseolicola, Serratia plymuthica and S. marcescens; and the fungi including Colletotrichum gloeosporioides, Aeschynomene virginica, Phomo chenopodicola and Exserohilum monoceras have been characterized as bioherbicides. The mode of action of each biocontrol agent is variable, and it may range from simple compounds like cyanide, organic acids, secondary metabolites (antibiotic 2,4-diacetylphloroglucinol) and plant growth regulators, such as auxins (indole acetic acid and δ-aminolevulinic acid). Bacterial and fungal microbes also produce a wide array of phytotoxins that interfere with metabolism of weed plants and cause plant mortality. Thus, there are immense possibilities for developing microbial bioherbicides that could reduce the application of chemical herbicides for weed control and may increase the production of cereal, oil seeds and legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Tanaka T, Duke SO, Boyette CD (1995) Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol 9:125–130

    Article  CAS  Google Scholar 

  • Abbas H, Johnson B, Pantone D, Hines R (2004) Biological control and use of adjuvants against multiple seeded cocklebur (Xanthium strumarium) in comparison with several other cocklebur types. Biocontrol Sci Tech 14:855–860

    Article  Google Scholar 

  • Abu-Dieyeh M, Watson A (2007) Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed Res 47:63–72

    Article  Google Scholar 

  • Adam O, Zdor R (2001) Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemented glycine. Soil Biol Biochem 33:801–809

    Article  Google Scholar 

  • Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various european soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum site-dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828

    Article  CAS  Google Scholar 

  • Adetunji C, Oloke J (2013) Efficacy of freshly prepared pesta granular formulations from the multicombination of wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Agric Univ Tirana 12:555–563

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistin on Lemna paucicostata. Pestic Biochem Physiol 49:37–52

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger JWT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Auld BA, McRae CF, Say MM (1988) Possible control of Xanthium spinosum by a fungus. Agric Ecosyst Environ 21:219–223

    Article  Google Scholar 

  • Auld BA, Say MM, Ridings HI, Andrews J (1990) Field applications of Colletotrichum orbiculare to control Xanthium spinosum. Agric Ecosyst Environ 32:315–323

    Article  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. https://doi.org/10.1080/01490451.2016.1219431

  • Bailey KL (2014) The bioherbicide approach to weed control using plant pathogens. In: Abrol DP (ed) Integrated Pest management: current concepts and ecological perspective. Elsevier, San Diego, pp 245–266

    Chapter  Google Scholar 

  • Bailey K, Boyetchko S, Langle T (2010a) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the herbicides environmental impact studies and management approaches 154: development and use of microbial biopesticides. Biol Control Theory Appl Pest Manag 52:221–229

    Google Scholar 

  • Bailey KL, Boyetchko SM, Langle T (2010b) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Article  Google Scholar 

  • Bailey KL, Pitt WM, Falk S, Derby J (2011) The effects of Phoma macrostoma on non-target plant and target weed species. Biol Control 58:379–386

    Article  Google Scholar 

  • Bajwa AA, Chauhan BS, Farooq M, Shabbir A (2016) What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244:39–57

    Article  PubMed  CAS  Google Scholar 

  • Banga RS, Yadav A (2001) Evaluation of herbicides against complex weed flora in Indian mustard. Haryana J Agron 17:48–51

    Google Scholar 

  • Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380–390

    Article  Google Scholar 

  • Barbosa AM, Souza CGM, Dekker RFH, Fonseca RC, Ferreira DT (2002) Phytotoxin produced by Bipolaris euphorbiae in-vitro is effective against the weed Euphorbia heterophylla. Braz Arch Biol Technol 45:233–240

    Article  CAS  Google Scholar 

  • Barreto RW, Evans HC (1998) Fungal pathogens of Euphorbia heterophylla and E. hirta in Brazil and their potential as weed biocontrol agents. Mycopathologia 141:21–36

    Article  PubMed  CAS  Google Scholar 

  • Barton J (2004) How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biol Control Theory Appl Pest Manag 31:99–122

    Google Scholar 

  • Barton J (2005) Bioherbicides: all in a day’s work… for a superhero. Manaaki Whenua, Landcare Research Ltd, New Zealand, pp 4–6

    Google Scholar 

  • Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5- aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393

    Article  PubMed  Google Scholar 

  • Beckie HJ, Lozinski C, Shirriff S, Brenzil CA (2013) Herbicide-resistant weeds in the Canadian prairies: 2007 to 2011. Weed Technol 27:171–183

    Article  Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microb Mol Biol Rev 63:266–292

    CAS  Google Scholar 

  • Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackshaw RE, Brandt RN, Janzen HH, Entz T (2004) Weed species response to phosphorus fertilization. Weed Sci 52:406–412

    Article  CAS  Google Scholar 

  • Block A, Schmelz E, Jones JB, Klee HJ (2005) Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohorome control. Mol Plant Pathol 6:79–83

    Article  PubMed  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun A, Amiar Z, Rona J, Ouhdouch Y, El Hadrami I, Bouteau F (2006) A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant Microbe Interact 19:550–556

    Article  PubMed  CAS  Google Scholar 

  • Boyette CD (1991) Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania (Sesbania exaltata). Plant Dis 75:62–64

    Article  Google Scholar 

  • Boyette CD, Hoagland RE (2013a) Bioherbicidal potential of a strain of Xanthomonas spp. for control of common Cocklebur (Xanthium strumarium). Biocontrol Sci Tech 23:183–196

    Article  Google Scholar 

  • Boyette CD, Hoagland RE (2013b) Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas campestris spp. for control of common Cocklebur (Xanthium strumarium). J Expert Biol Agric Sci 1:209–216

    Google Scholar 

  • Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Tech 25:229–237

    Article  Google Scholar 

  • Boyette CD, Reddy KN, Hoagland RE (2006) Glyphosate and bioherbicide interaction for controlling kudzu (Pueraria lobata), redvine (Brunnichia ovata) and trumpet creeper (Campsis radicans). Biocontrol Sci Tech 16:1067–1077

    Article  Google Scholar 

  • Boyette CD, Gealy D, Hoagland RE, Vaughn KC, Bowling AJ (2011) Hemp sesbania (Sesbania exaltata) control in rice (Oryza sativa) with the bioherbicidal fungus Colletotrichum gloeosporioides f.sp. aeschynomene formulated in an invert emulsion. Biocontrol Sci Tech 21:1399–1407

    Article  Google Scholar 

  • Boyette CD, Hoagland RE, Stetina KC (2015) Biological control of spreading dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola. Agronomy 5:519–536

    Article  CAS  Google Scholar 

  • Brar LS, Walia US (1993) The biefficiency of sulphony urea against Phalaris minor in wheat. Indian J Weed Sci 25:1–5

    Google Scholar 

  • Bruckart WL, Hasan S (1991) Options with plant pathogens intended for classical control of range and pasture weeds. In: TeBeest DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp 69–79

    Chapter  Google Scholar 

  • Bryson CT, DeFelice MS (2009) Weeds of the South. University of Georgia, Athens, p 325

    Google Scholar 

  • Cai H, Wang LC, Yang ZX, Wan QL, Wei W, Davis RE, Zhao Y (2016) Evidence for the role of an invasive weed in widespread occurrence of phytoplasma diseases in diverse vegetable crops: implications from lineage-specific molecular markers. Crop Prot 89:193–201

    Article  Google Scholar 

  • Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2012) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cardina J, Webster TM, Herms CP, Regnier EE (1999) Developments of weed IPM: levels of integration for weed management. J Crop Prod 2:239–267

    Google Scholar 

  • Chakraborty N, Tripathy BC (1992) Involvement of singlet oxygen in 5-aminolevulinic acid induced photodynamic damage of cucumber chloroplast. Plant Physiol 98:7–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Article  Google Scholar 

  • Charudattan R (2005) Ecological, practical and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35:183–196

    Article  Google Scholar 

  • Charudattan R, Dinoor A (2000) Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Prot 19:691–695

    Article  Google Scholar 

  • Chhokar RS, Sharma RK, Jat GR, Pundir AK, Gathala MK (2007) Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop Prot 26:1689–1696

    Article  CAS  Google Scholar 

  • Chhokar RS, Sharma RK, Gill SC (2013) Compatibility of herbicides against grassy weeds in wheat. Indian J Weed Sci 45:239–242

    Google Scholar 

  • Chittick A, Auld B (2001) Polymers in bioherbicide formulation: Xanthium spinosum and Colletotrichum orbiculare as model system. Biocontrol Sci Technol 11:691–702

    Article  Google Scholar 

  • Chon SU (2003) Herbicidal activity of δ-aminolevulinic acid on several plants as affected by application methods. Kor J Crop Sci 48:50–58

    Google Scholar 

  • Chutia M, Mahanta JJ, Saikia R, Boruah AKS, Sarma TC (2006) Effect of leaf blight disease on yield of oil and its constituents of Java citronella and in vitro control of the pathogen using essential oils. World J Agric Sci 2:319–321

    Google Scholar 

  • Cimmino A, Andolfi A, Zonno MC, Avolio F, Santini A, Tuzi A (2013) Chenopodolin: a phytotoxic unrearranged entpimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. J Nat Prod 76:1291–1297

    Article  PubMed  CAS  Google Scholar 

  • Cullen JM, Hasan S (1988) Pathogens for the control of weeds. Philos Trans R Soc Lond 318:213–224

    Article  Google Scholar 

  • Daigle DJ, Connick JWJ, Boyetchko SM (2002) Formulating a weed suppressive bacterium in ‘pesta’. Weed Technol 16:407–413

    Article  Google Scholar 

  • Dane F, Shaw JJ (1996) Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non-host plants in the field environment. J Appl Bacteriol 80:73–80

    Article  Google Scholar 

  • Daniel JT, Templeton GE, Smith RJ, Fox WT (1973) Biological control of northern joint vetch in rice with an endemic fungal disease. Weed Sci 21:303–307

    Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. https://doi.org/10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • de Luna L, Stubbs T, Kennedy A, Kremer R (2005) Deleterious bacteria in the rhizosphere. In: Zobel R, Wright S (eds) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Madison, pp 233–261. Monograph no. 48

    Google Scholar 

  • de Luna L, Kennedy A, Hansen J, Paulitz T, Gallagher R, Fuerst E (2011) Mycobiota on wild oat (Avena fatua L.) seed and their caryopsis decay potential. Plant Health Prog 10:1–8

    Google Scholar 

  • DeCoste NJ, Gadkar VJ, Filion M (2010) Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry. Can J Microbiol 56:906–915

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal HS, Singh R, Brar LS (2007) Impact analysis of factors affecting Phalaris minor infestation in wheat in Punjab. Indian J Weed Sci 39:66–73

    Google Scholar 

  • Diaz R, Manrique V, Hibbard K, Fox A, Roda A, Gandolfo D (2014) Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: a review of key program components. Florida Entomol 97:179–190

    Article  Google Scholar 

  • Dimkpa C, Weinan T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98. https://doi.org/10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Duke SO, Abbas HK, Boyette CD, Gohbara M (1991) Microbial compounds with the potential for herbicide use. Proceeding Brighten Crop Protection Confenence Weeds, Brighton, UK. pp 155–164

    Google Scholar 

  • Duke SO, Evidente A, Fiore M, Rimando AM, Vurro M, Chistiansen N, Looser R, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem Physiol 100:41–50

    Article  CAS  Google Scholar 

  • Einhellig FA, Rasmussen JA (1979) Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J Chem Ecol 5:815–824

    Article  CAS  Google Scholar 

  • El-bawas AMO, Kholousy AO (2003) Effect of seeding rate and method of weed control on the productivity of Giza 2000, a promising barley line, under new lands condition. Egypt J Agric Res 81:1085–1098

    Google Scholar 

  • Elliott MS, Massey B, Cui X, Hiebert E, Charudattan R, Waipara N (2009) Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australas Plant Pathol 38:603–607

    Article  Google Scholar 

  • El-Shora HM, El-Amier YA, Awad MH (2016) Antimicrobial activity and allelopathic potential of Zygophyllum coccineum L. on Chenopodium album L. Br J Appl Sci Technol 15:1–10

    Google Scholar 

  • Elzein A, Kroschel J, Leth V (2006) Seed treatment technology: an attractive delivery system for controlling root parasitic weed Striga with mycoherbicide. Biocontrol Sci Tech 16:3–26

    Article  Google Scholar 

  • EPA (2015) Biopesticides registration action document: tobacco mild green mosaic tobamo virus strain U2. PC Code: 056705. United States Environmental Protection Agency. Available at: http://www.regulations.gov/#! Document Detail; D-EPA-HQ-OPP-2013-0759-0017

  • Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2000) Trans-4 aminoproline, a phytotoxic metabolite with herbicidal activity produced by Ascochyta caulina. Phytochemistry 53:231–237

    Article  PubMed  CAS  Google Scholar 

  • Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2005) Drazepinone, a trisubstituted tetrahydro-naphthofuroazepinone with herbicidal activity produced by Drechslera siccans. Phytochemistry 66:715–721

    Article  PubMed  CAS  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A (2011) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:45–51

    Article  Google Scholar 

  • Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013) Application of allelopathy in crop production. Int J Agric Biol 15:1367–1378

    Google Scholar 

  • Ferreira MI, Reinhardt CF (2016) Allelopathic weed suppression in agroecosystems: a review of theories and practices. Afr J Agric Res 11(6):450–459

    Article  Google Scholar 

  • Ferrell J, Charudattan R, Elliott M, Hiebert E (2008) Effects of selected herbicides on the efficacy of Tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci 56:128–132

    Article  CAS  Google Scholar 

  • Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:54–62

    Article  Google Scholar 

  • Font MI, Cordoba-Selles MC, Cebrian MC, Herrera-Vasquez JA, Alfaro-Fernandez A, Boubaker A (2009) First report of tobacco mild green mosaic virus infecting Capsicum annuum in Tunisia. Plant Dis 93:761–761

    Article  PubMed  Google Scholar 

  • Franke AC, Singh S, McRoberts N, Nehra AS, Godara S, Malik RK, Marshall G (2007) Phalaris minor seed bank studies: longevity, seedling emergence and seed production as affected by tillage regime. Weed Res 47:73–83

    Article  Google Scholar 

  • Gealy DR, Gurusiddah S, Ogg AGJ, Kennedy AC (1996) Metabolites from Pseudomonas fluorescens strain D7 inhibits downy brome (Bromus tectorum) seedling growth. Weed Technol 10:282–287

    Article  Google Scholar 

  • Gerwick BC, Fields SS, Graupner PR, Gray JA, Chapin EL, Cleveland JA, Heim DR (1997) Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction. Weed Sci 45:654–657

    CAS  Google Scholar 

  • Gerwick BC, Brewster WK, Deboer GJ, Fields SC, Graupner PR, Hahn DR, Pearce CJ, Schmitzer PR, Webster JD (2013) Mevalocidin, a novel phloem mobile phytotoxin from Fusarium DA 056446 and Rosellina DA092917. J Chem Ecol 39:253–261

    Article  PubMed  CAS  Google Scholar 

  • Gill HS, Sandhu KS, Mehra SP, Singh T (1989) Efficacy of some herbicides for control of weeds in Indian mustard. Indian J Weed Sci 16:171–175

    Google Scholar 

  • Giovanelli J, Owens LD, Mudd SH (1973) β-cystathionase. In vivo inactivation by rhizobitoxins and role of the enzyme in methionine biosynthesis in corn seedlings. Plant Physiol 51:492–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  PubMed  CAS  Google Scholar 

  • Gnanavel I (2015) Eco-friendly weed control options for sustainable agriculture. Sci Int 3:37–47

    Article  Google Scholar 

  • Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby JA (2003) The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66:1558–1561

    Article  PubMed  CAS  Google Scholar 

  • Gurusiddaiah S, Gealy D, Kennedy A, Ogg AJ (1994) Isolation and characterization of metabolites from Pseudomonas fluorescens strain D7 for control of downy brome (Bromus tectorum L.) Weed Sci 42:492–501

    CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Halgren A, Maselko M, Azevedo M, Mills D, Armstrong D, Banowetz G (2013) Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis. Microbiology 159:36–45

    Article  PubMed  CAS  Google Scholar 

  • Harata K, Kubo Y (2014) Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 9:e109045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harding DP, Riazada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659–667

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heap I (2006) International survey of herbicide resistant weeds

    Google Scholar 

  • Hoagland R, Boyette C, Abbas H (2007) Myrothecium verrucaria isolates and formulations as bioherbicide agents for kudzu. Biocontrol Sci Tech 17:721–731

    Article  Google Scholar 

  • Holm R, Jeny D, Holm E, Pancho J, Harberger J (1997) World weeds, natural histories and distribution. Wiley, New York

    Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997a) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Biosci Biotechnol Biochem 61:2025–2028

    Article  PubMed  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997b) Promotive effects of 5- aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:845–849

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2011) Improvement to the “pesta” formulation to promote survival and dispersal of Pseudomonas fluorescens BRG100 green foxtail bioherbicide. Pest Technol 5:80–87

    Google Scholar 

  • Hynes RK, Chumala PB, Hupka D, Peng G (2010) A complex coacervate formulation for delivery of Colletotrichum truncatum 00-003B1. Weed Technol 24:185–192

    Article  CAS  Google Scholar 

  • Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumotu T (1977) The structure of coronatine. J Chem Soc 99:636–637

    Article  CAS  Google Scholar 

  • Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae (JT-P482). Biol Control 8:7–14

    Article  Google Scholar 

  • Imaizumi S, Honda M, Fujimori T (1999) Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol Control 16:13–17

    Article  Google Scholar 

  • Isaac WA, Gao Z, Li M (2013) Managing Commelina species: prospects and limitations. Herbic Curr Res Case Stud Use:543–561

    Google Scholar 

  • Jangu OP, Sindhu SS (2011) Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.) Microbiol J 1:159–173

    Article  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Javaid A, Adrees H (2009) Parthenium management by cultural filtrates of phytopathogenic fungi. Nat Prod Res 23:1541–1551

    Article  PubMed  CAS  Google Scholar 

  • Jobidon R (1991a) Some future directions for biologically based vegetation control in forest research. For Chron 67:524–539

    Article  Google Scholar 

  • Jobidon R (1991b) Potential use of bialaphos, a microbially produced phytotoxin, to control red raspberry in forest plantations and its effect on black spruce. Can J Res 21:489–497

    Article  CAS  Google Scholar 

  • Johnson A, Booth C (1983) Plant pathologist’s pocket book. 2nd edn. Surrey, Commonwealth Agricultural Bureaux, UK

    Google Scholar 

  • Johnson DR, Wyse DL, Jones KJ (1996) Controlling weeds with phytopathogenic bacteria. Weed Technol 10:621–624

    Article  Google Scholar 

  • Juan Y, Wei W, Peng Y, Bu T, Zheng Y, Li-hui Z, Jin-gao D (2015) Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation. J Integr Agric 14:1348–1355

    Article  CAS  Google Scholar 

  • Kadir J, Ahmad A, Sariah M, Juraimi AS (2003) Potential of Drechslera longirostrata as bioherbicide for itch grass (Rottboellia cochinchinensis), Proceedings of the 19th Asian-Pasific Weed Science Society Conference, 17–21 March 2003. Weed Science Society of the Philippines, Manila, pp 450–455

    Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  PubMed  CAS  Google Scholar 

  • Kataryan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetyl phloroglucinol. Dokl Akadmy Nauk Armyan SSR 63:109–112

    CAS  Google Scholar 

  • Kazinczi G, Lukacs D, Takacs A, Horvath J, Gaborjanyi R, Nadasy M (2006) Biological decline of Solanum nigrum due to virus infections. J Plant Dis Protect 32:325–330

    Google Scholar 

  • Kennedy A, Stubbs T (2007) Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol Control Theory Applic Pest Manag 40:213–221

    Google Scholar 

  • Kennedy AC, Elliott LF, Young FL, Douglas CL (1991) Rhizobacteria suppressive to the weed downy brome. Am J Soil Sci Soc 55:722–727

    Article  Google Scholar 

  • Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Res J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khandelwal A (2016) Evaluation of herbicidal potential of rhizosphere bacteria against bathu (Chenopodium album) and piazi (Asphodelus tenuifolius) weeds. Ph. D. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

    Google Scholar 

  • Khattak SU, Iqbal Z, Lutfullah G, Bacha N, Khan AA, Saeed M, Ali M (2014) Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pak J Weed Sci Res 20:293–303

    Google Scholar 

  • Kim SJ, Kremer RJ (2005) Scanning and transmission electron microscopy of root colonization of morning glory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis 39:117–124

    Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomous JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kohlschmid E, Sauerborn J, Muller-stover D (2009) Impact of Fusarium oxysporum on the holoparasitic weed Phelipanche ramosa: biocontrol efficacy under field-grown conditions. Weed Res 49:56–65

    Article  Google Scholar 

  • Kollmann J, Banuelos MJ, Nielsen SL (2007) Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia 79:33–44

    Google Scholar 

  • Kostov T, Pacanoski Z (2007) Weeds with major economic impact on agriculture in Republic of Macedonia. Pak J Weed Sci Res 13:227–239

    Google Scholar 

  • Kremer RJ (2000) Growth suppression of annual weeds by deleterious rhizobacteria integrated with cover crops. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds. Montana State University, Bozeman, pp 931–940

    Google Scholar 

  • Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609

    Article  Google Scholar 

  • Kremer R, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  PubMed  CAS  Google Scholar 

  • Kremer RJ, Begonia MFT, Stanley L, Lanham ET (1990) Characterization of rhizobacteria associated with weed seedlings. Appl Environ Microbiol 56:1649–1655

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kroschel J, Elzein A (2004) Bioherbicidal effect of fumonisin B1, a phytotoxic metabolite naturally produced by Fusarium nygamai, on parasitic weeds of the genus Striga. Biocontrol Sci Tech 14:117–128

    Article  Google Scholar 

  • Kruse M, Strandberg M, Strandberg B (2000) Ecological effects of allelopathic plants- a review. National Environmental Research Institute, Technical report no. 315, Silkeborg

    Google Scholar 

  • Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:299–413

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. https://doi.org/10.1007/s00344-016-9663-5

  • Lakshmi V, Kumari S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119

    Article  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    Article  PubMed  CAS  Google Scholar 

  • Lee HB, Kim CJ, Kim JS, Hong KS, Cho KY (2003) A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett Appl Microbiol 36:387–391

    Article  PubMed  CAS  Google Scholar 

  • Lemerle D, Verbeek B, Orchard B (2001) Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res 41:197–209

    Article  Google Scholar 

  • Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65

    Article  CAS  Google Scholar 

  • Li YQ, Sun ZL, Zhuang XF, Xu L, Chen SF, Li MZ (2003) Research progress on microbial herbicides. Crop Prot 22:247–252

    Article  Google Scholar 

  • Li M, Jordan NR, Koide RT, Yannarell AC, Davis AS (2016) Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci 64:642–652

    Article  Google Scholar 

  • Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, p 532

    Book  Google Scholar 

  • Llewellyn RS, Demden FH, Owen MJ (2009) Herbicide resistance in rigid ryegrass (Lolium rigidum) has not led to higher weed densities in western Australian cropping fields. Weed Sci 57:61–65

    Article  CAS  Google Scholar 

  • Loretta OR, Martin M, Williams II (2006) Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: implications for biological control. Biol Control 38:356–362

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lydon J, Kong H, Murphy C, Zhang W (2011) The biology and biological activity of Pseudomonas syringae pv. tagetis. Pest Technol 5:48–55

    Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malik RK, Singh S (1995) Little seed canary grass (Phalaris minor Retz.) resistance in India. Weed Technol 9:419–425

    Article  Google Scholar 

  • Mazzola M, Stahlman PW, Leach JE (1995) Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil Biol Biochem 27:1271–1278

    Article  CAS  Google Scholar 

  • McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-formylaminooxyvinyl glycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73:1853–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013a) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013b) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. BioScan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  PubMed  CAS  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015a) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. https://doi.org/10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016a) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016b) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T (2010) Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl 55:561–572

    Article  Google Scholar 

  • Mejri D, Gamalero E, Souissi T (2013) Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114:219–228

    Article  PubMed  CAS  Google Scholar 

  • Menaria BL (2007) Bioherbicides: an eco-friendly approach to weed management. Curr Sci 92:10–11

    Google Scholar 

  • Mendoza EKM, Violante HGM, Inocencio CM, Salcedo GO, Madrigal HC, Portugal VO, Pérez MVA (2012) Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res 6:1887–1892

    Google Scholar 

  • Mikolajewska P, Donnelly RF, Morrow DI, Singh TRR, Iani V, Moan J, Juzeniene A (2010) Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA) and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 27:2213–2220

    Article  PubMed  CAS  Google Scholar 

  • Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physio-chemical and biological properties. J Antibiot 45:914–921

    Article  CAS  Google Scholar 

  • Mohan Babu R, Sajeena A, Seetharaman K, Vidhyasekaran P, Rangasamy P, Som Prakash H, Senthil Rajab A, Bijib KR (2003) Advances in bioherbicides development – an overview. Crop Prot 22:253–260

    Article  Google Scholar 

  • Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690

    Article  CAS  Google Scholar 

  • Mortensen K (1988) The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti). Weed Sci 36:473–478

    Google Scholar 

  • Moyer J, Roman E, Lindwall C, Blackshaw R (1994) Weed management in conservation tillage systems for wheat production in North and South America. Crop Prot 13:243–259

    Article  Google Scholar 

  • Nasir E, Ali SI (1989) Flora of Pakistan. eds. no.132–190. P. A. R.C. Islamabad

    Google Scholar 

  • Neumann S, Boland GJ (1999) Influence of selected adjuvants on disease severity by Phoma herbarum on dandelion (Taraxacum officinale). Weed Technol 13:675–679

    Article  Google Scholar 

  • Ngouagio MC, Lemieux C, Leroux GD (1999) Prediction of corn (Zea mays) yield loss from early observations of the relative leaf area and the relative leaf cover of weeds. Weed Sci 47:297–304

    Google Scholar 

  • Nisha C, Harpal S, Tripathi HP, Chopra N, Singh H (1999) Critical period of weed crop competition in wheat (Triticum aestivum L). Indian J Weed Sci 31:151–154

    Google Scholar 

  • Nishino T, Murao S, Wada H (1984) Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin. J Biochem 95:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Norman MA, Patten KD, Gurusiddaiah S (1994) Evaluation of a phytotoxin(s) from Pseudomonas syringae for weed control in cranberries. Hortic Sci 29:1475–1477

    CAS  Google Scholar 

  • Norsworthy JK, Burgos NR, Scott RC, Smith KL (2007) Consultant perspectives on weed management needs in Arkansas rice. Weed Technol 21:832–839

    Article  Google Scholar 

  • Oettmeier W, Dostatni R, Majewski C, Hoefle G, Fecker T, Kunze B, Reichenbac H (1990) The aurachins, naturally occurring inhibitors of photosynthetic electron flow through photosystem II and cytochrome b6/f-complex. Z Natureforsch 45:322–328

    Article  CAS  Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crop Res 89:263–280

    Article  Google Scholar 

  • Oluwaseun AC, Kola OJ, Isaac A (2016) Persistence of bioherbicidal agents formulated from the multi-combination of the wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Am Eurasian J Agric Environ Sci 16:1406–1416

    Google Scholar 

  • Owen A, Zdor R (2001) Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Boil Biochem 33:801–809

    Article  CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Park J, Radhakrishnan R, Kang S, Lee I (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil VS (2013) Rhizospheric bacteria with the potential for biological control of Parthenium hysterophorus. J Chem Biol Phys Sci 3:2679–2686

    Google Scholar 

  • Patil VS (2014) Isolation, characterization and identification of rhizospheric bacteria with the potential for biological control of Sida acuta. J Environ Res Dev 8:411–417

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Pedras M, Ismail N, Quail J, Boyetchko S (2003) Structure, chemistry and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43

    Article  CAS  Google Scholar 

  • Phour M (2012) Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. M. Sc. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

    Google Scholar 

  • Phour M (2016) Aminolevulinic acid production by rhizobacteria: its role in salt tolerance and weed control in mustard [Brassica juncea (L.)]. PhD thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

    Google Scholar 

  • PMRA (2006) “Re-evaluation of Colletotrichum gloeosporioides f.sp. malvae [CGM]” REV2006-10. Health Canada, Ottawa

    Google Scholar 

  • PMRA (2010) “Sclerotinia minor strain IMI344141” RD2010-08. Health Canada. Health Canada, Ottawa

    Google Scholar 

  • Poonia BL, Jain NK, Singh SK (2001) Weed management in wheat (Triticum aestivum) with special reference to Asphodelus tenuifolius. Ind J Weed Sci 33:100–103

    Google Scholar 

  • Quail JW, Ismail N, Pedras SC, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr C 58(5):268–271

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24

    CAS  Google Scholar 

  • Randall RP (2003). A global compendium of weeds. In Richardson FJ (ed). Melbourne, p 903

    Google Scholar 

  • Ray P, Vijayachandran LS (2013) Evaluation of indigenous fungal pathogens from horse purslane (Trianthema portulacastrum) for their relative virulence and host range assessments to select a potential mycoherbicidal agent. Weed Sci 61:580–585

    Article  CAS  Google Scholar 

  • Reinhardt CF, Meissner R, Labuschagne N (1994) Allelopathic interaction of Chenopodium album L. and certain crop species. S Afr J Plant Soil 11:45–49

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, New York

    Google Scholar 

  • Riddle GE, Burpee LL, Boland GJ (1991) Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci 39:109–118

    Google Scholar 

  • Rizvi SJH, Haque H, Singh VK, Rizvi VB (1992) A discipline called allelopathy. In: Allelopathy basic and applied aspects. Chapman & Hall, London, pp 1–8

    Chapter  Google Scholar 

  • Royer F, Dickinson R (1999) Weeds of the Northern U.S. and Canada. The University of Alberta Press, Edmonton, p 434

    Google Scholar 

  • Ryall B, Mitchell H, Mossialos D, Williams HD (2009) Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett Appl Microbiol 49:131–135

    Article  PubMed  CAS  Google Scholar 

  • Sadiq M, Rahman H, Ullah K, Khan MA (2011) Impact of weed management practices on wild onion (Asphodelus tenuifolius cav.) and chickpea (Cicer arietinum L). Pak J Weed Sci Res 17:135–141

    Google Scholar 

  • Sangwan VP, Sindhu SS, Dahiya OS, Kharb RPS (2012) Improvement of wheat (Triticum aestivum L.) yield under field conditions by inoculation of microbial strains. Microbiol J 2:86–95

    Article  Google Scholar 

  • Sasaki K, Tanaka T, Nishio N, Nagai S (1993) Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acid. Biotechnol Lett 15:859–864

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana CV, Rao PR (1994) 5-aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Prog 10:451–459

    Article  CAS  Google Scholar 

  • Saxena S (2014) Microbial metabolites for development of ecofriendly agrochemicals. Allelopathy 33:1–24

    Google Scholar 

  • Sayed MHE, Aziz ZKA, Abouzaid AM (2014) Efficacy of extracellular metabolite produced by Streptomyces levis strain LX-65 as a potential herbicidal agent. J Am Sci 10:169–180

    Google Scholar 

  • Schisler DA, Howard KM, Bothast RJ (1991) Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria. Biol Control 1:261–268

    Article  Google Scholar 

  • Selvakumar G, Lenin M, Thamizhiniyan P, Ravimycin T (2009) Response of biofertilizers on the growth and yield of blackgram (Vigna mungo). Recom Res Sci Technol 1:169–175

    Google Scholar 

  • Serwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  Google Scholar 

  • Shaban SA, Soliman S, Yehia ZR, Elattar MH (2009) Weed competition effects on some Triticum aestivum quality and quantity components. Egypt J Agron 31:135–147

    Google Scholar 

  • Shabana YM, Müller-Stöver D, Sauerbornb J (2003) Granular pesta formulation of Fusarium oxysporum f. sp. orthoceras for biological control of sunflower broomrape: efficacy and shelf-life. Biol Control 26:189–201

    Article  Google Scholar 

  • Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knot weed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control 49:105–113

    Article  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016a) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J 1:135–148

    Article  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016b) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. https://doi.org/10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh S (2006) Herbicide resistance mechanism in Phalaris minor and its consequences on management strategies. Indian J Weed Sci 38:183–193

    Google Scholar 

  • Singh S (2007) Role of management practices on control of isoproturon resistant little seed canary grass (Phalaris minor) in India. Weed Technol 21:339–346

    Article  CAS  Google Scholar 

  • Singh R, Kirkwood RC, Marshall G (1999) Biology and control of Phalaris minor Retz. (little seed canary grass) in wheat. Crop Prot 18:1–16

    Article  Google Scholar 

  • Singh A, Kaur R, Kang JS, Singh G (2012) Weed dynamics in rice- wheat cropping system. Glob J Biol Agric Health Sci 1:7–16

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    Article  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. https://doi.org/10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Soares WL, Porto MFS (2009) Estimating the social cost of pesticide use: an assessment from acute poisoning in Brazil. Ecol Econ 68:2721–2728

    Article  Google Scholar 

  • Stewart-Wade SM, Boland GJ (2005) Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol Sci Tech 15:671–681

    Article  Google Scholar 

  • Stobart AK, Bukhari JA (1984) Regulation of δ-aminolevulinic acid synthesis and protochlorophyllide regeneration in the leaves of dark-grown barley (Hordeum vulgare) seedlings. Biochemical 222:419–426

    Article  CAS  Google Scholar 

  • Suslow TV, Schroth MN (1982) Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111–115

    Article  Google Scholar 

  • Suzuki S, Yuxi H, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  PubMed  CAS  Google Scholar 

  • Takahashi E, Kimura T, Nakamura K, Arahira M, Iida M (1995) Phosphonothrixin, a novel herbicidal antibiotic produced by Saccharothrix sp. ST 888, I. Taxonomy, fermentation isolation and biological properties. J Antibiot 48:1124–1129

    Article  CAS  Google Scholar 

  • Tateno A (2000) Herbicidal composition for the control of annual bluegrass. U.S. Patent No 6162763A. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Templeton GE (1988) Biological control of weeds. Am J Altern Agric 3:69–72

    Article  Google Scholar 

  • Tiwari AN, Tiwari SN, Rathi JPS, Verma RN, Tripathi AK (2001) Crop weed competition studies in chickpea having Asphodelus tenuifolius dominated weed community under rain fed condition. Indian J Weed Sci 33:198–199

    Google Scholar 

  • Tobias I, Rast ATB, Maat DZ (1982) Tobamo viruses of pepper, eggplant, and tobacco–comparative host reactions and serological relationships. Neth J Plant Pathol 88:257–268

    Article  Google Scholar 

  • Tosiah S, Kadir J, Sariah M, Juraimi AS, Lo NP, Soetikno S (2009) Survey and evaluation of native fungal pathogens for biocontrol of barnyard grass (Echinochloa crus-galli complex). J Trop Agric Food Sci 37:119–128

    Google Scholar 

  • Tosiah S, Kadir J, Sariah M, Juraimi AS, Soetikno S (2011) Efficacy of Exserohilum monoceras, a potential fungi for biocontrol of Echinochloa species. J Trop Agric Food Sci 39:117–124

    Google Scholar 

  • Trognitz F, Hackl E, Widhalm S, Sessitsch A (2016) The role of plant microbiome interactions in weed establishment and control. FEMS Microbiol Ecol 92:1–15

    Article  CAS  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015b) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 22:1–15

    Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Zhang X, Kong C (2013) The response of allelopathic rice growth and microbial feedback to barnyard grass infestation in a paddy field experiment. Eur J Soil Biol 56:26–32

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev 28:449–455

    Article  CAS  Google Scholar 

  • Webster TM (2005) Weed survey—southern states: broadleaf crops subsection (cotton, peanut, soybean, tobacco and forestry). Proc South Weed Sci Soc 58:291–306

    Google Scholar 

  • Weissmann R, Gerhardson B (2001) Selective plant growth suppression by shoot application of soil bacteria. Plant Soil 234:159–170

    Article  CAS  Google Scholar 

  • Weissmann R, Uggla C, Gerhardson B (2003) Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biol Control 48:725–742

    Google Scholar 

  • Yandoc CB, Rosskopf EN, Pitelli A, Charudattan R (2006) Effect of selected pesticides on conidial germination and mycelia growth of Dactylaria higginsii, a potential bioherbicide for purple nutsedge (Cyperus rotundus). Weed Technol 20:255–260

    Article  CAS  Google Scholar 

  • Yang Z (2000) Maximum likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Cao HZ, Wang W, Zhang LH, Dong JG (2014) Isolation, identification and herbicidal activity of metabolites produced by Pseudomonas aeruginosa CB-4. J Integr Agric 13:1719–1726

    Article  CAS  Google Scholar 

  • Yasuor H, Tenbrook PL, Tjeerdema RS, Fischer AJ (2008) Responses to clomazone and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian rice fields. Pest Manag Sci 64:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Yorinori JT, Gazziero LP (1989) Control of milk weed (Euphorbia heterophylla) with Helminthosporium sp. In: Delfosse ES (ed) Proceedings 7th international symposium on biological control of weeds, 6–11 Mar 1988, Rome, Italy, pp 571–576

    Google Scholar 

  • Zdor R, Alexander C, Kremer R (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299

    Article  CAS  Google Scholar 

  • Zeller S, Brandl H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop weed model system. PLoS One 2:1–7

    Article  CAS  Google Scholar 

  • Zeng RS (2014) Allelopathy-the solution is indirect. J Chem Ecol 40:515–516

    Article  PubMed  CAS  Google Scholar 

  • Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broom rape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:487–497

    Article  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

  • Zhang J, Wang W, Lu X, Xu Y, Zhang X (2010) The stability and degradation of a new biological pesticide, pyoluteorin. Pest Manag Sci 66:248–252

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Shamoun S (2005) Effects of potato dextrose broth and gelatin on germination and efficacy of Phoma exigua, a potential biocontrol agent for salal (Gaultheria shallon). Can J Plant Pathol 27:234–244

    Article  CAS  Google Scholar 

  • Zidack NK, Quimby PC (2002) Formulation of bacteria for biological control using the stabilize method. Biocontrol Sci Tech 12:67–74

    Article  Google Scholar 

  • Zonno MC, Vurro M, Luceretti S, Andolfi A, Perrone C, Evidente A (2008) Phyllostictine A, potential herbicide produced by Phyllosticta cirsii: in vitro production and toxicity. Plant Sci 175:818–828

    Article  CAS  Google Scholar 

  • Zuo S, Li X, Ma Y, Yang S (2014) Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil 378:49–58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the faculty members working in the Biocontrol Laboratory for their valuable suggestions in preparation of this manuscript. We also thank the colleagues in the Agronomy Department (Weed Control Unit) for their valuable inputs regarding the prevalence of resistant weeds and the weedicides/herbicides used in control of weeds.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, S.S., Khandelwal, A., Phour, M., Sehrawat, A. (2018). Bioherbicidal Potential of Rhizosphere Microorganisms for Ecofriendly Weed Management. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-10-8402-7_13

Download citation

Publish with us

Policies and ethics