Skip to main content

Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Serratia species is a member of the Enterobacteriaceae family and found to be ubiquitous in the environment. There are several plants associated with Serratia sp. that are reported as endophytes or thriving in the rhizosphere of host plants. Many such isolates are known to have plant growth-promoting (PGP) abilities and/or biocontrol potential based on the antibiosis (production of prodigiosin and pyrrolnitrin) and production of lytic enzymes (chitinases and β-1,3-glucanases) against soilborne fungal pathogens that infect various crops. Serratia sp. colonized plant roots and within the plant tissues and induced plant growth. Among the mechanisms by which the genus Serratia exerts beneficial effects on plants are facilitating the uptake of nutrients such as phosphorus via phosphate solubilization and siderophore production (secretes catecholate siderophore enterobactin) and synthesizing stimulatory phytohormones like indole-3-acetic acid (IAA) (both auxin-dependent and auxin-independent signaling pathways) that are involved in plant growth promotion. Serratia sp. also elicits induced systemic resistance (ISR) where enhancement of the plant’s defensive capacity against diverse plant pathogens and pests is acquired after appropriate stimulation. Bacteria of the genus Serratia have created tremendous interest in researchers as such strains showed high potential for biofertilization and plant growth promotion, contributing better yield of the diverse field and agricultural crops. Some of the species such as S. plymuthica, S. liquefaciens, S. proteamaculans, S. grimesii, S. nematodiphila, and S. rubidaea had acquired the attention of researchers due to their benefits to plants. Some other uncommon species of Serratia, like S. ficaria, S. fonticola, S. odorifera, S. entomophila, and S. quinivorans, have been recognized for their role in plant growth stimulation. With the continuation of interest and research on Serratia as PGPR and biocontrol agents, the formulations based on Serratia sp. will be instrumental for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternative way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Abd-Elgawad MMM, Kabeil SSA (2012) Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic chnages in tomato roots. Afr J Biotechnol 11(96):16247–16252

    Article  CAS  Google Scholar 

  • Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  Google Scholar 

  • Akutsu K, Hirata H, Yamamoto M, Hirayae K, Okuyama S, Hibi T (1993) Growth inhibition of Botrytis spp by Serratia marcescens B2 isolated from tomato phyllosplane. Anal Phytopath Soc Jpn 59:18–25

    Article  CAS  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  PubMed  Google Scholar 

  • Alstrom S (2001) Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Alstrom S, Gerhardson B (1987) Characteristics of a Serratia plymuthica isolate from plant rhizospheres. Plant Soil 103:185–189

    Article  Google Scholar 

  • Alstrom B, Gerhardson B (1988) Differential reactions of wheat and pea genotypes to root inoculation with growth affecting rhizobacteria. Plant Soil 109:263–269

    Article  Google Scholar 

  • Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  Google Scholar 

  • Ashelford KE, Fry JC, Bailey MJ, Day MJ (2002) Charaterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinovorans corrig., sp. nov. Int J Syst Evol Microbiol 52:2281–2289

    Google Scholar 

  • Avdiushko SK, Ye XS, Ku J (1993) Detection of several exzymatic activities in leaf prints cucumber plant. Physiol Mol Plant Pathol 42:441–454

    Article  CAS  Google Scholar 

  • Bai Y, Souleimanov A, Smith DL (2002a) An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions. J Exp Bot 53(373):1495–1502

    CAS  PubMed  Google Scholar 

  • Bai Y, D’aoust F, Smith DL, Driscoll BT (2002b) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Pan B, Charlesc TC, Smitha DL (2002c) Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biol Biochem 34:1953–1957

    Article  CAS  Google Scholar 

  • Bakker PAH, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Camara M, Hartmann A, Mañero FJG (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) plant-associated Bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Benhamou N, Belanger RR, Paulitz TC (1996a) Induction of differential host responses by Pseudomonas fluorescens in RiT-DNA transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology 86:114–178

    Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996b) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Gagné S, Le Quere D, Dehbi L (2000) Bacterial mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Berg G, Fritze A, Roskot N, Smalla K (2001) Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol 91:963–971

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plant. Appl Environ Microbiol 68:3328–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bharati R, Vivekananthan R, Harish S, Ramanathan A, Samaiyappan R (2004) Rhizobacteria-based bioformulations for the management of fruit rot infection in chillies. Crop Protect 23:835–843

    Article  Google Scholar 

  • Bonaldo SM, Pascholati SF, Romeiro RS (2005) Induçao de resistência: naçoês básicas e perspectivas. In: Cavalcanti LS, di Piero RM, Cia P, Pascholati SF, MLV R, Romeiro RS (eds) Indução de resistência em plantas a patógenos e insetos. FEALQ, Piracicaba, pp 11–28

    Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91:889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brurberg MB, Eijisink VGH, Venema G, Nes IF (1995) Chitinase B from Serratiamarcescens BJL200 is exported to the periplasm without processing. Microbiology 141:123–131

    Article  PubMed  Google Scholar 

  • Cang S, Sanada M, Johdo O, Ohta S, Nagamatsu Y, Yoshimoto A (2000) High production of prodigiosin by Serratia marcesens grown on ethanol. Biotechnol Lett 22:1761–1765

    Article  CAS  Google Scholar 

  • Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  • Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubés R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Chakraborty CN, Chakraborty AP (2010) Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J Plant Interact 5(4):261–272

    Article  CAS  Google Scholar 

  • Chemin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic bacteria Enterobacteragglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1997) Application of plant growth-promoting rhizobacteria to soybean (Glycine max (L.) Merr.) increases protien and dry matter yield under short-season conditions. Plant Soil 188:33–41

    Article  CAS  Google Scholar 

  • Dashti N, Prithiviraj B, Hynes RK, Smith DL (2000) Root and rhizosphere colonization of soybean [Glycine max (L.) Merr.] by plant-growth-promoting rhizobacteria at low root zone temperatures and under short-season conditions. J Agro Crop Sci 185:15–20

    Article  Google Scholar 

  • De Queiroz BPV, De Melo IS (2006) Antagonism of Serratia marcescens towards Phytophthora parasitica and its effects in promoting the growth of citrus. Brazilian J Microbiol 37:448–450

    Article  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445. Basic Biotechnol 3:1–5

    Google Scholar 

  • Devi U, Khatri I, Kumar N, Kumar L, Sharma D, Subramanian S, Saini AK (2013) Draft genome sequence of a plant-growth promoting rhizobaterium, Serratiafonticola strain AU-P3(3). GenomeA ASM 1(6):e00946–e00913

    Google Scholar 

  • Ebebak SA, Wei G, Kloepper JW (1998) Effects of plant growth-promoting rhizobacteria on loblolly and splash pine seedlings. For Sci 44:139–144

    Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Peichulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113(6):247–251

    Article  Google Scholar 

  • Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can J Microbiol 50:811–820

    Article  CAS  PubMed  Google Scholar 

  • Ferraz HGM, Resende RS, Moreira PC, Silveira PR, Milagres EA, Oliveira JR, Rodrigues FA (2015) Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot. Plant Prot 74(4):417–427

    Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and application. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs 18. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Frankowski J, Berg G, Bahl H (1998) Mechanisms involved in the antifungal activity of the rhizobacterium Serratia plymuthica. (IOBC) Bull 9:45–50

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  Google Scholar 

  • Frommel MI, Pazos GS, Nowak J (1991) Plant-growth stimulation and biocontrol of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) by co-inoculation of tomato seeds with Serratia plymuthica and Pseudomonas sp. Fitopatología 26:66–73

    Google Scholar 

  • Gerber NN (1975) Prodigiosin-like pigments. C Crit Rev Microbiol 3:469–485

    Article  CAS  Google Scholar 

  • Gkarmiri K, Finlay RD, Alström S, Thomas E, Cubeta MA, Högberg N (2015) Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genomics 16:630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Gould M, Nelson LM, Waterer D, Hynes RK (2008) Biocontrol of Fusarium sambucinum, dry rot of potato, by Serratia plymuthica 5-6. Biocontrol Sci Tech 18:1005–1016

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Green JA, Rappoport DA, Williams RP (1956) Studies on pigmentation of Serratia marcescens II: characterization of the blue and the combined red pigments of prodigiosin. J Bact 72:483–487

    CAS  PubMed  Google Scholar 

  • Grimmont F, Grimmont PAD (1992) The genus Serratia. In: The prokaryotes – a handbook on the biology of Bacteria: ecophysiology, isolation, identifcation and application, vol III. Springer Verlag, New York, pp 2823–2848

    Google Scholar 

  • Grimmont PAD, Grimmont F, Starr MP (1981) Serratia species isolated from plants. Curr Microbiol 5:317–322

    Article  Google Scholar 

  • Grimont PAD, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248

    Article  CAS  PubMed  Google Scholar 

  • Grimont PAD, Irino K, Grimont F (1983) The Serratia liquefaciens-S. proteamaculans-S. grimesii complex: DNA relatedness. Curr Microbiol 7:63–68

    Article  Google Scholar 

  • Guitiérrez-Román MI, Holguín-Meléndez F, Bello-Mendoza R, Guillén-Navarro K, Dunn MF, Huerta-Palacios G (2012) Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens. World J Microbiol Biotechnol 28:145–153

    Article  CAS  Google Scholar 

  • Gujral MS, Agrawal P, Khetmalas MB, Pandey R (2013) Colonization and plant growth promotion of Sorghum seedlings by endorhizospheric Serratia sp. Acta Biol Indica 2:121–124

    Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Ilhan K, Karabulut OA (2013) Efficacy and population monitoring of bacterial natagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strwaberries. BioControl 58:457–470

    Article  CAS  Google Scholar 

  • Jaiganesh V, Eswaran A, Balabaskar P, Kannan C (2007) Antagonistic activity of Serratia marcescens against Pyricularia Oryze. Notulae Botanicae Horti Agrobotanici Cluj 35:48–54

    Google Scholar 

  • Jeun YC, Park KS, Kim CH, Fowler WD, Kleopper JW (2004) Cytological observation of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:34–42

    Article  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizobacteria solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Vespermann A, Piechulla B (2008) The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal Behav 3:1–3

    Article  Google Scholar 

  • Kai M, Haustein M, Molina F, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as benefcial rhizobacteria of oilseed rape. Microbiol Res 151:4433–4400

    Article  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaldi RE, Remadi MD, Hamada W, Somai L, Cheriff M (2015) The potential of Serratia marcescens: an indigenous strain isolated from date palm compost as biocontrol agent of Rhizoctonia solani on potato. J Plant Pathol Microbiol. https://doi.org/10.4172/2157-7471.S3-006

  • Khanafari A, Assadi MM, Fakhr FA (2006) Review of prodigiosin, pigmentation in Serratia marcescens. Online J Biol Sci 1:1–13

    Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytopathora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting B (ed) Soil microbial technologies. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW (1997) Plant growth – promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 137–166

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Kuc J (1992) Proposed definitions related induced disease resistance. Biocontrol Sci Tech 2:349–351

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Waughn JL (eds) Pest management biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165

    Google Scholar 

  • Kloepper JW, Zehnder GW, Tuzun S, Murphy JF, Wei G, Yao C, Raupach GS (1996) Toward agricultural implementation of PGPR-mediated induced systemic resistance against crop pests. In: Wenhua T, Cook RJ, Rovira A (eds) Advances in biological control of plant diseases. China Agricultural University Press, Beijing, pp 165–174

    Google Scholar 

  • Kloepper JW, Press CM, Lper JE (2001a) Role of iron in rhizobacteria-meidated induced systemic resistance of cucumber. Phytopathology 91:593–598

    Article  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2001b) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94(11):1259–1266

    Article  Google Scholar 

  • Kloepper JW, Reddy MS, Kenney DS, Vavrina C, Kokalis-Burelle N, Martinez-Ochoa N (2004) Theory and applications of rhizobacteria for transplant production and yield enhancement. In: Nicola S, Nowak J, Vavrina CS (eds) Proceedings of XXVI IHC—transplant production and stand establishment, Acta Horticulture, vol 631, pp 217–229

    Google Scholar 

  • Kobayashi DY, Guglielmoni M, Clarke BB (1995) Isolation of the chinolytic bacteria Xanthomonas maltophilia and Serratia marcesens as biocontrol agents for summer patch disease of turfgrass. Soil Biol Biochem 27:1479–1487

    Article  CAS  Google Scholar 

  • Koo SY, Cho KS (2009) Isolation and characterization of a growth promoting rhizobacterium Serratia sp. SY5. J Microbiol Biotechnol 19:1431–1438

    CAS  PubMed  Google Scholar 

  • Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  PubMed  Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacterial Serratia marcescens NBRII213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Carey J, Perlman DC (2006) Pneumonia and bacteremia due to Serratiaodorifera. J Infection 53:212–214

    Article  Google Scholar 

  • Legard DE, McQuilken MP, Whipps JS, Fermor TR, Thompson IP et al (1994) Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganisms. Agric Ecosyst Environ 50:87–101

    Article  Google Scholar 

  • Leifert C, Sigee DC, Stanley R, Knight C, Epton HAS (1993) Biocontrol of Botrytis cinerea and Alternaria brassicicola on Dutch white cabbage by bacterial antagonists at cold-store temperatures. Plant Pathol 42:270–279

    Article  Google Scholar 

  • Li WX, Kodama O, Akatsuka T (1991) Role of oxygenated fatty acids in rice phytoalexin production. Agric Biol Chem 55:1041–1047

    CAS  Google Scholar 

  • Li P, Kwok AHY, Jiang J, Ran T, Xu D, Wang W, Leung FC (2015) Comparitive genome analyses of Serratia marcescens FS14 reveals its high antagonictic potential. Plos One 10(4):0123061

    Google Scholar 

  • Liba C, Ferrara F, Manfio G, Fantinatti-Garboggini F, Albuquerque R, Pavan C et al (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Morrell JJ (1997) Effect of biocontrol inoculum growth conditions on subsequent chitinase and protease levels in wood exposed to biocontrols and stain fungi. Materialand Organismen 31:265–279

    CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, deVries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Article  PubMed  Google Scholar 

  • Lucon CMM, Melo IS (2000) Effect of seed bacterization on the development of maize plants and Fusarium moniliforme control. Fitopatol Bras 25:529–537

    Google Scholar 

  • Lutenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • M’Piga P, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated endophytic with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical consideration involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • McCullagh M, Utkehde R, Menzies JG, Punja ZK, Paulitz TC (1996) Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of Cucmbers grown in rockwool and effects on yield. Eur J Plant Pathol 102:747–755

    Article  Google Scholar 

  • Meena B, Radhajeyalakshmi R, Marimuthu T, Vidhyasekaran P, Sabitha D, Velazhahan R (2000) Induction of pathogenesis related protiens, phenolics and phenylalanine ammonia lyase in groundnut by Pseudomonas fluorescens. J Plant Dis Protect 107:514–527

    CAS  Google Scholar 

  • Miransari M (2011a) Soil microbes and environmental health. Nova Publishers, Hauppauge

    Google Scholar 

  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Mackenzie AF (2011a) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant 42:50–65

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011b) Development of soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Article  CAS  Google Scholar 

  • Müller H, Berg G (2008) Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53:905–916

    Article  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nandakumar R (1998) Induction of systemic resistance in rice with fluorescent pseudomonads for the management of sheath blight disease. M. Sc. (Agric.) thesis, TNAU, Coimbatore, India, p 105

    Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  Google Scholar 

  • Neupane S, Finlay RD, Alström S, Kyrpides NC, Lucas S et al (2012a) Complete genome sequence of Serratia plymuthica strain AS12. Stand Genomic Sci 6:165–173. https://doi.org/10.4056/sigs.2705996. PMID: 22768360

    Article  PubMed  PubMed Central  Google Scholar 

  • Neupane S, Finlay RD, Kyrpides NC, Goodwin L, Alström S, Lucas S et al (2012b) Complete genome sequence of the plant-associated Serratia plymuthica strain AS13. Stand Genomic Sci 7:22–30. https://doi.org/10.4056/sigs.2966299. PMID: 23450001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neupane S, Goodwin LA, Högberg N, Kyrpides NC, Alström S et al (2013) Non-contigous finished genome sequence of plant-growth promoting Serratia proteamaculans S4. Stand Genomic Sci 8:441–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto H, Sato M, Sato Z, Isaka M (1998) Biocontrol of Phytophthora capsici by Serratia marcescens F-1-1 and analysis of biocontrol mechanisms using transposon-insertion mutants. Ann Phytopathol Soc Jpn 64:287–293

    Article  CAS  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed-treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl Environ Microbiol 70:6569–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Bai Y, Leibovitch S, Smith D (1999) Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short-growing-season area. Eur J Agron 11:179–186

    Article  CAS  Google Scholar 

  • Pan B, Vessey J, Smith D (2002) Response of field-grown soybean to coinoculation with the plant growth promoting rhizobacteria Serratia proteamaculans or Serratia liquefaciens and Bradyrhizobium japonicum pre-incubated with genistein. Eur J Agron 17:143–153

    Article  Google Scholar 

  • Parani K, Shetty GP, Saha BK (2011) Isolation of Serratia marcescens SR1 as a source of chitinase having potentiality of using as a biocontrol agent. Indian J Microbiol 51:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringaepv. tabaci. Biol Control 18:2–9

    Article  CAS  Google Scholar 

  • Park C, Shen S (2002) Biocontrol of phytophthora blight of pepper employimg Serratia plymuthica A21-4 and effect of soil population of Pytophthora capsici on the root colonization of the antagonistic bacteria. Bull OILB/SROP 25:327–330

    Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Prodigin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109:1179–1187

    Article  PubMed  Google Scholar 

  • Pérez-Montano F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, Lőpez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, Ton J, van Loon LC (2001) Cross-talk between plant defense signalling pathways: boost or burden? Agri Biotech Net 3:1–18

    Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Prischmann DA, Lehman RM, Christie AA, Dashiell KE (2008) Characterization of bacteria isolated from maize roots: emphasis on Serratia and infestation with corn rootworms (Chrysomelidae: Diabrotica). Appl Soil Ecol 40:417–431

    Article  Google Scholar 

  • Raajimakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere. A play ground and battle field for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediation 7(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Raupach GS, John LL, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Am Phytopathol Soc 80:891–894

    Google Scholar 

  • Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:135–141

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Choi HK, Lee CH, Murphy JF, Lee JK, Kloepper JW (2013) Modulation of quorum sensing in acyl-homoserine lactone-producing or degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. Plant Pathol J 29:182–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Saïdi S, Chebil S, Gtari M, Mhamdi R (2013) Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 29:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Saidi N, Deshaware S, Romdhane IB, Nadim M, Ojamo H, Kremer R, Shamekh S (2015) Endogenous bacteria of tuber aestivum ascocarps are potential biocontrol agents of microbial post-harvest deterioration of truffles. Int J Eng Appl Sci 2(7):97–106

    Google Scholar 

  • Saikia R, Kumar R, Singh T, Srivastava AK, Arora DK, Gogoi DK, Lee MW (2004) Induction of defense related enzymes and pathogenesis related proteins in Pseudomonas fluorescens- treated chickpea in response to infection by Fusarium oxysporum f. sp. Ciceri. Mycobiology 32:47–52

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta A, Joshi P, Nazim S et al (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Shen SS, Kim JW, Park CS (2002) Serratia plymuthica strain A21-4: a potential biocontrol agent against Phytophthora blight of pepper. Korean J Plant Pathol 18:138–141

    Article  Google Scholar 

  • Shuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP- 13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11(6):e0155026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sneh B, Agamis O, Baker R (1985) Biological control of Fusarium wilt in carnation with Serratia liquefaciens and Hafnia alvei isolated from rhizozphere of carnation. J Phytopathol 113:271–276

    Article  Google Scholar 

  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis 84(3):334–340

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Nakajima M, Yamaguchi I, Akutsu K (2002) Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. J Gen Plant Pathol 68:177–182

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Watanabe K, Hibi T, Akutsu K (2003) Influence of bacteria isolated from rice plants and rhizosphere on antibiotic production by the antagonistic bacterium Serratia marcescens strain B2. J Gen Plant Pathol 69:342–347

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Watanabe K, Akutsu K (2005) Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci Tech 15:105–109

    Article  Google Scholar 

  • Someya N, Ikeda S, Morohoshi T (2011a) Diversity of culturable chitinolytic bacteria from rhizosphere of agronomic plants in Japan. Microbes Environ 26(1):7–14

    Article  PubMed  Google Scholar 

  • Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2011b) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against grey mold pathogen Botrytis cinerea. J Gen Plant Pathol 67(4):312–317

    Article  Google Scholar 

  • Stadnik MJ (2000) Induc¸a˜o de resisteˆncia a Oı’dios. Summa Phytopathol 26:175–177

    Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Ganter S, Stoffels M, Riedel M, Givskov A, Hartman C, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizong the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens PM, Crowley JJ, O’Connell C (1993) Selection of pseudomonas strains inhibiting Pythium ultimum on sugarbeet seeds in soil. Soil Biol Biochem 25:1283–1288

    Article  Google Scholar 

  • Stock I, Burak S, Sherwood KJ, Gruger T, Wiedemann B (2003) Natural antimicrobial susceptibilities of strains of ‘unsual’ Serratia species: S. ficaria, S. fonticola, S.odorifera, S. plymuthica and S. rubidaea. J Antimicrob Chemoth 51:865–885

    Article  CAS  Google Scholar 

  • Sturz AV, Ryan DAJ, Coffin AD, Matheson BG, Arsenault WJ, Kimpinsky J, Christie BR (2004) Stimulating disease supression in soils: sulphate fertilizers can increase biodiversity and antibiosis ability of root zone bacteria against Streptomyces scabies. Soil Biol Biochem 36:343–352

    Article  CAS  Google Scholar 

  • Sturz AV, Peters RD, Carter MR, Sanderson JB, Matheson BG, Christie BR (2005) Variation in antibiosis ability, against potato pathogens, of bacterial communities recovered from the endo- and exoroots of potato crops produced under conventional versus minimum tillage systems. Can J Microbiol 51:643–654

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Hurek T, Gyaneshwar P, Ladha JK, Reinhold-Hurek B (2001) Novel endophytes of rice form a taxonomically distinct sub-group of Serratia marcescens. Syst Appl Microbiol 24:245–251

    Article  CAS  PubMed  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tenning P, Rijsbergen RV, Messens A, Vriendt JD, Zhao Y, Leyns F et al (1987) Antifungal activities produced by a Serratia plymuthica Mededelingen van de Faculteit Landbouwwetenschappen. Rijksuniversiteit Gent 52:1133–1138

    Google Scholar 

  • Tenuta M (2003) http://www.umanitoba.ca/afs/agronomists_conf/2003/pdf/tenuta_rhizobacteria

  • Thaning C, Welch CJ, Borowicz JJ, Hedman R, Gerhardson B (2001) Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the casual agents. Soil Biol Biochem 33:1817–1826

    Article  CAS  Google Scholar 

  • Tripura C, Sashidhar B, Podile AR (2007) Ethyl methanesulphonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol 54:79–84

    Article  CAS  PubMed  Google Scholar 

  • Tuzun S (2001) The relationship between pathogen-induced systemic resistance (ISR) and multigenic (horizontal) resistance in plants. Eur J Plant Pathol 107:85–93

    Article  Google Scholar 

  • van Houdt R, Moons P, Jansen A, Vanoirbeek K, Michiels CW (2005) Genotypic and phenotypic characterization of a biofilm forming Serratia plymuthica isolate from a raw vegetable processing line. FEMS Microbiol Lett 246:265–272

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van Twestende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsisthaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai YH, Chen WC (2005) Enhanced production of prodigiosin-like pigment from Serratia marcescens SMAR by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99:616–622

    Article  CAS  Google Scholar 

  • Wei L, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss U (1989) Video assessment of root cell responses to Dorylaimid and Tylenchid nematodes. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Inc, Hyattsville, pp 211–220

    Google Scholar 

  • Yazici S, Yusuf Yanar Y, Karaman I (2011) Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol 10(9):1573–1577

    Google Scholar 

  • Zahir ZA, Ghani U, Nayeed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratiasp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Nayeed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47:457–465

    Article  CAS  Google Scholar 

  • Zdor RE, Anderson AJ (1992) Influence of root colonizing bacteria on the defense responses in bean. Plant Soil 140:99–107

    Article  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Article  Google Scholar 

  • Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broomrape (Orabanchecrenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17(5):483–497

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1997) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr] growth and physiology at suboptimal root zone temperatures. Ann Bot 79:243–249

    Article  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2002) Development of assays for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 23:79–86

    Article  Google Scholar 

Download references

Acknowledgments

PP acknowledges financial support from DBT, Govt of India, while LK is grateful to UGC for the scholarship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kshetri, L., Naseem, F., Pandey, P. (2019). Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_6

Download citation

Publish with us

Policies and ethics