Skip to main content

Endolichenic Fungi: A Promising Source for Novel Bioactive Compounds

  • Chapter
  • First Online:
Endolichenic Fungi: Present and Future Trends

Abstract

A large proportion of the drugs available in market are either of plant or microbial origin. Microbes produce various secondary metabolites and these metabolites turned out to be biologically active. Endophytic fungi are considered to be more creative in case of producing novel secondary metabolites. Lichens also harbor endophytes i.e. endolichenic fungi, which produces a large number of metabolites (alkaloids, cyclic peptides, polyketides, steroids and terpeniods) including a great proportion of novel metabolites displaying a wide spectrum of bio-activities. A great diversity of lichens is known across the world of which only a lichens have been screened for their endolichenic fungal diversity and secondary metabolites. So a huge proportion of work is left to be completed regarding the secondary metabolites of endolichenic fungi. This chapter entails all the possible metabolites of endolichenic fungi known so farĀ and their bioactive potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boonpragob K, Crittenden PD, Lumbsch TH (2012) Lichens: from genome to ecosystems in a changing world. MycoKeys 6:1ā€“2

    Google ScholarĀ 

  • Chang W, Zhang M, Li Y et al (2015) Lichen endophyte derived pyridoxatin inactivates Candida growth by interfering with ergosterol biosynthesis. Biochim Biophys Acta 1850(9):1762ā€“1771

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen GD, Li YJ, Gao H et al (2012) New azaphilones and chlorinated phenolic glycosides from Chaetomium elatum with caspase-3 inhibitory activity. Planta Med 78:1683ā€“1689

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen GD, Chen Y, Gao H et al (2013) Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. J Nat Prod 76:702ā€“709

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen GD, Bao YR, Huang YF et al (2014) Three pairs of variecolortide enantiomers from Eurotium sp. with caspase-3 inhibitory activity. Fitoterapia 92:252ā€“259

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455ā€“463

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ding G, Li Y, Fu S et al (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72(1):182ā€“186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dou Y, Wang X, Jiang D et al (2014) Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther 8(2):84ā€“88

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinmann, Boston, pp 49ā€“80

    ChapterĀ  Google ScholarĀ 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajanā€™s floristic regions. Biodivers Conserv 16:85ā€“98

    ArticleĀ  Google ScholarĀ 

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251ā€“257

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gloer JB (1997) Applications of fungal ecology in the search for new bioactive natural products. In: Wicklow DT, Soderstrom BE (eds) The mycota, Environmental and microbial relationships, vol 4. Springer, New York, pp 249ā€“268

    Google ScholarĀ 

  • Hanson JR (2008) Chemistry of fungi. RSC Publishing, Cambridge, pp 231

    Google ScholarĀ 

  • Hassan RS, Strobel GA, Booth E et al (2012) Modulation of volatile organic compound formation in the mycodiesel producing endophyte- Hypoxylon sp. C1-4. Microbiology 158:464ā€“473

    Google ScholarĀ 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641ā€“655

    ArticleĀ  Google ScholarĀ 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422ā€“1432

    ArticleĀ  Google ScholarĀ 

  • He JW, Chen GD, Gao H et al (2012) Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83(6):1087ā€“1091

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heywood VH (ed) (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Huang YF, Li XX, Chen GD et al (2012) A new diphenyl ether from an endolichenic fungal strain, I sp. Mycosystema 31:769ā€“774

    CASĀ  Google ScholarĀ 

  • Jiao Y, Li G, Wang HY et al (2015) New metabolites from endolichenic fungus Pleosporales sp. Chem Biodivers 12(7):1095ā€“1104

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937ā€“947

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim KH, Beemelmanns C, Murillo C et al (2014) Naphthalenones and isocoumarins from a Costa Rican fungus Xylariaceae sp. CR1546C. J Chem Res 38(12):722ā€“725

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim GS, Ko W, Kim JW et al (2018a) Bioactive Ī±-Pyrone derivatives from the endolichenic fungus dothideomycetes sp. EL003334. J Nat Prod 81:1084ā€“1088

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim JW, Ko W, Kim E et al (2018b) Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot 71:753ā€“756

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li YJ, Li XX, Chen GD et al (2012a) J Shenyang Pharm Univ 29:678ā€“701

    CASĀ  Google ScholarĀ 

  • Li G, Wang H, Zhu R et al (2012b) Phaeosphaerins A-F, cytotoxic perylenequinones from an endolichenic fungus Phaeosphaeria sp. J Nat Prod 75(2):142ā€“147

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li W, Li XB, Li L et al (2015a) Ī±-Pyrone derivatives from the endolichenic fungus Nectria sp. Phytochem Lett 12:22ā€“26

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li XB, Li L, Zhu RX et al (2015b) Tetramic acids and pyridone alkaloids from the endolichenic fungus Tolypocladium cylindrosporum. J Nat Prod 78(9):2155ā€“2160

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li XB, Zhou YH, Zhu RX et al (2015c) Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers 12:575ā€“592

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387ā€“442

    ArticleĀ  Google ScholarĀ 

  • McAlpine JB, Bachmann BO, Piraee M et al (2005) Microbial genomics as a guide to drug discovery, structural elucidation: ECO02301, a novel antifungal agent, as an example. J Nat Prod 68:493ā€“496

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Paranagama PA, Wijeratne EMK, Burns AM et al (2007) Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70(11):1700ā€“1705

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291ā€“315

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Proudfoot JR (2002) Drugs, leads and drug-likeness: an analysis of some recently launched drugs. Bioorg Med Chem Lett 12:1647ā€“1650

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Samanthi KAU, Wickramaarachchi S, Wijeratne EMK et al (2015) Two new antioxidant active polyketides from Penicillium citrinum, an endolichenic fungus isolated from Parmotrema species in Sri Lanka. J Natl Sci Found Sri Lanka 43(2):119ā€“126

    ArticleĀ  Google ScholarĀ 

  • Schulz B, Boyle C, Draeger S et al (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996ā€“1004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Staley JT, Castenholz RW, Colwell RR et al (1997) The microbial world: foundation of the biosphere. American Academy of Microbiology, Washington DC, pp 32

    Google ScholarĀ 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(9):214ā€“216

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Strobel GA (2002) Microbial gifts from the rainforest. Can J Phytopathol 24:14ā€“20

    ArticleĀ  Google ScholarĀ 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240ā€“244

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their products. Microbiol Mol Biol Rev 67:491ā€“502

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Strobel GA, Hess WM, Ford E et al (1996) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol 17:417ā€“423

    CASĀ  Google ScholarĀ 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448ā€“459

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taylor TN, Taylor EL (2000) The rhynie chert ecosystem: a model for understanding fungal interactions. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Decker, New York, pp 31ā€“48

    Google ScholarĀ 

  • Wang Y, Niu S, Liu S et al (2010a) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12(21):5081ā€“5083

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang Y, Zheng Z, Liu S et al (2010b) Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod 73(5):920ā€“924

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang QX, Bao L, Yang XL et al (2012) Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia 83(1):209ā€“214

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang QX, Bao L, Yang XL et al (2013a) Tricycloalternarenes Fā€“H: three new mixed terpenoids produced by an endolichenic fungus Ulocladium sp. using OSMAC method. Fitoterapia 85(1):8ā€“13

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang QX, Bao L, Yang XL et al (2013b) Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia 90:220ā€“227

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wijeratne EMK, Bashyal BP, Gunatilaka MK et al (2010) Maximizing chemical diversity of fungal metabolites: biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J Nat Prod 73(6):1156ā€“1159

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wijeratne EMK, Bashyal BP, Liu MX et al (2012) Geopyxins A-E, ent ā€“Kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: structure-activity relationships of geopyxins and their analogues. J Nat Prod 75(3):361ā€“369

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wijeratne EMK, Gunaherath GMKB, Chapla VM et al (2016) Oxaspirol B with p97 inhibitory activity and other Oxaspirols from Lecythophora sp. FL1375 and FL1031, endolichenic fungi inhabiting Parmotrema tinctorum and Cladonia evansii. J Nat Prod 79(2):340ā€“352

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu W, Dai H, Bao L et al (2011) Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod 74(5):1303ā€“1308

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu YH, Chen GD, Wang CX et al (2015) Pericoterpenoid A, a new bioactive cadinane-type sesquiterpene from Periconia sp. J Asian Nat Prod Res 17(6):671ā€“675

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xiong H, Xiao GK, Chen GD et al (2014) Sporormiellin A, the first tetrahydrofuran-fused furochromone with an unprecedented tetracyclic skeleton from Sporormiella minima. RSC Adv 4(46):24295ā€“24299

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang F, Chen GD, Gao H et al (2012) Two new naphthalene derivatives from an endolichenic fungal strain Scopulariopsis sp. J Asian Nat Prod Res 14(11):1059ā€“1063

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang BJ, Chen GD, Li YJ et al (2016) A new xanthone glycoside from the endolichenic fungus Sporormiella irregularis. Molecules 21(6). https://doi.org/10.3390/molecules21060764

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yang Y, Bae WK, Nam SJ et al (2018) Acetonic extracts of the endolichenic fungus EL002332 isolated from Endocarpon pusillum exhibits anticancer activity in human gastric cancer cells. Phytomedicine 1(40):106ā€“115

    ArticleĀ  Google ScholarĀ 

  • Ye F, Chen GD, He JW et al (2013) Xinshengin, the first altenusin with tetracyclic skeleton core from Phialophora spp. Tetrahedron Lett 54(34):4551ā€“4554

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yuan C, Wang HY, Wu CS et al (2013) Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem Lett 6(4):662ā€“666

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yuan C, Li G, Wu CS et al (2015) A new fatty acid from the endolichenic fungus Massarina sp. Chem Nat Compd 51(3):415ā€“417

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yuan C, Guo YH, Wang HY et al (2016) Allelopathic polyketides from an endolichenic fungus Myxotrichum sp. by using OSMAC strategy. Sci Rep 6:19350. https://doi.org/10.1038/srep19350

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yuan C, Ding G, Wang HY et al (2017) Polyketide-terpene hybrid metabolites from an endolichenic fungus Pestalotiopsis sp. Biomed Res Int 2017:1ā€“10. https://doi.org/10.1155/2017/6961928

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang F, Liu S, Lu X et al (2009) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72(10):1782ā€“1785

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang F, Li L, Niu S et al (2012) A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J Nat Prod 75:230ā€“237

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang K, Ren J, Ge M et al (2014) Mono- and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia 92:79ā€“84

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao H, Wang GQ, Tong XP et al (2014) Diphenyl ethers from Aspergillus sp. and their anti-AĪ²42 aggregation activities. Fitoterapia 98:77ā€“83

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao Q, Chen GD, Feng XL et al (2015a) Nodulisporiviridins A-H, bioactive viridins from Nodulisporium sp. J Nat Prod 78(6):1221ā€“1230

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao Q, Wang CX, Yu Y et al (2015b) Nodulisporipyrones A-D, new bioactive a-pyrone derivatives from Nodulisporium sp. J Asian Nat Prod Res 17(5):567ā€“575

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao Q, Wang GQ, Chen GD et al (2015c) Nodulisporisteroids C-L, new 4-methyl-progesteroid derivatives from Nodulisporium sp. Steroids 102:101ā€“109

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zheng QC, Chen GD, Kong MZ et al (2013) Nodulisporisteriods A and B, the first 3,4-seco-4-methyl-progesteroids from Nodulisporium sp. Steroids 78(9):896ā€“901

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zheng QC, Kong MZ, Zhao Q et al (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126ā€“131

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhou YH, Zhang M, Zhu RX et al (2016a) Heptaketides from an endolichenic fungus Biatriospora sp. and their antifungal activity. J Nat Prod 79(9):2149ā€“2157

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhou YH, Li XB, Zhang JZ et al (2016b) Three new drimane-type sesquiterpenoids, chaetothyrins Aā€“C, from an endolichenic fungus Chaetothyriales sp. J Asian Nat Prod Res 18(5):409ā€“414

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, M., Joshi, Y. (2019). Endolichenic Fungi: A Promising Source for Novel Bioactive Compounds. In: Endolichenic Fungi: Present and Future Trends . Springer, Singapore. https://doi.org/10.1007/978-981-13-7268-1_5

Download citation

Publish with us

Policies and ethics