Skip to main content

Marine Flora: Source of Drugs from the Deep-Sea Environment

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Marine floras are highly diverse and productive. Few marine ecosystems are expected to show higher biological diversity than in tropical rain forests. They are chemically different from terrestrial flora and can withstand adverse marine conditions. The production of unique chemicals has diversified further due to the continuous evolution of marine flora with the change of environmental conditions since billions of years ago. They demonstrate a worthy resource for novel potent drugs that might prove to be economical, safer, and useful medicine for dreadful human diseases. They are rich sources of bioactive compounds such as polyphenols and sulfated polysaccharides that have antimicrobial, antioxidant, antitumor, and disease-healing properties. Plant products are widely used since old times as natural medicines and after the exploration of marine floras discovery of marine medicines has also increased. Here, in this chapter, we present the latest developments on drugs originated from marine natural products and their usages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anada K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    Article  Google Scholar 

  • Awad NE (2004) Bioactive brominated diterpenes from the marine red alga Jania Rubens (L.) Lamx. Phytother Res 18(4):275–279

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JP, Pereira RC, Abrantes JL, Cirne Dos Santos CC, Rebello MA, Texeira VL (2004) In vitro antiviral diterpenes from the Brazilian brown alga Dictyota pfaffii. Planta Med 70:856–860

    Article  CAS  PubMed  Google Scholar 

  • Barreto M, Meyer JJ (2006) Isolation and antimicrobial activity of a lanosol derivative from Osmundaria serrata (Rhodophyta) and a visual exploration of its biofilm covering. S Afr J Bot 72(4):521–528

    Article  CAS  Google Scholar 

  • Bennamara A, Abourriche A, Berrada M, Charrouf MH, Chaib N, Boudouma M, Garneau FX (1999) Methoxybifurcarenone: an antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry 52(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33(3):382–431

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34(3):235–294

    Article  CAS  PubMed  Google Scholar 

  • Bold HC, Alexopoulos CJ, Delevoryas T (1985) Morphology of plants and fungi, 4th edn. Harper & Row, New York

    Google Scholar 

  • Sithranga, Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186

    Google Scholar 

  • de Inés C, Argandoña VH, Rovirosa J, San-Martín A, Díaz-Marrero AR, Cueto M, González-Coloma A (2004) Cytotoxic activity of halogenated monoterpenes from Plocamium cartilagineum. Z Naturforsch C 59(5–6):339–344

    Article  PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endophytes–a chemical and biological perception. Fungal Divers 61(1):1–27

    Article  Google Scholar 

  • Dmitrenok A, Iwashita T, Nakajima T, Sakamoto B, Namikoshi M, Nagai H (2006) New cyclic depsipeptides from the green alga Bryopsis species; application of a carboxypeptidase hydrolysis reaction to the structure determination. Tetrahedron 62(6):1301–1308

    Article  CAS  Google Scholar 

  • Dorta E, Cueto M, Brito I, Darias J (2002) New terpenoids from the brown alga Stypopodium zonale. J Nat Prod 65:1727–1730

    Article  CAS  PubMed  Google Scholar 

  • Duan XJ, Li XM, Wang BG (2007) Highly brominated mono-and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity. J Nat Prod 70(7):1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Fenical W, Sims JJ, Squatrito D, Wing RM, Radlick P (1973) Marine natural products. VII. Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris zonarioides. J Organomet Chem 38(13):2383–2386

    Article  CAS  Google Scholar 

  • Fisch KM, Böhm V, Wright AD, König GM (2003) Anti-oxidative meroterpenoids from the brown alga Cystoseira crinita. J Nat Prod 66:968–975

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW, Cardellina JH II, Kato Y, Brinen LS, Clardy J, Snader KM, Boyd MR (1992) A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 35:3007–3011

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW, Cardellina JH II, Jurek J, Scheuer PJ, Alvarado-Lindner B, McGuire M, Gray GN, Steiner JR, Clardy J, Menez E, Shoemaker RH, Newman DJ, Snader KM, Boyd MR (1994) Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J Med Chem 37:4407–4411

    Article  CAS  PubMed  Google Scholar 

  • Garg HS, Sharma M, Bhakuni DS, Pramanik BN, Bose AK (1992) An antiviral sphingosine derivative from the green alga Ulva fasciata. Tetrahedron Lett 33(12):1641–1644

    Article  CAS  Google Scholar 

  • Guardia SD, Valls R, Mesguiche V, Brunei JM, Gulioli G (1999) Enantioselective synthesis of (-)-bifuracadiol: a natural antitumor marine product. Tetrahedron Lett 40:8359–8360

    Article  Google Scholar 

  • Hamann MT, Scheuer PJ (1993) Kahalalide F: a bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J Am Chem Soc 115(13):5825–5826

    Article  CAS  Google Scholar 

  • Higa T (1985) 2-(1-chloro-2-hydroxyethyl)-4, 4-dimethylcyclohexa-2, 5-dienone: a precursor of 4, 5-dimethylbenzo [b] furan from the red alga desmia hornemanni. Tetrahedron Lett 26(19):2335–2336

    Article  CAS  Google Scholar 

  • Huang H, She Z, Lin Y, Vrijmoed LL, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70(11):1696–1699

    Article  CAS  PubMed  Google Scholar 

  • Javed F, Qadir MI, Janbaz KH, Ali M (2011) Novel drugs from marine microorganisms. Crit Rev Microbiol 37(3):245–249

    Article  CAS  PubMed  Google Scholar 

  • Kang C-K, Kim JB, Lee K-S, Kim JB, Lee P-Y, Hong J-S (2003) Thropic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar Ecol Prog Ser 259:79–92

    Article  CAS  Google Scholar 

  • Kathiresan K, Nabeel MA, Manivannan S (2008) Bioprospecting of marine organisms for novel bioactive compounds. Sci Trans Environ Technov 1:107–120

    Google Scholar 

  • Koehn FE, Sarath GP, Neil DN, Cross SS (1991) Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett 32(2):169–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci 100(12):6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuniyoshi M, Yamada K, Higa T (1985) A biologically active diphenyl ether from the green alga Cladophora fascicularis. Experientia 41(4):523–524

    Article  CAS  Google Scholar 

  • Lane AL, Stout EP, Hay ME, Prusak AC, Hardcastle K, Fairchild CR, Franzblau SG, Le Roch K, Prudhomme J, Aalbersberg W, Kubanek J (2007) Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J Organomet Chem 72(19):7343–7351

    Article  CAS  Google Scholar 

  • Li K, Li XM, Ji NY, Wang BG (2007) Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg Med Chem 15(21):6627–6631

    Article  CAS  PubMed  Google Scholar 

  • Li DL, Li XM, Wang BG (2009) Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680

    CAS  PubMed  Google Scholar 

  • Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69(5):1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2009) Absolute configuration and biosynthesis of Pahayokolide A from Lyngbya sp. Strain 15-2 of the Florida Everglades. http://digitalcommons.fiu.edu/etd/134

  • Liu L, Rein KS (2010) New peptides isolated from Lyngbya species: a review. Mar Drugs 8(6):1817–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16(11):2947–2950

    Article  CAS  PubMed  Google Scholar 

  • Numata A, Kanbara S, Takahashi C, Fujiki R, Yoneda M, Fujita E, Nabeshima Y (1991) Cytotoxic activity of marine brown algae and cytotoxic principle of the brown alga Sargassum tortile. Chem Pharm Bull 39:2129–2131

    Article  CAS  Google Scholar 

  • Ohata K, Mizushina Y, Hirata N, Sugawara F, Mutsukage A, Yoshida S, Sakaguchi K (1998) Sulphoquinovosy-ldiacylglycerol, KM043 a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type from a marine red alga Gigartina tenella. Chem Pharm Bull 46:684–686

    Article  Google Scholar 

  • Padmakumar K, Ayyakkannu K (1997) Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Bot Mar 40(1–6):507–516

    Google Scholar 

  • Pang KL, Vrijmoed LLP, Goh TK, Plaingam N, Jones GEB (2008) Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po nature reserve, Hong Kong. Bot Mar 51:171–178

    Article  Google Scholar 

  • Pereira MS, Melo FR, Mourao PAS (2002) Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology 12:573–580

    Article  CAS  PubMed  Google Scholar 

  • Perry NB, Bluent JW, Munro MHG (1991) A cytotoxic and antifungal l,4-naphthoquinone and related compounds from A New Zealand brown alga Landsburgia Quercifolia. J Nat Prod 54:978–985

    Article  CAS  PubMed  Google Scholar 

  • Puglisi MP, Tan LT, Jensen PR, Fenical W (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron 60(33):7035–7039

    Article  CAS  Google Scholar 

  • Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol. A new, anti-viral, triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27(36):4287–4290

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xu Y, Liu K, Hua H, Zhu H, Pei Y (2006) Gracilarioside and gracilamides from the red alga Gracilaria asiatica. J Nat Prod 69(10):1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26(10):1329–1332

    Article  CAS  Google Scholar 

  • Suzuki T, Takeda S, Suzuki M, Kurosawa E, Kato A, Imanaka Y (1987) Cytotoxic squalene-derived polyethers from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 16(2):361–364

    Article  Google Scholar 

  • Takahashi C, Numata A, Ito Y, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasegawa T (1994) Leptosins I and J, cytotoxic substances produced bt a Leptosphaerias sp. Physido-chemical properties and structures. J Antibiot 47:1242–1249

    Article  CAS  Google Scholar 

  • Talpir R, Benayahu Y, Kashman Y, Pannell L, Schleyer M (1994) Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 35(25):4453–4456

    Article  CAS  Google Scholar 

  • Wall ME, Wani MC, Manikumar G, Taylor H, Hughes TJ, Gaetano K, Gerwick WH, McPhail AT, McPhail DR (1989) Plant antimutagenic agents 7. Structure and antimutagenic properties of cymobarbatol and 4-isocymbarbatol, new cymopols from green alga (Cymopolia barbata). J Nat Prod 52(5):1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li YL, Shen WZ, Rui W, Ma XJ, Cen YZ (2007) Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bot Mar 50(3):185–190

    CAS  Google Scholar 

  • Wratten SJ, Wolfe MS, Andersen RJ, Faulkner DJ (1977) Antibiotic metabolites from a marine pseudomonad. Antimicrob Agents Chemother 11(3):411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India for the financial support SB/FT/LS-188/2012 and ECR/2017/002478. AK is thankful to SERB, DST, New Delhi, India, for the junior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Archana Singh or Indrakant Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Kumar, A., Singh, I.K. (2020). Marine Flora: Source of Drugs from the Deep-Sea Environment. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_9

Download citation

Publish with us

Policies and ethics