Skip to main content

Bioactive Secondary Metabolites from Lichens

  • Chapter
  • First Online:
Plant Metabolites: Methods, Applications and Prospects

Abstract

Lichens are traditionally used as medicine since the medieval period. More than 1000 secondary metabolites have been identified in lichens. It is still unknown why the lichens produce such a plethora of secondary metabolites. However, scientists have successfully utilized them for taxonomy and bioprospecting. The extracts of lichens have exhibited wide range of biological activities, such as antimicrobial (antibacterial, antifungal, antiviral, anti-HIV), antioxidant, anti-inflammatory, antipyretic, analgesic, anti-ulcer, and anticancer activities. The lichen metabolites are also being assayed and found useful as hepatoprotective, cardiovascular protective, gastrointestinal protective, antidiabetic, and probiotic, which are considered as the lifestyle diseases of modern days. Polyketides are one of the major groups of secondary metabolites produced by lichens involving polyketide synthase genes. Interestingly among the 1000 secondary metabolites known from lichens only a few are isolated and tested for their biological activities, while in all remaining cases, activity is indirectly attributed to the presence of various metabolites. In the present chapter, a total of 35 secondary metabolites that are isolated from lichens were tested for biological activities and are listed along with their structure, substance class, and occurrence. Further scope for bioprospecting studies is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto-Korte K, Lauerma A, Alanko K (2005) Occupational allergic contact dermatitis from lichens in present-day Finland. Contact Dermatitis 52:36–38

    Article  PubMed  Google Scholar 

  • Abo-Khatwa AN, Al-Robai AA, Al-Jawhari DA (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat Toxins 4:96–102

    Article  PubMed  CAS  Google Scholar 

  • Alms I (1832) Über einen neuen Stoff in der Variolaria amara Ach. Ann Pharm 1:61–68

    Article  Google Scholar 

  • Asahina Y, Shibata S (1954) Chemistry of lichen substances. Japan Society for the Promotion of Science, Tokyo. vi + 240 pp.

    Google Scholar 

  • Bačkorová M, Bačkor M, Mikeš J, Jendželovský R, Fedoročko P (2011) Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol In Vitro 25(1):37–44. https://doi.org/10.1016/j.tiv.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  • Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26(3):462–468. https://doi.org/10.1016/j.tiv.2012.01.017

    Article  PubMed  CAS  Google Scholar 

  • Bebert (1831) Sur une nouvelle substance decouverte dans Ie lichen vulpinus. Rapporteurs: Robiquet et Blondeau. J Pharm Sci Access 17:696–700

    Google Scholar 

  • Bjerkea JW, Elvebakka A, Domínguezb E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    Article  CAS  Google Scholar 

  • Bogo D, de Matos MF, Honda NK, Pontes EC, Oguma PM, da Santos EC, de Carvalho JE, Nomizo A (2010) In vitro antitumour activity of Orsellinates. Z Naturforsch C J Biosci 65(1–2):43–48. https://doi.org/10.1515/znc-2010-1-208

    Article  PubMed  CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour 3(2):273–287. https://doi.org/10.1079/PGR200572

    Article  CAS  Google Scholar 

  • Brisdelli F, Perilli M, Sellitri D, Piovano M, Garbarino JA, Nicoletti M, Celenza G (2012) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res 27(3):431–437. https://doi.org/10.1002/ptr.4739

    Article  PubMed  CAS  Google Scholar 

  • Burkholder PR, Evans AW (1945) Further studies on the antibiotic activity of lichens. Bull Torrey Bot Club 72:157–164

    Article  Google Scholar 

  • Burkholder PR, Evans AW, McVeigh I, Thornton HK (1944) Antibiotic activity of lichens. Proc Natl Acad Sci U S A 30:250–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burlando B, Ranzato E, Volante A, Appendino G, Pollastro F, Verotta L (2009) Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med 75(06):607–613. https://doi.org/10.1055/s-0029-1185329

    Article  PubMed  CAS  Google Scholar 

  • Caccamese S, Toscano RM, Bellesia F, Pinetti A (1985) Methyl-b-orcinolcarboxylate and depsides from Parmelia furfuracea. J Nat Prod 48:157–158

    Article  CAS  Google Scholar 

  • Candan M, Yılmaz M, Tay T, Kıvança M, Türk H (2006) Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents. Zeitschrift Für Naturforschung C 61(5–6):319–323. https://doi.org/10.1515/znc-2006-5-603

    Article  CAS  Google Scholar 

  • Cetin H, Tufan O, Turk AO, Tay T, Candan M, Yanikoglu A, Sumbul HH (2008) Insecticidal activity of major lichen compounds. (−)-and (+)- usnic acid against the larvae of house mosquito, Culex pipiens L. Parasitol Res 2:1277–1279

    Article  Google Scholar 

  • Chao HS, Lee SK, Lee SH (2015) Composition for inhibiting growth of body hair comprising Usnic acid as effective ingredient. KR101511446 (Patent)

    Google Scholar 

  • Cocchietto M, Skert N, Nimis P et al (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146. https://doi.org/10.1007/s00114-002-0305-3

    Article  PubMed  CAS  Google Scholar 

  • Correché ER, Carrasco M, Giannini F, Piovano M, Garbarino J, Enriz D (2002) Cytotoxic screening activity of secondary lichen metabolites. Acta Farm Bonaer 21:273–278

    Google Scholar 

  • Correché ER, Enriz RD, Piovano M, Garbarino J, Gómez-Lechón MJ (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern Lab Anim 32(6):605–615. https://doi.org/10.1177/026119290403200611

    Article  PubMed  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    Article  PubMed  CAS  Google Scholar 

  • Culberson CF, Ahmadjian K (1979) Standard method zur Dunnschicht chromatographi von Flechten substanzen. Herz 5:1–24

    Google Scholar 

  • Culberson CF, Johnson A (1982) Substitution of methyl tert.-butyl ether for diethyl ether in standardized thin-layer chromatographic method for lichen products. J Chromatogr 238:483–487

    Article  CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1981) A standardized TLC analysis of B-orcinol depsidones. Bryologist 84:16–29

    Article  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products: A biosynthetic approach, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Durazo FA, Lassman C, Han S et al (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol 99(5):950–952. https://doi.org/10.1111/j.1572-0241.2004.04165.x

    Article  PubMed  Google Scholar 

  • Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillinresistant Staphylococcus aureus. Naturwissenschaften 94(6):465–468. https://doi.org/10.1007/s00114-006-0208-9

    Article  PubMed  CAS  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash T III (ed) Lichen biology. Cambridge University Press, pp 154–180

    Google Scholar 

  • Elix JA (2014) A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances, 3rd edn. Author, Canberra

    Google Scholar 

  • Fernández E, Reyes A, Hidalgo ME, Quilhot W (1998) Photoprotector capacity of lichen metabolites assessed through the inhibition of the 8-methoxypsoralen photobinding to protein. J Photochem Photobiol B 42(3):195–201. https://doi.org/10.1016/s1011-1344(98)00070-0

    Article  PubMed  Google Scholar 

  • Gmelin L (1858) Handbuch der organischen Chemie. Bd V, pp 94–97

    Google Scholar 

  • Gollapudi SR, Telikepalli H, Jampani HB, Mirhom YW, Drake SD, Bhattiprolu KR, Mitscher LA (1994) Alectosarmentin, a new antimicrobial Dibenzofuranoid Lactol from the lichen, Alectoria sarmentosa. J Nat Prod 57(7):934–938. https://doi.org/10.1021/np50109a009

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Shi Q, Fang JL (2008) Review of usnic acid and Usnea barbata toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(4):317–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hale ME (1983) The biology of lichens, 3rd edn. Edward Arnold Ltd, London

    Google Scholar 

  • Hidalgo ME, Fernández E, Quilhot W, Lissi E (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37(6):1585–1587. https://doi.org/10.1016/s0031-9422(00)89571-0

    Article  PubMed  CAS  Google Scholar 

  • Honda NK, Pavan FR, Coelho RG, de Andrade LSR, Micheletti AC, Lopes TIB (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17:328–332

    Article  PubMed  CAS  Google Scholar 

  • Huneck S, Lamb IM (1975) 1′-Chloropannarin, a new depsidone from Argopsis friesiana: notes on the structure of pannarin and on the chemistry of the lichen genus Argopsis. Phytochemistry 14(7):1625–1628. https://doi.org/10.1016/0031-9422(75)85363-5

    Article  CAS  Google Scholar 

  • Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  PubMed  CAS  Google Scholar 

  • Khanuja SPS, Tiruppadiripuliyur RSK, Gupta VK, Srivastava SK, Verma SC, Saikia D, Darokar MP, Shasany AK, Pal A (2007). Antimicrobial and anticancer properties of methyl-betaorcinolcarboxylate from lichen (Everniastrum cirrhatum). US Patent No. 0099993A1

    Google Scholar 

  • Knop W (1844) Chemisch-physiologische Untersuchung tiber die Flechten. Justus Lieb Ann Chern 49:103–124

    Article  Google Scholar 

  • Kokubun T, Shiu W, Gibbons S (2007) Inhibitory activities of lichen-derived compounds against methicillin- and multidrug-resistant Staphylococcus aureus. Planta Med 73(2):176–179. https://doi.org/10.1055/s-2006-957070

    Article  PubMed  CAS  Google Scholar 

  • Koparal AT, Ulus G, Zeytinoğlu M, Tay T, Türk AO (2010) Angiogenesis inhibition by a lichen compound olivetoric acid. Phytother Res 24:754–758

    PubMed  CAS  Google Scholar 

  • Krishna DR, Venkataramana D (1992) Pharmacokinetics of D(+)-usnic acid in rabbits after intravenous and oral administration. Drug Metab Dispos 20(6):909–911

    PubMed  CAS  Google Scholar 

  • Kumar KC, Müller K (1999) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophic, usnic, and diffractaic acid in human keratinocyte growth. J Nat Prod 62(6):821–823. https://doi.org/10.1021/np980378z

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Upreti DK (2001) Parmelia spp. (lichens) in ancient medicinal plant lore of India. Econ Bot 55(3):458–459

    Article  Google Scholar 

  • Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (−)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39(11):2541–2543. https://doi.org/10.1128/aac.39.11.254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawrey JD (1995) The chemical ecology of lichen mycoparasites. Can J Bot 73(Suppl. 1):603–608

    Article  Google Scholar 

  • Lee SH (2015) Pharmaceutical composition for preventing or treating bone related diseases. KR 1020150100331 (Patent)

    Google Scholar 

  • Liu H, Liu Y, Liu Y, Xu A, Young CYF, Yuan H, Lou H (2010) A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells. Chem Biol Interact 188(3):598–606. https://doi.org/10.1016/j.cbi.2010.07.024

    Article  PubMed  CAS  Google Scholar 

  • Llano GA (1948) Economic uses of lichen. Econ Bot 2:15–45

    Article  CAS  Google Scholar 

  • Lücking R, Hodkinson BP, Leavitt SD (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119(4):361–416. https://doi.org/10.1639/0007-2745-119.4.361

    Article  Google Scholar 

  • Luzina OA, Salakhutdinov NF (2018) Usnic acid and its derivatives for pharmaceutical use: a patent review (2000-2017). Expert Opin Ther Pat 28(6):477–491. https://doi.org/10.1080/13543776.2018.1472239

    Article  PubMed  CAS  Google Scholar 

  • Mao AA, Dash SS (2019) Plant discoveries. Botanical Survey of India, Kolkata

    Google Scholar 

  • Martins MCB, de Lima MJG, Silva FP, Azevedo-Ximenes E, da Silva NH, Pereira EC (2010) Cladia aggregata (lichen) from Brazilian northeast: chemical characterization and antimicrobial activity. Braz Arch Biol Technol 53(1):115–122. https://doi.org/10.1590/s1516-89132010000100015

    Article  CAS  Google Scholar 

  • Mayer M, Ma O’n, Ke M, Ns S-M, Ama C-L, Am T, Vcl A (2005) Usnic acid: a non-genotoxic compound with anticancer properties. Anti-Cancer Drugs 16(8):805–809

    Article  PubMed  CAS  Google Scholar 

  • Mitrović T, Stamenković S, Cvetković V, Nikolić M, Tošić S, Stojičić D (2011) Lichens as source of versatile bioactive compounds. Biol Nyssana 2(1):1–6

    Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65C:157–173

    Article  Google Scholar 

  • Najdenova V, Lisickov K, Zoltán D (2001) Antimicrobial activity and stability of usnic acid and its derivatives in some cosmetic products. Olaj, Szappan, Kozmetika 50:158–160. (in Hungarian)

    CAS  Google Scholar 

  • Nash TH III (ed) (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge. viii+486

    Google Scholar 

  • Nayaka S, Upreti DK, Khare R (2010) Medicinal lichens of India. In: Trivedi PC (ed) Drugs from plants. Avishkar, Jaipur, pp 1–38

    Google Scholar 

  • Nylander W (1866) Circa novum in studio lichenum criterium chemicum. Flora 49:198–201

    Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, Kazaz C (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103(1):59–65. https://doi.org/10.1016/j.jep.2005.06.043

    Article  PubMed  CAS  Google Scholar 

  • Ögmundsdóttir HM, Zoëga GM, Gissurarson SR, Ingólfsdóttir K (1998) Natural products: anti-proliferative effects of lichen-derived inhibitors of 5-Lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol 50(1):107–115. https://doi.org/10.1111/j.2042-7158.1998.tb03312

    Article  PubMed  Google Scholar 

  • Okuyama E (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    Article  PubMed  CAS  Google Scholar 

  • Qu CH, Tu P, Zhao YU (2015) Usnic acid nanometer suspension, and preparation method and use thereof. CN104398477 (Patent)

    Google Scholar 

  • Ranković B, Misić M (2008) The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspersa. Biotechnol Biotechnol Equip 22:1013–1016

    Article  Google Scholar 

  • Ranković B, Misić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Microbiol Biotechnol 24:1239–1242

    Article  Google Scholar 

  • Rikkinen J (1995) What's behind the pretty colours?: A study on the photobiology of lichens. Helsinki, Finnish Bryological Society

    Google Scholar 

  • Rundel PW (1978) Ecological relationships of desert fog zone lichens. Bryologist 81(2):277–293

    Article  Google Scholar 

  • Russo A (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs 17(10):1163–1169. https://doi.org/10.1097/01.cad.0000236310.66080.ed

    Article  PubMed  CAS  Google Scholar 

  • Russo A (2008) Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    Article  PubMed  CAS  Google Scholar 

  • Russo A (2012) Effect of vicanicin and protolichesterinic acid on human prostate cancer cells: role of Hsp70 protein. Chem Biol Interact 195(1):1–10. https://doi.org/10.1016/j.cbi.2011.10.005

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Taguchi H (1967) Occurrence of isousnic acid in lichens with reference to “isodihydrousnic acid” derived from dihydrousnic acid. Tetrahedron Lett 8(48):4867–4871. https://doi.org/10.1016/s0040-4039(01)89620-9

    Article  Google Scholar 

  • Shrestha G, St. Clair LL (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 12:229–244

    Article  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314. https://doi.org/10.1007/s11101-010-9189-6

    Article  CAS  Google Scholar 

  • Sinha GP, Nayaka S, Joseph S (2018) Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers Assess 197–206 (Special Issue)

    Google Scholar 

  • Takai M, Uehara Y, Ja B (1979) Usnic acid derivatives as potential antineoplastic agents. J Med Chem 22(11):1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Tokiwano T, Satoh H, Obara T, Hirota H, Yoshizawa Y, Yamamota Y (2009) A lichen substance as an antiproliferative compound against HL-60 human leukemia cells: 16-O-acetyl-leucotylic acid isolated from Myelochroa aurulenta. Biosci Biotechnol Biochem 73:2525–2527

    Article  PubMed  CAS  Google Scholar 

  • Türk H, Yilmaz M, Tay T, Türk AO, Kivanç M (2006) Antimicrobial activity of extracts of chemical races of the lichen pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch C, J Biosci 61:499–507

    Article  Google Scholar 

  • Wachtmeister CA (1952) Studies on the chemistry of lichens. I. Separation of depside components by paper chromatography. Acta Chem Scand 6(6):818–825

    Article  CAS  Google Scholar 

  • Yılmaz M, Türk AÖ, Tay T, Kıvanç M (2004) The Antimicrobial activity of extracts of the lichen Cladonia foliacea and Its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift Für Naturforschung C 59(3–4):249–254. https://doi.org/10.1515/znc-2004-3-423

    Article  Google Scholar 

  • Yuan C, Zhang ZJ, Guo YH, Sun LY, Ren Q, Zhao ZT (2010) Antibacterial compounds and other constituents of evernia divaricata (L.) Ach. J Chem Soc Pak 32(2):189–193

    CAS  Google Scholar 

  • Zambare VP, Christopher LP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50(6):778–798. https://doi.org/10.3109/13880209.2011.633089

    Article  PubMed  Google Scholar 

  • Zopf W. (1907) Die Flechtenstoffe in chemischer, botanischer, pharmakologischer und technischer Beziehung.. Jena Verlag von Gustav Fischer

    Google Scholar 

Download references

Acknowledgment

We thank Director, CSIR-NBRI and KSCSTE-JNTBGRI for providing infrastructural facilities, Dr. Siljo Joseph and members of Lichenology laboratory for their cooperation during the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayaka, S., Haridas, B. (2020). Bioactive Secondary Metabolites from Lichens. In: Sukumaran, S.T., Sugathan, S., Abdulhameed, S. (eds) Plant Metabolites: Methods, Applications and Prospects. Springer, Singapore. https://doi.org/10.1007/978-981-15-5136-9_12

Download citation

Publish with us

Policies and ethics