Skip to main content

Biotic Stress Management in Horticultural Crops Using Microbial Intervention

  • Chapter
  • First Online:
Rhizosphere Microbes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 23))

Abstract

Soils are naturally gifted with beneficial microflora and fauna that innately help the natural process of pest, disease, and nematode suppression. The diversity of the soil biota in many ways helps to maintain the stability and promote antagonistic potential, which decides soil health and crop productivity. Utilizing this soil biota for environmentally safe crop productivity is the utmost need of the hour, especially in horticultural crops, which are consumed afresh. Environmental concerns over conventional pesticides have led to increasing demand in the use of biological control agents, especially the microbial biopesticides, for production of safe horticultural produce. This chapter throws light on array of microbes that can be effectively deployed for managing the biotic stress due to diseases, pests, and nematodes in horticultural crops; their modes of action, commercial aspects, and problems to be addressed for successful large scale adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Khair H, El-Nagdi WMA (2014) Field application of biocontrol agents for controlling fungal root rot and root-knot nematode in potato. Arch Phytopathol Plant Protect 47:1218–1230

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Bjorkmar T, Harman GE (1999) Solubilisation of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anon (2020) Management of thrips on capsicum by entomo-pathogen, Metarhizium anisopliae. https://www.iihr.res.in/management-thrips-capsicum-entomo-pathogen-metarhizium-anisopliae. Accessed 27 Jul 2020

  • Arai T, Mikami Y, Fukushima K, Utsumi T, Yazawa K (1973) A new antibiotic leucinostatin derived from Penicllium lilacinum. J Antibiot 26:157–161

    Article  CAS  Google Scholar 

  • Askary TH (2008) Studies on root-knot nematode infesting pigeonpea and its integrated management. PhD Thesis, Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Askary TH (2015) Nematophagous fungi as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, pp 81–125

    Google Scholar 

  • Atibalentja N, Noel GR, Domier LL (2000) Phylogenetic position of the North American isolates of Pasteuria that parasitizes the soybean cyst nematodes, Heterodera glycines, as inferred from 16S rDNA sequence analysis. Int J Syst Evol Microbiol 50:605–613

    Article  CAS  PubMed  Google Scholar 

  • Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR (2005) The use of real time PCR and species specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    Article  CAS  PubMed  Google Scholar 

  • Avery PB, McKenzie CL, Powell CA, Osborne LS (2013) Efficacy of Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae) on the leaf phylloplane over time for controlling Madeira mealybug nymphs preshipping. Florida Scientist 76:9–10

    Google Scholar 

  • Baker R, Chet I (1982) Induction of suppressiveness. In: Schneider RW (ed) Suppressive soils and plant disease. Am. Phytopathol. Soc, St. Paul, Minn, pp 35, 88 p–50

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat HR, Sikora RA, Schonbeck F (1973) Effect of VA mycorrhiza (Endogone mosseae) on the establishment of Thielaviopsis basicola and Meloidogyne incognita in tobacco. IInd Int. Cong. Pl. Path., Minnesota, 661pp.

    Google Scholar 

  • Barak R, Elad Y, Mirelman D, Chet I (1985) Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 75(4):458–462

    Article  CAS  Google Scholar 

  • Becker JO, Zavaleta-Majia E, Colbert SF, Schroth MN, Weinhold AR, Hancock JG, VanGundy SD (1988) Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology 78:1466–1469

    Article  Google Scholar 

  • Bekal S, Borneman J, Springer MS, Giblin-Davis RM, Becker JO (2001) Phenotypic and molecular analysis of a Pasteuria strain parasitic to the sting nematode. J Nematol 33:110–115

    Google Scholar 

  • Biro-Stingli T, Toth F (2011) The effect of Trifender (Trichoderma asperellum) and the nematode trapping fungi (Arthrobotrys oligospora Fresenius) on the number of the northern rootknot nematode (Meloidogyne hapla Chitwood) in green pepper. J Plant Prot Res 51(4):371–376

    Google Scholar 

  • Bonants PJM, Fitters PFL, Thijs H, Den Belder E, Waalwijk C, Henfling JWDM (1995) A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 141:775–784

    Article  CAS  PubMed  Google Scholar 

  • Callan NW, Mathre D, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Google Scholar 

  • Cao J, Sun YQ, Berglindh T, Mellgård B, Li ZQ, Mårdh B, Mårdh S (2000) Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochimica et Biophysica Acta (BBA)-General Subjects 1474(1):107–113

    Google Scholar 

  • Cayrol J-C (1983) Biological control of Meloidogyne by Arthrobotrys irregularis. Revue de Nematologie 6:265–273

    Google Scholar 

  • Cayrol J-C, Djian C, Frankowskj J-P (1993) Efficacy of Abamectin BI for the control of Meloidogyne arenaria. Fundam Appl Nematol 16(3):239–246

    Google Scholar 

  • Chahal VPS, Chahal PPK (1991) Control of Meloidogyne incognita with Bacillus thuringiensis. In: Wright RJ, et al (Eds) Plant soil interaction. Proceedings of the Second International Symposium, June 24-29, 1990, Beckley, West Virginia, Springer, Dordrecht, pp 677–680.

    Google Scholar 

  • Chaya MK, Rao MS (2012) Bio-management of Meloidogyne incognita on okra using a formulation of Pochonia chlamydosporia. Pest Manag Hortic Ecosyst 18(1):84–87

    Google Scholar 

  • Churchill BW (1982) Mass production of microorganisms for biological control. In: Charudattan R, Walker HL (eds) Biological control of weeds with plant pathogens. John Wiley and Sons, New York, pp 157–173

    Google Scholar 

  • Cliquet S, Scheffer RJ (1997) Influence of culture conditions on growth and survival of conidia of Trichoderma spp. coated on seeds. Biocontrol Sci Tech 7(2):171–182

    Google Scholar 

  • Copping LG (2004) The manual of biocontrol agents, 3rd edn. British Crop Protection, Alton, UK

    Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F (1997) Role of 2, 4–diacetylphloroglucinol in the interaction of the biocontrol Pseudomonas strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davide RG (1990). Biological control of nematodes using Paecilomyces lilacinus in the Philippines. In: Integrated pest management for tropical root and tuber crops. Proceedings of the global status and prospects for integrated pest management of root and tuber crops in the Tropics, Ibadan, Nigeria, pp 156–163.

    Google Scholar 

  • Davies KG, Spiegel Y (2011) Root patho-systems nematology and biological control. In: Davies KG, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms, Progress in Biological Control, vol 11. Springer Science and Business Media, Dordrecht, the Netherlands, pp 291–303

    Chapter  Google Scholar 

  • Devarajan K, Rajendran G (2001) Effect of fungus Paecilomyces lilacinus (Thom.) Samson on the burrowing nematode Radopholus similis (Cobb) Thorne in banana. Pest Manag Horti Ecosyst 7(2):171–173

    Google Scholar 

  • Dhawan SC, Singh S (2010) Management of root-knot nematode, Meloidogyne incognita using Pochonia chlamydosporia on okra. Indian J Nematol 40:171–178

    Google Scholar 

  • Dhaygude K, Johansson H, Kulmuni J, Sundström L (2019) Genome organization and molecular characterization of the three Formica exsecta viruses—FeV1, FeV2 and FeV4. Peer J 6(e6216) https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=24119

  • Di-Pietro A (1995) Fungal antibiosis in biocontrol of plant disease. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms processes and applications. American Chemical Society

    Google Scholar 

  • Dos-Santos MA, Ferraz S, Muchovej JJ (1992) Evaluation of 20 species of fungi from Brazil for biocontrol of Meloidogyne incognita race-3. Nematropica 22:183–192

    Google Scholar 

  • Eapen SJ, Venugopal MN (1995) Field evaluation of Trichoderma spp. and Paecilomyces lilacinus for control of root knot nematodes and fungal diseases of cardamom nurseries. Indian J Nematol 25:15–16

    Google Scholar 

  • Elad Y, Kirshner B (1992) Calcium reduces Botrytis cinerea damages to plants of Ruscus hypoglossum. Phytoparasitica 20(4):285

    Google Scholar 

  • Elad Y, Chet I, Boyle P, Henis Y (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii-Scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85–88

    Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102

    Article  PubMed  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, DeWaele D (2003) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Article  Google Scholar 

  • Esteves I, Peteira B, Atkins SD, Magan N, Kerry BR (2009) Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycol Res 113:867–876

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Larrea VO (2012) Agricultural biopesticides. Current trends situation in Cuba. Revista Institucional del Grupo Empresarial de Producciones Biofarmaceúticas y Químicas. Labiofam 3:80–85

    Google Scholar 

  • Flaherty JE, Somodi GC, Jones JB, Harbaugh BK, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hortic Sci 35(5):882–884

    Google Scholar 

  • Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortic Sci 36:98–100

    Google Scholar 

  • George FR (1992) Baculovirus structural proteins. J Gen Virol 73:749–761

    Article  Google Scholar 

  • Ghisalberti EL, Narbey MJ, Dewan MM, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121(2):287–291

    Google Scholar 

  • Giannakou IO, Prophetou-Athanasiadou D (2004) A novel non-chemical nematicide for the control of root-knot nematodes. Appl Soil Ecol 26:69–79

    Article  Google Scholar 

  • Gives PM, Davies KG, Morgan M, Behnke JM (1999) Attachment tests of Pasteuria penetrans to the cuticle of plant and animal parasitic nematodes, free living nematodes and srf mutants of Caenorhabditis elegans. J Helminthol 73:67–71

    Article  Google Scholar 

  • Grace GN, Shivananda TN, Rao MS, Umamaheswari R (2019) Exploiting the biocontrol potential of Trichoderma harzianum against root knot nematode Meloidogyne incognita in tomato. Asian J Microbiol Biotechnol Environ Sci 21(2):498–506

    Google Scholar 

  • Granados RR, Williams KA (1986) In vivo infection and replication of baculoviruses. In: Granados RR, Federici BA (eds) The biology of baculoviruses, vol I. CRC Press, Boca Ratón, Florida, pp 89–108

    Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Falco MRD, Zhou X, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bt NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  PubMed  Google Scholar 

  • Haggag WM, Amin AW (2001) Efficacy of Trichoderma species in control of Fusarium-rot, root-knot and reniform nematodes disease complex on sunflower. Pak J Biol Sci 4:314–318

    Article  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

  • Hollis JP, Rodriguez-Kabana R (1966) Rapid kill of nematodes in flooded soil. Phytopathology 56:1015–1019

    CAS  PubMed  Google Scholar 

  • Huang Y, Xu CK, Ma L, Zhang KQ, Duan CQ, Mo MH (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Pl Dis 66:9–14

    Article  Google Scholar 

  • Ignoffo CM, Dropkin VH (1977) Deleterious effects of the thermostable toxin of Bacillus thuringiensis on species of soil inhabiting, mycophagous and plant parasitic nematodes. J Krans Entomol Soc 50:394–395

    Google Scholar 

  • Inbar J, Abramsky M, Cohen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100:337–346

    Article  Google Scholar 

  • Jackson LE (1989) Bacteriophage prevention and control of harmful plant bacteria. U.S. Patent No. 4,828,999.

    Google Scholar 

  • Jaizme-Vega MC, Rodríguez-Romero AS, Barroso Nunez LA (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:1–7

    Article  Google Scholar 

  • Jatala P, Kaltenbach R, Bocangel M (1979) Biological control of Meloidogyne incognita and Globodera pallida on potatoes. J Nematol 11:303

    Google Scholar 

  • Jatala P, Kaltenbach R, Devaux AJ, Campos R (1980) Field application of Paecilomyces lilacinus for controlling Meloidogyne incognita on potatoes. J Nematol 12:226–227

    Google Scholar 

  • Jayakumar J, Rajendran G, Ramakrishnan S (2005) Management of reniform nematode, Rotylenchulus reniformis on okra through Streptomyces avermitilis. Indian J Nematol 35(1):59–62

    Google Scholar 

  • Jonathan EI, Padmanabhan D, Ayyamperumal A (1995) Biological control of root knot nematode on betelvine Piper betle by Paecilomyces lilacinus. Nematol Mediterr 23:191–193

    Google Scholar 

  • Kalawate AS (2014) Basic and applied aspects of biopesticides. Sahayaraj K (Ed). Springer Publications.

    Google Scholar 

  • Kalha CS, Singh PP, Kang SS, Hunjan MS, Gupta V, Sharma R (2014) Entomopathogenic viruses and bacteria for insect-pest control. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Academic Press, Cambridge, MA, pp 225–244

    Chapter  Google Scholar 

  • Kari JA, Yu-Chen H, Thomas AK, Richard HS, Robert MK, Chikako O, Yoshiharu M, Shu W, Seppo Y-H (2013) Baculovirus: an Insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739–749

    Article  CAS  Google Scholar 

  • Kavitha PG, Jonathan EI, Nakkeeran S (2012) Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematol Mediterr 40:203–206

    Google Scholar 

  • Kerry BR (1988) Two microorganisms for the biological control of plant parasitic nematodes. Proceedings of Brighton Crop Protection Conference—Pest and Diseases. Brighton, UK, pp 603–607.

    Google Scholar 

  • Kerry BR (1990) Fungi as biocontrol agents for plant parasitic nematodes. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. British Mycological Society Symposia, New York, pp 153–170

    Google Scholar 

  • Khan TA, Khan ST, Fazal M, Siddiqui ZA (1997) Biological control of Meloidogyne incognita and Fusarium solani disease complex in papaya using Paecilomyces lilacinus and Trichoderma harzianum. Int J Nematol 7:127–132

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006) Interaction of plant parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum. Biol Control 51:659–678

    Google Scholar 

  • Kiewnick S (2004) Biological control of plant parasitic nematodes with Paecilomyces lilacinus, strain 251. In: Sikora RA, Gowen S, Hauschild R, Kiewnick S (eds) Multitrophic interactions in soil, vol 27. IOBC Corps Bulletin, pp 133–136

    Google Scholar 

  • Krebs B, Hoeding B, Kuebart S, Workie MA, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M (1998) Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. Zeitschrift Pflanzenkrankh Pflanzenschutz 105:181–197

    Google Scholar 

  • Kulkarni S (2015) Commercialization of microbial biopesticides for the management of pests and diseases. In: Awasthi LP (ed) Recent advances in the diagnosis and management of plant diseases. Springer, India, pp 1–10

    Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:129

    Article  Google Scholar 

  • Kumar V, Khan MR, Walia RK (2020) Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett. https://doi.org/10.1007/s40009-020-00895-2

  • Kutter E (1997) Phage therapy: bacteriophages as antibiotics. Evergreen State College, Olympia, WA.(Online). http://www.evergreen.edu/phage/phagetherapy/phagetherapy.htm.

  • Lifschitz R, Windham MT, Baker R (1986) Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76(7):720–725

    Google Scholar 

  • Lisanski SG (1985) Production and commercialization of pathogens. In: Hussey NW, Scopes N (eds) Biological pest control. Blanford Press, Poole, U.K., pp 210–218

    Google Scholar 

  • Liu XZ, Sun MH, Guo RJ, Zhang XD, Xie YQ, Qiu WF (1996) Biological control of soybean cyst nematode in China. In: Tang W, Cook RJ, Rovira A (eds) Proceeding of the International Workshop on biological control of plant diseases. China Agricultural University, Beijing, pp. 11–14.

    Google Scholar 

  • Lopez-Llorca LV, Macia-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, the Netherlands, pp 54–76

    Google Scholar 

  • Lysek H (1976) Autodehelminthization of soil in lowland deciduous forests. Universitatis Palackianae Olomucensis Facultatis Medicae 41:73–106

    Google Scholar 

  • Mankau R (1980) Biological: fungi as biocontrol agents. J Nematol 12:244–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mankau R, Prasad N (1977) Infectivity of Bacillus penetrans in plant parasitic nematodes. J Nematol 9:45–49

    Google Scholar 

  • Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, Hidalgo-Diaz L (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endoparasitic nematodes. J Nematol 45:1–7

    PubMed  PubMed Central  Google Scholar 

  • Manzoor S, Sinha AK, Bora BC (2002) Management of citrus nematode, Tylenchulus semipenetrans on khasi mandarin by Paecilomyces lilacinus. Indian J Nematol 32(2):153–155

    Google Scholar 

  • Marrone PG (2014) The market and potential for biopesticides. In: Gross AD, Coats JR, Duke SO, Seiber JN (eds) Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, USA, pp 245–258

    Google Scholar 

  • Mazzone HM (1985) Pathology associated with baculovirus infection. In: Maramorosh K, Sherman KE (eds) Viral insecticides for biological control. Academic Press, Orlando, Florida, pp 81–120

    Chapter  Google Scholar 

  • Metchnikoff E (1879) Zur Lehreüber Insekten- krankheiten. Zool Anz 3:44–47

    Google Scholar 

  • Meyer SLF (2003) United States Department of Agriculture—agricultural research service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci 59:665–670

    Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematode and soilborne plant-pathogenic fungi. J Nematol 34:1–8

    PubMed  PubMed Central  Google Scholar 

  • Mikami R, Yazawa K, Feukushima T, Arai S, Udagaura S, Samson RA (1989) Paecilotoxin production in clinical or terrestrial isolates of Paecilomyces lilacinus strains. Mycopathologia 108:195–199

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Saxena G, Mukherji KG (1995) Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Prot 14:647–651

    Article  Google Scholar 

  • Mo M, Xu C, Zhang K (2005) Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia 159:381–387

    Article  CAS  PubMed  Google Scholar 

  • Moosavi MR, Askary TH (2015) Nematophagous fungi: commercialization. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CAB International, pp 187–202

    Google Scholar 

  • Nagesh M, Reddy PP (1998) A modified method for mass multiplication of Pasteuria penetrans (Thorne) Sayr and Starr. J Biol Control 12:63–66

    Google Scholar 

  • Nagesh M, Reddy PP, Ramachandran N (2001) Pathogenicity of selected antagonistic soil fungi on meloidogyne incognita (Kofoid & White) eggs and egg masses under in vitro and in vivo conditions. J Biol Control 15:63–68

    Google Scholar 

  • Nagesh M, Hussaini SS, Ramanujam B, Rangeswaran R (2007) Molecular identification, characterization, variability and infectivity of Indian isolates of the nematophagous fungus Pochonia chlamydosporia. Nematol Mediterr 35:47–56

    Google Scholar 

  • Nair MG, Chandra A, Thorogod DL, Davis RMG (1995) Nematicidal and mosquitocidal aromatic nitro compounds produced by Streptomyces spp. Pestic Sci 43:361–365

    CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugarbeet. Revue de Nematologie 12:77–83

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:923

    Google Scholar 

  • Patel NB, Vyas RV, Patel DJ (1998) Efficacy of Paecilomyces lilacinus for the management of Meloidogyne javanica on groundnut. Anand, India, 23–25 November, 1998: pp 23–24.

    Google Scholar 

  • Patibanda K, Upadhyay JP, Mukhopadhyay AN (2002) Efficacy of Trichoderma harzianum Rifai alone or in combination with fungicides against Sclerotium wilt of groundnut. J Biol Control 16(1):57–64

    Google Scholar 

  • Peng D, Chai L, Wang F, Zhang F, Ruan L, Sun M (2011) Synergistic activity between Bacillus thuringiensis Cry6Aa and Cry55Aa toxins against Meloidogyne incognita. Microb Biotechnol 4:794–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabu P, Umamaheswari R, Rao MS (2019) Deciphering the biocontrol mechanism of Bacillus amyloliquefaciens IIHR BA2: detection of nematicidal, fungicidal and bactericidal lipopeptides. Asian J Microbiol Biotechnol Environ Sci 21(3):204–212

    Google Scholar 

  • Prasad SSV, Tilak KVBR (1972) Aerobic spore- forming bacteria from root-knot nematode infested soil. Indian J Microbiol 11:59–60

    Google Scholar 

  • Rajinikanth R, Pavani KV RMS, Umamaheswari R (2016) Molecular characterization of chitinase (chi18-5) and its expression in Trichoderma viride: role on nematode egg parasitism. Int J Curr Microbiol App Sci 5(12):56–64

    Google Scholar 

  • Ramanujam B, Rangeshwaran R, Sivakmar G, Mohan M, Yandigeriv MS (2014) Management of insect pests by microorganisms. Proc Indian Natl Sci Acad 80(2):455–471

    Article  Google Scholar 

  • Reddy PV, Ganga Visalakshy PN, Verghese A (2019) Entomopathogenic fungus, Metarhizium anisopliae (Metsch.) (Deuteromycotina: Hyphomycetes): a potential non-chemical option for the management of thrips, Scirtothrips dorsalis hood on grapes. J Entomol Zool Stud 7(3):638–640

    Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1998) Evaluation of Paecilomyces lilacinus cultures on neem cake extract for the management of roo-knot nematode on egg plant. Pest Manag Hortic Ecosyst 4(2):116–119

    Google Scholar 

  • Rao MS, Naik D, Shailaja M (2003) Management of Meloidogyne incognita on egg-plant using a formulation of Pochonia chlamydosporia, Zare et al., (Verticillium chlamydosporium Goddard). Pest Manag Hortic Ecosyst 9(3):71–76

    Google Scholar 

  • Rao MS, Shylaja M, Reddy PP (2004) Bio-management of Meloidogyne incognita on tuberose using a formulation of Pochonia chlamydosporia. Nematol Mediterr 32:165–167

    Google Scholar 

  • Rao MS, Dwivedi K, Kumar MR, Chaya MK, Grace GN, Rajinikanth R, Bhat A, Shivananda TN (2012) Efficacy of Paecilomyces lilacinus (1% W.P.) against Meloidogyne incognita on tomato in different agro-climatic regions in India. Pest Manag Hortic Ecosyst 18(2):199–203

    Google Scholar 

  • Rao MS, Umamaheshwari R, Priti K, Rajinikanth R, Vidyashree, Prabu P, Kamalnath M, Narayanaswamy B (2015a) Nematode management in vegetable crops. IIHR Technical Bulletin No.47. ICAR-IIHR, Bengaluru.

    Google Scholar 

  • Rao MS, Umamaheshwari R, Chakravarthy AK, Manoj Kumar R, Rajinikanth R, Chaya MK, Priti K, Narayanaswamy B (2015b) Nematode management in protected cultivation. IIHR Technical Bulletin No.48. ICAR-IIHR, Bengaluru.

    Google Scholar 

  • Rao M, Umamaheshwari R, Chaya MK, Manojkumar R, Priti K, Grace GN, Vidyashree and Narayanaswamy B (2015c) Management of nematodes in fruit crops. IIHR Technical Bulletin No.45, ICAR-IIHR, Bengaluru.

    Google Scholar 

  • Rao MS, Kamalnath M, Umamaheswari R, Rajinikanth R, Prabu P, Priti K, Grace GN, Chaya MK, Gopalakrishnan C (2017) Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Sci Hortic 218:56–62

    Article  Google Scholar 

  • Reddy PP, Nagesh M, Rao MS (1997) Integrated management of burrowing nematode, Radopholus similis using endomycorrhiza, Glomus mosseae, and oil cakes. Pest Manag Hortic Ecosyst 3(3):25–29

    Google Scholar 

  • Robert DP, Linda AK (2014) Insect viruses. https://doi.org/10.1002/9780470015902.a0020712.pub2

  • Saccardi A, Gambin E, Zaccardelli M, Barone G, Mazzucchi U (1993) Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard. Phytopathol Mediterr 32:206–210

    Google Scholar 

  • Sankaranarayanan C, Hussaini SS, Kumar PS, Rangeswaran R (1998) Antagonistic effect of Trichoderma and Gliocladium sp. against the root knot nematode (Meloidogyne incognita) on sunflower. In: Proceedings of National Symposium on rational approaches in nematode management for sustainable agriculture, Anand, India from Nov 23–25.

    Google Scholar 

  • Santhi A, Sivakumar CV (1995) Biological potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita (kofoid and white,1919) Chitwood 1949 on tomato. J Biol Control 9(2):113–115

    Google Scholar 

  • Santosh J, Eapen BB, Ramana KV (2005) Tropical soil microflora of spice based cropping systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    Article  Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective of nematology: the role of society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, USA, pp 7–14

    Google Scholar 

  • Sayre RM, Starr MP (1985) Pasteuria penetrans (ex Thorne 1940) non. rev. comb. n. sp. n. a mycelial and endospore formimg bacterium parasite in plant parasitic nematodes. Proc Heminth Society Washington 52:149–165

    Google Scholar 

  • Sayre RM, Wergin WP (1977) Bacterial parasite of a plant nematode: morphology and ultrastructure. J Bacteriol 129:1091–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouteden N, De-Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Seenivasan N, Devrajan K, Selvaraj N (2007) Management of potato cystnematodes, Globodera spp. through biologicalcontrol. Indian J Nematol 37(1):27–29

    Google Scholar 

  • Segers R, Butt TM, Kerry BR, Peberdy JF (1994) The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase like protease which hydrolyses host nematode protein in situ. Microbiology 140:2715–2723

    Google Scholar 

  • Segers R, Butt TM, Kerry BR, Beckett A, Peberdy JF (1996) The role of the proteinase VCP 1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycol Res 100:421–428

    Google Scholar 

  • Segers R, Butt TM, Carder JH, Keen JN, Kerry BR (1999) The subtilins of fungal pathogens of insects, nematodes and plants: distribution and variation. Mycol Res 103:395–402

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609

    Article  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agriculture ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Sikora RA, Sitaramaiah K (1980) Antagonistic interaction between the endotrophic mycorrhizal fungus, Glomus mosseae and Rotylenchulus reniformis on cotton. Nematropica 10:72–73

    Google Scholar 

  • Sivakumar M (1998) Non chemical management of Meloidogyne hapla Chitwod in carrot (Daucus carota). In: Nematology: challenges and opportunities in 21st century. Proceedings of the Third International Symposium of Afro-Asian Society of Nematologists (TISAASN), SBI, Coimbatore, April 16–19, pp 209–212.

    Google Scholar 

  • Soumya K, Ganga Visalakshy PN, Swathi C, Krishnamoorthy A, Pillai GK (2017) Integrated pest management of melon borer, Diaphania indica (Lepidoptera: Pyralidae) in bittergourd. J Biol Control 31(4):240–244. https://doi.org/10.18311/jbc/2017/15928

  • Sowmya DS, Rao MS (2012) Combined effect of Pseudomonas putida and Paecilomyces lilacinus in the management of disease complex in Gladiolus grandiflorus L. Pest Manag Hortic Ecosyst 18(2):204–209

    Google Scholar 

  • Sriram S, Manasa SB, Savitha MJ (2009) Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. J Biol Control 23(4):449–456

    Google Scholar 

  • Sriram S, Savitha MJ, Rohini HS, Jalali SK (2013) The most widely used fungal antagonist for plant disease management in India, Trichoderma viride is Trichoderma asperellum as confirmed by oligonucleotide barcode and morphological characters. Curr Sci 104(10):1332–1340

    CAS  Google Scholar 

  • Stirling GR, Wachtel MF (1980) Mass production of Bacillus penetrans for the biological control of root-knot nematode’. Nematologica 26:308–312

    Article  Google Scholar 

  • Surendra KD (2017) Entomopathogenic microorganisms: modes of action and role in IPM. E J Entomol Biolog. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=24119

  • Suresh CK, Bagyaraj DJ (1984) Interaction between a vesicular arbuscular mycorrhiza and a root knot nematode and its effect on growth and chemical composition of tomato. Nematol Mediterr 12:31–33

    Google Scholar 

  • Svircev AM, Gill JJ, Sholberg P (2002) Erwinia amylovora (Burrill) Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, fire blight (Enterobacteriaceae). Biological control programmes in Canada. CABI Publishing, Wallingford UK, pp 448–451.

    Google Scholar 

  • Swarnakumari N, Umamaheswari R, Sivakumar CV (2016) An in-vivo method for mass multiplication of bacterial parasite, Pasteuria penetrans of root-knot nematode, Meloidogyne sp. Pest Manag Hortic Ecosys 22(1):80–83

    Google Scholar 

  • Swathi P, Visalakshy G, Das SB (2019) Evaluation of Beauveria bassiana isolates against South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Entomol Res 43(1):61–68. https://doi.org/10.5958/0974-4576.2019.00012.4

    Article  Google Scholar 

  • Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Japanese J Phytopathol 56(2):243–246

    Google Scholar 

  • Tian B, Yang J, Zhang K (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms ofaction, and future prospects. FEMS Microbiol Ecol 61:197–213. https://doi.org/10.1111/j.1574-6941.2007.00349.x

    Article  CAS  PubMed  Google Scholar 

  • Timm M (1987) ‘Biocon’ controls nematodes biologically. Biotechnology 5:772–774

    Google Scholar 

  • Umamaheswari R, Sivakumar M, Subramanian S (2004) Induction of systemic resistance by Trichoderma viride treatment in greengram (Vigna radiata) against root knot nematode Meloidogyne incognita. Curr Nematol 15(12):1–7

    Google Scholar 

  • Upadhyay JP, Mukhopadhyay AN (1986) Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugarbeet. Int J Pest Manag 32(3):215–220

    Google Scholar 

  • Viaene N, Coyne DL, Kerry BR (2006) Biological and cultural management. In: Perry RN, Moens M (eds) Plant nematology. CAB International, Wallingford, UK, pp 346–369

    Chapter  Google Scholar 

  • Visalakshy PNG, Krishnamoorthy A (2012) Comparative field efficacy of various entomopathogenic fungi against Thrips tabaci: prospects for organic production of onion in India. Acta Hortic 933:433–437

    Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, DeWaele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6. https://doi.org/10.1016/j.apsoil.2012.04.007

  • Wilcox J, Tribe HT (1974) Fungal parasitism in cysts of Heterodera. I. Preliminary investigations. Trans Br Mycol Soc 62:585–594

    Google Scholar 

  • Wilson M, Jackson TA (2013) Progress in the commercialisation of bionematicides. BioControl 58(6):715–722. https://doi.org/10.1007/s10526-013-9511-5

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Umamaheswari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umamaheswari, R., Prasannakumar, N.R., Sriram, S., Sharma, S.K., Rao, M.S., Chaya, M.K. (2020). Biotic Stress Management in Horticultural Crops Using Microbial Intervention. In: Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_26

Download citation

Publish with us

Policies and ethics