Skip to main content

Host Resistance Signaling Network System to Multiple Stresses

  • Chapter
  • First Online:
Genomics of Crucifer’s Host-Resistance

Abstract

Cruciferous plants have developed numerous molecular mechanisms to respond to various environmental and multiple biotic and abiotic stresses. Whenever plant encounters any kind of stress, first of all there is perception of the signals by the potential sensors. This further generates secondary messengers (e.g., ABA, ROS, Ca2+, inositol phosphates). The secondary messengers can alter the levels of intracellular Ca2+. Any change in cytoplasmic Ca2+ is sensed by Ca2+ sensors, i.e., calcium binding proteins, and after interacting with corresponding interacting partners they initiate a protein phosphorylation cascade. This signaling cascade ultimately regulates the transcription factors that manage specific suite of stress-regulated genes and the functional proteins involved in protecting the cell against stress. The expression of stress-regulated genes leads to the production of various kinds of regulatory molecules like the phytohormones ABA, ET, and SA, transcription factors, etc. A second round of signaling can get started by these regulatory molecules which may further enhance the initial signaling pathway. These signaling networks are very complex and interconnected at many levels for transferring information to generate robust host resistance. Moreover, during signaling other components are also involved. A successful signal transduction pathway demands proper coordination of all signaling molecules. This is brought about by specific molecules whose functions are to transport, bring together, or modify the signaling molecules. They themselves are not involved in relaying the signal. These proteins consist of scaffolding proteins, protein modifiers (e.g., enzymes needed for protein glycosylation, methylation, ubiquitination, and lipidation), and adaptors. Cruciferous interactions with multiple stresses trigger a wide range of defense reactions at molecular and cellular levels to ensure that host cells are insulated from these challenges they encounter. The production of ROS, MAP Kinase cascades, and hormone signaling are triggered by multiple stresses and play crucial roles as common components of the host immune system. GbRLK, a receptor like kinase (RLK) gene, is involved in response to multiple stresses as positive regulator Transcription factors (TFs) are the central core of the genes as defense signaling pathways to multiple stress. MYB TFs play essential roles in multiple stress responses. ATAF1 is a multi-faceted TF with versatile capabilities and plays an important role in mediating crosstalk between multiple stress responses. HSPs gene regulate the function of NBS-LRR genes in response to multiple stresses. miRNAs may target only one locus or several loci in response to multiple stresses. Cell signaling in response to multiple stresses largely depends on the SnRK family of protein kinases in plants. Calcium is a key signaling pathway in host responses to multiple stresses through calcium sensor proteins like calcineurin-B-like protein (CBls), the calmodulin (CaM), and calmodulin-like protein (CMLs).

Transcriptome analyses based on microarrays and proteomic studies have given rise to rapid progress in the field of plant signal transduction and gene regulation. Gene Chip and cDNA microarrays together with massive whole genome sequencing proved to be useful in identifying novel signaling determinants on a whole-genome scale in response to various stresses. This has increased our understanding towards the complex mechanisms involved in various aspects of plant responses to environmental cues. Proteomics approach is useful in studying post-translational modifications of the proteins. It can also be used to clone unique genes by means of differential analysis which will expedite our understanding of stress signaling mechanisms in plants. Therefore, stress-tolerant plants can be genetically engineered by the combined efforts of plant molecular biologists, physiologists, and breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, SekiM SK, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Google Scholar 

  • Abu-Blan HA, Abu-Gharbieh WI (1994) Effect of soil solarization on winter planting of potato, cauliflower and cucumber in the central Jordan Valley. Dirasat Ser B Pure Appl Sci 21(3):203–213

    Google Scholar 

  • Acharya BD, Khattri GB, Chettri MK, Srivastava SC (2002) Effect of Brassica campestris var. Toria as a catch crop on Orobanche aegyptiaca seed bank. Crop Prot 21(7):533–537. https://doi.org/10.1016/S0261-2194(01)00137-5

    Article  Google Scholar 

  • Achbani EH, Tourvieille D (1993) Phytosanitary situation of sunflower in Morocco. (La situation phytosanitaire du tournesol au Maroc.). Al Awamia, pp 117–138

    Google Scholar 

  • Acimovic M (1977) Distribution of important sunflower diseases in Yugoslavia. In: Distribution of important sunflower diseases in Yugoslavia. Novi Sad, Yugoslavia: Inst. Field Veg Crops, 17 pp

    Google Scholar 

  • Acuna PR, Latorre GB, Cancino EL (1975) Translocation of systemic fungicides in sunflower (Helianthus annuus L.) and its action on Sclerotinia sclerotiorum (Lib.) de Bary. (Translocacion de fungicidas sistemicos en maravilla (Helianthus annuus L.) y su accion sobre Sclerotinia sclerotiorum (Lib.) de Bary.). Agricultura Tecnica 35(1):35–40

    Google Scholar 

  • Adair CN (1971) Influence of controlled-atmosphere storage conditions on Cabbage postharvest decay fungi. Plant Dis Reptr 55(10):864–868. https://doi.org/10.5197/j.2044-0588.2015.031.023

    Article  Google Scholar 

  • Ahmed AU, Akhond MAY (2015) First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on Lens culinaris in BangladeshNew Dis Reptr:23

    Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2009) Defense mechanisms of Brassicaceae: implications for plant – insect interactions and potential for integrated pest management- a review. Agron Sust Develop. https://doi.org/10.1051/agro/2009025

  • Akem CN, Dashiell KE (1992) Sclerotinia stem rot caused by Sclerotinia sclerotiorum on soybeans in Nigeria. Plant Dis 76(1):101. https://doi.org/10.1094/PD-76-0101C

    Article  Google Scholar 

  • Ale-Agha N, Boyle H, Braun U, Butin H, Jage H, Kummer V, Shin H-D (2008) Taxonomy, host range and distribution of some powdery mildew fungi (Erysiphales). Schlechtendalia 17:39–54

    Google Scholar 

  • Alford DV (1979) Observations on the cabbage stem flea beetle, Psylliodes chrysocephala, on winter oil-seed rape in Cambridgeshire. Ann Appl Biol 93(2):117–123. https://doi.org/10.1111/j.1744-7348.1979.tb06521.x

    Article  Google Scholar 

  • Alkooranee JT, Liu S, Aledan TR, Yin Y, Li M (2015) First report of powdery mildew caused by Erysiphe cruciferarum on Brassica napus in China. Plant Dis 99(11):1651

    Article  Google Scholar 

  • Álvarez-Venegas R, De-la-Pena C (2015) Editorial: recent advances of epigenetics in crop biotechnology. Front Plant Sci 7:413

    Google Scholar 

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Tokyo

    Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16(12):3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (1980) Diseases of rape. Commonwealth Agricultural Bureaux-Annotated Bibliography No. M3:38

    Google Scholar 

  • Anonymous (1981) Brassica diseases. Annual Report Edinburgh School Agriculture, 1981. Edinburgh, UK 131-132:137–138

    Google Scholar 

  • Anonymous (1983) Edinburgh. UK:39–40

    Google Scholar 

  • Anonymous (1985a) Diseases of vegetables. Annual Report Edinburgh School Agriculture, 1984. Edinburgh, UK 54:57–58

    Google Scholar 

  • Anonymous (1985b) Foliar diseases of Brassicas. Research Report 1984, Horticulture. Dublin, Ireland; An Foras Taluntais, pp 45–46

    Google Scholar 

  • Anonymous (1985c) Oilseed rape and other Brassicas. Annual Report Edinburgh School Agriculture, 1985. Edinbourgh, UK 57-59:102–105

    Google Scholar 

  • Anonymous (1985d) Oilseed rape. Annual Report Edinburgh School Agriculture (1984) Edinbourgh. UK 53:108–109

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012a) CDPK-mediated abiotic stress signaling. Plant SignalBehav 7:817–821. https://doi.org/10.4161/psb.20351

    Article  CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I et al (2012b) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36. https://doi.org/10.1111/j.1365-313X.2011.04766

    Article  CAS  PubMed  Google Scholar 

  • Ashraf SS, Basu-Chaudhary KC (2008) Effect of seed-borne Fusarium species on the physico-chemical properties of rapeseed oil. Phytopathology 117(2):107–112

    Article  Google Scholar 

  • Atkinson NJ (2011) Plant molecular response to combined drought and nematode stress. Ph.D. thesis, University of Leeds. http://etheses.whiterose.ac.uk/2131/

    Google Scholar 

  • Atkinson NJ, Erwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin A, Tulisalo U, Korpela S (1986) Flea beetles (Coleoptera: Chrysomelidae) (Halticinae) on rapeseed and sugar beet in Finland. Jf Agril Sci Finland 58:69–82

    Google Scholar 

  • AVA (2001) Diagnostic records of the Plant Health Diagnostic Services, Plant Health Centre. Agri-food & Veterinary Authority, Singapore

    Google Scholar 

  • Axelsen J (1992) The population dynamics and mortalities of the pod gall midge (Dasyneura brassicae Winn.) (Dipt., Cecidomyiidae) in winter rape and spring rape (Brassica napus L.) in Denmark. J Appl Entomol 114(5):463–471

    Article  Google Scholar 

  • Bagherani N, Shimi P (2001) Evaluation of the efficiency of different herbicides on weed control in rapeseed fields. J Agric Nat Res 8:157–167

    Google Scholar 

  • Bai DH (1977) Survey on the fruit rot occurrence and damages of shipping mandarin. Korean J Plant Prot 16(4):245–247

    Google Scholar 

  • Baka ZAM (1996) A fine-structural study of the downy mildew fungus Peronospora parasitica in the new host Cakile maritima. Archiv Phytopathol Plant Protect 30(1):41–51

    Article  Google Scholar 

  • Baka ZAM (2008) Occurrence and ultrastructure of Albugo candida on a new host, Arabis alpina in Saudi Arabia. Micron 39(8):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Bakhetia DRC (1983) Losses in rapeseed and mustard due to Lipaphis erysimi (Kalt.) in India-a literature study. Proc. 6th Intl Rapeseed Conf, 17-19 May 1983. Paris, France 6:1142–1147

    Google Scholar 

  • Bakhetia DRC, Labana KS (1978) Insect resistance in Brassica crops. Crop Improv 5:95–103

    Google Scholar 

  • Barbetti MJ, Sivasithampuram K (1981) Pseudocercosporella capsellae and Myrothecium verrucaria on rapeseed in Western Australia. Aus Plant Pathol Soc Proc 10:43–44

    Google Scholar 

  • Baribeau (1923) Stem wilt and rot of Sunflower in the province of Quebec. (Flétrissure pourriture de la tige du urnesal dans la province de Quebec.). Sci Agric 3(11):397–400

    Google Scholar 

  • Baudys E (1928) Phytopathologyogical notes W. Ochrana Rostlin viii 6:151–162

    Google Scholar 

  • Bazan De Segura C, Onsuelo L (1951) Plant diseases new to Peru. Plant Dis Reptr 35(10):465–466

    Google Scholar 

  • Beck-Mennagetta G (1930) Das Pflanzenreich.96 (IV-261) [ed. by Engler H G A]. 275 pp.

    Google Scholar 

  • Bedlan G (1987) The most important diseases of radishes. (Wichtigste Krankheiten an Rettich und Radieschen.). Pflanzenschutz 3(3-4):9–10

    Google Scholar 

  • Bender KW, Snedden WA (2013) Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol 163:486–495. https://doi.org/10.1104/pp.113.221069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ et al (2014) The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Biochem J 457:127–136. https://doi.org/10.1042/bj20131080

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yephet Y, Genizi A, Siti E (1993) Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology 83(5):509–513. https://doi.org/10.1094/Phyto-83-509

    Article  Google Scholar 

  • Bertus AL (1968) Downy mildew of stocks. The Agril Gazette New South Wales 79:178–179.

    Google Scholar 

  • Beura SK, Mohapatra KB, Paul PK, Nandi A (2006) Integrated management of Black-rot disease of cauliflower in Orissa. J Mycopathol Res 44(2):293–296

    Google Scholar 

  • Bhajbhuje MN (2014) Biodiversity of seed mycoflora in storage of Brassica campestris L. Intl J Life Sci 2(4):289–303

    Google Scholar 

  • Bhat DM, Bhagat RC (2009) Natural parasitism of leaf miner, Chromatomyia horticola (Goureau) (Diptera: Agromyzidae) on Vegetable Crops in Kashmir (India). World J Agric Sci 5(S):888–891

    Google Scholar 

  • Bhat NA, Masoodi SD (2000) Efficacy of various antibiotics against Xanthomonas campestrispv. campestris the casual pathogen of black rot of cabbage. Appl Biolog Res 2(1/2):161–163

    Google Scholar 

  • Bhatt DD (1966) Preliminary list of plant diseases recorded in the Katmandu Valley. J Sci Tri-Chandra College Sci Assoc 2 (1):13–20

    Google Scholar 

  • Bhattacharya I, Dutta S, MondalS MB (2014) Clubroot disease on Brassica crops in India. Can J Plant Pathol 36:154–160

    Article  Google Scholar 

  • Biesheuvel AR (1991) Information on white cabbages. Compromise between diseases and quality. (Voorlichting - witte kool. Schipperen tussen ziekten en kwaliteit.). Groenten + Fruit, Vollegrondsgroenten 1(9):14–15

    Google Scholar 

  • Bilichak A, Kovalchuk I (2016) Transgenerational response to stress in plants and its application for breeding. J Exp Bot 67:2081–2092

    Article  CAS  PubMed  Google Scholar 

  • Billard V, Ourry A, Maillard A, Garnica M (2014) Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins. PLoS One 9(10):e109889. https://doi.org/10.1371/journal.pone.0109889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindra OS, Bakhetia DRC (1967) A note on the natural incidence of sesamum phyllody virus disease in Brassica spp. at Ludhiana. J Res Punjab Agril Univ 4:406–408

    CAS  Google Scholar 

  • Bisby GR (1924) The Sclerotinia disease of sunflowers and other plants. Sci Agric 4(12):381–384

    Google Scholar 

  • Bjorling K (1944) Some fungus diseases of colza and white mustard. Vaxt sky dds noti servaxt skyddsanst Stockh 7:73–77

    Google Scholar 

  • Blackford FW (1944) Sclerotinia or cottony rot. Queensland Agril J 53(3):161–163

    Google Scholar 

  • Boesewinkel HJ (1977) Identification of Erysiphaceae by conidial characteristics. Rev Mycol 41:493–507

    Google Scholar 

  • Bogarada AP, Spiridonova VP, Martynovskaya NM (1984) Pests and diseases of Erysimum diffusum in the Ukraine. Byulleten' Glavnogo Botanicheskogo Sada:94–97

    Google Scholar 

  • Bokor A (1972) Diseases of rape. J Agric, WA 13:45–48

    Google Scholar 

  • Bokor A, Barbetti MJ, Brown AGP, Mac Nish GC, PMCR W (1975) Blackleg of rapeseed. J Agric WA 16:7–10

    Google Scholar 

  • Bolay A, Braun U, Delhey R, Kummer V, Piatek M, Wolczanska A (2005) Erysiphe deutziae—a new epidemic spread in Europe. Cryptogam Mycol 26: 293–298.

    Google Scholar 

  • Boning K (1936) Investigations on horseradish disease and their control. J Appl Bot 18:482–494

    Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40. https://doi.org/10.1016/j.tplants.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Willmann MR, Mccormack M, Lee H, Shan L, He P et al (2010) Deferential innate immune signaling via Ca(2C) sensor protein kinases. Nature 464:418–422. https://doi.org/10.1038/nature08794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken GK (1987) Relation between pod damage caused by larvae of bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae), and yield loss, shelling and seed quality in canola. Can Entomol 119(4):365–369

    Article  Google Scholar 

  • Bradbury JF (1986) Guide to Plant Pathogenic Bacteria. CAB International, Wallingford, UK

    Google Scholar 

  • Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjarvi J et al (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109:10593–10598. https://doi.org/10.1073/pnas.1116590109

  • Brien RM (1932) Host range of Sclerotinia sclerotiorum in New Zealand. New Zealand J Agric 44(2):127–129

    Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ ethylene dependent responses via EDS1 and PAD4. Plant J 47(4):532–546

    Article  CAS  PubMed  Google Scholar 

  • Brooks AV (1975) Notes from Wisley. Some disease problems of 1974. J Royal Hortl Soc 100(5):188–191

    Google Scholar 

  • Brooks F (2002) List of Plant Diseases in American Samoa 2002. In: Land Grant Technical Report No. 44, Pago Pago, American Samoa, American Samoa Community College Land Grant Program.

    Google Scholar 

  • Brown JG, Butler KD (1936) Sclerotinioise of lettuce in Arizona. Technical Bulletin of the Arizona Agriculture Experiment Station:474–506

    Google Scholar 

  • Buchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric Ecosys Environ 90(3):255–263. https://doi.org/10.1016/S0167-8809(01)00213-4

    Article  Google Scholar 

  • Buczack ST, Ockendon JG (1979) Preliminary observations on variation in susceptibility to clubroot among collections of some wild crucifers. Ann Appl Biol 92(1):113–118

    Article  Google Scholar 

  • Bunkina IA (1991) Erysiphales. In: Nizshie rastenija, griby i mohoobraznye Sovetskogo Daľnego Vostoka, Griby, Azbukina ZM (ed), Tom 2: Askomicety, Erizifaľnye, Klavicipitaľnye, Gelociaľnye: 11–142, Leningrad. [In Russian]

    Google Scholar 

  • Buonassisi A, MacDonald LS (1990) 1988 and 1989 canola disease survey in British Columbia. Can Plant Dis Surv 70:62

    Google Scholar 

  • Burdyukova LI, Dudka IA (1982) Species of the genus Albugo on new and rare host plants in the Ukrainian SSR. Mikol Fitopatol 16(4):289–294

    Google Scholar 

  • Burgess L (1977) Flea beetles (Coleoptera: Chrysomelidae) attacking rape crops in the Canadian Prairie Provinces. Can Entomologist 109(1):21–32

    Article  Google Scholar 

  • Burkholder WH (1957) Genus Erwinia. In: Berge’s Manual of Determinate Bacteriology, 7th edn. The Williams and Wilkins Co, Baltimore, pp 349–359

    Google Scholar 

  • Butler EJ (1918) Fungi and diseases in plant. Thaker Spink and Co., Calcutta, India, pp 297–300

    Google Scholar 

  • CAB International (1978) Leptosphaeria maculans. [Distribution map]. In: Distribution maps of plant diseases, CAB Inter., Wallingford, UK, p 73

    Google Scholar 

  • CAB International (1986) Distribution maps of plant diseases (Edition 5) UK, p 54

    Google Scholar 

  • CAB International (1987) Xanthomonas campestris pv. campestris. [Distribution map]. Distribution Maps of Plant Diseases, May (Edition 5). CAB International, Wallingford, UK, p 136

    Google Scholar 

  • CABI, EPPO (2001) Albugo candida. [Distribution map]. In: Distribution maps of plant diseases. CAB International, Wallingford, UK, p 821

    Google Scholar 

  • CABI, EPPO (2005) Sclerotinia sclerotiorum. [Distribution map]. In: Distribution maps of plant diseases, Wallingford, UK: CAB International. Map 971.

    Google Scholar 

  • CABI/EPPO (2011) Plasmodiophora brassicae. [Distribution map]. Distribution maps of plant diseases, No. April. CABI, Wallingford, UK, (Edition 4), p 101

    Google Scholar 

  • Canaday CH, Wyatt JE, Mullins JA (1991) Resistance in Broccoli to bacterial soft rot caused by Pseudomonas marginalis and fluorescent Pseudomonas species. Plant Dis 75:715–720. https://doi.org/10.1094/PD-75-0715

    Article  Google Scholar 

  • Canvin T (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 43:63–69

    Article  CAS  Google Scholar 

  • Caponero A, Iacobellis NS (1994) Foci of 'black rot' on cauliflower in Basilicata. Informatore Agrario 50(25):67–68

    Google Scholar 

  • Cappelli C, Corazza L, Luongo L, Stravato VM (1999) Interactions between crucifers and Rhizoctonia solani AG 2-1, AG 2-2IIIB, AG 2-2IV, AG 4. Phytopathol Medit 38:37–39

    Google Scholar 

  • Carrera J, Rodrigo G, Jaramillo A, Elena SF (2009) Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biol 10:R96, Cell Physiol 55:1859–1863

    Google Scholar 

  • Cassells AC, Walsh M (1995) Screening for Sclerotinia resistance in Helianthus tuberosus L. (Jerusalem artichoke) varieties, lines and somaclones, in the field and in vitro. Plant Pathol 44(3):428–437. https://doi.org/10.1111/j.1365-3059.1995.tb01665.x

    Article  Google Scholar 

  • Cerkauskas RF, Stobbs LW, Lowery DT, Van Driel L, Liu W, Vanschagen J (1998) Diseases, pests, and abiotic problems associated with oriental cruciferous vegetables in southern Ontario in 1993–1994. Can J Plant Pathol 20:87–94

    Article  Google Scholar 

  • Chambers SC (1959) A revised list of vegetable diseases recorded in Western Australia. J Agric WA 8:427–431

    Google Scholar 

  • Chandrasrikul A (1962) Tech Bull Dept Agric. Bangkok 6:23

    Google Scholar 

  • Channon AG (1981) Downy mildew of Brassicas. In: Spencer DM (ed) The downy mildews. Academic Press, London, pp 321–339

    Google Scholar 

  • Charleston DS, Kfir R (2000) The possibility of using Indian mustard, Brassica juncea, as a trap crop or the diamondback moth Plutella xylostella in South Africa. Crop Protect 19:455–460

    Article  Google Scholar 

  • Chater AO, Webb DA (1972) Orobanche. In: Tutin TG, Heywood VH, Burgess NA, Morre DM, Valentine DH, Walters SM, Webb DM (eds.) Flora Europaea 3. Diapensiaceae to Myoporaceae. University Press, Cambridge, UK, pp 286–293

    Google Scholar 

  • Chauhan LS, Saksena HK (1974) A new Rhizoctonia leaf blight of rapes and mustard. Indian J Farm Sci 2:98–99

    Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485. https://doi.org/10.1104/pp.005645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheval C, Aldon D, Galaud JP, Ranty B (2013) Calcium/calmodulin-mediated regulation of plant immunity. Biochem Biophys Acta 1833:1766–1771. https://doi.org/10.1016/j.bbamcr.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236. https://doi.org/10.1093/jxb/erh005

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root to-shoot signaling in plants. Proc Natl Acad Sci U S A 111:6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chorin M (1946) Downy mildew on cauliflower curds. Palestine J Bot Jerusalem Series-I 2:258–259

    Google Scholar 

  • Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of the heat shock transcription factor family in Glycine max. J Genet Genomics 40:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ciferri R (1961) Lista delle Peronosporaceae italiane. Riv Patol Veg (Pavia) Ser (J Plant Pathol) 1:333–348

    Google Scholar 

  • Cleene MD, Ley JD (1976) The host range of crown gall. Bot Rev 42(4):389–466

    Article  Google Scholar 

  • Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540. https://doi.org/10.1111/j.1365-313X.2010.04255.x

    Article  CAS  PubMed  Google Scholar 

  • Commonwealth Mycological Institute (1986) Distribution map of plant diseases, pathogen: Pseudocercosporella capsellae (EII.and Ev.) Deighton. Commonwealth Mycological Institute, Wallingford

    Google Scholar 

  • Cook SM, Murray DA, Williams IH (1999) Pollen beetle, Meligethes aeneus Fabricius, incidence in the composite hybrid winter oilseed rape, Synergy. Proceedings 10th Intl Rapeseed Congr: New Horizons for an Old Crop, Canberra, 26-29 September 1999. CD ROM and Abstract Book 3:311–436

    Google Scholar 

  • Couvreur L, Herman JL (1994) Protection of winter rape against diseases in Belgium. (La protection du colza d'hiver contre les maladies en Belgique.). In: Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent [46th International symposium on crop protection, Gent, Belgium, 3 May, 1994.], 59 (3a): 1133-1139.

    Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Creelman DW (1962) Diseases of vegetables and field crops-potato. Can Plant Dis Sur 42:57–65

    Google Scholar 

  • Crispin A, Campos J (1976) Bean diseases of importance in Mexico in 1975. Plant Dis Reptr 60(6):534–535

    Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector triggered immunity: from pathogen perception to a robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  • Cunningham GH (1927) New Zealand. Bulletin, Department of Agriculture

    Google Scholar 

  • Cvjetkovic B (2008) Less frequent diseases of oilseed rape. (Rjeđe ucestale bolesti uljane repice). Glasilo Biljne Zastite 8(5):318–320

    Google Scholar 

  • Da Costa MEAP, Da-Camara ES (1953) Some Portuguese mycological species II. Protugaliae Acta Biol 4:162–176

    Google Scholar 

  • Daebeler F, Amelung D, Zeise K (1988) Verticillium-welke an winterraps—auftreten und bedeutung. Nachrichtenblatt Pflanzenschutzdienst DDR 42:71–73

    Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012) The Colletotrichum boninense species complex. Studies Mycol 73:1–36

    Article  CAS  Google Scholar 

  • Damm U, O'Connell RJ, Groenewald JZ, Crous PW (2014) The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops. Studies Mycol 79:49–84

    Article  CAS  Google Scholar 

  • Darpoux H (1945) A contribution to the study of the disease of Oleaginous plants in France. Ann Epiphyt NS 11:71–103

    Google Scholar 

  • Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588:3169–3178. https://doi.org/10.1113/jphysiol.2010.191585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day I S, Reddy V S, Shad Ali G, Reddy A S (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3. doi: https://doi.org/10.1186/gb-2002-3-10-research0056

  • De Carvalho T (1948) Preliminary report on the diseases observed in plants and insects with Phytopathological annotations. Colonia de Mocambique, Reparticao de Agricultura, Seccao de Micologia: 84.

    Google Scholar 

  • de Dias MRS, Lucas MT (1978) Portuguese fungi. XXVI Agronomia Lusitana 38(4):285–295

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptomechanges of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18(9):923–937

    Article  PubMed  Google Scholar 

  • Demir F, Horntrich C, Blachutzik J O, Scherzer S, Reinders Y, Kierszniowska S, et al. (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci USA 110:8296–8301. doi: https://doi.org/10.1073/pnas.1211667110

  • Denner FDN, Theron DJ, Serfontein S (1992) Sclerotinia sclerotiorum on potatoes in South Africa. Phytophylactica 24(2):221–223

    Google Scholar 

  • Ding B, Wang GL (2015) Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci 6:675

    Article  PubMed  PubMed Central  Google Scholar 

  • Dippenaar BJ (1934) Downy mildew of cabbage and related plants. Farming South Africa 9:279–280

    Google Scholar 

  • Dixon GR (2009) The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. In: Dixon GR (ed) Plasmodiophora brassicae (clubroot) – a plant pathogen that alters host growth and productivity, J Plant Growth Regul, vol 28(Spl), pp 194–202

    Google Scholar 

  • Djebali N, Scott JK, Jourdan M, Souissi T (2009) Fungi pathogenic on wild radish (Raphanus raphanistrum L.) in northern Tunisia as potential biocontrol agents. Phytopathol Mediterr 48(2):205–213

    CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620. https://doi.org/10.1146/annurev-arplant-070109-104628

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dolinski MG (1979) The cabbage seedpod weevil, Ceutorhynchus assimilis (Payk) (Coleoptera: Curuliondae), as a potential pest of rape production in Canada, MPM Thesis. Simon Fraser University, Burnaby, Canada

    Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downey RK, Bolton JL (1961) Production of rape in western Canada. Publ Dept Agric Canada No 1021:19

    Google Scholar 

  • Drechsler C (1925) Pythium infection of cabbage heads. Phytopathology 15:482–485

    Google Scholar 

  • Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase familiesare activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527(1–3):43–50

    Article  CAS  PubMed  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP et al (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci U S A 110:8744–8749. https://doi.org/10.1073/pnas.1221294110

    Article  PubMed  PubMed Central  Google Scholar 

  • Duduk B, Bulajić A, Duduk N, Calari A, Paltrinier S, Krstić B, Bertaccinin (2007) Identification of phytoplasmas belonging to aster yellows ribosomal group (16SrI) in vegetables in Serbia. Bull Insectol 60:341–342

    Google Scholar 

  • Duwadi VR, Paneru RB, Bhattarai MR (1993) An estimate of yield loss of cauliflower (cv. Kibo Giant) seed caused by Sclerotinia sclerotiorum (Lib.) de Bary. In: PAC Working Paper - Pakhribas Agricultural Centre. 4 pp

    Google Scholar 

  • Elazari-Volcani Z (1944) Observations on Sclerotinia sclerotiorum in Palestine. Palestine J Bot (Rehovot Series). 206–207

    Google Scholar 

  • Elferjani R, Soolanayakanahally R (2018) Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front Plant Sci 9:1224. https://doi.org/10.3389/fpls.2018.01224

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellett CW (1966) Host Range of the Erysiphaceae of Ohio. The Ohio J Sci 66(6):570–581

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey. England No 608:464–497

    Google Scholar 

  • Ellis PJ (1983) Diseases of rapeseed in the Peace River region of Alberta. M.P.M. Thesis. Simon Fraser University, Burnaby, BC, Canada. 89 pp.

    Google Scholar 

  • Ellis MB, Ellis JP (1985) Microfungi on land plants: an identification handbook. Macmillan Publishing Co., New York, 818 pages

    Google Scholar 

  • EPPO (2014) PQR database. European and Mediterranean Plant Protection Organization, Paris, France. http://www.eppo.int/DATABASES/pqr/pqr.htm

    Google Scholar 

  • EPPO (2020) EPPO global database. In: EPPO global database. EPPO, Paris, France

    Google Scholar 

  • Eshraghi L, You MP, Barbetti MJ (2005) First report of white leaf spot caused by Pseudocercosporella capsellae on Brassica juncea in Australia. Plant Dis 89(10):1131. https://doi.org/10.1094/PD-89-1131B

    Article  CAS  PubMed  Google Scholar 

  • Ester A, Gerlagh M (1984) Resistance breeding. Zaadbelangen 38(4):73–74

    Google Scholar 

  • Etebarian HR (1989) Studies on downy mildew of radish and its chemical control. Iranian J Agril Sci 20:23–31

    Google Scholar 

  • Etebarian HR (1993) Studies on white rust of radish and cress in Varamin and Shahr-e-Ray areas. Iranian J Plant Pathol 29(3-4):51–52

    Google Scholar 

  • Evans KA, Bergeron J (1994) Behavioral and electrophysiological response of cabbage seed weevils (Ceutorhynchus assimilis) to conspecific odor. J Chem Ecol 20:979–989

    Article  CAS  PubMed  Google Scholar 

  • Fahy PC, Persley GJ (1983) Plant bacterial diseases. A diagnostic guide. Plant bacterial diseases .A diagnostic guide. vii + 393 pp.

    Google Scholar 

  • Farlow WG (1883) Enumeration of the Peronosporeae of the United States. Bot Gaz 8(305-315):327–337

    Article  Google Scholar 

  • Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul, MN, p 1252

    Google Scholar 

  • Farr DF, Bills GF, Chamuris GP, Rossman AY (1995) Fungi on Plants and Plant Products in the United States. APS Press, St. Paul, MN

    Google Scholar 

  • Felix S (1962) Investigations on Sclerotinia sclerotiorum (Lib.) de Bary, the fungus causing sclerotial disease of vegetables and ornamentals in Mauritius. Rev Agric Sucriere Lile Maurice 41:205–207

    Google Scholar 

  • Fernandez RM (1973) Serie Agricola Academia de ciencias de Cuba, Instituto de Investigaciones Tropicoles. 27:78

    Google Scholar 

  • Firman ID (1975) Information Document South Pacific Commission, No. 38: 7+3.

    Google Scholar 

  • Fivawo NC (1987) Diseases and pests of sunflower in Tanzania. TARO Newsletter 2(3):6–8

    Google Scholar 

  • Fodor M, Viczian O, Mergenthaler E, Sule S (1999) Cabbage infected with phytoplasma from the aster yellows group in Hungary. Acta Phytopathol Entomol Hung 34(1-2):1–6

    Google Scholar 

  • Foister CE (1948) Report of the Annual Conference of the Crytogamic section, 1947. Trans Bot Soc Edinburgh 35:103–107

    Article  Google Scholar 

  • Folk G, Tusnádi CSK (1985) A new disease of Gerbera in Hungary, Sclerotinia wilt. (A Gerbera új betegsége Magyarországon, a szklerotíniás hervadás.). Novenyvedelem 21(12):557–561

    Google Scholar 

  • Foucart G (1954) Observations on some fungus diseases of pyrethrum (Chrysanthemum cinerariifolium (Trev.) Bocc). Bulletin agricole du Congo belge 45(3):599–614

    Google Scholar 

  • Free JB, Williams IH (1978) The responses of the pollen beetle, Meligethes aeneus, and the seed weevil, Ceutorhynchus assimilis to oilseed rape, and other plants. J Appl Ecol 15:761–764

    Article  Google Scholar 

  • Frescatada-Rosa M, Robatzek S, Kuhn H (2015) Should I stay or should I go? Traffic control for plant pattern recognition receptors. Curr Opin Plant Biol 28:23–29

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gaetan S, Madia M (2004) First report of canola powdery mildew caused by Erysiphe polygoni in Argentina. Plant Dis 88(10):1163–1163. https://doi.org/10.1094/PDIS.2004.88.10.1163C

    Article  CAS  PubMed  Google Scholar 

  • Gaetan SA, Garbagnoli C, Irigoyen ED (1995) Microorganisms isolated from rape seeds (Brassica napus L. subsp. oleifera (Metzg.) Sinsk.)in Argentina. VIII Latin American congress of plant pathology. XIV Venezuelan congress of plant pathology. Faculty of forest sciences, University of Los Andes, Merida, Venezuela, 22-26 October 1995. Fitopatologfa, 30:10.

    Google Scholar 

  • Gaetan SA (2005) Occurrence of Fusarium wilt on canola caused by Fusarium oxysporum f. sp. conglutinans in Argentina. Plant Dis 89(4):432–432. https://doi.org/10.1094/PD-89-0432C

    Article  CAS  PubMed  Google Scholar 

  • Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168:1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparotto L, Chaves GM (1982) Chemical control of lettuce rot. (Controle quimico da podridao da alface). Fitopatol Bras 7(2):261–267

    CAS  Google Scholar 

  • Gaumann E (1923) Contributions toward a monograph of the genus Peronospora corda. Beitrage zur kryptogamenflora de schweiz 5:360

    Google Scholar 

  • Gerber GH (1976) Effects of feeding by adults of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), during late July and August on the yield of rapeseed (Cruciferae). Manitoba Entomol 10:31–35

    Google Scholar 

  • Gerlach WWP (1988) Plant diseases of Western Samoa. Samoan German Crop Protection Project, Apia, Western Samoa, 215 pp

    Google Scholar 

  • Ghafoor A (1964) Radish black-root fungus: Host range, nutrition and oospore production and germination. Phytopathology 54:1167–1171

    Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630. https://doi.org/10.1016/j.tplants.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkavaleka S, Efthimiou K, Lotos L, Katis NI (2012) First report of a ‘Candidatus Phytoplasma asteris’-related strain associated with cabbage stunting in Greece. J Plant Pathol 94:84–85

    Google Scholar 

  • Gladders P (1978) The disease threat to oilseed rape. Arable Farming 5:47–49

    Google Scholar 

  • Glaeser G (1970) The occurrence of important causes of injury to cultivated plants in Austria in 1969. Pflanzenschutzberichte 41:49–62

    Google Scholar 

  • Glaeser G (1973) White rust also on radishes. (Weisser Rost auch an Radieschen.). Pflanzenarzt 26 (3):20.

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FR (1924) Peronosporaceae at present known to occur in the Iberian flora. Boletín de la Real Sociedad Española de Historia Natural 24:305–312

    Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686. https://doi.org/10.1126/science.1198701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M (1992) Fundamentals of bacterial plant pathology. Academic Press Inc., San Diego, USA

    Google Scholar 

  • Graham CW, Gould HJ (1980) Cabbage stem weevil (Ceutorhynchus quadridens) on spring oilseed rape in Southern England and its control. Ann Appl Biol 95(1):1–10. https://doi.org/10.1111/j.1744-7348.1980.tb03964.x

  • Gram E, Rostrup S (1924) Survey of diseases of agricultural and horticultural cultivated plants in 1923. Tidsskr for Planteavl 30:361–414

    Google Scholar 

  • Grant CA, Bailey LD (1993) Fertility management in canola production. Can J Plant Sci 73:651–670

    Article  CAS  Google Scholar 

  • Greathead DJ, Greathead AH (1992) Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontr News Inform 13(4):61N–68N

    Article  Google Scholar 

  • Griffiths GCD (1986) Relative abundance of the root maggots Delia radicum (L.) and D. floralis (Fallén) (Diptera: Anthomyiidae) as pests of canola in Alberta. Quaest Entomol 22:253–260

    Google Scholar 

  • Grill D (1979) Botrytis and Sclerotinia on lettuce. (Botrytis et Sclerotinia de la laitue.). Revue Horticole 47–48.

    Google Scholar 

  • Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27:1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueguinou M, Gambade A, Felix R, Chantome A, Fourbon Y, Bougnoux P, et al. (2015) Lipid rafts, KCa/ClCa/Ca2+channel complexes and EGFR signaling: novel targets to reduce tumor development by lipids? Biochem Biophys Acta 1848:2603–2620. doi:https://doi.org/10.1016/j.bbamem.2014.10.036

  • Gugel RK, Petrie GA (1992) History, occurrence, impact, and control of blackleg of rapeseed. Can J Plant Pathol 14:36–45

    Article  Google Scholar 

  • Gupta DK (1991) Studies on black rot of cabbage in Manipur. Indian J Mycol Plant Pathol 21(2):203–204

    CAS  Google Scholar 

  • Gupta DK, Choudhary KCB (1995) Infection of radish and raya sag seeds by Xanthomonas campestris pv. campestris. Indian J Mycol Plant Pathol 25(3):332

    Google Scholar 

  • Habimana S, Nduwumuremyi A, Chinama RJD (2014) Management of orobanche in field crops-a review. J Soil Sci Plant Nutr 14 Epub 19-Ene-2014. https://doi.org/10.4067/S0718-95162014005-000004.

  • Hall R, Peters R, Assabgui R (1993) Occurrence and impact of blackleg on oilseed rape in Ontario. Can J Plant Pathol 15:305–313

    Article  Google Scholar 

  • Hammarlund C (1931) Shorter mycological notices II. A giant form of Peronospora brassicae Gaumann (=P. parasitica (Fries) Tulasne) on Raphanus sativus f. radicula. Bot Notiser 5:392–393

    Google Scholar 

  • Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201

    Article  CAS  PubMed  Google Scholar 

  • Hardwick NV, Davies JML, Wright DM (1994) The incidence of three virus diseases of winter oilseed rape in England and Wales in the 1991/92 and 1992/93 growing seasons. Plant Pathol 43:1045–1049

    Article  Google Scholar 

  • Harmon BL, McCaffrey JP (1997) Laboratory bioassay to assess Brassica spp. Germplasm for resistance to the cabbage seedpod weevil (Coleoptera: Curculionidae). J Econ Entomol 90:1392–1399

    Article  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs – a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159. https://doi.org/10.1016/S1360-1385(00)01577-6

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca(2C) signals through plant protein kinases. AnnuRev. Plant Biol 55:263–288. https://doi.org/10.1146/annurev.arplant.55.031903.141627

    Article  CAS  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059. https://doi.org/10.1016/j.biochi.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  • Haware MP (1990) Fusarium wilt and other important diseases of chickpea in the Mediterranean area. In: Options Mediterraneennes Serie A: Seminaires Medit 61–64.

    Google Scholar 

  • He YY, Chen Q, Shu C, Yang M, Zhou E (2016) Colletotrichum truncatum, a new cause of anthracnose on Chinese flowering cabbage (Brassica parachinensis) in China. Trop Plant Pathol 41:183–192. https://doi.org/10.1007/s40858-016-0086-4

  • Henderson MP (1918) The black-leg disease of cabbage caused by Phoma lingam (Tode) Desmaz. Phytopathology 8:379–431

    Google Scholar 

  • Henderson RM (1962) Some aspects of the life cycle of the plant pathogen Sclerotinia sclerotiorum in western Australia. Royal Society of Western Australia J 45:133–135

    Google Scholar 

  • Hensen LM (2004) Economic damage threshold model for pollen beetles (Meligethes aeneus F) in spring oilseed rape (Brassica napus L) crops. Crop Prot 23:43–46

    Article  Google Scholar 

  • Hickman CJ, Schofield ER, Taylor ER (1955) Light leaf spot of Brassica. Plant Pathol 4:129–131

    Article  Google Scholar 

  • Higgins BB (1917) Notes on some diseases of collards. Georgia Agric Expt Stn Annu Reprt 29:21–27

    Google Scholar 

  • Hill CB (1992) Blackleg of crucifers. In: Chaube HS, Kumar J, Mukhopadhyay AN, Singh US (eds) Plant diseases of international importance, Vol. 2: Diseases of vegetables and oilseed crops. Prentice Hall, Inc., Englewood Cliffs, pp 253–271

    Google Scholar 

  • Hiura M, Kanegae H (1934) Studies on the downy mildews of cruciferous vegetables in Japan. Trans Sapporo Nat Hist Soc13: 125-133.

    Google Scholar 

  • Ho BL (1985) The etiology of soft rot, black rot and bacterial blight diseases of cabbage (Brassica oleracea var. capitata L.). MARDI Res Bull 13(1):28–37

    Google Scholar 

  • Holm L, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. John Wiley and Sons, New York, Chichester, Brisbane, Toronto, UK, p 391

    Google Scholar 

  • Holtzhausen MA (1978) Seed-borne fungal pathogens and diseases of Japanese radish and their control in South Africa. Phytophylactica 10(4):107–113

    Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR et al (2003) The Arabidopsis CDPK-SnRK super family of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129(3):1086–1094.

    Google Scholar 

  • Hu Y, Han YT, Wei W, Li YJ, Zhang K, Gao YR, Zhao FL, Feng JY (2015) Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci 6:736

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated tomato movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Li H, Gupta R, Morris P, Luan S, Kieber JJ (2000) ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122(4):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humpherson-Jones FM (1991) The development of weather-related disease forecasts for vegetable crops in the UK. Problems and prospects. Bulletin OEPP 21(3):425–429. https://doi.org/10.1111/j.1365-2338.1991.tb01272.x

    Article  Google Scholar 

  • Hunter JE, Abawi GS, Becker RF (1975) Observations on the source and spread of Xanthomonas campestris in an epidemic of black rot in New York. Plant Dis Reptr 59(5):384–387

    Google Scholar 

  • Huser A, Takahara H, Schmalenbach W, O’Connell R (2009) Discovery of pathogenicity genes in the crucifer anthracnose fungus, Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant-Microbe Interact 22:143–156. https://doi.org/10.1094/MPMI-22-2-0143

    Article  CAS  PubMed  Google Scholar 

  • Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell Environ 37:1202–1222

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of ATMEKK1 (a MAP Kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253(2):532–543

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24(5):655–665

    Article  CAS  PubMed  Google Scholar 

  • Icochea T, Torres H, Perez W (1994) Downy mildew of Moca (Lepidium meyenii): symptoms and identification of causal agent. Fitapatologia 29:156–159

    Google Scholar 

  • Ilumae E, Kastanje V, Hansson A, Akk E (2007) Distribution and control of Sclerotinia stem rot. (Valgemädaniku (Sclerotinia sclerotiorum (Lib.) De Bary) levik suvirapsil (Brassica napus) ja selle tõrje.). In: Kadaja J (ed) Agronomy 2007. Estonian Research Institute of Agriculture, Sacu, Estonia, pp 117–120

    Google Scholar 

  • Ivancheva-Gabrovska T, Ilieva E, Kadir SR (1978) Pathogens of damping-off of tobacco seedlings in Bulgaria. (Prichiniteli na secheneto po tyutyuneviya razsad v B"lgariya.) Rasteniev"dni Nauki 15(8):113–120

    Google Scholar 

  • Iwasaki M, Paszkowski J (2014) Epigenetic memory in plants. EMBO J 33:1987–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalaluddin M, Ali A, Anwar QMK (1993) Foliar and floral diseases of rapeseed and mustard: their vectors and control. Pakistan J Phytopathol 5(1–2):29–39

    Google Scholar 

  • Jansen MK, Hangedorn PH, De Torres-Zabala M, Grant MR, Rung JH, Colling D, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defense towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Google Scholar 

  • Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY (2016) Notes on currently accepted species of Colletotrichum. Mycosphere 7(8):1192–1260. https://doi.org/10.5943/mycosphere/si/2c/9

    Article  Google Scholar 

  • Jellis GJ, Scott ES, Smith DB (1984) The causal organism of stem rot disease of faba beans. FABIS Newsletter, Faba Bean Information Service, ICARDA:24–27

    Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150

    Article  CAS  PubMed  Google Scholar 

  • Jesperson GD (1989) Survey of blackleg, Sclerotinia and foot rot in Saskatchewan canola crops, 1986. Can Plant Dis Surv 69:60–61

    Google Scholar 

  • Johnston A (1963) A preliminary plant disease survey in Hong Kong. Plant Prod Prot Div FAO, Rome 32

    Google Scholar 

  • Jones W (1944) Downy mildew disease of cauliflower seed plants. Scientia Agricola 24:282–284.

    Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18(11):3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun Z, Zhang Z, Gao Y, Zhou L, Fang L, Chen X, Ning Z, Chen T, Guo W, Zhang T (2015) Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt. Sci Rep 5:15048

    Article  PubMed  PubMed Central  Google Scholar 

  • Junell L (1967) Erysiphaceae of Sweden. Symbolae Botanicae Upsalienses 19:1–117

    Google Scholar 

  • Kachlicki P, Jetaildryczka M (1994) Properties of Phoma lingam (Tode ex Fr.) Desm. isolates from Poland II. Secondary metabolites production. Phytopathol Polonica. 1994:81–86

    Google Scholar 

  • Kado CI, Heskett MG, Langley RA (1972) Studies on Agrobacterium tumefaciens.Characterization of strains 1D135 and B6, and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor-inducing ability. Physiol Plant Pathol 2:47–57

    Article  CAS  Google Scholar 

  • Kaminska M, Berniak H, Kaminski P (2012a) Detection and identification of ‘Candidatus Phytoplasma asteris’ in Brassica rapa subsp. pekinensis in Poland. J Phytopathol. https://doi.org/10.1111/jph.12011

  • Kaminska M, Berniak H, Kaminski P (2012b) Failure of lower bud formation in Brassica plants associated with phytoplasma infection. J Agric Sci 4:219–226

    Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C et al (2010) Regulation of Arabidopsis defense responses against Spodopteralittoralis by CPK-mediated calcium signaling. BMC Plant Biol10:97. https://doi.org/10.1186/1471-2229-10-97

  • Karapapa VK, Typas MA (2001) Molecular characterization of the host-adapted pathogen Verticillium longisporum on the basis of a group-i intron found in the nuclear SSU-rRNA Gene. Current Microbiol 42:217–224. https://doi.org/10.1007/s002840010207

    Article  CAS  PubMed  Google Scholar 

  • Karolewski Z (2010) Development of light leaf spot (Pyrenopeziza brassicae) on Brassicas. Phytopathology 55:13–20

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229. https://doi.org/10.1016/j.tplants.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  • Keane G, Edwards A, Clark MF (1996) Differentiation of group 16Sr-IB aster yellows phytoplasmas with monoclonal antibodies. In: Proceedings of the Diagnostics in Crop Production Symposium. No. 65. April 1-3, Coventry, UK: Br Crop Prot Council, pp 263–268

    Google Scholar 

  • Khangura RK, Wright DG (2012) First report of club root caused by Plasmodiophora brassicae on canola in Australia. Plant Dis 96(7):1075–1076

    Article  CAS  PubMed  Google Scholar 

  • Khangura RK, Barbetti MJ, Sweetingham MW (1999) Characterization and pathogenicity of Rhizoctonia species on canola. Plant Dis 83:714–721

    Article  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta 1819:137–148

    CAS  PubMed  Google Scholar 

  • Khristov A (1979) Diseases of turnip in Bulgaria. Rastitelna Zaschita 27:27–28

    Google Scholar 

  • Kim BS (1986) Testing for detection of Xanthomonas campestrispv. campestrisin crucifer seeds and seed disinfection. Korean J Plant Pathol 2(2):96–101

    Google Scholar 

  • Kim WG, Moon MH, Kim JH, Choi HW, Hong SK (2009) Occurrence of Clubroot on Pak-Choi Caused by Plasmodiophora brassicae. Mycobiol 37(1):69–71

    Article  CAS  Google Scholar 

  • Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H, Myers CL, Katagiri F (2014) Signaling mechanisms underlying the robustness and tenability of the plant immune network. Cell Host Microbe 15:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Kishun R (1984) Seed treatment for control of cabbage black rot. J Turkish Phytopathol 13(2/3):81–86

    CAS  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kissoudis C, Chowdhury R, van Heusden S, van de Wiel C, Finkers R, Visser RGF, Bai Y, van der Linden G (2015) Combined biotic and abiotic stress resistance in tomato. Euphytica 202:317–332

    Article  CAS  Google Scholar 

  • Klemm M (1938) The most important diseases and pests of colza and rape. Dtsch Landw Pr IXV 19: 239; 20: 251–252

    Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267

    Article  CAS  PubMed  Google Scholar 

  • Koch de Brotus L, Boasse C (1955) Publ Minist Gonad Agric Montevideo 106:65

    Google Scholar 

  • Koch E, Slusarenko AJ (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    Google Scholar 

  • Kocks CG, Zadoks JC (1996) Cabbage refuse piles as sources of inoculum for black rot epidemics. Plant Dis 80(7):789–792

    Article  Google Scholar 

  • Kola K (1980) Comparative study of sunflower varieties to assess their resistance to fungal diseases in the Zadrime area. (Studim krahasues i llojeve te lulediellit per te pare qendrueshmerine ndaj semundjeve kerpudhore ne zonen e Zadrimes.). Buletini i Shkencave Bujqesore 19(1):87–94

    Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseed crops, vol II. CRC Press, Inc

    Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krexner R (1969) Sclerotial disease of Sunflower. (Sklerotienkrankheit der Sonnenblume.). Pflanzenarzt 22(3):20–22

    Google Scholar 

  • Kritzman G, Ben-Yephet Y (1990) Control by metham-sodium of Xanthomonas campestrispv. campestris and the pathogen's survival in soil. Phytoparasitica 18(3):217–227

    Article  Google Scholar 

  • Kruger W (1983) White stalk (rape canker). Information or integrated plant protection. (Weissstengeligkeit (Rapskrebs). Information zum Integrierten Pflanzenschutz.). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 35(10):159–160

    Google Scholar 

  • Kryopoulus P (1916) Failure of seedlings, particularly of crucifers. Centbl Bakt 2 Abt 45:6–12, 244–257, pls 3

    Google Scholar 

  • Kuhnholtz LM, Gastuad JM (1943) Plant Pathological Notes. Ann Epiphyt N.S. 9: 207–219

    Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GAG, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R (2014) Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 174:93–115

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2017) Assessment of avoidable yield losses in crop brassicas by insect-pests. J Entomol Zool Stud 5(3):1814–1818

    Google Scholar 

  • Kumar S, Singh YP (2015) Insect-Pests. In: Arvind Kumar S, Banga SS, Meena PD, Kumar PR (eds) Brassica oilseeds: breeding and management. CAB International, London, UK, p 261

    Chapter  Google Scholar 

  • Kumar A, Bag MK, Singh R, Jailani AAK, Mandal B, Roy A (2018) Natural infection of croton yellow vein mosaic virus and its cognate betasatellite in germplasm of different Crambe spp. in India. Virus Res 243:60–64

    Article  CAS  PubMed  Google Scholar 

  • Kurzawinska H, Poniedziałek M (1987) Diseases of horse radish with a particular consideration for brittle root. Bull Polish Acad Sci, Biol Sci 35(7-9):237–244

    Google Scholar 

  • Kwaaitaal M, Huisman R, Maintz J, Reinstadler A, Panstruga R (2011) Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. Biochem J 440:355–365. https://doi.org/10.1042/BJ20111112

    Article  CAS  PubMed  Google Scholar 

  • Kyrova E, Egorova M, Ignatov A (2020) Species of the genus Xanthomonas infecting cereals and oilseeds in the Russian Federation and its diagnostics. BIO Web of Conferences 18, 00017, IV All-Russian Plant Prot Cong. https://doi.org/10.1051/bioconf/20201800017

  • Lachaud C, Da Silva D, Cotelle V, Thuleau P, Xiong T C, Jauneau A et al. (2010) Nuclear calcium controls the apoptotic-like cell death induced by derythro-sphinganine in tobacco cells. CellCalcium 47: 92–100. doi: https://doi.org/10.1016/j.ceca.2009.11.011

  • Lachaud C, Prigent E, Thuleau P, Grat S, Da Silva D, Briere C et al (2013) 14-3-3-regulated Ca(2C)-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ 20:209–217. https://doi.org/10.1038/cdd.2012.114

    Article  CAS  PubMed  Google Scholar 

  • Lacoste L, Louvet J, Anselme C, Alabouvette C, Brunin B, Pierre JG (1969) Role of P. Ungam and of its perfect form L. maculans in epidemics of black leg of Colza (B. napus var. oleifera). (Role de Phoma Ungam (Tode) Desm. et de sa forme parfaite Leptospbaeria maculans (Desm.) Ces.et de Not. dans les épidémies de nécrose du collet de Colza (Brassica napus L. var. oleifera Metzer).). Compte Rendu Hebdomadaire des Seances de l'Academie d'Agriculture de France 55(14):981–989

    Google Scholar 

  • Laguna IG, Salazar LG (1984) Banana fruit rot caused by Sclerotinia sclerotiorum (Lib.) de Bary (Whetzelinia sclerotiorum) in Costa Rica. (Pudrición del fruto del banano causada por Sclerotinia sclerotiorum (Lib.) de Bary (Whetzelinia sclerotiorum) en Costa Rica.). Turrialba 34(1):105–106

    Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol7(3):323–328.

    Google Scholar 

  • Lamb RJ (1989) Entomology of oilseed Brassica crops. Annu Rev Entomol 34:211–229

    Article  Google Scholar 

  • Langdon RFN (1948) Records of Queensland fungi v. Pap. Dept. Biol., Univ. Qd, 2: 9

    Google Scholar 

  • Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B et al (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar KC channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6:1274–1289. https://doi.org/10.1093/mp/sss158

    Article  CAS  PubMed  Google Scholar 

  • Leather RI (1967) A catalogue of some plant diseases and fungi in Jamaica. Bull Minist Agric Lands Jamaica 61:92

    Google Scholar 

  • Leba LJ, Cheval C, Ortiz-Martin I, Ranty B, Beuzon CR, Galaud JP et al (2012) CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signaling pathway. Plant J 71:976–989. https://doi.org/10.1111/j.1365-313X.2012.05045.x

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displayscold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IM, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) 'Candidatus Phytoplasma asteris', a novel phytoplasma taxon associated with aster yellows and related diseases. Intl J Syst Evol Microbiol 54(4):1037–1048

    Google Scholar 

  • Lehoczky J (1957) The occurrence of some economically significant parasitic micro-fungi. Ann Acad Hort Vitic Budapest 21:3–14

    Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence forjasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermo tolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 8:e54880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Varala K, Coruzzi M (2015) From milliseconds to lifetimes; tracking the dynamic behavior of transcription factors in gene networks. Trends Genet 31:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Lv H, Zhang S, Zhang S, Li F, Zhang H, Qian W, Fang Z, Sun R (2019) TuMV management for Brassica crops through host resistance: retrospect and prospects. Plant Pathol 68:1035–1044. https://doi.org/10.1111/ppa.13016

    Article  CAS  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochem Biophys Acta 1833:1582–1589. https://doi.org/10.1016/j.bbamcr.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  • Lindquist JC (1946) Argentine species of the genus Peronospora. Physics at University of Buenos Aires 15:13–20

    Google Scholar 

  • Liu Q, Rimmer SR (1991) Inheritance of resistance in Brassica napus to an Ethiopian isolate of Albugo candida from Brassica carinata. Can J Plant Pathol 13(3):197–201

    Article  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo TT (1961) Plant Ind. Ser. Chin-AM Jt. Comm Rur Reconstr 23:52

    Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7):1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One 8:e57171. https://doi.org/10.1371/journal.pone.0057171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42. https://doi.org/10.1016/j.tplants.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinaseand MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 102(30):10736–10741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Laluk K, Lai Z, Veronesa P, Song F, Mengiste T (2010) The Arabidopsis botrytis susceptible interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol 154:1766–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49

    Article  PubMed  PubMed Central  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  PubMed  Google Scholar 

  • Macias W (1996) Albugo candida – a serious disease of horseradish. (Bielik krzyzowych – grozna choroba chrzanu). Ochrona Roslin. 40 (11):12

    Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid.Plant J56:575–589. https://doi.org/10.1111/j.1365-313X.2008.03622.x

  • Maire R (1927) Algeria: plant disease observed in March, 1927. Intl Bull Plant Prot 51-52.

    Google Scholar 

  • Mantri N, Pang ECK, Ford R (2010a) Molecular biology for stress management. In: Yadav SS, McNeil DN, Weeden N, Patil SS (eds) Climate change and management of cool season grain legume crops. Springer, Heidelberg, pp 377–408. isbn:978-90-481-3708-4

    Chapter  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang ECK (2010b) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69:286–292

    Article  Google Scholar 

  • Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. Plant Genome 6:1–14

    Article  CAS  Google Scholar 

  • Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B et al (2013) Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J 76:466–480. https://doi.org/10.1111/tpj.12311

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolicNPR1 and negatively regulates jasmonate responsive gene expression. Plant Cell Physiol 48(6):833–842

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Van HJL, Dash S, Dickerson JA (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10:346

    Google Scholar 

  • Marcone C, Ragozzino A (1995) Detection of phytoplasmas in Brassica spp. In: southern Italy and their characterization by RFLP analysis. J Plant Dis Protect 102:449–460

    Google Scholar 

  • Mariano RLB, Barros ST, Menezes M, Pio-Ribeiro G (1985) Detection of Xanthomonas campestris pv. campestris in batches of commercial Brassica seeds. Fitopatol Bras 10(3):423–426

    Google Scholar 

  • Martens JW, Ravagan G, Mcuonald WC (1970) Diseases of sunflowers in kenya. East African Agril Forestry J 35(4):389–395

    Article  Google Scholar 

  • Martínez-de la Parte E, Trujillo M, Cantillo-Pérez T, Garcia D (2013) First report of white mould of beans caused by Sclerotinia sclerotiorum in Cuba. New Dis Reptr 5. https://doi.org/10.5197/j.2044-0588.2013.027.005

  • Massa AN, Childs KL, Buell R (2013) Abiotic and biotic stress responses in Solanum tuberosum group Phureja DM1-3 516 R44 as measured through whole transcriptome sequencing. Plant Genome 6:1–10

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8(4):409–414

    Article  CAS  PubMed  Google Scholar 

  • Mazuma EDL, Theu MPKJ, Likongwe MC (2008) Participatory on-farm evaluation of Ridomil Gold MZ 68 WP for its efficacy for clubroot disease control in cabbage. In: Theu MPKJ (ed) Plant protection progress report for the 2007/2008 season, presented at the Department of Agricultural Research Services Planning and Review Meeting, Andrews Hotel, Mangochi, 14-20 September, 2008. Ministry of Agriculture and Food Security, Lilongwe, Malawi, pp 127–134

    Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signaling systems. Trends PlantSci 3:32–36. https://doi.org/10.1016/S1360-1385(97)01150-3

    Article  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2011) Plant nutrient function and deficiency and toxicity symptoms. Montana State University. Nutr Manag Module 9:1–16

    Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159:585–598. https://doi.org/10.1046/j.1469-8137.2003.00845.x

    Article  CAS  PubMed  Google Scholar 

  • McGee DC (1973) Losses in rapeseed caused by black leg in Victoria, Australia, 2nd Intl Congr Plant Pathol Minneapolis. MN Abstr 0825

    Google Scholar 

  • McGuire JV, Crandall BS (1967) USDA Intern. Agric Develop Service 157

    Google Scholar 

  • Mcintosh AES (1951) Vegetable diseases. Annual Report for the year 1949 of the Department of Agriculture, Malaya: p 55

    Google Scholar 

  • Mckee RK (1961) Plant pathology research division-report research and technology. Work Minist Agric N Ireland 1970:105–113

    Google Scholar 

  • Meena PD, Mondal K, Jha SK, Chattopadhyay C, Kumar A (2010) Bacterial rot: a new threat for rapeseed-mustard production system in India. J Oilseed Brassica 1:39–41

    Google Scholar 

  • Meena MC, Meena PD, Shukla AK, Barman M, Meena MK, Singh P, Kumar A (2016) Role of plant nutrients in enhancing productivity and managing diseases of oilseed Brassica. J Oilseed Brassica 7(1):1–20

    Google Scholar 

  • Meena PD, Gupta R, Sharma P, Rai PK, Meena HS, Singh SK (2019) Isolation and characterization of a new fungal species, Fusarium equiseti (Corda) Sacc., from Brassica juncea in Bharatpur. J Oilseed Brassica 10(2):130–133

    Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B et al (2010) The Ca(2+) -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498. https://doi.org/10.1111/j.1365-313X.2010.04257.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier R (1996) Research into controlling white blister (Albugo candida) in Brussels sprouts. (Onderzoek naar de bestrijding van witte roest (Albugo candida) in spruitkool.). Publicatie - Proefstation voor de Akkerbouw en de Groenteteelt in de Vollegrond, Lelystad. pp 137–139

    Google Scholar 

  • Melchers LE (1931) A check list of plant diseases and fungi occurring in Egypt. Trans Kansas Acad Sci 34:41–106

    Article  Google Scholar 

  • Mengiste T, Chen X, Salmeron JM, Dietrich RA (2003) The BOS1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mert-Turk F, Kemal Gül M, Egesel C (2008) Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape. Mycopathologia 165(1):27–35

    Article  PubMed  Google Scholar 

  • Mew TW, Ch WC, Chu L (1976) Infectivity and survival of soft-rot bacteria in Chinese cabbage. Phytopathology 66:1325–1327

    Article  Google Scholar 

  • Mguni CM (1987) Diseases of crops in the semiarid areas of Zimbabwe: can they be controlled economically? In: Cropping in the Semiarid Areas of Zimbabwe. Workshop Proceedings, Harare. Agritex 2: pp 417–433

    Google Scholar 

  • Mguni CM (1995) Cabbage research in Zimbabwe. Brassica planning workshop for east and south Africa region. Lilongwe, Malawi, 15-18 May. GTZ/IPM Hortic, Nairobi, Kenya, p 31

    Google Scholar 

  • Mguni CM (1996) Bacterial Black Rot (Xanthomonas campestris pv. campestris) of Vegetable Brassicas in Zimbabwe. Ph.D thesis, Department of Plant Biology.The Royal Veterinary and Agricultural University, Copenhagen and Danish Government Institute for Developing Countries, Hellerup, Denmark.

    Google Scholar 

  • Mguni CM, Mortensen CN, Hockenhull J, Keswani CL (1996) Pathogenicity of strains of Xanthomonas campestrispv. campestris from Zimbabwe belonging to Biolog types Xcc, XccA and XccB on Brassica spp. Abstracts, IX international conference on plant pathogenic bacteria, August 26–29, 1996, Centre for Advanced Study in Botany, University of Madras, Guindy Campus, India.

    Google Scholar 

  • Michail SH, Al-Menoufi OA, Abo-Taleb EA (1979) Seed health testing, leaf spot and damping-off of certain crucifers in Egypt. Acta Phytopathol Acad Sci Hung 14:41–48

    Google Scholar 

  • Middleton JT (1943) The taxonomy, host range and geographic distribution of the Genus Pythium. Memoirs Torrey Bot Club 20(1):1–171

    Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V et al (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2: ra45. https://doi.org/10.1126/scisignal.2000448

  • Minuto G, Minuto A, Garibaldi A (1997) Eruca sativa: chemical control of downy mildew and white rust. (Rucola: lotta chimica contro Peronospora e ruggine bianca.). Colture Protette 26(6):61–66

    Google Scholar 

  • Mirza MS, Ahmad Y (1988) Cabbage: a new host of Sclerotinia sclerotiorum for Pakistan. Agronomie 8(1):85–87. https://doi.org/10.1051/agro:19880111

    Article  Google Scholar 

  • Moghaddam SAMH, Izadyar M (1994) Bud and twig dieback of mulberry in Gilan. Iranian J Plant Pathol 30 (1-4): 5-6 En; 18-24.

    Google Scholar 

  • Mohammadi-Doustdar E (1967) Mycology, powdery mildew of Iran, Tehran University no. 1262.

    Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Trans-generation memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress- activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100(1):358–363

    Article  CAS  PubMed  Google Scholar 

  • Moore WC (1959) British parasitic fungi. Cambridge University Press 9:236

    Google Scholar 

  • Morales Y, de Jesús M, Braun U, Minnis AM, Tovar-Pedraza JM (2009) Some new records and new species of powdery mildew fungi from Mexico. Schlechtendalia 19:47–61

    Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2C)-permeable channels and stomatal closure. PLoS Biol 4:e327. https://doi.org/10.1371/journal.pbio.0040327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriwaki J, Tsukiboshi T, Sato T (2002) Grouping of Colletotrichum species in Japan based on rDNA sequences. J Gen Plant Pathol 68:307–320

    Article  CAS  Google Scholar 

  • Morris MJ, Knox-Davies PS (1980) Raphanus raphanistrum as a weed host of pathogens of cultivated cruciferae in the Western Cape Province of South Africa. Phytophylactica 12(2):53–55

    Google Scholar 

  • Morwood RB (1956) Notes on plant diseases listed for Fiji. Agric J Fiji 27(3-4):83–86

    Google Scholar 

  • Mou HQ, Zhang YJ, Li HX, Zhu SF, Li ZH, Zhano WJ (2012) Molecular Identification of a Candidatus Phytoplasma asteris associated with cabbage witches’-broom in China. J Phytopathol 160:304–307

    Article  CAS  Google Scholar 

  • Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signaling. Nature 500:422–426. https://doi.org/10.1038/nature12478

    Article  CAS  PubMed  Google Scholar 

  • Muhammad Ehetisham-ul-Haq M, Kamran M, Idrees M, Ali S, Iqbal M, Abbas H, Khan QAT, Rashid A, Yasin SI (2017) Management of bacterial leaf spot disease of mustard through resistant germplasm. Plant Prot 01(01):07–10

    Google Scholar 

  • Muhammad S, Khan SH (2008) Effect of abiotic factors on incidence and severity of diseases on cabbage (Brassica oleracea L.) in Dera Ghazi Khan. Pakistan J Phytopathol 20 (1):108–112. Papers presented at the 3rd Intl Conf Plant Pathol, Lahore, Pakistan, 19-21 November 2007.

    Google Scholar 

  • Mujica F, Vergara C (1960) Balm tec. No. 6. Dept Invest Agric Chili 6: 60.

    Google Scholar 

  • Mukerji KG (1973) Additions to plant diseases of Delhi. Angew Bot 47(5/6):205–213

    Google Scholar 

  • Mukula J (1957) On the decay of stored Carrots in Finland. Acta Agric Scand 2(Suppl):132 pp

    Google Scholar 

  • Muller AS (1950) A preliminary survey of plant diseases in Guatemala. Plant Dis Reptr 34:161

    Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • My HT (1966) A preliminary list of plant diseases in south Vietnam. Directorate of Research, Saigon 142

    Google Scholar 

  • Nakagami H, Pitzchke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Narsai R, Wang C, Chen J, Wu J, Shou H, Whelan J (2013) Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrean G, Denchev CM (2000) New records of Bulgarian parasitic fungi. Fl Medit 10:101–108

    Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defenses. Curr Issues Mol Biol 23:1–16

    Article  PubMed  Google Scholar 

  • Nemeth J, Laszlo EM (1983) Bacterial black rot (Xanthomonas campestris (Pammel) Dowson 1939) of Brassica species. Novenyvedelem 19(9):391–397

    Google Scholar 

  • Nilsson C (1987) Yield losses in summer rape caused by pollen beetles (Meligethes spp.). Swedish J Agril Res 17:105–111

    Google Scholar 

  • Nourani SL, Minassian V, Safaie N (2008) Identification, pathogenicity and distribution of Alternaria spp. of canola in Iran. Iran J Plant Path 44:33–36

    Google Scholar 

  • Ocfemia GO (1925) The occurrence of the white rust of crucifers and its associated downy mildew in the Philippines. Philippines Agric Sci J 14:289–296

    Google Scholar 

  • Oethybridge GH (1911) Potato diseases in Ireland. J Dept Agric 11(3):431

    Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba HY, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139

    Article  CAS  PubMed  Google Scholar 

  • Olien CR, Smith MN (1997) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Article  Google Scholar 

  • Omidvar V, Mohorianu I, Dalmay T, Fellner M (2015) MicroRNA regulation of abiotic stress response in 7B-1 male-sterile tomato mutant. Plant Genome 8:1–13

    Article  CAS  Google Scholar 

  • Ondrej M (1983) The occurrence of fungi on caraway (Carum carvi L.) in Czechoslovakia. (Vyskyt hub no kmínu (Carum carvi L.) v CSSR.). Sborník ÚVTIZ, Ochrana Rostlin 19(3):235–237

    Google Scholar 

  • Orian G (1951) Division of plant pathology. Report Dept Agric Mauritius, 1949: 66-72; 1950: 80-85.

    Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran L (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  PubMed  Google Scholar 

  • Oviedo Prieto R, Herrera Oliver P, Caluff MG et al (2012) National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba. 6 (Special Issue No. 1), 22-96.

    Google Scholar 

  • Pagliarini NC, Berberovic H, Okanovic M (2007) Pests and diseases of tomatoes under hydroponic cultivation. (Stetnici i bolesti rajcice u hidroponskom uzgoju). Glasilo Biljne Zastite 7(4):220–226

    Google Scholar 

  • Palaniswamy PC, Gillot C, Slater GP (1986) Attraction of diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), by volatile compounds of canola, white mustard, and faba bean. Can Entomol 118:1279–1285

    Article  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Park M (1932) Ceylon Adm. Rep Agric 1931:D103–D111

    Google Scholar 

  • Parker C, Wilson AK (1986) Parasitic weeds and their control in the Near East. FAO Plant Prot Bull 34(2):83–98

    Google Scholar 

  • Pastircakova K, Pastircak M (2013) A powdery mildew (Pseudoidium sp.) found on Chelidonium majus in the Czech Republic and Slovakia. Czech Mycol 65(1):125–132

    Article  Google Scholar 

  • Paul VH, Rawlinson CJ (1992) Diseases and pests of rape. Verlag Th. Mann, Gelsenkirchen-Buer, Germany

    Google Scholar 

  • Paulitz TC, Okubara PA, Schillinger WF (2006) First report of damping-off of canola caused by Rhizoctonia solani AG2-1 in Washington State. Plant Dis 90:829. https://doi.org/10.1094/pd-90-0829b

    Article  CAS  PubMed  Google Scholar 

  • Peer M, Stegmann M, Mueller MJ, Waller F (2010) Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. FEBS Lett 584:4053–4056. https://doi.org/10.1016/j.febslet.2010.08.027

  • Peleg J (1953) Outbreaks and new records. Israel FAO Pl Protect Bull 1-4:60–61

    Google Scholar 

  • Peregrine WTH, Siddiqi (1972) Phytopathological Papers No. 16. Commonwealth Mycological Institute, Kew. U.K. p 51

    Google Scholar 

  • Perez IB, Brown P (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Perochon A, Dieterle S, Pouzet C, Aldon D, Galaud JP, Ranty B (2010) Interaction of a plant pseudo-response regulator with a calmodulin-like protein. Biochem Biophys Res Commun398: 747–751. doi:https://doi.org/10.1016/j.bbrc.2010.07.016

  • Perwaiz MS, Moghal SM, Kamal M (1969) Studies on the chemical control of white rust and downy mildew of rape (Sarson). W Pak J Agric Res 7:71–75

    Google Scholar 

  • Peterson M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103(7):1111–1120

    Google Scholar 

  • Petrenkova VP (1994) Survival of the sclerotia of the causal agent of white rot. Zashchita Rasteniĭ (Moskva) 20

    Google Scholar 

  • Pimenova A, Maslennikov I (1955) Diseases and pests of cabbage seedlings and their control. Orchard Garden 6:30–33

    Google Scholar 

  • Ponce GF, Mendoza ZC (1983) Fungal diseases and insect pests of rapeseed in the high valleys of Mexico. (Enfermedades fungosas y plagas insectiles de la colza, Brassica napus L. y B. campestris L., en los Valles Altos de México.). Revista Chapingo 8(39):53–61

    Google Scholar 

  • Pons N, de Alvarado H, Castro JL (1979) Whetzelinia sclerotiorum, a new pathogen in Venezuela, on lettuce, cabbage and bean. (Whetzelinia sclerotiorum en lechuga, repollo yaraoata, nuevo patogeno en Venezuela.). Fitopatologia 14(1):10–14

    Google Scholar 

  • Pontis VRE, Feldman JM (1959) A new host of Sclerotinia sclerotiorum in Argentina. Plant Dis Reptr 43(3):421 p

    Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M et al (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA 104:4730–4735. https://doi.org/10.1073/pnas.0611615104

  • Popovic T, Balaz J, Starovic M, Trkulja N, Ivanovic Z, Ignjatov M, Josic D (2013) First report of Xanthomonas campestris pv. campestris as the causal agent of black rot on oilseed rape (Brassica napus) in Serbia. Plant Dis 97(3):418.

    Google Scholar 

  • Porter RH (1926) Preliminary report of surveys for plant diseases in East China. Plant Dis Reptr 46(S):153–166

    Google Scholar 

  • Prasad L, Kamil D, Singh N, Singh OW, Yadava DK, Prameela Devi T (2017) First report of Fusarium equiseti causing stem and root rot on Brassica juncea in India. J Plant Pathol 99(3):799–818

    Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston NC (1929) Part I. Report of the Advisory Mycologist (April 1928 March) 1929-Rept Advisory Dept Harper Adams Agric Coll New Port. Salop 4:4–8

    Google Scholar 

  • Prova A, Akanda MAM, Islam S, Sultana F, Islam MT, Hossain MM (2014) First report of stem and pod blight of hyacinth bean caused by Sclerotinia sclerotiorum in Bangladesh. J Plant Pathol 96(3):607

    Google Scholar 

  • Raabe A (1939) Investigations on parasitic fungal diseases of colza and rape. Zbl Bakt Abt 2Cl-3:35–52

    Google Scholar 

  • Raghuram B, Sheikh AH, Sinha AK (2014) Regulation of MAP kinase signaling cascade by micro RNAs in Oryza sativa. Plant Signal Behav 9:e972130

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai JN, Tewari JP, Singh RP, Saxena VC (1974) Fungal diseases of Indian crucifers. Beihefte zur Nova Hedwigia:477–486

    Google Scholar 

  • Raj S, Brautigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, Mansfield SD, Plant AL, Campbell MM (2011) Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A 108:12521–12526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju UJ, Sivaprakasam K (1989) Survey on pests and diseases of cabbage. Madras Agril J 76(4):192–196

    Google Scholar 

  • Ranty B, Aldon D, Gotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327. https://doi.org/10.3389/fpls.2016.00327

  • Rappussi MCC, Eckstein B, Flôres D, Haas ICR, Amorim L, Bedendo IP (2012) Cauliflower stunt associated with a phytoplasma of subgroup 16SrIII-J and the spatial pattern of disease. Eur J Plant Pathol 133:829–840. https://doi.org/10.1007/s10658-012-0004-7

    Article  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol:1611783–1611794

    Google Scholar 

  • Rawlinson CJ, Sutton BC, Muthyalu G (1978) Taxonomy and biology of Pyrenopeziza brassicae sp. nov. (Cylindrosporium concentricum), a pathogen of winter oilseed rape (Brassica napus spp. oleifera). Trans Br Mycol Soc 71:425–439

    Google Scholar 

  • Rayapuram C, Baldwin IT (2007) Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 52(4):700–715

    Article  CAS  PubMed  Google Scholar 

  • Rayss T (1938) A new contribution to the study of the Palestinian mycoflora. Palestine J Bot Jerusalem Series-I 2:143–160

    Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA (1960) Notes on Kenya agriculture VIII: important plant diseases. East African Agril Forestry J 25(3):131–146

    Article  Google Scholar 

  • Romeis T, Herde M (2014) From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Curr Opin Plant Biol 20:1–10. https://doi.org/10.1016/j.pbi.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  • Rothwell A (1972) Groundnut diseases in Rhodesia. Rhodesia Agril J 69(2):35–38

    Google Scholar 

  • Roy A, Spoorthi P, Bag MK, Prasad TV, Singh R, Dutta M, Mandal B (2013) A leaf curl disease in germplasm of rapeseed-mustard in India: Molecular evidence of a weed-infecting Begomovirus–Betasatellite complex emerging in a new crop. J Phytopathol 161(7-8):522–535

    Article  CAS  Google Scholar 

  • Ryan EW (1986) Research Report 1985, Horticulture. Dublin, Irish Republic, An Foras Taluntais, pp 35–36

    Google Scholar 

  • Rydl R (1968) Cabbage mould on kale. Uroda 16:186–187

    Google Scholar 

  • Sackston WE (1957) Diseases of Sunflowers in Uruguay. Plant Dis Reptr 41(10):885–889

    Google Scholar 

  • Sadowski C, Dakowska S, Lukanowski A, Jedryczka M (2002) Occurrence of fungal diseases on spring rape in Poland. In: Paul VH, Foller I (eds) Working Group on Integrated Control in Oilseed Crops. Soest, Germany, IOBC/WPRS Bulletin, pp 1–12

    Google Scholar 

  • Saharan GS (1984) A review of research on rapeseed mustard pathology in India. Annual Workshop AICORPO ICAR, Jaipur, 6–10 August 1984.

    Google Scholar 

  • Saharan GS (1992) Management of rapeseed and mustard diseases. In: Kumar D, Rai M (eds) Advances in oil seed research. Sci. Pub, Jodhpur

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: Biology, ecology and disease management. Springer Verlag, Frankfurt, Germany, p 244. isbn:978-81-322-1791-6

    Book  Google Scholar 

  • Saharan GS, Mehta Naresh, Meena PD (2016) Alternaria blight of crucifers: Biology, ecology and disease management. Springer Verlag, Singapore: 326, ISBN 978-981-10-0019-5.

    Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Verlag, Singapore, LVI, 357, ISBN 978-981-10-7499-8.

    Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2019) Powdery mildew disease of crucifers: Biology, ecology and disease management. Springer Verlag, Singapore, p 362. isbn:978-981-13-9852-0

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2021) Clubroot disease of crucifers: biology, ecology and disease management. Springer Verlag, Singapore. (In Press)

    Book  Google Scholar 

  • Salehi M, Izadpanah K, Nejat N, Siampour M (2007a) Partial characterization of phytoplasmas associated with lettuce and wild lettuce phyllodies in Iran. Plant Pathol 56:669–676. https://doi.org/10.1111/j.1365-3059.2007.01616.x

    Article  CAS  Google Scholar 

  • Salehi M, Izadpanah K, Siampour M (2007b) Characterization of a phytoplasma associated with cabbage yellows in Iran. Plant Dis 91:625–630

    Article  CAS  PubMed  Google Scholar 

  • Salonen J, Hyvonen T, Jalli H (2011) Composition of weed flora in spring cereals in Finland - a fourth survey. Agri Food Sci 20:245–261

    Article  Google Scholar 

  • Samuel G (1925) Rep. Dep. Agric. S. Australia for year ending 30th June, 1924: pp 76–78.

    Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417. https://doi.org/10.1105/tpc.002899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankhla HS, Dalela GG, Mathur RL (1967) Occurrence of perithecial stage of E. poligoni on B. campestris var. Sarson and B. juncea. Plant Dis Rep 51:800.

    Google Scholar 

  • Saucedo-Garcia M, Guevara-Garcia A, Gonzalez-Solis A, Cruz-Garcia F, Vazquez-Santana S, Markham JE et al (2011) MPK6, sphinganine and the LCB2a gene from serine palmitoyl transferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191:943–957. https://doi.org/10.1111/j.1469-8137.2011.03727.x

    Article  CAS  PubMed  Google Scholar 

  • Savulescu T, Rayss T (1930) Contribution to the knowledge of the Peronosporaceae of Rumania. Ann Mycologici 18:297–320

    Google Scholar 

  • Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaad NW, Dianese JC (1981) Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71(11):1215–1220

    Article  Google Scholar 

  • Scheffer RP (1950) Anthracnose leaf spot of crucifers. Tech Bull NC Agric Expt Sta 92:26

    Google Scholar 

  • Scherzer S, Maierhofer T, Al-Rasheid KA, Geiger D, Hedrich R (2012) Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. Mol Plant 5:1409–1412. https://doi.org/10.1093/mp/sss084

  • Schnug E, Haneklaus S (2005) Sulphur deficiency symptoms in oilseed rape (Brassica napus L.) − the aesthetics of starvation. Phyton 45:79–95

    CAS  Google Scholar 

  • Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender K W, Snedden W A et al. (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Mol Plant7: 1712–1726. doi: https://doi.org/10.1093/mp/ssu102

  • Scholz SS, Reichelt M, Vadassery J, Mithofer A (2015) Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. Plant Signal Behav 10:e1011951. https://doi.org/10.1080/15592324.2015.1011951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA87:9305–9309. https://doi.org/10.1073/pnas.87.23.9305

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530. https://doi.org/10.1104/pp.113.222539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B, Bart R, Krasileva K, Coaker G (2015) Focus issue on plant immunity: from model systems to crop species. Front Plant Sci 6:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Scortichini M, Rossi MP, Ruggini L, Cinti S (1994) Recurrent infections of Xanthomonas campestris pv. campestris on Cruciferae in some areas of central-southern Italy. Informatore Fitopatologico 44(12):48–50

    Google Scholar 

  • Sekhon BS (1999) Population dynamics of Lipaphis erysimi and Myzus persicae on different species of Brassica. In: Proceedings of the 10th Intl rapeseed Congr, 26–29 Sep 1999, Canberra, Australia

    Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakuri T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Semb L (1969) Cabbage downy mildew. Jord Avling 12:32–35

    Google Scholar 

  • Sen P (2005) Antagonistic effect of Ca, B and Mo on club-root disease of rape-mustard. Indian Agricul 49(1/2):13–16

    CAS  Google Scholar 

  • Șesan T, Csep N (1992) Prevention of white rot (Sclerotinia sclerotiorum (Lib.) de Bary) of sunflower and soybean by the biological control agent Coniothyrium minitans Campbell. In: Bulletin OILB/SROP 15(1):60–63

    Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, Ohme- Takagi M (2014) A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ 37:2024-2035.

    Google Scholar 

  • Shaik R, Ramakrishna W (2013) Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS One 8:e77261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya DD, Malla G (1988) Studies on black rot of crucifers. In: Proceedings of National Conference on Science and Technology. Royal Nepal Acad Sci. Tech, April 24-29, 1988, Kathmandu, Nepal

    Google Scholar 

  • Sham A, Al-Azzawi A, Al-Ameri S, Al-Mahmoud B, Awwad F, Al-Rawashdeh A, Iratni R, AbuQamar S (2014) Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis. PLoS One 25:e113718

    Article  Google Scholar 

  • Sham A, Moustafa K, Al-Ameri S, Al-Azzawi A, Iratni R, AbuQamar S (2015) Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays. PLoS One 10:e0125666

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma J, Agrawal K, Singh D (1992) Detection of Xanthomonas campestrispv. campestris (Pammel) dowson infection in rape and mustard seeds. Seed Res 20(2):128–133

    Google Scholar 

  • Sharma P, Meena PD, Chauhan JS (2013) First report of Nigrospora oryzae (Berk. and Broome) Petch causing stem blight on Brassica juncea in India. J Phytopathol 161(6):439–441. https://doi.org/10.1111/jph.12081

    Article  Google Scholar 

  • Sharma DK, Kumar D, Sharma PC (2015) Abiotic stresses with emphasis on Brassica juncea. In: Kumar A, Banga SS, Meena PD, Kumar PR (eds) Brassica oilseeds breeding and management. CBAI International, Oxfordshire, UK, pp 233–250

    Chapter  Google Scholar 

  • Shattuck VI, Parry R (1990) The occurrence of powdery mildew on rutabagas in Southern Ontario. Can Pl Dis Sur 70:75–16

    Google Scholar 

  • Shen FJ, Chen WL (1990) Preliminary study on cruciferous black rot in Zhejiang. Acta Agriculturae Universitatis Zhejiangensis 16(Suppl. 2):252–257

    Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control. John Wiley and Sons

    Google Scholar 

  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015a) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59:334–342

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Tan DX, Reiter RJ, Ye T, Yang F, Chan Z (2015b) Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermo tolerance in Arabidopsis. J Pineal Res 58:335–342

    Article  CAS  PubMed  Google Scholar 

  • Shin HD, La YJ (1992) Addition to the new records of host plants of powdery mildews in Korea. Korean J Plant Pathol 8:57–60

    Google Scholar 

  • Shivas RG (1989) Fungal and bacterial diseases of plants in Western Australia. J Royal Soc W Aus 72:1–62

    Google Scholar 

  • Shrestha K (1983) Major diseases and control of vegetable crops. In: Second Vegetable and Seed Production Workshop, February 1, 1983, Kathmandu.

    Google Scholar 

  • Shyam KR, Gupta SK, Mandraia RK (1994) Prevalence of different types of curd rots and extent of yield loss due to plant mortlity in cauliflower seed crop. Indian J Mycol Plant Pathol 24:172–175

    Google Scholar 

  • Singh SL (1974) Studies on some diseases of cruciferous crops in Varanasi. PhD Thesis, Banaras Hindu University. 177 p

    Google Scholar 

  • Singh SL, Pavgi MS (1977) Aphanomyces root rot of cauliflower. Mycopathologia 61:167–172

    Article  Google Scholar 

  • Singh SL, Pavgi MS (1978) Pythium root rot of crucifers. Mycopathologia 63:155–159. https://doi.org/10.1007/BF00490930

  • Singh RM, Agarwal DK, Sarbhoy AK, Chatterjee SC, Sharma J (1993) HCIO descriptions of plant pathogenic fungi. Set 11, Nos. 61-66. In: HCIO descriptions of plant pathogenic fungi. Set 11, Nos. 61-66. set 11 New Delhi, India: Malhotra Publishing House. 17 pp

    Google Scholar 

  • Singh YP, Kumar A, Singh NB (2005) Rapeseed-Mustard Integrated Insect-Pests management. Technical Bulletin No. 13, National Research Centre on Rapeseed-Mustard (ICAR), Bharatpur (Rajasthan) India, pp 34

    Google Scholar 

  • Singh R, Bhagawati R, Baruah S, Sharma PK (2016) Bacterial Stalk Rot: an emerging disease of mustard in Arunachal Pradesh. Env Ecol 34(2):451–453

    Google Scholar 

  • Sippell DW, Davidson JGN, Cox M (1985) Factors affecting severity of root rot of canola in the Peace River region. Proc 6th Annu. Meet. Plant Pathol Soc Alberta, Lethbridge, Alberta. 7–8 November 1985 p. 34. (Abstract)

    Google Scholar 

  • Skibbe DS, Doehlemann G, Fernandes J, Walbot V (2010) Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89–92

    Article  CAS  PubMed  Google Scholar 

  • Smith PA, Price TV (1996) Victorian vegetable growers’ estimates of the incidence of downy mildew on Brassica crops, crop losses and fungicidal control. Aus Plant Pathol 25(2):99–105

    Article  Google Scholar 

  • So IY, Lee SH, Kim HM, Lee WH (1981) Disease incidence in radish and Chinese cabbage. I Major diseases in radish and Chinese cabbage grown in alpine areas in Jeonbug Province. Korean J Plant Prot 20(3):135–145

    Google Scholar 

  • Soonthronpoct P (1969) Tech Docum. FAO PI Prot Comm SE Asia 70:23

    Google Scholar 

  • Sorin C, Leport L, Cambert M, Bouchereau A, Mariette F, Musse M (2016) Nitrogen deficiency impacts on leaf cell and tissue structure with consequences for senescence associated processes in Brassica napus. Bot Stud 57(1):11. https://doi.org/10.1186/s40529-016-0125-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence NJ, Phiri NA, Hughes SL, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata GN, Marris GC (2007) Economic impact of Turnip mosaic virus, Cauliflower mosaic virus and Beet mosaic virus in three Kenyan vegetables. Plant Pathol 56:317–323

    Article  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104(47):18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefcheva M, Denchev CM, Karadjova J, Dimitrova T, Milanova SD, Bakalova GG (2005) Indigenous fungal pathogens – a possibility for biological control of economically important weeds in Bulgaria. Herbologia 6(3):43–51

    Google Scholar 

  • Stell F (1922) Some common diseases of kitchen garden crops. Proc Agric Socences 12:779–785

    Google Scholar 

  • Sturrock CJ, Woodhall J, Brown M, Walker C, Mooney SJ, Ray RV (2015) Effects of damping-of caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray computed tomography and real-time PCR. Front Plant Sci 6:461

    Article  PubMed  PubMed Central  Google Scholar 

  • Su LC, Deng B, Liu S, Li LM, Hu B, Zhong YT, Li L (2015) Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachishypogaea. Front Plant Sci 6:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutic C, Klijajic R (1954) A contribution to the knowledge of the parasitic flora of Deliblatska pescara. Plant Prot Beograd 24:104–108

    Google Scholar 

  • Sutton (1977) Cylindrosporium concentricum. CMI Descr. Fungi Bact. No. 536. Commonwealth Mycological Institute, Wallingford

    Google Scholar 

  • Sutton BC (1980) The coelomycetes. Fungi imperfecti with Pycnidia, Acervuli and Stromata. CABI, Kew, UK: 523–537

    Google Scholar 

  • Suzuki K, Takahashi K, Kataoka M, Kyoto-fu (1980) Occurrence of Japanese turnip (Brassica campestris) root injury by Aphanomyces raphani and its control. Bulletin-of-the-Kyoto-Prefectural-Institute-of-Agriculture (Japan) 9:1–7. (Japanese)

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Szith R, Furlan H (1979) New experiences with the chemical treatment of the white rust on horseradish. (Neue Erfahrungen bei der chemischen Behandlung des Weissen Rostes (Albugo candida) [Pers.] Ktze.bei Kren (Meerrettich)). Pflanzenarzt 32(7/8):70–72

    Google Scholar 

  • Tahvonen R, Hollo J, Hannukkala A, Kurppa A (1984) Rhizoctonia solani damping-off on spring turnip rape and spring rape (Brassica spp.) in Finland. J Agric Sci Finland 56:143–154

    Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183

    Article  CAS  Google Scholar 

  • Tam LTT, Dung PN, Liem NV (2016) First report of powdery mildew caused by Erysiphe cruciferarum on Brassica juncea in Vietnam. Plant Dis 100(4):856

    Article  Google Scholar 

  • Tamura K, Takikawa Y, Tsuyumu S, Goto M (1994) Bacterial spot of crucifers caused by Xanthomonas campestris pv. raphani. Ann Phytopathol Soc Jpn 60:281–287

    Article  CAS  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613

    Article  CAS  PubMed  Google Scholar 

  • Tanas T (2004) The results of examination safeguard cucumbers in plastic houses from attack by Sclerotinia sclerotiorum (Lib.) de Bary. (Rezultati istraživanja mjera zaštite krastavca u plastenicima od napada: Sclerotinia sclerotiorum (Libert) de Bary.). Glasnik Zaštite Bilja 27(4):63–69

    Google Scholar 

  • Tarabeih AM, Abou-el-Fadl IA (1979) Effect of Sclerotinia sclerotiorum on the volatile oil content of some medicinal plants. Acta Phytopath Acad Sci Hung 14(1/2):31–35

    Google Scholar 

  • Tewari JP, Orchard D, Hartman M, Lange R, Turkington TK, Strelkov S (2004) First report of clubroot of canola caused by Plasmodiophora brassicae in the Canadian Prairies. Can J Plant Pathol 26:228–229 (Abstr.)

    Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135(1):530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanassoulopoulos CC (1987) Outbreaks and new records. Greece. New diseases on various crops in Greece. FAO Plant Prot Bull 35 (4):164.

    Google Scholar 

  • Thind KS (1942) The genus Peronospora in the Punjab. J Indian Bot Soc 21:197–215

    Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTIETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thung TH (1926a) Observations on Peronospora parasitica on cabbage. Tijdschr Over Plantenziekten 32:161–179

    Google Scholar 

  • Thung TH (1926b) Peronospora parasitica (Pers.) de Bary attacking cabbage heads. Phytopathology 16:365–366

    Google Scholar 

  • Timina LT, Korganova NN, Dobrorutskaya EG (1989) Downy mildew on radish roots. Zashchita Rasenii (Moskua) No. 10:39.

    Google Scholar 

  • Todorovic D (2007) Quarter-century of presence and spread of Plasmodiophora brassicae, cabbage hernia in Leskovac Region. (Cetvrt veka prisustva i irenja kile kupusa (Plasmodiophora brassicae) u okolini Leskovca.). Biljni Lekar (Plant Doctor) 35(5):505–511

    Google Scholar 

  • Tompkins CM, Ark PA, Tucker CM, Middleton JT (1939) Soft rot of pumpkin and watermelon fruits caused by Pythium ultimum. J Agric Res 58:461–475

    Google Scholar 

  • Tores JA, Moreno R (1991) Sclerotinia sclerotiorum: epidemiological factors affecting infection of greenhouse aubergine crops. J Phytopathol 132(1):65–74. https://doi.org/10.1111/j.1439-0434.1991.tb00094.x

  • Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinh HX, Quan MV, Groenewald JZ, Burgess LW (2012) First report of stub dieback of poinsettia (Euphorbia pulcherrima) caused by Sclerotinia sclerotiorum in Vietnam. Aust Plant Dis Notes 7(1):55–57. https://doi.org/10.1007/s13314-012-0047-9

    Article  Google Scholar 

  • Trkulja V (2006) The most important bacterial diseases of cole crops in Bosnia-Hercegovina and possibilities for their control. (Najznacajnije bakterioze kupusnjaca u BiH i mogucnosti njihovog suzbijanja.). Glasnik Zatite Bilja 29(4):41–53

    Google Scholar 

  • Tronsmo A (1989) Trichoderma harzianum used for biological control of storage rot on carrots. Norwegian J Agric Sci 3(2):157–161

    Google Scholar 

  • Tsai YP (1991) List of plant diseases in Taiwan. Taichung, Taiwan; China: The Plant Protection Society of the Republic of China, 604 pp

    Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in patterntriggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Somssich I (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947

    Article  CAS  PubMed  Google Scholar 

  • Turnock WJ, Gerber GH, Timlick BH, Lamb RJ (1995) Losses of canola seeds from feeding by Lygus species (Heteroptera: Miridae) in Manitoba. Can J Plant Sci 75:731–736

    Article  Google Scholar 

  • Tylkowska K (1984) Occurrence of fungi on bean seeds reproduced in different regions of Poland. (Występowanie grzybów na nasionach fasoli reprodukowanych w różnych rejonach Polski.). Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, pp 185–202

    Google Scholar 

  • Vaartnou H, Tewari I, Horricks J (1974) Fungi associated with diseases on Polish-type rape in Alberta. Mycopathol Mycol Appl 52:255–260

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithofer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175. https://doi.org/10.1104/pp.112.198150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagelas I, Gravanis F (2014) Phelipanche nana (Reut.) Sojak parasitism on lentil (Lens culinaris) and parasitism of P. aegyptiaca on Carduus marianus in Thessalia region, Greece. Archiv Phytopathol Plant Prot 47(16):1956–1962

    Google Scholar 

  • Vakalounakis DJ (1991) Albugo candida, the cause of a serious white rust of Lunaria biennis in Crete. Plant Pathol 40(4):637–638. https://doi.org/10.1111/j.1365-3059.1991.tb02430.x

  • Valizadeh N, Mirshekari B (2011) Determination of economical yield loss threshold of Chenopodium album at interference with rapeseed (Brassica napus). J Food Agric Env 9(2):409–412

    Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, Macdiarmid RM (2014) Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol 55:551–569. https://doi.org/10.1093/pcp/pct200

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vanparys L, Calus A (1994) Brussels sprouts. A review of the research in (1992) Beitem-Roeselare. Provinciaal Onderzoek-en Voorlichtingscentrum voor Land-en Tuinbouw, Belgium, 48 pp

    Google Scholar 

  • Vanparys L, Seynnaeve M, Calus A (1993) Brussels sprouts. A review of research in 1990. (Spruitkool. Overzicht van het onderzoek in 1990). Beitem Roeselare, Belgium: Belgium, Provinciaal Onderzoek en Voorlichtingscentrum voor Land en Tuinbouw

    Google Scholar 

  • Vanterpool TC (1960) The ring spot disease of rape in an inland parkland region. Plant Dis Reptr 44:362–363

    Google Scholar 

  • Vavrac J, Kubova A (1992) The successes and the problems of the growing of soybeans in Czechoslovakia. Eur Secur:58–61

    Google Scholar 

  • Velastegui JR, Ball SFL (1991) First record of Sclerotinia sclerotiorum on tree tomato in Ecuador. Plant Pathol 40(3):476–477. https://doi.org/10.1111/j.1365-3059.1991.tb02406.x

    Article  Google Scholar 

  • Vellios E, Karkanis A, Bilalis D (2017) Powdery mildew (Erysiphe cruciferarum) infection on Camelina (Camelina sativa) under Mediterranean conditions and the role of wild mustard (Sinapis arvensis) as alternative host of this pathogen. Emirates J Food Agric 29(8):639–642

    Article  Google Scholar 

  • Verma PR, Saharan GS (1993) Alternaria brassicae (Berk.) Sacc., A. brassicicola (Schwein.) Wiltsh. and A. raphani Groves and Skolko: Introduction, bibliography and subject index. Tech. Bull. No. 93–002, Agriculture and Agri-food Canada, Res. Centre Saskatoon, p 81

    Google Scholar 

  • Verma PR, Saharan GS (1994) Monograph on Alternaria Diseases of Crucifers. Saskatoon Research Centre Technical Bulletin 1994–6E, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.

    Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. Chapter 2. In: Sarwat M, Ahmad A, Abdin MZ (eds) Stress signaling in plants: genomics and proteomics perspective, vol 1, pp 25–50. https://doi.org/10.1007/978-1-4614-6372-6_2

    Chapter  Google Scholar 

  • Viegas AP, Teixeira AR (1943) Some fungi of Brazil Phycomycetos. Bragantia S Paulo 3:223–245

    Google Scholar 

  • Virdi A, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin regulated proteins. Front Plant Sci 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrataric M, Bilandzic M, Jurkovic D, Prodanovic G, Krizmanic M, Sudaric A (1991) A study of principal diseases affecting several soyabean varieties and genotypes and their control with fungicide combinations. (Proucavanje vaznijih bolesti na nekoliko novih sorata i genotipova soje te mogućnosti suzbijanja s fungicidima u Osijeku.). Znanost i Praksa u Poljoprivredi i Prehrambenoj Tehnologiji 21 (Suppl):85–94

    Google Scholar 

  • Wager VA (1940) Descriptions of the South African Pythiaceae with records of their occurrence. Bothalia 4:3–35

    Article  Google Scholar 

  • Walsh JA, Tomlinson JA (1985) Viruses infecting winter oilseed rape (Brassica napus ssp. oleifera). Ann Appl Biol 107(3):485–495

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathol 2(11):1042–1050

    Article  CAS  Google Scholar 

  • Wang X, Basnayake B, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact 22:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Yu X, Mao Y, Liu G, Liu Y, Niu X (2015a) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134:384–393

    Article  CAS  Google Scholar 

  • Wang JP, Munyampundu JP, Xu YP, Cai XZ (2015b) Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Front Plant Sci 6:1075. https://doi.org/10.3389/fpls.2015.01075

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hwang SF, Akhavan A, Ahmed H, Turnbull G, Strelkov S (2019a) Yield losses in blackleg of canola and pyraclostrobin sensitivity in populations of Leptosphaeria maculans. Presentation http://hdl.handle.net/10388/12048, University of Saskatchewan, Canada.

  • Wang Y, Strelkov SE, Hwang SF (2019b) Yield losses in canola in response to blackleg disease. Can J Plant Sci

    Google Scholar 

  • Waterston JM (1940) Report of the plant pathologist, 1939. Report Dept. Agric, Bermuda, pp 19–31

    Google Scholar 

  • Waterston JM (1947) The fungi of Bermuda. Bull Dep Agric Bermuda 23:305 pp

    Google Scholar 

  • Wei F, Wing RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14:1903–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weimer JL (1926) Ringspot of crucifers caused by Mycosphaerella brassicicola. J Agric Res 32:97–132

    Google Scholar 

  • Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD (2011) Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana, and Glycine max. Plant Cell Environ 34:1488–1506

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. https://doi.org/10.1093/aob/mcg164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese E (1927) A fungus disease of wallflowers and stocks. Gartenwelt 31:486

    Google Scholar 

  • Wilkins O, Brautigam K, Campbell MM (2010) Time of day shapes Arabidopsis drought transcriptomes. Plant J 63:715–727

    Article  CAS  PubMed  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Article  Google Scholar 

  • Williams PH (1985) Crucifer genetics co-operative resource book Downy mildew. University of Wisconsin, Madison, pp D5–D7

    Google Scholar 

  • Winter W, Burkhard L, Bänziger I, Krebs H, Gindrat D, Frei P, Brändle G, Hirner M, Forrer HR, Hogger C, Schwarz A (1993) Rape diseases: occurrence on rape varieties, effect of fungicides and preventive control measures. (Krankheitsanfälligkeit von Rapssorten, Fungizidwirkung und Massnahmen zur Krankheitseindämmung.). Landwirtschaft Schweiz 6(10):589–596

    Google Scholar 

  • Worf GL, McCain AH, Covey RP, Castanho BJ (1985) Common names for plant diseases. Plant Dis 69(8):649–676

    Google Scholar 

  • Wu MD, Zhang L, Li GQ, Jiang DH, Hou MS, Huang HC (2007) Hypovirulence and double-stranded RNA in Botrytis cinerea. Phytopathology 97:1590–1599

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat. BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Drenth J, Mcintyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Asandhi AA, Purwati E, Dianawati M (2004) Control of cabbage clubroot disease by employing one-year crop rotation with three vegetable combinations in the West Java highlands of Indonesia. JIRCAS Working Report, No. 43:175-184.

    Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar NaC/HC antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2C- and pH-dependent manner. Proc Natl Acad Sci U S A 102:16107–16112. https://doi.org/10.1073/pnas.0504437102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Zhang LG, Hui MX, Zhang MK (2008) Pathogenesis division of black rot bacteria of Chinese cabbage in Shaanxi central productive area. J Northwest A & F University Natl Sci Edn 36(10):132–138

    Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512. https://doi.org/10.1016/j.tplants.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Buczacki ST (1978) Club root in Japan: research and problems. Rev Plant Pathol 57(7):253–257

    Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42(9):1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Yucer MM, Karaca I (1978) Investigations on sunflower diseases in Thrace, their rate of existence, their fungal pathogens and their pathogenicities. J Turkish Phytopathol 7(1):39–50

    Google Scholar 

  • Zarzycka H (1970) Investigations on sources of infection of Camelina by Peronospora camelinae. Acta Mycologica Warszawa 6:7–19

    Article  Google Scholar 

  • Zazzerini A, Tosi L (1985) Tests of antagonism of some bacterial isolates towards Sclerotinia sclerotiorum (Lib.) de Bary. (Prove di antagonismo di alcuni isolati batterici nei confronti della Sclerotinia sclerotiorum (Lib.) de Bary.). Informatore Fitopatologico 35(1):27–30

    Google Scholar 

  • Zeng X, Huang Q (1994) Identification on the pathogenic bacteria of a new tabacco disease-Black rot. J South China Agril Univ 15:46–49

    Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600. https://doi.org/10.3389/fpls.2015.00600

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Wang YX, Liu YL (1984) Taxonomic studies on the family Albuginaceae of China II. A new species of Albugo on Acanthaceae and known species of Albugo on Cruciferae. Acta Mycol Sin 3(2):65–71

    Google Scholar 

  • Zhang T, Chen S, Harmon AC (2014) Protein phosphorylation in stomatal movement. Plant Signal Behav 9:e972845. https://doi.org/10.4161/15592316.2014.972845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhang F, Huang L, Vera Cruz C, Ali J, Xu J, Zhou Y, Li Z (2016) Overlap between signaling pathways responsive to Xanthomonas oryzae pv. oryzae infection and drought stress in rice introgression line revealed by RNA-Seq. J Plant Growth Regul 35:345–356

    Article  Google Scholar 

  • Zhao Y, Damicone JP, Demezas DH, Bender CL (2000) Bacterial leaf spot diseases of leafy crucifers in Oklahoma caused by pathovars of Xanthomonas campestris. Plant Dis 84:1008–1014

    Article  PubMed  Google Scholar 

  • Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic Stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Dunand C, Snedden W, Galaud JP (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20, 483:–489. https://doi.org/10.1016/j.tplants.2015.05.010

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immuno 35:345–351

    Article  CAS  Google Scholar 

  • Zou X, Qin Z, Zhang C, Liu B, Liu J, Zhang C, Lin C, Li H, Zhao T (2015) Overexpression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. J Exp Bot 66:7197–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saharan, G.S., Mehta, N.K., Meena, P.D. (2021). Host Resistance Signaling Network System to Multiple Stresses. In: Genomics of Crucifer’s Host-Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-0862-9_5

Download citation

Publish with us

Policies and ethics