Skip to main content

Entomopathogenic Fungi

  • Chapter
  • First Online:
Microbial Approaches for Insect Pest Management
  • 814 Accesses

Abstract

With the rising need of switching over to sustainable agricultural practices, utilization of entomopathogenic fungi (EPF) as biocontrol agents provides better and safe substitute against chemical insecticides, which are associated with several environmental and health hazards. Entomopathogenic fungi act as a parasite of insects and kill or critically disable the insects. These include different classes of fungi, viz., Oomycota, Chytridiomycota, Zygomycota, Ascomycota, Deuteromycota, Basidiomycota, and Entomophthoromycota that infect and kill the insects. Some of the merits related with the uses of entomopathogenic fungi as biocontrol agents are high host specificity, insignificant effect on the beneficial insects/nontarget organisms, and simple mass production. The EFP are reported to infect a very wide range of insects, such as lepidopterous larvae, aphids, and thrips, which are of enormous concern in the agriculture, globally. This approach of using EPF as biocontrol agent, instead of chemical pesticides, seems to be very effective and promising in the near future as it moves toward sustainable agricultural practices and protecting the environment, which is the need of the hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari MA, Butt TM (2011) Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. J Appl Microbiol 110:1460–1469

    Article  CAS  Google Scholar 

  • Araújo JPM, Hughes DP (2016) Diversity of Entomopathogenic fungi which groups conquered the insect body? In: Lovett B, Leger RJS (eds) Advances in genetics, vol 94. Elsevier, Amsterdam, pp 1–39. https://doi.org/10.1016/bs.adgen.2016.01.001

    Chapter  Google Scholar 

  • Arroyo-Manzanares N, Diana Di Mavungu J, Garrido-Jurado I et al (2017) Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-Orbitrap high-resolution mass spectrometry. Anal Bioanal Chem 409:3347–3357. https://doi.org/10.1007/s00216-017-0276-z

    Article  CAS  PubMed  Google Scholar 

  • Asi MR, Bashir MH, Afzal M, Zia K, Akram M (2013) Potential of entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Anim Plant Sci 23(3):913–918

    Google Scholar 

  • Balazy S (1993) Entomophthorales, Flora of Poland (Flora Polska), fungi (Mycota). Polish Acad Sci W Szafer Inst Botany, Krakow 24:1–356

    Google Scholar 

  • Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560. https://doi.org/10.1128/AEM.03338-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behie SW, Padilla-Guerrero IE, Bidochka MJ (2013) Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Commun Integr Biol 6:e22321. https://doi.org/10.4161/cib.22321

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilgo E, Lovett B, Leger RJS et al (2018) Native entomopathogenic Metarhizium spp. from Burkina Faso and their virulence against the malaria vector anopheles coluzzii and non-target insects. Parasites Vectors 11:11–16. https://doi.org/10.1186/s13071-018-2796-6

    Article  CAS  Google Scholar 

  • Burges HD (1998) Formulation of mycoinsecticides. In: Burges HD (ed) Formulation of microbial pesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 132–185

    Chapter  Google Scholar 

  • Butt TM, Wang C, Shah FA, Hall R (2006) Degeneration of entomogenous fungi. In: Eilenberg J, Hokkanen (eds) An ecological and societal approach to biological control. Springer, Dordrecht, pp 213–226

    Chapter  Google Scholar 

  • Carpio A, Arroyo-Manzanares N, Ríos-Moreno A et al (2016) Development of a QuEChERS-based extraction method for the determination of destruxins in potato plants by UHPLC–MS/MS. Talanta 146:815–822. https://doi.org/10.1016/j.talanta.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  • Donatti AC, Furlaneto-Maia L, Fungaro MHP, Furlaneto MC (2008) Production and regulation of cuticle-degrading proteases from Beauveria bassiana in the presence of Rhammatocerus schistocercoides cuticle. Curr Microbiol 56:256–260. https://doi.org/10.1007/s00284-007-9071-y

    Article  CAS  PubMed  Google Scholar 

  • Donzelli BGG, Krasnoff SB (2016) Molecular genetics of secondary chemistry in Metarhizium fungi. In: Lovett B, Leger RJS (eds) Advances in genetics, vol 94. Elsevier, Amsterdam, pp 365–436

    Google Scholar 

  • Dou F, Wang Z, Li G, Dun B (2019) Microbial transformation of flavonoids by Isaria fumoso rosea ACCC 37814. Molecules 24:1028. https://doi.org/10.3390/molecules24061028

    Article  CAS  PubMed Central  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360. https://doi.org/10.1007/s11046-006-0024-y

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Liu X, Keyhani NO et al (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci U S A 114:E1578–E1586. https://doi.org/10.1073/pnas.1616543114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci 112:11365–11370. https://doi.org/10.1073/pnas.1503200112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-López PM, Konigsberg M, Gómez-Quiroz LH, Loera O (2012) Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J Ind Microbiol Biotechnol 28:353–359

    Article  Google Scholar 

  • Greenfield BPJ, Lord AM, Dudley E, Butt TM (2014) Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. R Soc Open Sci 1(2):140193. https://doi.org/10.1098/rsos.140193

    Article  PubMed  PubMed Central  Google Scholar 

  • Gul HT, Saeed S, Khan FZA (2014) Entomopathogenic fungi as effective insect pest management tactic: a review. Appl Sci Bus Econ 1:10–18

    Google Scholar 

  • Hatai K, Roza D, Nakayama T (2000) Identification of lower fungi isolated from larvae of mangrove crab Scylla serrata, in Indonesia. Mycoscience 41(6):565–572

    Article  Google Scholar 

  • Humber RA (1997) Fungi: identification. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, London, pp 153–185

    Chapter  Google Scholar 

  • Humber RA (2012) Preservation of entomopathogenic fungal cultures. In: Lacey LA (ed) Manual of techniques in insect pathology, 2nd edn. Academic Press, San Diego, pp 317–327

    Google Scholar 

  • Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci Tech 27:28–41

    Article  Google Scholar 

  • Jackson MA (1997) Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J Ind Microbiol Biotechnol 19:180–187

    Article  CAS  Google Scholar 

  • Jin K, Peng G, Liu Y, Xia Y (2015) The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet Biol 77:61–67. https://doi.org/10.1016/j.fgb.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  • Kassa A, Vidal SD, Zimmermann G (2004) Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control. Mycol Res 108:93–100

    Article  Google Scholar 

  • Kim JS, Je YH, Woo EO, Park JS (2011) Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP-198 conidia in corn oil based suspension. Mycopathologia 171:67–75

    Article  CAS  Google Scholar 

  • Klieber J, Reineke A (2016) The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J Appl Entomol 140:580–589. https://doi.org/10.1111/jen.12287

    Article  CAS  Google Scholar 

  • KozÅ‚owska E, Dymarska M, Kostrzewa-SusÅ‚ow E, Janeczko T (2019) Cascade biotransformation of estrogens by Isaria fumosorosea KCh J2. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-47225-1

    Article  CAS  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI et al (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Liu BL, Tzeng YM (2012) Development and applications of destruxins: a review. Biotechnol Adv 30:1242–1254. https://doi.org/10.1016/j.biotechadv.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  • Mc Namara L, Dolan SK, Walsh JMD et al (2019) Oosporein, an abundant metabolite in Beauveria caledonica, with a feedback induction mechanism and a role in insect virulence. Fungal Biol 123:601–610. https://doi.org/10.1016/j.funbio.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497

    Article  CAS  Google Scholar 

  • Moonjely SS, Barelli L, Bidochka MJ (2016) Insect pathogenic fungi as endophytes. In: Lovett B, Leger RJS (eds) Advances in genetics. Elsevier, Amsterdam, pp 107–135

    Google Scholar 

  • Moore O, Bateman RP, Carey M, Prior C (1995a) Long-ter m storage of Metarhizium flavoviride conidia in oil formulation for the control of locusts and grasshoppers. Biocontrol Sci Tech 5:193–199

    Article  Google Scholar 

  • Moore O, Bateman RP, Carey M, Prior C (1995b) Long-term storage of Metarhizium flavoviride conidia in oil formulation for the control of locusts and grasshoppers. Biocontrol Sci Tech 5:193–199

    Article  Google Scholar 

  • Ortiz-Urquiza A, Keyhani O (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  Google Scholar 

  • Pedrini N, Rosana C, Patricia Juarez M (2007) Biochemistry of insect epicuticule degradation by entomopathogenic fungi. Comp Biochem Physiol 146:124–137

    Google Scholar 

  • Ramakuwela T, Hatting J, Bock C et al (2020) Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol Control 140:104102. https://doi.org/10.1016/j.biocontrol.2019.104102

    Article  CAS  Google Scholar 

  • Samson RA, Evans HC, Latg JP (1988) Atlas of Entomopathogenic fungi. Springer, Berlin Heidelberg, New York

    Book  Google Scholar 

  • Santi L, Beys da Silva WO, Berger M et al (2010) Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880. https://doi.org/10.1016/j.toxicon.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  • Shah FA, Allen N, Wright CJ, Butt TM (2007) Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol 276:60–66

    Article  CAS  Google Scholar 

  • Silva WOB, Santi L, Berger M et al (2009) Characterization of a spore surface lipase from the biocontrol agent Metarhizium anisopliae. Process Biochem 44:829–834. https://doi.org/10.1016/j.procbio.2009.03.019

    Article  CAS  Google Scholar 

  • Skinner M, Parker BL, Kim JS (2014) Role of entomopathogenic fungi. In: Abrol DP (ed) Integrated pest management. Academic Press, Cambridge, pp 169–191

    Chapter  Google Scholar 

  • Steinhaus EA (1964) Microbial disease of insects. In: Debach P (ed) Biological control of insect pest and weeds. Chapman and Hall, London, pp 515–547

    Google Scholar 

  • Tlecuitl-Beristain S, Viniegra-Gonzalez G, Diaz-Godinez G, Loera O (2010) Medium selection and effect of higher oxygen concentration pulses on Metarhizium anisopliae var. lepidiotum conidial production and quality. Mycopathologia 169:387–394

    Article  CAS  Google Scholar 

  • Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110(1):4–30

    Article  Google Scholar 

  • Wang X, Gong X, Li P et al (2018) Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules 23:169. https://doi.org/10.3390/molecules23010169

    Article  CAS  PubMed Central  Google Scholar 

  • Weng Q, Zhang X, Chen W, Hu Q (2019) Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules 24(4):E664. https://doi.org/10.3390/molecules24040664

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-J, Li E, Wang C, Li Y, Liu X (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology 3:2–10. https://doi.org/10.1080/21501203.2011.654354

    Article  Google Scholar 

  • Zhao H, Lovett B, Fang W (2016) Genetically engineering entomopathogenic fungi. In: Lovett B, Leger RJT (eds) Advances in genetics, vol 94. Elsevier, Amsterdam, pp 137–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, A.C., Afzal, K. (2021). Entomopathogenic Fungi. In: Omkar (eds) Microbial Approaches for Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3595-3_7

Download citation

Publish with us

Policies and ethics